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Abstract
Countries which are introducing a system of Universal health coverage have to
make a number of key tradeoffs, of which one is the tradeoff between the level
of coverage and the degree to which patients are exposed to potentially cata-
strophic financial risk. In this study, we first present a way in which decision
makers might be supported to focus on in a particular part of the tradeoff
curve and ultimately choose an efficient solution. We then introduce some
multiobjective optimization models for generating the tradeoff curves given
data about potential treatment numbers, costs, and benefits. Using a dataset
from Malawi, we demonstrate the approach and suggest a core index metric to
make specific observations on the individual treatments. Moreover, as there
has been some debate about the best way to measure financial exposure, we
also investigate the extent to sensitivity of our results to the precise technical
choice of financial exposure metric. Specifically, we consider two metrics,
which are the total number of cases protected from catastrophic expenditure
and a convex penalty function that penalizes out‐of‐pocket expenditures in an
increasingly growing way, respectively.
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1 | INTRODUCTION

The ideal healthcare system would pay for every effective medical treatment, for everyone in the covered population,
entirely. Unfortunately in a world where budgets are limited, such generous coverage is possible only for the very
wealthiest global citizens. Most existing healthcare systems, in both rich and poor countries, and everywhere in be-
tween, embody compromises—in terms of who is covered, what is covered, or what share of the cost is covered.

Recently, many national and global actors have fallen in line behind the Universal health coverage (UHC) banner of
“UHC,” a succinct label for the idea that everyone should have access to affordable and effective healthcare (Chalkidou
et al., 2016; WHO, 2010). But what “affordable” means is highly situationally dependent. Moreover, even though
universality takes the question of who is to be covered out of the picture, it gives little guidance as to how the balance
should be struck between what is covered and what share of the cost is covered. Clearly when budgets are finite, if
health services are provided free at the point of delivery, less can be provided than if the patients are required to
contribute a share of the costs (Smith, 2013).
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This tradeoff is recognized by Disease Control Priorities 3, the recent project of the World Bank and the Bill and
Melinda Gates Foundation, which sought to provide analysis of healthcare “best buys” for low‐ and middle‐income
countries (LMICs; Jamison and DCP3, 2018). The analysts working in this project have advocated a new form of cost‐
effectiveness analysis, so‐called “Extended Cost‐Effectiveness Analysis” (ECEA; Megiddo et al., 2016; Megiddo et al.,
2014; Megiddo, Klein, & Laxminarayan, 2018; Morton & Lauer, 2017; Nandi et al., 2016; Verguet, Kim, & Jamison, 2016;
Verguet, Laxminarayan, & Jamison, 2015; Verguet et al., 2013). One of the defining features of ECEA is that financial
protection is modeled explicitly alongside health benefits and expenditure. However, while ECEA clearly enriches the
information base, decision makers may find it more taxing to move from the tables of numbers produced as part of a
ECEA analysis to actual decisions about what to fund (For comparison, it is relatively easy to “read off” the action
implications of a cost/quality adjusted life years [QALYs] ranking).

In this study, we offer a technical solution which can help decision makers make tradeoffs between health and
financial protection. The sort of setting we have in mind is the determination of a “health benefits package”‐an explicit
list of all of the treatments to which a population is entitled, and at what copayment rates. The analytic and political
challenges of determining a health benefits package are clearly an order of magnitude greater than those facing rich
country Health Technology Assessment agencies such as the NICE or the Scottish Medicines Consortium making yes/
no decisions about particular technologies. However, for LMICs which have the ambition to rapidly scale up their
healthcare provision in the face of a seriously constrained resource base, setting explicit benefits packages may be
attractive for several reasons (Glassman, Giedion, & Smith, 2017).

The tool which we propose in this study is based on multiobjective optimization. Mathematical optimization
methods have been used by many as a conceptual framework for understanding health systems (Morton, 2014; Morton,
Arulselvan, & Thomas, 2018; Morton, Thomas, & Smith, 2016b; van Baal, Meltzer, & Brouwer, 2016; Smith & Yip, 2016;
van Baal, Morton, & Severns, 2018). The recent reports of the ISPOR Taskforce on Constrained Optimization point the
way forward to using these methods more widely in operational analysis to support the development of more efficient,
more patient‐centered care (Crown et al., 2018; Crown et al., 2017).

Multiobjective optimization differs from traditional optimization in that it seeks to generate not a single “best”
solution, but a range of solutions which may be best depending on where the decision maker sets the tradeoff between
competing objectives (Ehrgott, 2005). This can be particularly useful in a portfolio choice setting such as the deter-
mination of a benefits package, where making choices “locally” about particular technologies using different criteria
may result in global choices which are not logically consistent (Morton, Keisler, & Salo, 2016a; Salo, Keisler, &
Morton, 2011).

To illustrate how multiobjective optimization would outperform a traditional approach, let us consider an example
with four health care treatments that belong to two categories. Each treatment is evaluated with respect to its health
benefit and financial exposure levels. In category 1, there are treatments A and B, and in category 2, C and D. One item
has to be chosen from each category. The decision maker for category 1 subtracts the financial exposure score from the
health benefits; the decision maker for category 2 subtracts twice the financial exposure score, resulting in the overall
scores seen in Table 1.

It is clear from the scores that one would choose A from Category 1 and C from Category 2. Let us take a look at the
possible portfolios:

As seen in Table 2 and Figure 1, portfolio (A,C) is dominated by portfolio (B,D) as the latter leads to more health and
less financial exposure. Multiobjective optimization is useful since one never chooses a dominated solution in the
portfolio space because of local decisions guided by inconsistent values.

This example demonstrates the complexity of the decision problem when multiple technologies are considered
simultaneously. In such problems, one can use 2‐dimensional ECEA graphs to visualize the policy makers problem.
However, it would still be challenging to evaluate all possible choice combinations (project portfolios), as the number of
such portfolios would be prohibitively large. In real life settings with higher number of technologies to choose from, the
complexity is even more pronounced. Multiobjective optimization can be used to support decision‐making in such
problems. Health benefits package design problem is a typical example where the policy makers have to compare many
interventions simultaneously rather than focusing on one specific intervention. Indeed, any setting where decision
makers have to make choices about multiple technologies simultaneously is a potential application for multiobjective
optimization. Further applications involve territorial resource allocation problem, in which a health authority with
fixed funds prioritizes various health‐related investments; and the specialty‐level clinical planning, in which multiple
improvement techniques (or multiple specialties) are prioritized so as to improve the healthcare system with respect to
multiple criteria such as patient access and efficiency.
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To our knowledge, the only study in the health economics literature which has previously used multiobjective
optimization is [Morton, 2014], which uses the method to explore equity tradeoffs between different population sub-
groups who are differently disadvantaged. Morton's study uses both different model formulations and different solution
algorithms from the present work.

In the following sections, we will first discuss ways to support decision makers to choose their most preferred
package given the tradeoff curve that shows how different options (health benefits packages) perform with respect to
the two criteria of total health benefit and financial protection. We will then focus on the problem of finding this
tradeoff curve, through a biobjective optimization framework.

2 | INTERACTIVE METHODS

In this section, we suggest two approaches which may help a decision maker, who has to choose from a given set of
solutions that are good to various degrees with respect to the two criteria of total health benefit and financial protection,
narrow down which solution is the appropriate in the light of her objectives. Each such solution is a feasible portfolio of
healthcare treatments (in the sense that the total cost of the treatments does not exceed the budget) and is also a Pareto
solution, that is, there is no other solution that improves it with respect to both criteria or with respect to one criterion
without sacrificing from the other.

Our first approach is as follows. If the decision maker is prepared to assume an overall objective function of the form
wH þ ð1 � wÞFP (where H and FP denote the total health benefit and financial protection levels of a solution
respectively), the situation becomes much simpler—even if she cannot specify the weight w. This is because the optimal

TABLE 1 Overall scores
Treatment Health Financial exposure Overall score

A 105 55 50

B 50 5 45

C 30 10 10

D 115 55 5

TABLE 2 Portfolios
Portfolio Health Financial exposure

A þ C 135 65

A þ D 215 110

B þ C 80 15

B þ D 165 60

F I GURE 1 Bicriteria analysis on portfolios
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solution must lie on the convex hull or envelope of the Pareto set. See Figure 2 for an example with 14 options.1 Note
that uncertainty in the weight does not necessarily translate into uncertainty in the decision: for example, whether the
weight 0.75 or 0.85, the optimal choice is nevertheless option C.

Our second approach uses the following idea, the history of which is discussed in Karsu, 2013. Assume that the
decision maker's objective function is f ðH;FPÞ where f is some quasiconcave and increasing function, and suppose the
decision maker has told us that she prefers a to b (see Figure 3). Then all points in the area bcod must be worse for the
decision maker than b. To see why, suppose that there was a point x contained in bcod which is superior to b. Then
there would have to be an isoquant of f which separates both a and x from b. As is evident from the Figure such an
isoquant could not be convex, which contradicts the assumed quasiconcavity of f.

We do not provide full technical details of this idea which can be found elsewhere in greater generality than in
the example studied in the current study (Korhonen, Wallenius, & Zionts, 1984; Karsu, 2013). From our point of
view, the important insight is that simple pairwise comparisons can eliminate whole regions of the Pareto set without
the need to assume additivity of the decision maker's objective function. To get a sense of how this might work
consider Figure 4. In the first step of this procedure, the decision maker is faced with a choice between C and D, and
choosing D eliminates several points to the northwest of C. In the second step, the decision maker chooses between
D and E and her choice of D eliminates a further point to the southeast of E. The remaining five panels show how
the remaining options are eliminated until a single circled point remains. The point of this example is to show that
even if the Pareto set contains N points, it may not be necessary to explicitly examine each of those points to come to
a decision.

F I GURE 2 Tradeoff analysis

F I GURE 3 An example depicting the contradiction to quasiconcavity
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F I GURE 4 Interactive algorithm steps
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A relevant design question is how to choose the pairwise questions to ask the decision maker to make the most out
of her answers and determine her preferred option with the least number of questions possible. A good‐rule‐of thumb
for choosing pairs for comparison would be checking the potential of the answer in reducing the number of options. As
can be seen graphically form the figures, when choosing the pairs to ask, it is better to start with solutions that lie
toward the center of the frontier as this would maximize the minimum number of alternatives that can be eliminated,
that is, it increases the potential to eliminate more alternatives. For example, in the first iteration, pair (C, D) is chosen
because the minimum number of eliminations is the highest for this pair. If C is preferred, then 4 options will be
eliminated while if D is preferred, 5 options will be eliminated. At least 4 alternatives are eliminated whatever the
choice of the decision maker is.

Note that this rule prioritizes the solutions that lie on the convex hull of the set of (not‐yet‐eliminated) solutions.
Moreover, it tends to choose closer solutions as they will reveal more information on the tradeoff between the two
criteria.

Another question arises here on how to obtain the tradeoff curve, that is the alternative health benefits packages that
are Pareto solutions. For this purpose, we propose using biobjective optimization models with the objectives of
maximizing total health gain and minimizing financial exposure (or equivalently, maximizing financial protection). We
discuss two such mathematical models that differ with respect to how financial exposure is quantified.

3 | PROPOSED MODELS

Consider a setting where there are n treatments. Each treatment i is expected to generate a benefit value of bi per person
(measured in appropriate units) and consumes ci units of resource per person. Let ni be the total number of cases
requiring treatment i. The total amount of budget available is denoted by B, which typically is not sufficient to cover all
treatments to their full extent.

We assume that a central decision authority decides on the copayment rates, hence covering a portion (pi) of the
costs and leaving the rest of the treatment costs to the patients.

We consider two concerns at the same time: The concern of maximizing the total benefit achieved by the
package (measured in appropriate units such as total QALYs gained or disability‐adjusted life years [DALYS]
averted) and minimizing financial exposure. One can use different functions to assess financial exposure (see
[Verguet et al., 2016]). In this study, we maximize cases of catastrophic financial burden averted (i.e., equivalent to
minimizing the number of cases with catastrophic financial burden). Any copayment that exceeds a certain
threshold (T) will be considered catastrophic. We will then discuss another approach based on minimizing a convex
penalty function.

Let pi be the percentage of cost that will be covered by the package (i.e., 1‐copayment rate) for treatment i. We will
call pi the coverage rate. Thus, if the coverage rate is 0.7 (70%), for an intervention costing $15, $10.50 (¼$15 � 0.7) will
be paid by the government, and the patients will have to pay the balance of $4.50 out of their own pocket. We assume
that the decision maker chooses from m coverage rates as follows: 0 ðP0Þ ≤ P1 ≤ P2 ≤ … ≤ Pm� 1. Let
M ¼ f1; 2;…;m � 1g: Let aik, k ∈ M be a binary variable as follows:

aik ¼
�
1; if pi ¼ Pk
0; otherwise

Note that if all aik variables take a value of 0 for a treatment i, then the coverage rate is 0 for that treatment, which
implies that P0 is chosen.

Let yi be a binary variable as follows:

yi ¼
�
0; if treatment i leads to catastrophic financial burden
1; otherwise

M is a sufficiently large number. The biobjective programming model we consider first is as follows. We call it the
base model (B):
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Model B

Max∑
i∈I
binipi

Max∑
i∈I
niyi

s:t:∑
i∈I
cinipi ≤ B ð1Þ

pi ¼ ∑
k∈M

aikPk ∀i ∈ I ð2Þ

∑
k∈M

aik ≤ 1 ∀i ∈ I ð3Þ

ð1 � piÞci � T ≤ Mð1 � yiÞ ∀i ∈ I ð4Þ

aik binary ∀i ∈ I; ∀k ∈ M ð5Þ

yi binary ∀i ∈ I ð6Þ

Constraint 3 is the budget constraint. Constraint sets 2, 3, and 5 ensure that at most one coverage level is
chosen for any treatment i. If none of the positive coverage rates (P1–Pm� 1) is chosen, then no expenses are
covered for that treatment, that is the copayment rate will be 1. For each treatment i, the model checks whether
the patients are protected from catastrophic financial burden in constraint set 4. If the copayment (ð1 � piÞci)
exceeds the threshold T, the left hand‐side of the constraint becomes positive, forcing yi take a value of 0, meaning
that the patients could not be protected from catastrophic financial burden. Otherwise the yi variable will take a
value of 1.

The two objective functions capture conflicting intuitions about how to prioritize health expenditures. The first
objective function expresses the idea that the decision maker should seek to maximize the health gains which are
attributable to public funding (hence the health benefits of the different treatments are scaled by pi). The second
objective function captures the spirit of UHC: everyone should get the care that they need, but the cost burden
on individuals should be managed so that as few people as possible are exposed to catastrophic financial burden.

One point needs to be clarified. In empirical work, the normal practice is to track catastrophic costs which are
actually incurred for healthcare. One of the limitations of such measurements is that it misses cases where people
have the capacity to benefit from healthcare but do not have the means to purchase it, because of limited ability
to pay. The interpretation of catastrophic financial burden in our second objective function is expenditure which is
required because of some medical need. Whether this cost can or cannot be met is a secondary question: what is
important is that there is disutility either because of untreated illness or because of financial distress.

It is possible to extend the model in a relatively straightforward fashion to the situation where one person can bear
the cost of multiple diseases, and to the situation where there are multiple population quintiles. Rather than interrupt
the flow of the narrative, we place these models in Appendix A.

As mentioned before, financial exposure could be assessed using various function forms. In the above models, we
have maximized the number of patients protected from financial catastrophe. The following model takes an alternative
approach and minimizes a financial exposure function f ð:Þ that is a convex function of the deviation from a threshold T.
This allows us to go beyond simply designating a financial burden as being catastrophic or not and to incorporate
different assumptions about “how catastrophic.”

Max∑
i∈I
binipi

Min∑
i
nif
�
Devþi

�
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s:t: Constraints 1; 2; 3; 5;

ð1 � piÞci ¼ T þ Devþi � Dev�i ∀ i ∈ I ð7Þ

Devþi ≥ 0 ∀i ∈ I ð8Þ

Dev�i ≥ 0 ∀i ∈ I ð9Þ

Constraint set 7 is used to determine the difference between expenditures required for treatment i (ð1 � piÞci) and
the threshold T. Positive and negative deviations are denoted as Deviþ and Deviþ, respectively.

The above model is not necessarily linear due to the use of function f ð:Þ. To obtain a linear programming model, one
can use piecewise linear convex functions that approximate (nonlinear) convex financial exposure functions as follows.

We first divide the range for possible values of Deviþ into intervals defined by levels. Let L1,…,Lint be the deviation
levels (see Figure 5 where int ¼ 5). In each interval between two consecutive levels, we assume linearity. Let w1,…,wint
be the slopes of the corresponding intervals as seen in Figure 5. Since the function is convex, we have
w1 < w2 < … < wint. Given a set of levels and the corresponding slopes for the intervals, one can find f ðxÞ for any de-
viation value x by detecting the interval x belongs to. For example, suppose that x belongs to interval 2 (i.e., L1 < x < L2),
then f ðxÞ ¼ w1L1 þ w2ðx � L1Þ. In the mathematical model, we will define new decision variables that show the amount
any deviation x spans in each interval (Devik variables used below).

The resulting linear programming model is as follows. We call it the convex financial exposure function model (C).

Model C

Max∑
i∈I
binipi

Min∑
i
nif i

s:t: Constraints 1; 2; 3; 5; 7; 8; 9

Devþi ¼∑int
k¼1Devik ð10Þ

Devi1 ≤ L1 ð11Þ

L1δi2 ≤ Devi1 ð12Þ

Devik ≤ ðLk � Lk� 1Þδik ∀k ¼ 2;…; int ð13Þ

ðLk � Lk� 1Þδikþ1 ≤ Devik ∀k¼ 2;…; int � 1 ð14Þ

f i ¼∑int
j¼1wjDevij ð15Þ

δik binary ∀i ∈ I; ∀k ¼ 2;…; int ð16Þ

Constraint set 10 defines the Devik values, which show the amount that Deviþ spans in each interval. Constraints
11–14 make sure that Devik value for an interval k cannot be positive unless the previous intervals are filled up first,
using the binary variables δiks. That is, for example if Deviþ is in interval 2 (L1 < Devi þ <L2), then Devi1 ¼ L1 and
Devi2 ¼ Devi þ � L1. δi2 ¼ 1 due to constraint 11 and the rest of the δik variables will have a value of 0. Note that there is
no δi1 defined.

f i variables keep the per‐person financial exposure level for treatments (i.e., f i ¼ f ðDeviþÞ) and are calculated using
the Devik variables and the corresponding interval slopes as explained above.
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4 | NUMERICAL ILLUSTRATION

We illustrate our model with data relating to the Malawian health benefits package as described in (Ochalek et al.,
2018). The data table reproduced in Appendix B shows the list of treatments considered in this study (treatments that
have very small number of cases or that have negative net DALYs averted are excluded).

To solve the biobjective model, we use the epsilon constraint approach (Ehrgott, 2005) using a stepsize of 1 for the
total health benefit (since the number of cases values are scaled, this corresponds to an actual stepsize of 1000), to find
the Pareto solutions. The approach is explained in Appendix C. The algorithm is coded in MATLAB and all mathe-
matical models are solved in CPLEX 12.7. The algorithm is run on a personal computer with i5‐4590 3.30 GHz processor
and 8 GB RAM. Computation times are calculated in central processing unit (CPU) seconds.

We set T ¼ 5 and considered five coverage levels (M ¼ f1; 2; 3; 4g), which are 0, 0.25 (P1), 0.4 (P2), and 0.9 (P3) and
1 (P4) and report results for two different cardinalities of M. For the cases with three coverage levels (M ¼ f1; 2g), we
used 0, 0.4 (P1) and 0.9 (P2).2

We considered three different scenarios for the total budget. Note that the total cost covering all treatments to the
full extent would be around $ 264.5 million. If all of them were covered to 90% that would require around $ 238 million
(M). We tried three levels for the budget parameter: 70 M (around 30 % of the total cost of covering all treatments to the
highest coverage level), 90 M (38 %), 110 M (46%).

All of the computational times were under 5 s. The results for different budget levels (70, 90, and 110M) and different
number of coverage options (3 coverage level options and 5 coverage level options) are summarized in Figure 6.3

One can see that the solution sets for larger budget levels dominate the solution sets for smaller budgets, which is to
be expected. The budget level also affects the number of solutions obtained. In general, we expect the number of
solutions to be small for extreme (very high or very low) budget levels. Indeed, when the budget is sufficiently large to
cover all treatments in the package fully, there is only a single solution with the best levels of both objectives. When the
budget is very low, the number of feasible options, hence the number of nondominated solutions becomes small. At
intermediate budget levels, we expect the number of solutions to become relatively large as the tradeoff comes into play
(compared to high budget levels) and the number of alternative portfolios is larger compared to low budget levels. Note
that the budget levels we chose for demonstration are all intermediate.

If, however, there are a small number of “large” projects and several “small” projects, which are included in some
solutions while being left out at others, there may be sudden jumps at the frontier. See Appendix D for a more detailed
discussion.

Figure 6 also shows the effect of the number of coverage rate options (m) on the results. One can see that for a fixed
budget, increasing the number of possible coverage levels leads to better solutions in terms of both objectives. This
implies that having flexibility with respect to the coverage options would increase the overall benefit of a universal
health care package. On the other hand, using large numbers of possible copayment levels may not be convenient from

F I GURE 5 A Piecewise linear convex function with five intervals
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a practical point of view. This is a design decision that should be made considering pros and cons of the options. Such
analyses can help the policy makers see whether increasing the number of alternative copayment levels is justified.

Detailed analysis of solutions for the setting with 5 coverage levels and 90 M budget are seen below. Figure 7 shows
the coverage levels of different treatments across the Pareto solutions. The treatments are ordered with respect to their
core index (average coverage level across all Pareto solutions.) It is possible to detect the must‐do treatments (2–7,
9,11–17,19–20,25–26,28,31,33–34,38–39, and 41–42) and the do not do treatments (18,23–24, and 36–37). Moreover, it is
seen that treatments 1,29,35, and 46 are fund at least partially and 29,35,46,21,10,32,30, and 40 are consider funding
fully.

For comparison, we redid the analysis, this time using a convex financial exposure function. We again assumed that
B ¼ $ 90 million and there are five coverage levels 0 (P0), 0.25 (P1), 0.4 (P2), 0.9 (P3), and 1 (P4). We set T ¼ 5, that is, the
financial exposure function is a convex function of copayment amounts above 5.

10 levels are chosen for the piecewise linear financial exposure function, starting from 5 and increasing in in-
crements of 5 units up to 50 (note that the maximum unit cost is 47.78). Figure 8 shows the function used and Figure 9
shows the results.

In general, we observe that the solutions obtained using the two methods are very similar. However, the second
method returns more solutions as it allows alternative solutions to be obtained by changing the deviation amounts
above the threshold. In the first approach, there is no distinction between copayment levels that result in costs at the
same side of threshold, they all contribute to the exposure function by the number of cases. However, how much one
deviates from the threshold plays an important role in the second one. For example, for treatment 43, one either uses a
coverage level of 0 (in which case, the patient will have catastrophic financial burden) or 0.9 (in which case the patient
will not have catastrophic financial burden) in the first method: 0.25 and 0.4 levels are not sufficient to save the in-
dividuals from catastrophic expenses. However, when the second method (convex penalty function) is used, such levels
also matter since they lead to different amounts of deviation from the threshold. We obtain alternatives where 40% of
the expenses are covered for treatment 43 when the second exposure function is used. Similar observations can be made
for another high‐unit‐cost treatment, treatment 45.

To further the case that models B and C are closely equivalent, we ran both models for a number of different
problem instances, obtained the ranks of treatments with respect to their core index and calculated the correlation
between the rank orders obtained in both models. For this purpose, we generated different scenarios with 25, 50, 75,
and 100 treatments. For each level of n, we created 5 problem instances, in which ni, ci, and bi are randomly generated
between ranges (2, 16,000), (1,50), and (1,60; These ranges are similar to the ranges in Malawi data). We set the budget

F I GURE 6 Pareto solutions for different
budget levels and coverage level options. Each
dot represents a nondominated (Pareto) point.
CFB, Catastrophic financial burden; DALYs,
disability‐adjusted life years
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as 50% of the total money that would be required if all treatments are funded fully and set T ¼ 25. The average and
minimum correlation values for different sized instances are seen in Table 3. The results indicate that the solutions are
not sensitive to the metric used to measure financial exposure.

The solution times were negligible for smaller instances (under five seconds for n¼ 25 and under five minutes for
n¼ 50, using a stepsize of 1.). As the problem size increases the solution time increases for both models but more so in
model C. This is because model C typically has more Pareto solutions than model B and each single objective model
solved to obtain these solutions is larger with more decision variables and constraints compared to the ones in model B.
In larger instances, we increased the stepsize for model C to obtain the Pareto solutions in reasonable time. For n¼ 75,
we increased the stepsize to 1000 for model C and the average solution times for were 1000 and 3500 s for models B and
C, respectively. For n¼ 100, we increased the stepsize to 5000 for model C and the average solution times were 2640 and
2765 s for models B and C, respectively.

5 | CONCLUSION

The purpose of this study has been to study how decision makers might tradeoff health and financial protection benefits
in the context of the construction of a health benefits package for a country which is moving to UHC. Our reason for
using a multiobjective optimization frame to study this problem is that making an explicit tradeoff between health and
financial protection may be extremely difficult. Nevertheless, analysis can still provide assistance in helping decision
makers avoid health benefits packages which are internally inconsistent. Our study is a first step in the analysis of this
question and allows plenty of scope for additional work.

Below, we discuss a number of extensions that could be handled within the multiobjective optimization framework
by modifying the mathematical models that we use.

Ministries of Health typically have as an objective the maximization of population health when prioritizing the
funds which are under the control of the Ministry of Health. We interpret this as meaning that the Ministry wishes to
maximize health benefits attributable to these funds and define the total health benefit objective accordingly. All out‐
of‐pocket payments are accounted irrespective of whether they are below or above the threshold, when calculating the
total benefit of the healthcare package attributable to public funding. Out‐of‐pocket payments below the threshold do
not increase the second objective, which is related to the financial burden, as this objective focuses only on the cata-
strophic costs. It is, however, still possible to accommodate different views on how total health benefit or financial
burden should be calculated by modifying the mathematical models and changing the forms of the objective functions.
For example, the Ministry of Health may choose only to count the health benefits when they are entirely paid for public
funds and no copayment is required; or the financial protection function could be a more smooth nonlinear function of
the cost burden on patients. Hence, the proposed biobjective optimization framework would still be relevant and useful.

Note that there may be interdependencies between treatments, making the costs, benefits or demand of treatments
depend on the decision on other treatments. In such cases, the mathematical programming formulation could be
modified to include these sorts of interactions, as long as they could be measured (the interested reader is referred to

F I GURE 8 Financial exposure function
used in the analysis

12 - KARSU AND MORTON
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[Winston, 2004] for more discussion on mathematical modeling). Such interdependencies between interventions are
addressed in the paper by (Hauck et al., 2019), where different ways of modeling these interdependencies and incor-
porating them into an optimization framework are proposed. In the health benefit package design problem that we
consider, as long as measurement can be made, it is possible to incorporate these interactions into the optimization
setting in similar ways to those discussed by (Hauck et al., 2019).

Further research could be performed in this domain to address various related questions. For example, it would be
important to know how robust our models are to a range of approaches to modeling the financial protection benefits.
Also, benefits may differ according to what delivery platforms and human resources are available (Hauck et al., 2019;
Morton et al., 2016b; van Baal et al., 2018). Furthermore, in a development setting, there may not be a single decision
maker as a significant share of the funding may come from international donors (Morton et al., 2018). Lastly, estab-
lishing a benefits package in an environment where there is copayments involves making tradeoffs between different
population subgroups with different levels of ability to pay (Morton, 2014). Equity concerns for patient groups with
different abilities to pay can be incorporated into the biobjective optimization framework by defining catastrophic
expenses in relation to ability to pay, that is defining population group based thresholds, as discussed in Appendix A.
Such a model would decide whether a person faces catastrophic burden based on the socioeconomic level of that
person. Maximizing the number of people saved from such expenses would implicitly prioritize the ones with low
thresholds. Compared to the base approach that does not take the ability to pay into account when defining catastrophic
expenses, such an extension may change recommendations (the set of Pareto solutions) in favor of lower income
quintiles, however, we expect the main observations made on the tradeoff between total health benefit and total
financial protection to still hold. We leave the integration of these complexities into our models as a challenge for
further research.
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ENDNOTES
1 This is the Pareto set of the example health benefits package design problem formulated with Malawian case study data with 4 coverage
levels and a 90M budget, which will be explained in the following sections.

2 These levels are set only for demonstration purposes. The framework can be used with any number of coverage levels.
3 To ensure readability, we do not show one extreme solution of 70M,3 scenario which had 7.44�106 DALYs averted and 63.016�106 cases
for which CFB is averted.
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