
1 23

Journal of Optimization Theory and
Applications
 
ISSN 0022-3239
Volume 187
Number 1
 
J Optim Theory Appl (2020) 187:205-233
DOI 10.1007/s10957-020-01745-3

Minimizers of Sparsity Regularized Huber
Loss Function

Deniz Akkaya & Mustafa Ç. Pınar



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Journal of Optimization Theory and Applications (2020) 187:205–233
https://doi.org/10.1007/s10957-020-01745-3

Minimizers of Sparsity Regularized Huber Loss Function

Deniz Akkaya1 ·Mustafa Ç. Pınar1

Received: 27 January 2020 / Accepted: 2 September 2020 / Published online: 19 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We investigate the structure of the local and global minimizers of the Huber loss
function regularized with a sparsity inducing L0 norm term. We characterize local
minimizers and establish conditions that are necessary and sufficient for a local mini-
mizer to be strict. A necessary condition is established for global minimizers, as well
as non-emptiness of the set of global minimizers. The sparsity of minimizers is also
studied by giving bounds on a regularization parameter controlling sparsity. Results
are illustrated in numerical examples.

Keywords Sparse solution of linear systems · Regularization · local minimizer ·
Global minimizer · Huber loss function · L0-norm

Mathematics Subject Classification 15A29 · 62J05 · 90C26 · 90C46

1 Introduction

The search for an approximate and regularized solution (i.e., a solution with some
desirable properties such as sparsity) to a possibly inconsistent system of linear equa-
tions is a ubiquitous problem in applied mathematics. It aims at finding a solution
vector x , that minimizes both objectives (‖Ax − b‖, ‖x‖) with respect to a norm
or another appropriate error measure. Here, we use the Huber loss function and the
�0-norm, respectively.

The Huber loss function has been used in several engineering applications since
the 1970s (for a recent account, see, e.g., [1]) while the search for sparse solutions of
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linear systems has been a popular topic of the last decade. The purpose of the present
paper is to initiate an investigation of a combination of the two.

In the world of statistical data analysis, a common assumption is the normality
of errors in the measurements. The normality assumption leads to methods yielding
closed form solutions and thus is quite convenient. However, many real-world appli-
cations in engineering present the modeler with data deviating from the normality
assumption. Robust statistics or robust methods in engineering aim at alleviating the
effects of departure from normality by being largely immune to its negative ones. One
of the proposals for robust statistical procedures was put forward in the 1970s and
1980s by Huber [2]. The so-called Huber loss function (a.k.a. Huber’s M-estimator)
coincides with the quadratic error measure up to a range beyond which a linear error
measure is adopted. Huber established that the resulting estimator corresponds to a
maximum likelihood estimate for a perturbed normal law. The Huber loss function
has numerous applications in statistics and engineering as documented among others
in the recent monograph by Zoubir et al. [1]. The present paper studies a case where
sparsity is incorporated directly (instead of an approximation, e.g., using an �1 term,
of the sparsity inducing �0-norm term) into an estimation effort based on the Huber
loss function. Sparsity in estimation of linear models has become popular due to the
presence of high-dimensional measurement and prediction spaces. The popularity of
sparse estimation is largely due to the success of the least absolute shrinkage and
selection operator (Lasso) by Hastie and Tibshirani [3], which had a vast influence on
engineering and sciences. This development was further enhanced by the advent of
techniques such as compressed sensing (e.g., [4–14]), where the predictors or the sig-
nal vector were assumed to be sparse (i.e., having a few nonzero or large components).
Indeed, inmany applications themeasured signal can have a sparse representationwith
respect to a suitable basis (e.g., a wavelet basis) [8,15].

In all the aforementioned studies, the error criterion is the least squares criterion
(for applications in engineering see, e.g., the references in [16]), and the sparsity
of the solution is usually controlled using the �1 norm as a proxy for the number of
nonzero components of a vector since the latter leads to non-convex, non-differentiable
optimization problems. The pertinent research question is then to find necessary and
sufficient conditions under which the solutions obtained with the �1 approximation
correspond to the sought-after sparse vector (i.e., the one that would result from the use
of the true measure counting the nonzero elements). There are few papers that study
the structure of optimal solutions to the �0-regularized problem (namely, the �2 − �0
problem), e.g., [16–18]. In [17], necessary conditions for optimality are developed
along with algorithms for sparsity constrained optimization problems with a continu-
ously differentiable objective function. The reference [16] studies the structure of local
and global solutions to the least-squares problem regularized with the �0 term. In [18],
a stationarity-based optimality condition is given in the appendix. Both references
[16,17] contain extensive lists of relevant research articles from the last decade on the
subject of sparse optimization. It is also noteworthy that in recent (yet unpublished as
of this writing) research Chancelier and De Lara [19–21] investigate conjugacy and
duality for optimization problems involving �0 terms. Here, we follow the footsteps
of [16] as we characterize local minimizers, strict local minimizers and we investigate
properties of global minimizers. A more recent paper following the line of investiga-
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tion in [16,17] is the reference [22] which gives a review of necessary conditions for
the �2 − �0 problem as well as their applications in numerical algorithms.

However, the analysis of the present paper is significantly more complicated than
that of the least-squares case treated in [16] due to the piecewise quadratic nature of
the Huber loss function. While the minimizers of the problem Huber loss-�0 has not
been studied previously, to the best of our knowledge, the connection of Huber loss
to sparsity was also investigated in a recent line of work by Selesnick and others in
a series of papers, see, e.g., [23–26]. In these papers, the Huber loss function and its
generalization are used as the basis of a minimax-concave penalty in the context of
regularized least squares for sparse recovery in engineering applications. Additionally,
in [27] a unified model for robust regularized Extreme Learning Machine regression
using iteratively reweighted least squares which employs the Huber loss function for
robustness among other criteria is given as well as a comprehensive study on the robust
loss function and regularization term for robust ELM regression. The reference [28]
gives an overview of robust nonlinear reconstruction strategies for sparse signals based
on replacing the commonly used L2 norm by M-estimators as data fidelity functions.
A recent reference [29] studies the relationship between the class of M-estimators and
the probability density functions of residuals in regression analysis using maximum
likelihood estimation and entropy maximization. An interesting line of future work
would be to investigate the impact of �0 norm on this relationship.

The contributions of the present paper are the following:

– We showhow to find localminimizers in Sect. 4 after some preliminaries in Sects. 2
and 3.

– We develop necessary and sufficient conditions for strict local minimizers in
Sect. 5. The conditions given are verifiable numerically.

– We give a necessary condition for global minimizers, which is useful in setting
meaningful values of the scalarization parameter in Sect. 6.

– We prove the non-emptiness property of the set of global minimizers and discuss
the choice of a the regularization parameter for controlling sparsity of global
minimizers.

We also relate our results to the optimality criteria (support optimality, L-stationarity
and partial coordinate-wise optimality) of [17]. It is the hope of the authors that the
results presented here will be useful for further studies on development of algorithms.

2 Preliminaries

Let A ∈ R
M×N for M < N , where the positive integers M and N are fixed, with

rank(A) = M . Given a data vector d ∈ R
M and β > 0, we consider an objective

function Fd : R
N → R of the form

Fd(u) = �(u) + β ‖u‖0 , (1)
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where �(u) stands for a variant of the Huber-γ function which is

�(u) =
M∑

i=1

ψ(ci (u)), where ψ(ci (u)) =
⎧
⎨

⎩

ci (u)2

2γ
, for |ci (u)| < γ,

|ci (u)| − 1
2γ, for |ci (u)| ≥ γ,

(2)

and ci (u) = 〈Au − d, ei 〉. Finally, ‖u‖0 = |σ(u)|, where σ(u) is the support of
u. The Huber-γ function is C1, with Lipschitz continuous derivative (and gradient)
and convex. For the Lipschitz continuity property of the gradient, a derivation of
the Lipschitz constant is given in “Appendix” for completeness.1 The C1 property
is trivial, and convexity comes from the fact that ci ’s are affine functions, and non-
negative weighted sums imply that �(u) is convex. Unfortunately, �(u) is not a
coercive function. Let u ∈ ker(A) then for any δ ∈ R, we have δu ∈ ker(A). Then,
�(δu) = �(u) = ∑M

i=1 ψ(di ), this shows that there exists a direction where the
function does not go to infinity.

If we define φ : R → {0, 1} as

φ(t) =
{
0, if t = 0,

1, if t �= 0,
(3)

then we can rewrite ‖u‖0 = ∑N
i=1 φ(u[i]) = ∑

i∈σ(u) φ(u[i]). Then, Fd is equiva-
lently:

Fd(u) = �(u) + β
∑

i∈σ(u)

φ(u[i]). (4)

We are looking for all (local and global) minimizers û of an objective Fd of the form
(1):

û ∈ R
N such that Fd(û) = min

u∈O
Fd(u). (5)

Instead of the minimization of Fd in (1) one can also study its constrained variants:

{
given ε ≥ 0, minimize ‖u‖0 subject to �(u) ≤ ε,

given K ∈ IM , minimize �(u) subject to ‖u‖0 ≤ K ,
(6)

where IM stands for the totally and strictly ordered index set, IM :=({1, . . . , M},<),
although, due to non-convexity, one cannot in general speak of equivalence between
these problems. Here, we focus exclusively on the minimizers of Fd in the spirit of
[16].

Given u ∈ R
N and ρ > 0, the open ball at u of radius ρ with respect to the �p-norm

for 1 ≤ p ≤ ∞ is defined as Bp(u, ρ):={v ∈ R
N : ‖v − u‖p < ρ}. The notation ‖·‖

1 While everyone dealing with the Huber function uses the constant, we were not able to find a derivation,
so it is provided.
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is used to mean the standard �2 norm when not explicitly indicated. The i th column
of a matrix is denoted by ai . Without loss of generality we assume that ai �= 0 for any
i ∈ IN . For anyω ⊆ IN , we use the following notation for submatrices and subvectors

Aω:=(aω[1], . . . , aω[|ω|]) ∈ R
M×|ω|,

uω:=(u[ω[1]], . . . , u[ω[|ω|]]) ∈ R
|ω|.

The zero padding operator Zω : R
|ω| → R

N is used for inversion:

u = Zω(uω), u[i] =
{
0, if i /∈ ω,

uω[k], for the unique k such that ω[k] = i .

Remark 2.1 For any u ∈ R
N and ω ⊆ IN with ω ⊇ σ(u), we have Au = Aωuω.

We conclude this section with a numerical example to motivate the research effort
of the present paper.

Example 2.1 Let p(x) = 8x13 − 2x11 − 4x7 + 5x6 + 3x3 − x2 + 1 be a polynomial.
We have t defined as ten test points randomly chosen between [−1, 1]. Then, let
A ∈ R

10×20 be the Vandermonde matrix generated from t and d = p(t). Assuming a
large noise η = [

100 0 0 0 0 0 0 0 0 0
]T , we perturb the data as d̃ = d + η. We are

looking for an approximation of p with a small number of terms using γ = 0.1 and
β = 0.6. From Fig. 1, we observe that the Huber loss approximates the polynomial
better than the least squares criterion under large amount of noise, especially in the
interval [0.3, 0.6]. Beyond this interval, the Huber approximation and the polynomial
are almost indistinguishable.

3 Minimizers of (HR!)

Now, let ω ⊆ IN , problem (HRω) reads as

min
u∈RN

�(u) subject to u[i] = 0, ∀i ∈ ωc. (HRω)

Let Kω denote the subspace Kω:={v ∈ R
N : v[i] = 0,∀i ∈ ωc}. Then, one can

rewrite the problem (HRω) using this subspace:

min
u∈Kω

�(u). (HRω)

This problem is equivalent to (ZPHRω) with the help of the zero-padding operator:

min
v∈R|ω|

M∑

i=1

ψ(〈Aωv − d, ei 〉), |ω| ≥ 1. (ZPHRω)
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Fig. 1 Comparison of L2 and Huber for approximation of a 13-degree polynomial under large perturbations

Proposition 3.1 The optimality condition of (ZPHRω) is AT
ωclip(Aωv−d) = 0 ∈ R

|ω|
where the clip function is defined as

clip(Aωv − d)[i] =
⎧
⎨

⎩

〈Aωv − d, ei 〉
γ

, if |〈Aωv − d, ei 〉| < γ,

sgn(〈Aωv − d, ei 〉), if |〈Aωv − d, ei 〉| ≥ γ.

(7)

Proof If we let �ω(v) = ∑M
i=1 ψ(〈Aωv − d, ei 〉), we have to check ��ω(v). For all

j ∈ I|ω|:

∂�ω(v)

∂v j
=

M∑

i=1

∂ψ(〈Aωv − d, ei 〉)
∂v j

=
M∑

i=1

clip(〈Aωv − d, ei 〉)∂〈v, AT
ωei 〉

∂v j

=
M∑

i=1

clip(〈Aωv − d, ei 〉)(AT
ω) j i

=
M∑

i=1

clip(〈Aωv − d, ei 〉)(Aω)i j

= 〈aω j , clip(Aωv − d)〉.

This shows that AT
ωclip(Aωv − d) = 0|ω| is the optimality condition. ��
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3.1 Existence of Global Minimizers of (HR!)

While the problem (HRω) has been extensively studied since the 1980s (e.g., [30,31]),
an existence result for the minimizer is difficult to find in the literature. For the sake
of completeness, it is provided below. We start by defining a “sign vector” sγ and its
associated diagonal matrix Ws to rewrite (HRω) as a quadratic optimization problem.
Let sγ (v) = [sγ 1(v), . . . , sγm(v)] with

sγ i (v) =

⎧
⎪⎨

⎪⎩

−1, if cω
i (v) ≤ −γ,

0, if
∣∣cω

i (v)
∣∣ < γ,

1, if cω
i (v) ≥ γ,

where cω
i (v) = 〈Aωv − d, ei 〉. Also let Ws = diag(w1, . . . , wm) where wi = 1− s2i .

Then, our problem (ZPHRω) is rewritten as

min�ω(v) = 1

2γ
(cω)TWsc

ω + sTγ

[
cω − 1

2
γ sγ

]
subject to |ω| ≥ 1.

The dual problem turns out to be

min
ν

{
νT d + γ

2
νTν

}
subject to ‖ν‖∞ ≤ 1 and AT

ων = 0. (−D)

Since Aω : R
|ω| → R

M is a continuous linear operator, ker(Aω) is a closed subspace of
R

|ω|. Thus, the dual problem has a non-empty (zero vector) compact feasible region
with a continuous objective function. Therefore, the dual problem always admits a
solution. Now, computing the dual of (−D) one immediately obtains that the dual of
the (D) is (HR). Since (D) has a non-empty bounded feasibility set, this shows that
(HR) has an optimal solution, independently from the choice of ω ⊆ IN . Therefore,
AT

ωclip(Aωv − d) = 0 always admits a solution.

Proposition 3.2

[
û ∈ R

N solves (HRω)

]
⇔
[
ûω ∈ R

|ω| satisfies AT
ωclip(Aωûω − d) = 0 and û = Zω(ûω)

]
,

(8)

where Zω is the zero padding operator.

Proof Let |ω| = 0, then the result follows immediately. If |ω| ≥ 1, then one can use
that Aû = Aωûω for σ(û) = ω. Since Zω acts as a bijection between R

|ω| and R
N ,

we have the equivalence. ��

4 Local Minimizers

We begin with a useful technical lemma which is a counterpart to Lemma 2.1 of [16].
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Lemma 4.1 Let d ∈ R
M, β > 0, and û ∈ R

N \ {0} be arbitrary. For σ̂ :=σ(û), set

ρ:=min

{
min
i∈σ̂

∣∣û[i]∣∣ , β

‖A‖1,1 + 1

}
.

Then, ρ > 0, and we have

v ∈ B∞(0, ρ) ⇒
∑

i∈IN
φ(û[i] + v[i]) =

∑

i∈σ̂

φ(û[i]) +
∑

i∈σ̂ c

φ(v[i]). (i)

v ∈ B∞(0, ρ) ∩ (RN \ Kσ̂ ) ⇒ Fd(û + v) ≥ Fd(û), (ii)

where the inequality is strict whenever σ̂ c �= ∅.
Proof For (i), v ∈ B∞(0, ρ) implies that maxi∈IN {|v[i]|} ≤ mini∈IN {∣∣û[i]∣∣}, then
sgn(û[i] + v[i]) = sgn(û[i]) for i ∈ σ̂ . Then, we have

∑

i∈IN
φ(û[i] + v[i]) =

∑

i∈σ̂

φ(û[i] + v[i]) +
∑

i∈σ̂ c

φ(v[i]) =
∑

i∈σ̂

φ(û[i]) +
∑

i∈σ̂ c

φ(v[i]),

as expected.
For (ii), we have to define a four set partition of IM :

H1:={i ∈ IM : ∣∣ci (û + v)
∣∣ < γ } ∩ {i ∈ IM : ∣∣ci (û)

∣∣ < γ },
H2:={i ∈ IM : ∣∣ci (û + v)

∣∣ < γ } ∩ {i ∈ IM : ∣∣ci (û)
∣∣ ≥ γ },

H3:={i ∈ IM : ∣∣ci (û + v)
∣∣ ≥ γ } ∩ {i ∈ IM : ∣∣ci (û)

∣∣ < γ },
H4:={i ∈ IM : ∣∣ci (û + v)

∣∣ ≥ γ } ∩ {i ∈ IM : ∣∣ci (û)
∣∣ ≥ γ }.

These partitions help rewrite Fd(û + v), where v ∈ B∞(0, ρ) ∩ (RN \ Kσ̂ ):

Fd (û + v) = �(û + v) + β
∑

i∈IN
φ(û[i] + v[i])

=
∑

i∈H1∪H2

ci (û + v)2

2γ
+

∑

i∈H3∪H4

( ∣∣ci (û + v)
∣∣− γ

2

)
+ β

∑

i∈IN
φ(û[i] + v[i])

≥
∑

i∈H1

ci (û + v)2

2γ
+

∑

i∈H2∪H4

( ∣∣ci (û + v)
∣∣− γ

2

)

+
∑

i∈H3

ci (û)2

2γ
+ β

∑

i∈IN
φ(û[i] + v[i])

≥
∑

i∈H1

ci (û + v)2

2γ
+

∑

i∈H2∪H4

( ∣∣ci (û)
∣∣− γ

2

)

+
∑

i∈H3

ci (û)2

2γ
−

∑

i∈H2∪H4

∣∣ci (û + v) − ci (û)
∣∣
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+ β
∑

i∈IN
φ(û[i] + v[i])

≥
∑

i∈H1∪H3

ci (û)2

2γ
+

∑

i∈H2∪H4

( ∣∣ci (û)
∣∣− γ

2

)

+
∑

i∈H1

ci (û)〈Av, ei 〉
γ

−
∑

i∈H2∪H4

∣∣〈v, AT ei 〉
∣∣

+ β
∑

i∈IN
φ(û[i] + v[i])

≥ �(û) −
∑

i∈H1∪H2∪H4

∣∣〈v, AT ei 〉
∣∣+ β

∑

i∈IN
φ(û[i] + v[i])

≥ �(û) −
∑

i∈IM
‖v‖∞

∥∥AT ei
∥∥
1 + β

∑

i∈σ̂

φ(û[i]) + β
∑

i∈σ̂ c

φ(v[i])

= Fd (û) − ‖v‖∞
∑

i∈IM

∥∥AT ei
∥∥
1 + β ‖vσ̂ c‖0

= Fd (û) − ‖v‖∞ ‖A‖1,1 + β ‖vσ̂ c‖0 ≥ Fd (û).

For v = 0, inequality is trivial. Otherwise, ‖vσ̂ c‖0 ≥ 1 and the choice of the radius
provides the inequality. ��
Lemma 4.2 For any d ∈ R

M and for all β > 0, Fd has a strict (local) minimum at
û = 0 ∈ R

N .

Proof Using the fact that

Fd(0) =
∑

i∈H0

d[i]2
2γ

+
∑

i∈H0
c

|d[i]| − γ

2
≥ 0 where H0:={i ∈ IM : |d[i]| < γ }

we have

Fd(v) = �(v) + β ‖v‖0
≥ �(0) − ‖v‖∞ ‖A‖1,1 + β ‖v‖0
≥ �(0) − ‖v‖∞ ‖A‖1,1 + β.

Then, v ∈ B∞
(
0,

β

‖A‖1,1 + 1

)
implies Fd(v) > Fd(0). ��

Proposition 4.1 Let d ∈ R
M. Given ω ⊆ IN , let û solve problem (HRω). Then, for

any β > 0, the objective Fd reaches a (local) minimum at û and σ(û) ⊆ ω.

Proof Let û solve (HRω), then σ̂ = σ(û) ⊆ ω comes from the constraint of (HRω).
Let û �= 0, then 1 ≤ ∣∣σ̂

∣∣ ≤ |ω|. The inclusion implies that Kσ̂ ⊆ Kω and this shows:
v ∈ Kσ̂ ⇒ �(û + v) ≥ �(û). Also, v ∈ Kσ̂ implies v[i] = 0 for all i ∈ σ̂ c. Then,
for all v ∈ B∞(0, ρ) ∩ Kσ̂
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Fd(û + v) = �(û + v) + β
∑

i∈IN
φ(û[i] + v[i])

= �(û + v) + β
∑

i∈σ̂

φ(û[i])

≥ �(û) + β
∑

i∈σ̂

φ(û[i]) = Fd(û).

Then, we have Fd(û + v) ≥ Fd(û) for all v ∈ B∞(0, ρ). For û = 0, it was proven
before. ��
Lemma 4.3 For d ∈ R

M and β > 0, let Fd have a (local) minimum at û. Then, û
solves (HRσ̂ ) for σ̂ = σ(û).

Remark 4.1 Solving (HRω) for some ω ⊆ IN is equivalent to finding a (local) mini-
mizer of Fd .

Corollary 4.1 For d ∈ R
M andβ > 0, let û be a (local)minimizer ofFd . Set σ̂ = σ(û).

Then,

û = Z σ̂ (ûσ̂ ), where ûσ̂ satisfies AT
σ̂
clip(Aσ̂ ûσ̂ − d) = 0. (9)

Remark 4.2 Given d ∈ R
M , for any ω ⊆ IN , Fd has a (local) minimizer û defined by

(9) and obeying σ(û) ⊆ ω.

In closing this section, we note that local minimizers coincide with the support
optimal solutions of [17].

5 (Local) Strict Minimizers

Now, we shall concentrate on strict local minimizers.

Definition 5.1 Given a matrix A ∈ R
M×N , for any r ∈ IM , we define �r as the subset

of all r -length supports that correspond to a full column rank M × r sub matrix of A,

�r =
{
ω ⊆ IN : |ω| = r = rank(Aω)

}
. (10)

If �0 = ∅, then we define

� =
M−1⋃

r=0

�r and �max = � ∪ �M . (11)

This definition leads to: rank(A) = r ≥ 1 ⇔ �r �= ∅ and �t = ∅,∀t ≥ r + 1.

Proposition 5.1 Given d ∈ R
M and β > 0, let û be a (local) minimizer of Fd . Define

σ̂ = σ(û). rank(Aσ̂ ) = ∣∣σ̂
∣∣ if and only if σ̂ ∈ �max.
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Theorem 5.1 (Strict Minimizers I) Given d ∈ R
M and β > 0, let û be a (local)

minimizer of Fd . Define σ̂ = σ(û). If the (local) minimum that Fd has at û is strict,
then rank(Aσ̂ ) = ∣∣σ̂

∣∣.

Proof Let û �= 0. Suppose dim ker(Aσ̂ ) ≥ 1. Then, v ∈ B∞(0, ρ) ∩ Kσ̂ and vσ̂ ∈
ker(Aσ̂ ) implies that

Fd(û + v) = �(û + v) + β
∥∥û + v

∥∥
0

=
∑

i∈IM
ψ(〈Aû + Av − d, ei 〉) + β

∥∥û + v
∥∥
0

=
∑

i∈IM
ψ(〈Aσ̂ ûσ̂ + Aσ̂ vσ̂ − d, ei 〉) + β

∥∥û + v
∥∥
0

=
∑

i∈IM
ψ(〈Aû − d, ei 〉) + β

∥∥û + v
∥∥
0 = Fd(û)

Then, û cannot be a strict minimizer, which is a contradiction. If û = 0, then σ̂ = ∅;
hence Aσ̂ ∈ R

M×0 and rank(Aσ̂ ) = ∣∣σ̂
∣∣ = 0. ��

5.1 Equivalent Formulation of (HR)

For the purposes of this section, we restate the Huber loss problem (HR) with fixed
matrix A ∈ R

M×N and vector d ∈ R
M with scaling parameter γ as follows

min
u∈RN

�(u). (HR)

Throughout this subsection, we will assume M ≥ N and A to be full rank, i.e., we are
workingwith an overdetermined system.Next,we introduce a different formulation for
Huber regression. We define the following collection ϒ :={(υγ , υ+, υ−) ∈ {0, 1}M ×
{0, 1}M × {0, 1}M : υγ + υ+ + υ− = 1M }. Using this collection, we define the
following sets in R

N for all υ ∈ ϒ :

Fυ :=
⎧
⎨

⎩u ∈ R
N :

|ci (u)| < γ, if υγ (i) = 1
ci (u) ≥ γ, if υ+(i) = 1
ci (u) ≤ −γ, if υ−(i) = 1

⎫
⎬

⎭ .

These sets are convex and pairwise disjoint. Also, they satisfy
⋃

υ∈ϒ Fυ = R
N . If we

denote the indicator function as

ĨFυ (u) =
{
0, if u ∈ Fυ,

+∞, if u /∈ Fυ,
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we define the Domain Considering Huber Regression (DCHR) as follows

min
u∈RN

min
υ∈ϒ

[
�(u) + ĨFυ (u)

]
. (DCHR)

Using the properties of the previously defined regions, we have �(u) =
minυ∈ϒ

[
�(u) + ĨFυ (u)

]
, and this shows that (DCHR) and (HR) are equivalent.

Since we can change the order of minimization, we can define an updated version of
(DCHR)

min
υ∈ϒ

min
u∈RN

Wυ(u), (DCHR2)

where Wυ(u) = �(u) + ĨFυ (u) is a convex function of u, hence minu∈RN Wυ(u)

is a convex optimization problem. Now, suppose we have the following quadratic
expression

Qυ(u) = 1

2γ
c(u)T Dγ c(u) + (υ+ − υ−)T

[
c(u) − γ

2
(υ+ − υ−)

]
,

where Dγ = diag(υγ ). Using this quadratic expression, we obtain another equivalent
optimization problem to (HR)

min
υ∈ϒ

min
u∈RN

Qυ(u) + ĨFυ (u) = min
υ∈ϒ

min
u∈Fυ

Qυ(u). (QHR)

Lemma 5.1 (Unique Solution of (QHR), [32]) Let γ > 0, A ∈ R
M×N and d ∈ R

M.
If û minimizes (HR), then there is a unique υ̂ ∈ ϒ which minimizes (QHR) such that
û ∈ Fυ̂ . Furthermore, Dγ Au = Dγ Aû for all u solving minu∈Fυ̂

Qυ(u).

The following simple observation is used in the proof of the theorem following it.

Lemma 5.2 Consider the linear programming problem minu∈P cT u with c �= 0, then
interior points cannot be optimal.

Proof Assume that an interior point û is an optimal solution to minu∈P cT u. Then,
there is some ε > 0 such that cT (û − εc) = cT û − ε ‖c‖22 < cT û contradicting the
optimality of û. If the polyhedron contains equality constraints, Eu = d, say, then let
ĉ = PN (E)c denote the projection of c onto the null space of E with the projection

matrix PN (E). We still have cT (û−εĉ) = cT û−ε
∥∥PN (E)c

∥∥2
2 < cT û by the properties

of the projection matrix. ��
Theorem 5.2 Let γ > 0, A ∈ R

M×N and d ∈ R
M. Let Bγ = {u ∈ R

N : ∀i ∈
IM st. |ci (u)| �= γ }.2 If û minimizes (HR) such that û ∈ Bγ , then 1T

M υ̂γ ≥ N, where
υ̂ solves (QHR).

2 This set appears in our subsequent results and is shown to be dense in R
N in “Appendix.”
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Proof Assume that 1T
M υ̂γ < N . Since υ̂ minimizes (QHR), we can solve

min
u∈Fυ̂

Qυ̂ (u) = min
u∈Fυ̂

1

2γ
c(u)T Dγ c(u) + (υ̂+ − υ̂−)T

[
c(u) − γ

2
(υ̂+ − υ̂−)

]
,

instead of (HR). Since Dγ Au = Dγ Aû for any solution of this problem, we have

min
u∈Fυ̂

Qυ̂ (u) = 1

2γ
c(û)T Dγ c(û) − γ

2

∥∥υ̂+ − υ̂−
∥∥2
2

− (υ̂+ − υ̂−)T d + min
u∈Fυ̂

Dγ A(u−û)=0

(υ̂+ − υ̂−)T Au.

Hence, one can solve the following linear programmingproblem to identifyminimizers
of (HR)

minimize (υ̂+ − υ̂−)T Au
subject to Dγ A(u − û) = 0,

D+Au ≥ γ υ̂+,

D−Au ≤ −γ υ̂−,

(HR-LP)

where D+ and D− are diag(υ̂+) and diag(υ̂−), respectively. Since 1T
M υ̂γ < N , we

have

dim(ker(Dγ A)) ≥ 1,

; therefore, there exists points different from û in feasible region of (HR-LP). But since
û ∈ Bγ is an interior point, by previous lemma there is some extreme point u∗ solving
(HR-LP) with

(υ̂+ − υ̂−)T Au∗ < (υ̂+ − υ̂−)T Aû,

and �(u∗) < �(û), which contradicts the fact that û is a minimizer of (HR). Hence,
we have 1T

M υ̂γ ≥ N . ��
Example 5.1 Suppose we have some (local) minimizer û of (Fd) with γ = 0.1. Then,
û solves (HRσ̂ ) with

Aσ̂ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17 20 9 14 6
19 20 19 16 1
3 4 16 15 2
19 20 20 8 17
13 20 14 14 14
2 10 1 4 7
6 17 17 15 20
11 3 19 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, d =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
8
16
16
4
10
9
13

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and ûσ̂ =

⎡

⎢⎢⎢⎢⎣

2.0536
−2.5221
−0.2379
1.4282
1.1116

⎤

⎥⎥⎥⎥⎦
.
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Now, we can examine c(û) = [−0.0073 0.0192 − 0.0877 − 1.8577 4.4822 −
17.8572 0.0578 0.0432], hence û ∈ Bγ . Also, these values return a υ̂ such that

υγ = [
1 1 1 0 0 0 1 1

]T
,

and 1T
Mυγ = 5 ≥ 5 = ∣∣σ̂

∣∣ as expected. If we try this with γ = 1 and γ = 10, we
obtain

ûσ̂ = [
1.9554 −2.3685 −0.1777 1.2945 1.0848

]T
,

c(û) = [−0.0958 0.2030 −0.8637 −0.9730 4.8732 −17.1799 0.5616 0.4071
]T

,

1T
Mυγ = 6 ≥ 5 = ∣∣σ̂

∣∣ ,

and

ûσ̂ = [−0.1914 0.1431 0.7172 −0.0476 −0.0205
]T

,

c(û) = [−3.7240 4.0729 −5.2803 −3.1570 5.4637 −8.5678 3.3550 −1.1160
]T

,

1T
Mυγ = 8 ≥ 5 = ∣∣σ̂

∣∣ , respectively.

Example 5.2 One should also observe that there are instances with û ∈ B
c
γ . Let û be

a local minimizer of (Fd) with γ = 0.1. Then, û solves (HRσ̂ ) with

Aσ̂ =

⎡

⎢⎢⎢⎢⎣

−0.0742 −0.5227 0.5227 0.5227
0.9961 −0.0273 0.0273 0.0273

−0.0273 0.8074 0.1926 0.1926
0.0273 0.1926 0.8074 −0.1926
0.0273 0.1926 −0.1926 0.8074

⎤

⎥⎥⎥⎥⎦
,

d =

⎡

⎢⎢⎢⎢⎣

3.69156058
10
10
10
10

⎤

⎥⎥⎥⎥⎦
, and ûσ̂ =

⎡

⎢⎢⎣

9.81743962
8.70987760
6.02898938
11.29012240

⎤

⎥⎥⎦ .

From this information, we investigate c(û)

c(û) = [
0.08003211 0.01418370 0.1 −5.36113302 −0.1

]T
.

This shows that û is a (local) minimizer of (Fd) with û ∈ B
c
γ .

5.2 Sufficient Conditions for Strict Minimality

Lemma 5.1 and Theorem 5.2 have a very important role in the proof of the following
theorem.
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Theorem 5.3 (Strict Minimizers II) Given d ∈ R
M and β > 0, let û be a (local)

minimizer of Fd . Define σ̂ = σ(û). If rank(Aσ̂ ) = ∣∣σ̂
∣∣ and û ∈ Bγ , then the (local)

minimum that Fd has at û is strict.

Proof
∣∣σ̂
∣∣ = 0 implies û = 0 and this is a strict minimizer, proven before. Let∣∣σ̂

∣∣ ≥ 1. Given that û ∈ Bγ , there exists some positive number ξ̂ :=mini∈IM{
min{∣∣ci (û) − γ

∣∣ ,
∣∣ci (û) + γ

∣∣}} , and one can define a positive radius

ρ∗:=min

{
mini∈σ̂

∣∣û[i]∣∣ , β

‖A‖1,1 + 1
,

ξ̂

‖A‖∞

}
, where ‖A‖∞ = maxi∈IM

∑
j∈IN

∣∣Ai j
∣∣. Also define three index sets

Hγ :={ j ∈ IM : ∣∣c j (û)
∣∣ < γ }, H−:={ j ∈ IM : c j (û) < −γ }, H+:={ j ∈ IM : c j (û) > γ }.

If v ∈ B∞(0, ρ∗) \ Kσ̂ , we haveFd(û) < Fd(û+ v) as shown in Lemma 4.1 since
σ̂ c �= ∅.Now, supposev ∈ B∞(0, ρ∗)∩Kσ̂ , thenwehaveβ

∥∥û + v
∥∥
0 = β

∥∥û
∥∥
0 for all

positive β. Then,Fd(û+v) ≥ Fd(û) implies that�(û+v) ≥ �(û). Thus, we can say
that AT

σ̂
clip(Aσ̂ ûσ̂ −d) = 0|σ̂ |. Now, assume that AT

σ̂
clip(Aσ̂ ûσ̂ + Aσ̂ vσ̂ −d) = 0|σ̂ |.

Then, for all i ∈ σ̂

0 =
∑

j∈Hγ

(AT
σ̂
)i j (Aσ̂ ûσ̂ + Aσ̂ vσ̂ − d)[ j] +

∑

j∈H+
γ (AT

σ̂
)i j −

∑

j∈H−
γ (AT

σ̂
)i j

−
∑

j∈Hγ

(AT
σ̂
)i j (Aσ̂ ûσ̂ − d)[ j] −

∑

j∈H+
γ (AT

σ̂
)i j +

∑

j∈H−
γ (AT

σ̂
)i j

=
∑

j∈Hγ

(AT
σ̂
)i j

[∑

k∈σ

(Aσ̂ ) jkvσ̂ [k]
]
.

By previous results, we know that
∣∣Hγ

∣∣ ≥ ∣∣σ̂
∣∣, then [AT

σ̂
]Hγ [Aσ̂ ]Hγ is an invertible

matrix with dimension |σ |. Hence, [AT
σ̂
]Hγ [Aσ̂ ]Hγ vσ̂ = 0 implies that vσ̂ = 0, so

v = 0. ��

Example 5.3 Using this result and the data in Example 5.1 with γ = 0.1 and
β = 5, û is a (local) strict minimizer in the ball B∞(û, ρ∗), where ρ∗ =
min

{
0.2379,

5

475
,
0.0123

20

}
= 6.15 × 10−4.

Corollary 5.1 Let d ∈ R
M. Given an arbitrary ω ∈ �max, let û solve (HRω) with

û ∈ Bγ and |ω| ≤ ∣∣Hγ

∣∣. Then,
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(i) û reads as

û = Zω(ûω), where ûω = ([AT
ω]Hγ [Aω]Hγ )−1AT

ωζ(ûω)

with ζ(ûω) =

⎧
⎪⎨

⎪⎩

γ, j ∈ H−,

−γ, j ∈ H+,

d j , j ∈ Hγ ,

and obeys σ̂ = σ(û) ⊆ ω and σ̂ ∈ �max;
(ii) for any β > 0, û is a strict (local) minimizer of Fd;
(iii) û solves (HRσ̂ ).

Proof (i) Comes from the fact that [AT
ω]Hγ [Aω]Hγ is invertible under the given con-

ditions. Then, Proposition 4.1 implies part (ii) and Lemma 4.3 implies part (iii). ��

Remark 5.1 One can easily compute a strict (local) minimizer û of (Fd ) without know-
ing the value of the regularization parameter β. However, Corollary 5.1 is useful when
the unique solution υ is known for the problem (QHRω). In other words, if one knows
for which υ ∈ ϒ a solution u∗ of (HRω) satisfies u∗ ∈ Fυ then one can use Corol-
lary 5.1 to find u∗ exactly.

6 Global Minimizers

In this section, we first show that one can prove a necessary condition for a global
minimizer. Then, non-emptiness of the set of global minimizers and their sparsity will
be studied.

6.1 A Necessary Condition and Boundaries ofˇ

The following result gives a necessary condition for global minimizers. It is also useful
for finding meaningful values for the parameter β as we shall discuss below.

Theorem 6.1 For d ∈ R
M and β > 0, let Fd have a global minimum at û. Then,

i ∈ σ(û) ⇒ ∣∣û[i]∣∣ ≥ β√
M ‖ai‖

. (12)

Proof Let û be a global minimizer of Fd . For û = 0, there is nothing to prove. Let∣∣σ(û)
∣∣ ≥ 1, for all i ∈ IN define gi (u) : IN × R

N → R
N as

gi (u) = (u[1], . . . , u[i − 1], 0, u[i + 1], . . . , u[N ]).
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Then, again for all i ∈ IN we have

Fd(û) = Fd(gi (û) + ei û[i]) = �(gi (û) + ei û) + β
∑

j∈IN

(
φ(gi (û)[ j]) + φ(û[i])

)
.

Then, we haveFd(û) ≤ Fd(gi (û)) and�(gi (û))−�(û) ≥ β. Using these, we obtain

∣∣û[i]∣∣2 = ‖ai‖22
∣∣û[i]∣∣2

‖ai‖22
≥ ‖ai‖22

∣∣û[i]∣∣2 ‖clip(Agi (u) − d)‖22
M ‖ai‖22

≥
∣∣û[i]clip(Agi (û) − d)T ai

∣∣2

M ‖ai‖22
=
∣∣û[i]clip(Agi (û) − d)T Aei

∣∣2

M ‖ai‖22
.

Taking square roots will lead to

∣∣û[i]∣∣ ≥
∣∣û[i]clip(Agi (û) − d)T Aei

∣∣
√
M ‖ai‖2

≥ −û[i]clip(Agi (û) − d)T Aei√
M ‖ai‖2

= −û[i]��(gi (û))T ei√
M ‖ai‖2

= ��(gi (û))T (gi (û) − û)√
M ‖ai‖2

≥ �(gi (û)) − �(û)√
M ‖ai‖2

≥ β√
M ‖ai‖2

.

��
The lower bound provided above for the support is independent of d. This property

is also true for local minimizers of Fd satisfying Fd(û) ≤ Fd(û + ρei ), ∀ρ ∈
R, ∀i ∈ IN .

Example 6.1 Consider the following numerical example with M = 8 and N = 17 and
the matrix A:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 8 1 1 8 9 6 8 0 6 8 6 0
−1 0 −5 3 −1 9 3 0 1 0 1 0 0 1 0 9 0
0.5 −17 15 −7 5 −7 7 5 −7 1 −7 1 1 7 11 7 11
−1 2 −1 2 −1 2 8 −1 2 5 3 50 5 3 50 3 0
4 5 8 1 2 7 −1 2 9 1 19 11 31 29 11 20 10
5 7 0 1 3 10 6 7 −1 4 −1 4 14 −1 24 −1 26
6 1 10 −2 1 0 1 2 3 38 15 0 5 8 23 8 28
9 0 7 5 9 1 0 0 3 1 20 4 0 2 21 2 8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

d = [−1, 2, 4, 7,−3,−10, 20, 3]T .

Choosing γ = 0.1 and β = 3, we have a global minimizer u∗ with the only nonzero
entries 4.944,−1.664 , −4.608, 1.049,−2.217 at components 1, 2, 5, 7, 8. Then, it is
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easy to verify that the necessary condition (12) in Proposition 6.1 is fulfilled. The val-

ues
β√

M ‖ai‖
for the entries 1, 2, 5, 7, 8 are 0.0835, 0.0553, 0.0956, 0.0836, 0.1157

which are all smaller than the respective entries of û in absolute value.

Remark 6.1 Let d ∈ R
M and β > �(0). Then, (Fd) has a strict global minimum

at û = 0, since for any nonzero u we have ‖u‖0 ≥ 1 and Fd(0) = �(0) < β ≤
�(u) + β ‖u‖0 . This shows that (Fd) has nonzero global minima only for finite

values of β. Using these two bounds, one can use the interval
(
0, �(0)

]
for β and

adjust γ as desired.

6.2 Non-triviality of the Global Minimizers

In this section, we shall prove that the set of global minimizers is non-empty. We start
by recalling some useful definitions below.

– Let C be a non-empty set in R
N . Then, the asymptotic cone of the set C , denoted

by C∞, is the set of vectors t ∈ R
N that are limits in direction of the sequences

{xk} ⊂ C , namely

C∞ =
{
t ∈ R

N : ∃yk → +∞, ∃xk ∈ C with lim
k→∞

xk
yk

= t

}
.

The following definitions are for f : R
N → R,

– The level set of f for λ is defined as lev( f , λ):={v ∈ R
N : f (v) ≤ λ} for

λ > inf f .
– The epigraph of f is defined as epi f :={(v, λ) ∈ R

N × R : f (v) ≤ λ}.
– For any proper function f : R

N → R ∪ {+∞}, there exists a unique function
f∞ : R

N → R ∪ {∞} associated with f , called the asymptotic function, such that
epi f∞ = (epi f )∞.

Definition 6.1 Let f : R
N → R ∪ {∞} be lower semi-continuous and proper. Then,

f is said to be asymptotically level stable if for each ρ > 0, each bounded sequence
{λk} ∈ R, and each sequence {vk} ∈ R

N satisfying

vk ∈ lev( f , λk), ‖vk‖ → ∞, vk ‖vk‖−1 → v ∈ ker(( f )∞),

where ( f )∞ denotes the asymptotic (or recession) function of f , there exists k0 such
that

vk − ρv ∈ lev( f , λk) ∀k ≥ k0.

Remark 6.2 Fd defined in (1) is a non-negative function which is not constantly +∞,
which shows it is a proper function. We show that all level sets of our function are
closed to establish lower-semi continuity. Let α ∈ R be arbitrary, and let x ∈ R

N \ {0}
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be such that Fd(v) > α. Then, Fd = α + δ for some δ > 0. Let ρ be a positive radius

defined in Lemma 4.1 and ρ∗ = min

{
ρ,

δ

‖A‖1,1,

}
, then we have

Fd(x + v) ≥ Fd(v) − ‖x‖∞ ‖A‖1,1 + β ‖xσ c‖0 ,

for x ∈ B∞(0, ρ∗) and σ = σ(v). If x ∈ B∞(0, ρ∗) \ Kσ , we have

Fd(x + v) ≥ Fd(v) − ‖x‖∞ ‖A‖1,1 + β ‖xσ c‖0 ≥ Fd(v) > α.

Otherwise, x ∈ B∞(0, ρ∗) ∩ Kσ and

Fd(x + v) ≥ Fd(v) − ‖x‖∞ ‖A‖1,1 = α + δ − ‖x‖∞ ‖A‖1,1 > α.

Therefore, we have shown that Fd is a lower-semi continuous function.

Proposition 6.1 Let Fd : R
N → R be of the form (1). Then, ker((Fd)∞) = ker(A),

and Fd is asymptotically level stable.

Proof SinceFd is a proper function, the asymptotic function may be written explicitly

(Fd)∞(v) = lim inf
v′→v
x→∞

Fd(xv′)
x

= lim inf
v′→v
x→∞

∑
i∈IM ψ(ci (xv′)) + β

∥∥xv′∥∥
0

x

= lim inf
v′→v
x→∞

∑
i∈IM ψ(ci (xv′)) + β

∥∥v′∥∥
0

x
.

Then, for v /∈ ker(A) there is some k such that
∑

j∈IN Akjv j �= 0. Since ker(A) is
closed then there is some open ball around v which does not belong to the kernel.
Hence,

(Fd)∞(v) = lim inf
x→∞

∑
i∈IM ψ(ci (xv)) + β ‖v‖0

x
≥ lim inf

x→∞
ψ(ck(xv)) + β ‖v‖0

x

= lim inf
x→∞

∣∣∣x(
∑

j∈IN Akjv j ) − dk
∣∣∣− γ

2 + β ‖v‖0
x

=
∣∣∣∣∣∣

∑

j∈IN
Akjv j

∣∣∣∣∣∣
> 0.

Now, let v ∈ ker(A). We want to show that (Fd)∞(v) = 0. Then, it suffices to show

there exists a direction such that
Fd(xv′)

x
is zero, since it is a non-negative expression.

Now, let v′
n be a sequence in ker(A) converging to v. Then, we have

lim
n→∞
x→∞

Fd (xv′
n)

x
= lim

n→∞
x→∞

∑
i∈IM ψ(ci (xv′

n)) + β ‖v‖0
x

= lim
x→∞

∑
i∈IM ψ(di ) + β ‖v‖0

x
= 0.
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Combining these two resultsweobtain that ker((Fd)∞) = ker(A)whereker((Fd)∞) =
{v ∈ R

N : (Fd)∞(v) = 0}. Now, let {λk}k∈N be a bounded sequence of real numbers,
ρ > 0 and {vk}k∈N be an arbitrary sequence in R

N . Then, we compare ‖vk − ρv‖0
and ‖vk‖0. Let i ∈ σ(v), then

lim
k→∞

vk

‖vk‖ �= 0 ⇒ |vk | > 0 for k ≥ ki ,

for some fixed constant ki ∈ N. Otherwise, let i ∈ σ c(v), then ‖vk − ρv‖0 ≤ ‖vk‖0.
We define k0 = maxi∈σ(v) ki , then we obtain

Fd(vk − ρv) = �(vk − ρv) + β ‖vk − ρv‖0
≤ �(vk) + β ‖vk‖0 = Fd(vk) ≤ λk,

since v ∈ ker(A). This shows that vk − ρv ∈ lev(Fd , λk) for k ≥ k0, Fd is asymptot-
ically level stable. ��
Lemma 6.1 (Non-triviality of the Optimal Set, [33]) Let Fd : R

N → R ∪ {+∞} be
asymptotically level stable with inf Fd > −∞. Then, the optimal set Û ,

Û = {û ∈ R
N : Fd(û) = min

u∈RN
Fd(u)},

is non-empty.

Theorem 6.2 Let d ∈ R
M, β > 0 and γ > 0. Then, the set of global minimizers of

Fd , Û , is non-empty.

Proof By Proposition 6.1 and the definition of Fd , we have Fd asymptotically level
stable, and inf Fd ≥ 0. ��

Previously we had proven in Sect. 3 that (HR) itself has an optimal solution. As a
result of the above theorem, we know that (Fd ) always admits a minimizer. Below,
we provide additional results for global minimizers in Bγ , which we denote by UB.
Theorem 6.3 Let d ∈ R

M, β > 0 and γ > 0. Then, every û ∈ UB is a strict (local)
minimizer of (Fd), i.e.,

σ(û) ∈ �max;

hence
∥∥û
∥∥
0 ≤ M.

Proof Let û ∈ Û ∩ Bγ and define σ(û) = σ̂ . If û = 0 , this is done in Lemma 4.2.
Suppose that the global minimizer û �= 0 of (Fd) is non-strict. Then, Theorem 5.3
fails to hold; i.e.,

dim(ker(Aσ̂ )) ≥ 1.
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Choose vσ̂ ∈ ker(Aσ̂ ) \ {0} and set v = Z σ̂ (vσ̂ ). Select an i satisfying v[i] �= 0.

Define u∗ by u∗:=û − û[i] v

v[i] . Then, we have u∗[i] = 0 while û[i] �= 0 and this

implies u∗
� û and |σ ∗| ≤ ∣∣σ̂

∣∣− 1 where σ ∗ = σ(u∗). By the choice of v, we have
Aû = Aσ̂ û = Aσ̂u

∗ = Aσ ∗u∗ = Au∗, then

Fd(u
∗) = �(u∗) + β

∥∥u∗∥∥
0 ≤ �(û) + β

∥∥û
∥∥
0 − β = Fd(û) ⇒ Fd(u

∗) < Fd(û).

This contradicts the fact that û is a globalminimizer, hence rank(Aσ̂ ) = ∣∣σ̂
∣∣. Therefore,

û is a strict minimizer, σ̂ ∈ �max and
∥∥û
∥∥
0 ≤ M . ��

6.3 K-Sparse Global Minimizers for K ≤ M − 1

Since A has full rank one can find invertible M-dimensional square submatrices. A
consequence of this fact is that for small β values one may end up with multiple
global minimizers as one can express d as a linear combination of the columns in the
invertible M × M submatrix and obtain Fd(û) = βM for different û. Hence, it is
interesting to examine M − 1-dimensional (or, lower dimensional) submatrices. For
any K ∈ IM−1, let

�K :=
K⋃

r=0

�r ,

where �r was set up in Definition 5.1.

Proposition 6.2 Let d ∈ R
M. For any K ∈ IM−1, there exists βK ≥ 0, such that if

β > βK , then each global minimizer of û of Fd satisfies
∥∥û
∥∥
0 ≤ K. Furthermore, for

all K -sparse vectors û ∈ UB, σ(û) ∈ �K .

Proof Given K ∈ IM−1, set

UK+1:=
⋃

ω⊂IN

{u : u solves (HRω) and ‖u‖0 ≥ K + 1}.

Let UK+1 �= ∅. Then, for any β > 0, Fd has a (local) minimum at each u ∈ UK+1.
Therefore,

u is a (local) minimizer of Fd and ‖u‖0 ≥ K + 1 ⇔ u ∈ UK+1.

Then, for any β > 0 we haveFd(u) ≥ β(K +1) for all u ∈ UK+1. Let ũ solve (HRω)

for some ω ∈ �K . Then, ‖ũ‖0 ≤ K . Set β and βK according to β > βK = �(ũ). For
such a β, we have

Fd(ũ) = �(ũ) + β ‖ũ‖0 < β + βK ≤ Fd(u),
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for all u ∈ UK+1. Then, for any global minimizer û ∈ Û we have

Fd(û) ≤ Fd(ũ) < Fd(u),

for u ∈ UK+1, therefore
∥∥û
∥∥
0 ≤ K . Now, supposeUK+1 = ∅. Then, u solving (HRω)

for ω ⊂ IN with |ω| ≥ K + 1, we have ‖u‖0 ≤ K . Let û be a global minimizer of
Fd , then

∥∥û
∥∥
0 ≤ K . If one has û ∈ UB with ‖u‖0 ≤ K , we have shown that û is a

strict minimizer and σ(û) ∈ �K . ��

We have found a meaningful region for β satisfying β ∈
(
0, �(0)

]
in previous

sections. It is easy to show that for any K ∈ IM−1, we have βK ≤ �(0), for βK

provided in the proof of Proposition 6.2. Therefore, the region can be made finer by
specifying

β ∈
(
βK , �(0)

]
,

to investigate K -sparse global minimizers. As stated in the proof, a solution to (HRω)

for ω ∈ �K is sufficient for a lower bound βK . But one can relax this lower bound by
taking

β∗
K := min

ω∈�K
{�(ũ) : ũ solves (HRω)},

and restate the region as

β ∈
(
β∗
K , �(0)

]
.

Example 6.2 Let d ∈ R
5 be fixed and defined as d = [

1 9 9 4 8
]T . We investigate the

choice of regularization parameter β along with γ . We can pick any regularization
parameter in the region

β ∈ (0, �(0)].

Suppose we have a data matrix A ∈ R
5×10 as below

A =

⎡

⎢⎢⎢⎢⎣

1 6 7 7 8 4 4 2 4 7
4 0 7 0 6 3 4 6 9 2
9 8 3 2 3 7 6 6 3 5
7 9 6 0 9 7 7 1 5 6
9 6 1 0 0 1 7 1 2 8

⎤

⎥⎥⎥⎥⎦
,

and we look for k-sparse global minimizers. We have the plots below showing the
relevant regions for γ and β for K -sparse global minimizers of Fd (Figs. 2, 3, 4, 5).
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Fig. 2 K = 1

Fig. 3 K = 2

Fig. 4 K = 3

Fig. 5 K = 4
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Proposition 6.3 Let Aω be a M × |ω| dimensional submatrix of A, with rank(Aω) <

ω ≤ M. If u solves HRω, then there exists a subset ω∗ of ω such that Fd(u) ≥ Fd(û)

for û solving HRω∗ .

Proof Since Aω is not full rank, there is some submatrix of it Aω∗ which is M × |ω∗|
dimensional and rank(Aω∗) = ω∗ < ω ≤ M . Without loss of generality, we assume
that first |ω∗| columns of Aω are linearly independent and Aω∗ consist of first |ω∗|
columns. Then, for any u in the feasible region of HRω we can write

Aωu = aω[1]u1 + · · · + aω[|ω∗|]u|ω∗| + · · · + aω[|ω|]u|ω|
= aω∗[1]u∗

1 + · · · + aω∗[|ω∗|]u∗|ω∗| = Aω∗u∗.

Second equality comes from the fact that each column a|ω∗|+1, . . . , a|ω| can be written
as a linear combination of the remaining ones. Therefore, if u solves HRω we have

Fd(u) = �(u) + β ‖u‖0 = �(u∗) + β ‖u‖0 .

In this case, we always have ‖u‖0 ≥ ‖u∗‖0, because if u had some zero entries we
could shrink Aω accordingly and apply the steps above. Therefore, we have Fd(u) ≥
Fd(u∗) ≥ Fd(û). ��
Remark 6.3 As stated in the beginning of this subsection, when searching for a global
minimum it suffices to check submatrices with at most M columns. Then, one can
solve an overdetermined Huber regression problem using (QHR) or (QHR2) (see
Remark 8.2) in each of those subproblems and then compare them after adding penalty
generated by the �0 norm. During the search, it suffices to check submatrices with full
rank by Proposition 6.3. Using these results, we provide in Appendix an enumeration-
based procedure for searching the global minimizers in small dimensional examples.

7 Connection to Other Optimality Criteria

Beck and Hallak [17] introduced the concept of L-stationary points for studying opti-
mality conditions in sparsity constrained problems. Now, we relate our results to the
concept of L-stationarity (see also [18,34] for similar results).

Lemma 7.1 (Equivalent Form of L-stationary, [17]) Let L > 0. A vector u ∈ R
N is

called an L-stationary point if and only if

|�k�(u)|
{

= 0, k ∈ σ(u),

≤ √
2βL, k /∈ σ(u).

Proposition 7.1 Let û be a strict local minimum of Fd . Then, û is an L-stationary
point for

L ≥ max
k /∈σ̂

(�k�(û))2

2β
.
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Proof Let û be a strict local minimum of Fd . Then, by Proposition 4.3 we know that
û solves (HRσ̂ ). Then, KKT conditions imply

∣∣�k�(û)
∣∣ = 0, k ∈ σ̂ ,

∣∣�k�(û)
∣∣ = λk, k /∈ σ̂ ,

where λk are Lagrange multipliers. Then, û is an L-stationary point for

max
k /∈σ̂

|�k�(u)| ≤ √
2βL.

��
Another optimality concept developed in [17] (since the definition of this optimality

criterion is quite involved we refer the reader to Section 4.4: Definition 4.13 of [17]) is
the “Partial Coordinate-wise Optimality” (PCW-optimal) criterion which is stronger
than the support optimality and L-stationarity (provided L > L f where L f is the
Lipschitz constant for the gradient mapping) criteria. A strict local minimizer needs
not be a PCW-optimal point as the following example shows.

Example 7.1 Let us define γ = 0.1,

A =
[
1 4 9
6 2 5

]
and d =

[
1
9

]
.

Suppose we have K = {2} ⊆ I3. Then, û = [ 0 0.263 0 ]T is a support optimal point
of Fd . This is a strict minimizer since AK has only one column and the residuals are
0.05 and−8.475. This minimizer leads to�(û) = 8.4375 andFd(û) = 8.435+β for
some β > 0. Then, 1 ∈ I3 \K has the smallest partial derivative between {1, 3}. Then,
Kswap = {1} and ū = [ 1.497 0 0 ]T is a support optimal point of Fd and this point has
the objective Fd(ū) = 0.449 + β which is smaller than Fd(û). This example shows
that a strict local minimum of Fd is not partial-CW in general.

It is not certain that a PCW-optimal point is a strict local minimizer. However, this
can be checked using the conditions developed in Sect. 5.More importantly, especially
for algorithm development, one has the ability to check the necessary condition in
Theorem 6.1 for a global minimizer after computing a PCW-optimal point using
modifications of the algorithms described in [17]. This is left as future work.

8 Conclusions

We investigated the structure of local and global minimizers for the minimization of
the Huber loss criterion in the solution of linear systems of equations, coupled with
an �0 term controlling the sparsity of the solution through a regularization parameter
β. We characterized local minimizers and gave conditions for local minimizers to
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be strict. We established non-emptiness of the set of global minimizers as well as a
necessary condition for global minimizers. We gave bounds on the choice β to attain
a desired level of sparsity. We related our results to existing optimality concepts in
the literature. A simple enumeration scheme allowed us to illustrate the results via
numerical examples. The development of a full-fledged numerical algorithm incor-
porating the conditions provided in this paper along with convergence analysis and
experimental results, as well as an extension of the results of the present paper to the
case �1 − �0, are left as future studies. In particular, the problem where the Huber loss
is replaced by the �1 norm imposes a linear structure which opens new possibilities of
exploration.

Appendix

Definition 8.1 Let � : R
N → R be a differentiable function over R

N and its gradient
has a Lipschitz constant L� > 0:

‖��(x) − ��(y)‖2 ≤ L� ‖x − y‖2 for all x, y ∈ R
N .

Proposition 8.1 � has a Lipschitz constant
‖A‖22

γ
, where ‖A‖2 = sup‖x‖2=1

‖Ax‖2
‖x‖2 .

Proof Let x, y ∈ R
N ,

‖��(x) − ��(y)‖2 = ∥∥AT [clip(Ax − d) − clip(Ay − d)]∥∥2
≤ ‖A‖2 ‖clip(Ax − d) − clip(Ay − d)‖2
= ‖A‖2

‖clip(Ax − d) − clip(Ay − d)‖2
‖A(x − y)‖2

‖A(x − y)‖2

≤ ‖A‖22
‖clip(Ax − d) − clip(Ay − d)‖2

‖(Ax − d) − (Ay − d)‖2
‖x − y‖2

≤ ‖A‖22
γ

‖x − y‖2 .

Last inequality comes from continuity of the gradient. ��
Remark 8.1 One should use the Frobenius norm for easy computation, which causes

the Lipschitz constant to be
‖A‖2F

γ
. This choice is safe since ‖A‖2 ≤ ‖A‖F .

Proposition 8.2 Bγ defined in Theorem 5.2 is a dense subset of R
N .

Proof Let c : R
N → R

M be a linear continuous operator defined as c(x) = Ax − d.
Since A is full rank with M < N , c is a surjection. Let T = c(Bγ ) where c(Bγ ) is
the image of set Bγ . Hence, T = {v ∈ R

M : ∀i ∈ IM , |v[i]| �= γ }. Let O be an
arbitrary non-empty open set in R

M . Let v̄ ∈ O and define an index set as follows:
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v̄γ = {i ∈ IM : |v̄[i]| = γ }.Now, there is some positive radius rv̄ such that B∞(v̄, rv̄)
stays in O. If we define

r∗ = min

{
min
i /∈v̄γ

{|v̄[i] − γ |},min
i /∈v̄γ

{|v̄[i] + γ |}, rv̄ , γ
}
,

we have r∗ > 0 and B∞(v̄, rv̄) stays in O. Then, for any 0 < δ < r∗, v∗ = v̄ + δ1M

belongs to O and T at the same time. Hence, T is a dense set. T is the image of a
continuous surjection; therefore, Bγ is a dense set too. ��

Remark 8.2 Previous result shows that one can construct a sequence of vectors from
Bγ converging to any other vector in R

N . This may be useful for deriving algorithms
using second-order methods since the second derivative exists only for vectors in Bγ .

For all numerical experiments reported in this paper,we use the following equivalent
formulation for (HR)

minimize
1

2γ

∑
i∈IM p2i +∑

i∈IM
(
qi − γ

2

)

subject to −p − q ≤ Au − d ≤ p + q,

0 ≤ p ≤ γ1M ,

0 ≤ q.

(QHR2)

Proposition 8.3 (Equivalent Characterization for (HR), [35]) Any optimal solution to
the quadratic program (QHR2) is a minimizer of �, and conversely.

This alternative eliminates the need to work with piecewise functions and provides an
easier computation tool. We used the following algorithm for the numerical examples
reported in the paper:

Algorithm 1: GMSRH (Global Minima of Sparse Regularized Huber Regres-
sion)

Result: û an optimal solution.
Hyperparameters: β, γ ;

initialization A ∈ R
M×N , d ∈ R

M and Û = {0};
for ω ⊆ IM with |ω| ≤ N do

r ← |ω|;
if rank(Aω) = r then

u∗
ω ← argminu∈R|ω| �ω(u);

Û ← Û ∪ {Zω(u∗
ω)};

end
end
û ← argminu∈Û �(u) + ‖u‖0;
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