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Abstract
The complicated economic behavior of entities in a population can be modeled as a
Gibbs random field (GRF). Even with simple GRFmodels, which restrict direct statis-
tical interactions with a small number of neighbors of an entity, real life economic and
financial activities may be effectively described. A computer simulator is developed
to run empirical experiments to assess different coupling structures and parameters of
the presented model; it is possible to test many economic and financial models and
policies in terms of their transient and steady-state consequences.

Keywords Economic networks · Financial networks · Gibbs random fields · Markov
random fields · Metropolis algorithm

1 Introduction

There is no doubt that the global network of economic activities is complicated.
Individual decisions and actions at various levels combine at macro levels and thus
determine the global activity patterns. Ever since the field of economics emerged there
has been a debate over the mechanisms and drivers of economic interactions among
different agents composing the economy as a whole and its impact on equilibrium
aspects such as prices and interest rates.

Two different conceptual views are present in the fields of macroeconomics and
microeconomics. While macroeconomics is predominantly focused on the behavior
of complete economies reacting to external stimuli, microeconomics is concentrated
on the behavior of the smallest components of an economy, namely the various
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actors contained within it, interacting to form an aggregate of economic behavior.
The macroeconomic view sees the processes of economic behavior as being relatively
static, with the belief that these processes inherently lead to an equilibrium state. A
change in the economic environment will alter this equilibrium, once the change has
concluded, the economy will return to another equilibrium position. Specific rela-
tionships between behavior and outcomes at a granular level may be ignored. The
microeconomic view, in contrast, places utmost importance on individuals and their
decision making, the core belief being that human behavior is not always rational and
processes inherent in the working economy fluctuate depending on individual or firm
behavior, and cannot therefore be considered in isolation from the behavior of other
economic agents.

Thework presented here focuses on the results of the interaction of a set of economic
agents, be it individuals, households or banks (or other institutions). One can certainly
not ignore the probabilistic nature of economic activities. Even though it is clearly
feasible to define and run even a single entity economy, almost all economic activities
are social, and therefore, involve a large scale of interactions among many economic
entities. Interactions among the entities (players) and the time evolution of all such
interactions, inputs and outputs constitute a complicated process.

Understanding the inner workings of such a complicated probabilistic system is
surely interesting from an academic point of view. Furthermore, such an understanding
will then surely lead to various policy actions both at the micro and macro levels to
control this complicated random system; such policies can be successful only if the
underlying mechanisms are well understood.

Central to the our work is the dynamic interplay between economic entities (agents)
operating in a highly competitive environment. From this perspective our contribu-
tion can be placed within the literature of evolutionary economics. The evolutionary
economics concept holds that the economy can be perceived as a large population
of diverse agents, incorporating e.g., technology changes and self-transformations of
industry structures or changing production or consumption patterns of a group of
entities (Nelson et al. 2018). Empirical studies with this population perspective are
feasible, and interactive behavior within the population can theoretically be modeled.
With the availability of modern computational tools, much of the focus in this area has
moved toward formal simulation modeling, where multiple combinations of diverse
economic elements can be synthesized and overall economic behavior and equilibrium
outcomes examined under varying environmental conditions.

The focus of the present paper is to provide a mathematical model that represents
the effects of dynamic interactions between various agents of an economic system. In
particular, we highlight the relationships between aggregate macroeconomic effects
of the diverse microeconomic actions of individual entities. Based on the presented
model, a simulation tool that enables one to observe and analyze the behavior of
economic entities under different economic environments, particularly in situations of
economic or financial distress, is developed.

The approach undertaken was to establish a theoretical model suitable for a range
of interactions among a potentially large number of entities, in a simulation context
without the constraining limitations of analytical models which necessarily require
simplifying assumptions that detract seriously from reality (Acemoglu et al. 2015).
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The goals of this study are to (i) provide a general and flexible hierarchical random
field model to represent economic behavior of a large and complicated system that
consists of individual entities, (ii) provide a simulation algorithmbased on the provided
model, and implement it as a software tool to track the time evolution of themodel, (iii)
show that actual set of parameters that successfully model such a complicated random
system could indeed be quite small, (iv) provide a list of associations between the
model structure together with their parameters, and the resultant transient and steady-
state behavior of the macro economic system, (v) use the developed model and the
simulator to make similar assessments, associations and statements on various related
side issues within the broader system; one such example is the reduced system of
financial networks, flowof funds as a consequence of loan activities, and the robustness
(or the vulnerability) of such networks to random catastrophic failures that may hit
some entities and then propagate to the network.

We define an economic entity as a unit which is capable of producing, consuming
and storing (accumulating) economicwealth. Surely, any or all of these three key activ-
ities can be further divided to achieve a more detailed model and analysis. However,
it may be desirable to consolidate various activities into these three main economic
behaviors, for each entity. Simpler models are mathematically easier to handle and
related simulations are easier to implement.

The simulation model developed here has a firm theoretical grounding as detailed
in the rest of the paper.

The Gibbs random fields, or equivalently, Markov random fields are powerful tools
to model interactions in spatial systems. The model fully derives the macro behaviors
and patterns in larger scales starting from simple micro level interactions among indi-
vidual players and their small neighborhoods. For example, the macro scale form of a
forest can be found from simple forms of interactions with a single tree with its small
number of neighbors. Similarly, group behavior of insects, birds, etc., can be found
from simple forms of simple interactions of one entity with its few neighbors. The
propositions here in this work are, (i) The behavior of an entity in an economic sys-
tem is strongly affected by the behaviors of peers, social media connections, friends,
families, etc., of that entity; we collectively call those directly linked surroundings of
an entity as its “neighbors”. (ii) The nature of that small scale and easy to understand
interactions between a single entity and its neighbors, will then impose predictable
and computable macro level economic patterns. It is rather easy to analyze and model
those simple interactions between an entity and its neighbors. (iii) Through the GRF
(or equivalently the MRF) model, those simple interactions outlined in (i) and (ii) lead
to the macro level global behavior patterns; macroeconomics deals with such patterns.
(iv) Since local interactions lead to global patterns, and since the nature of those global
patterns are tightly linked to those local interactions via th GRFmodel, a policy maker
who desires a specified global state and pattern, may achieve such goals maybe by
working on finding ways to alter those simple entity-neighbor relations which will
then create the desired global state.

The versatility of our model and simulation tool makes it widely applicable to the
solution of varied economic or financial problems.

The adaptation of a given system structure by altering its parameters to fit an
observed random process, is well studied in the engineering literature (see, for exam-
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ple, Haykin 1986 or its later editions). Gibbs random field (or equivalently Markov
random field) parameter estimation problem is also studied (Gurelli and Onural 1994).
Estimation of the parameters of the proposed model to fit a specific empirical data, or
better yet, adaptation of such parameters over time, will be a natural extension of the
study presented in this paper. This will also address the Lucas’ critique which mainly
states that fixed parameters in a model which does not adapt over time are bound to
yield erroneous results. According to Lucas, macroeconomic models that treat cer-
tain parameters as fixed will produce misleading results. Lucas heavily criticized the
models that were used to evaluate the effect of different policies, which assumed that
parameter values would not change as a result of the policies being evaluated. In other
words, treating parameters as stable in econometric theory will produce misleading
and inaccurate policy advice. As a solution, Lucas critique advocated dynamic models
for econometric analysis (Lucas 1976).

The essence of Markov random fields, or equivalently Gibbs random fields, assures
that each entity is continuously affected by the state of the entire community, and
therefore, the concerns with respect to invariance of the Lucas critique can be laid to
rest. The Markovianity property simplifies the modeling of such an effect by stating
that the influence of the entire community passes to an entity through its neighbors.
In other words, the effect of the entire community is fully summarized in the state of
the neighbors of an entity. The details are described in Sect. 2.

On the other hand, while the parameters of such influences among the entities is
stationary in our models, it is quite logical to assume that such statistical parameters
describing those influences are slow-varying in nature, and therefore, may be kept
constant for a quite long run. However, if this is not satisfactory (as Lucas might have
objected (Lucas 1976)), it is also possible to vary these parameters in an adaptive
manner, but still slowly compared with the speed of change of the states of entities
that continuously and quite rapidly affect the behavior of each entity. In that sense,
our framework can be adapted quite easily to accommodate time-varying parameters,
and thus satisfy the main tenets of the adaptive approach implied by the Lucas critique
(Lucas 1976).

The presentedGRFstructure, and the developed simulator, can be effectively used to
clearly observe themacro effects of simple fewmodel parameters that describe the local
entity interactions. Itmay be impossible, or very difficult at best, to establish those links
between local interaction parameters and the subsequent macro results, analytically.
Using the theoretical GRF model, and running the simulator, a policy maker can
successfully test the macro results of a given set of local interaction parameters, and
thus, can identify the local parameters that yield the desired macro results, and then,
could direct its efforts to implement those local behavior patterns thatmatch the desired
parameters.

Even though we provide a concrete and complete structure to model economic
activities, and state that just a few and simple parameters may be quite successful in
mimicking real life situations, we do not attempt to fine tune those parameter values
to fit actual empirical economic data. A reason for this is the obvious variability
of those parameters for different types of collections of entities that make up the
aggregate of interest: the nature of mutual interactions could be different in different
societies; may change with respect to time based on the cultural changes, as well as,
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underlying technologies which provide the infrastructure for suchmutual interactions;
furthermore, those parameters will be quite different when modeling, for example,
masses of consumers compared to financial networks consisting mainly of banks.

Furthermore, we do not attempt to compare our model with other models existing
in the literature in terms of their success in modeling real data. Instead our focus is to
provide a successful test-bed that links local level causes to their macro level results.

Even though we proceed with a simple model after providing the preliminary theo-
retical basis, it is not difficult to extend the work, including the associated simulator, to
include heterogeneous entities into the network. Indeed, this would be an interesting
case since it will provide a better model to the actual economic flora. A good feature
of the presented model is its flexibility to easily handle such cases, as well. The price
paid will be the associated complexity due to a larger set of parameters.

The contributions of this paper, beyond the state-of-art, can be summarized as,
(i) a statement that Gibss random fields (or equivalently Markov random fields) can
successfullymodel economic activities by linking simplemicro-level entity interaction
patterns, which can be represented by a few simple parameters, to their collective
macro-level results, (ii) a related follow up statement which indicates that such simple
GRF models can be used to predict consequences of micro-level financial network
interactions to their macro-level consequences; this will provide a tool to early detect
and thus maybe prevent financial network catastrophes, (iii) a full scale simulator that
allows the users to input few GRF parameters that represent local interaction patterns
in a network of entities, where each such simple entity can produce, consume and
store wealth, and furthermore, engage in loan activities, and then test the eventual
macro level status in such a network; the simulator can handle network sizes upto
hundreds of thousands of entities, (iv) a tool in the form a theoretical GRF model and
its implemented simulator that can be used to construct and test economic policies to
induce desired macro-level end results.

The simulation examples included in this paper also provide answers to some com-
mon research problems, while showing the effectiveness of the provided theoretical
Gibbs random field structure and the associated simulator. For example, we tested, via
a set of simulations, the effects of network topology and strength of local interactions
to the robustness of a network of economic entities which do produce and consume,
and at the same time, engage in loan granting and receiving activities. Assuming sta-
tistically balanced aggregate consumption and production levels for the society, we
formed two simultaneous neighborhood structures which represent both the social
influence on consumption/production levels of entities and the connectivity of the
allowed loan/debt network. And we observed, and came to a conclusion that a fully
connected loan network is more robust in terms of debt defaults compared to a ring-
connected sparse loan network, as expected, and in line with the results presented
in Acemoglu et al. (2015). But we also observe and conclude that, this difference in
robustness is quite small if the underlying economic behavior influences are restricted
to a sparse ring-connected Gibbs model. On the other hand, if the underlying Gibb-
sian network has a fully-connected structure, where everybody directly influences
everybody else’s economic behavior, the parallel running fully-connected debt/loan
network is significantly more robust compared to its ring-connected counterpart. We
also observed an interesting, but rather expected by-product result: if the statistical
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interactions among the entities in the fully-connected Gibbsian economic network are
too strong, while the entire society converges to total prosperity in most of the cases,
occasional total extinction is also observed. In other words, strong statistical interac-
tions result in a domino effect, where a total collapse resulting in an extinction is still
possible, even though such a result has a low probability compared to total prosperity,
in a fully connected debt/loan network. Further tests revealed that relative weaken-
ing of the interactions significantly reduced the probability of such extinctions; we
did not observe any such extinction in our simulations, after such modifications. This
observation provides a guideline for a wide-spread prosperity in a society: balanced
aggregate consumption and production levels, together with well-connected but not
too strong economic behavioral influences and well-extended loan/debt interactions
among the entities lead to total prosperity of all entities.

A literature review is presented next. The mathematical preliminaries are presented
in Sect. 2, a simple Gibbs random field (GRF) model for economic activities is intro-
duced in Sect. 3 and an example is given in section4.Applications to financial networks
is discussed in Sect. 5. A complete simulator is developed; the simulator is described in
Sect. 8, and some results obtained using this simulator are presented in Sect. 9. Finally,
some conclusions are drawn in Sect. 10.

1.1 Literature Review

There is a large number of papers in the literature on financial network topologies
and contagion of crises in financial networks, to which we cannot possibly do justice
within a limited space. Nonetheless, we briefly touch upon those contributions in the
economics literature that appear to be related to our goals in the present paper.

Leitner develops a model for financial networks to examine the spread of contagion
based on the linkages, and conclude that while spreading contagion, linkages also
induce bailouts, where liquid banks bailout illiquid banks to avoid contagion (Leitner
2005). Acemoglu and Ozdaglar propose a framework to understand the relationship
between the financial network architectures and the probability of systemic failures
due to contagion of risks (Acemoglu et al. 2015). They find out that the number of
interbank connections is important, and show that there is a phase transition based
on that number. They discuss the stability of such systems, and find out that while
well-connectedness enhance the stability of the system under fewer and small neg-
ative shocks, beyond a certain point, such dense connections facilitate propagation
of shocks and result in a more fragile financial system. Bech and Atalay study the
topology of the federal funds network (Bech and Atalay 2010). They represent the
federal funds market as a network where financial institutions constitute the nodes
and the loans form the directed links; the link weights are the values of the loans
between the counterparties. Using a transaction-level data set spanning 1997–2006,
they analyze the characteristics of the overnight federal funds network and its evolu-
tion. Their empirical findings suggest that the network is sparse, which contributes to
themagnification of contagion effects. Diebold andYilmaz propose several connected-
ness measures for financial network topologies, and they use variance decompositions
used in the network literature, for that purpose (Diebold and Yılmaz 2014). They show
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that variance decompositions define weighted, directed networks, so that the connect-
ednessmeasures are related to similarmeasures used in the network literature. Gofman
studies efficiency and stability of a financial architecture with too-interconnected-to-
fail institutions, and gives a network-based model of the over-the-counter interbank
lending market in the US (Gofman 2017). He shows that trading efficiency decreases
with the sparsity of interconnectedness due to lengthy intermediation chains.

Malamud andRostek propose an equilibriummodel of decentralizedmarketswhere
general markets coexist with exchanges (Malamud and Rostek 2017). Afonso et al.
(2011) focus on the effects of liquidity hoarding and the associated risks in the US
overnight interbank market during the financial crisis of 2008. Their findings imply
that counterparty risks are more important than the liquidity hoarding effects. Amini
et al. (2016) in a study on resilience to contagion in financial networks obtain results
for the magnitude of contagion in a large counterparty network and give an analytical
expression that links network characteristics to asymptotic fraction of defaults. Afonso
andLagos (2015) focus on trade dynamics for federal funds and develop amodelwhere
banks have to look for a counterparty and then negotiate the size of the loan and the
terms of repayment. They discuss the market dynamics for the reallocation funds and
efficiency of such reallocations.

Zawadowski (2013) proposes a model of a financial system where banks hedge
their portfolio risks using over-the-counter contracts. In their model, banks choose not
to hedge counterparty risk, and therefore, the idiosyncratic failure of a bank can lead
to systemic problems.

Glasserman and Young (2016) also study contagion in financial networks based on
the level of interconnectedness of the financial system and its contribution to systemic
fragility; they also give an excellent literature review related to this topic. Their work
focuses on the interaction of the network structure with other relevant variables. They
proposed various metrics to evaluate the susceptibility of the system to contagions.

Peltonen et al. (2014) study the network structure of the credit default swap (CDS)
market and its determinants based on empirical data. Gofman (2012) explores the
effects of intermediation on over-the-counter markets and their efficiency in the allo-
cation of resources. Bargigli et al. (2015) study the multiplex structure of interbank
networks.

2 The Gibbs Random Field Model for Economic Activities

2.1 Mathematical Preliminaries

We will use undertilde to describe random variables; no undertilde will be used for
numerical values that these random variables take. We will use bold fonts to represent
vectors (arrays). For example, P(x

˜

= x) means the probability that the vector random
variable x

˜

takes the specific vector value x. We will also use the notation Px
˜

(x) for the
same purpose, whenever we feel this notation is more appropriate. Indeed, whenever
there is no ambiguity in the meaning, we will also use the shortened notation P(x) to
represent the same probability as described above.
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Markov random fields (MRF) are convenient and powerful in modeling intermin-
gling of a large number of random variables. On the most complicated side, one can
model a collection, X

˜

, of random variables, x
˜

i , i = 1, 2, . . . , by the joint probabil-
ity density function (pdf) of all of these x

˜

′
i s. However, such a pdf cannot be directly

constructed neither by observation, nor by deduction, especially when the number
of variables is large; even simpler economic systems fall into this category. MRFs
provide a very convenient and applicable tool to induce such complicated joint pdf’s.
The Markovian property assumes that the statistical interaction of a random variable,
with the rest of the random variables, is perfectly summarized by its interaction with
only those random variables in a defined neighborhood (for simplicity, we assume that
the random variables take discrete values, and therefore, directly use the probabilities
instead of pdf’s):

P(x
˜

i = xi |x
˜

j = x j , ∀ j such that j �= i) = P(x
˜

i = xi |x
˜

j = x j , j ∈ ηi ), ∀i .
(1)

The index i labels the random variables; usually it is interpreted also as the identifier
of a specific spatial “location”. The neighborhood, ηi , is nothing but a set of indices
(locations) which excludes i . Usually, the neighborhood, ηi , for entity i is rather
small, and therefore, the model is not complicated. However, the model is still very
powerful since it is proven that the conditional probabilities of each random variable,
as described by Eq. 1 uniquely determine the joint probability of the entire collectionX

˜(Onural 2016). Unfortunately, that joint probability is almost impossible to compute;
however, such explicit computations are usually not needed, anyway; ratios of such
probabilities are usually adequate and such ratios are easy to compute.

Another mathematical result forms the link between Gibbs random fields (GRF)
and the MRFs. It is proven that if P(X

˜

= X) �= 0, for all possible realizations
X, then one can construct an equivalent MRF model for any GRF, and vice versa
(Hammersley and Clifford 1971; Besag 1974; Spitzer 1971; Isham 1981). Since the
condition, which only requires the prohibition of zero probability realizations (i.e.,
impossible realizations), is usually satisfied, the GRF-MRF equivalence can be used
in many cases. Recently, it is also shown that this positivity condition is not necessary
for the GRF-MRF equivalence, and constrained GRF’s can still be employed with
confidence while still enjoying the associated benefits (Onural 2016). A benefit that
follows is the mathematical ease in understanding, defining, and dealing with GRFs,
instead of more difficult MRFs.

With the abovemathematical observations, we construct ourmodel as follows: Each
economic entity is labeled by an integer index i , and we associate a vector random
variable x

˜

i to each entity i . The elements of this vector represent separate economic
variables associated with the entity i . For example, x

˜

i = [pi ci si ]T may denote the
production pi , consumption ci and the accumulated wealth si of entity i ; the number
of elements of the vector xi and the definitions and other attributes of those elements
depend on applications. To track the time variation of these variables, we also introduce
another index t in addition to the entity label i , so that we have x

˜

i,t . For simplicity,
we will assume a discrete time index represented by integers, and therefore, we will
have a discrete vector time series for each entity i .
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A Gibbs random field X
˜

has a joint probability as follows: We first decompose the
set of all entities into subsets. We start with all subsets with one element, and then
we keep on adding all subsets with two elements, three elements, and so on, until
we reach the subset that includes all of the entities. Therefore, the elements of these
subsets are collections of distinct entities and called “cliques” in the literature (Besag
1974; Isham 1981; Derin and Kelly 1989). Then, for each such subset, we assign a
function which maps the realizations over that subset to a real number; we call those
functions as “clique potentials”, again, as usual in the literature (Isham1981;Derin and
Kelly 1989). There is no restriction on these potentials except the presented structure
which requires that such potentials should be, and can only be, assigned to described
cliques. Incidentally, this simple restriction assures that the corresponding equivalent
MRF is consistent, and thus completely solves the otherwise complicated consistency
issue of the conditional probabilities as described by Eq. 1 as they induce a global joint
probability; this problem is quite difficult if attacked using the MRF formalism only,
without establishing the MRF-GRF equivalence. Sum of all such clique potentials
is called the total (Gibbs) energy, U (X), of the realization X

˜

= X. And finally, the
joint probability of P(X

˜

= X) is given by ke−U (X), where k is just a normalization
constant to assure that the sum of all probabilities over all realizations is equal to
one. What makes the computation of these probabilities difficult is the computation of
that constant k; however, algorithms that utilize the Gibbs model commonly utilize the
ratios of the probabilities of different realizations, and therefore, the constant k cancels
out, and thus, disappears form the equations that describe the related algorithms.

Naturally, the total number of cliques for a given collection of N entities is 2N which
is a prohibitively large number for any practical purpose. However, in most practical
applications, a vast majority of clique potentials are set to zero; only a handful of
clique potentials contribute to the total energy. This sparse nature of clique potentials
also results in extremely efficient calculations of ratios of probabilities (Onural 2016).

Most of the Gibbs models in the literature are for scalar random variables over
sites; here we have a vector random variable. This is not a problem, at all, in terms
of the underlying theory. Indeed, if needed, one can further detail the nature of the
interactions among the arbitrary scalar elements of the entire vector field, simply by
converting the N -site vector field to an k N -site scalar random field for vectors with
k elements, each. An example of vector Gibbs random fields can be found in Onural
(1988).

A simple, but still a powerful Gibbs model may assign potentials to each single
entity (one element subsets) as Vi (xi ); if the collection is statistically homogeneous,
Vi becomes independent of i , and thus, can be denoted simply as V .We can then define
two element clique potentials as V{i, j}(xi , x j ); please note that, consistent with the set
definition, the elements in a clique are always distinct, i.e., i �= j , and therefore, to
interchange i and j will result in the same clique. A commonly used practical model
assigns nonzero V{i, j} only if j is in the neighborhood of i ; incidentally, the definition
of the neighborhood assures that if j is in the neighborhood of i , then i is in the
neighborhood of j (Hammersley and Clifford 1971; Besag 1974; Spitzer 1971; Isham
1981). Again, for homogeneous (spatially stationary) random fields, V{i, j} depends
only on relative positions of the locations i and j . Economic entities may or may
not be associated with physical spatial locations; therefore, other interpretations of
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homogeneity are needed and useful. Higher order cliques with three or more locations
are rarely assigned nonzero potentials in applications. Surprisingly, even such simple
Gibbs models which assign nonzero potentials only to single element and near-located
double element cliques are quite adequate in modeling various natural and social
stochastic interactions, successfully.

When the behavior of entities, or the nature of interactions among the entities,
cannot be modeled by the same probabilistic models, in other words, when the overall
system is not statistically homogenous, it is feasible, and actually not too difficult, to
incorporate heterogeneous entities into the network. However, this will increase the
complexity.

Incorporation of constraints, whether local or global in nature, is also possible, and
does not violate the Markovian nature of the GRF, as shown in Onural (2016); such
random fields are called constrained GRF’s (CGRF’s).

3 A Simple GRF toModel Economic Networks

We define an economic entity as a unit which is capable of producing, consuming and
storing economic value. The entity is labeled by an integer index i , and therefore, the
set of entities constitute a countable set. We will define three real-valued variables
pi , ci , and si to represent the level of production, consumption and storage associated
with entity i . Naturally, all three variables are functions of time. Therefore, in most
explicit form, the main economic activity of entity i is represented by a vector function
xi (t) � [pi (t)ci (t)si (t)]T . For the sake of simplicity, and for subsequent discrete
simulations, we will assume that the time variable is also discrete, and therefore, t
is an integer representing the time index of the discretization instants. Therefore, an
equivalent alternative notation is xi,t � [pi,t ci,t si,t ]T .

The three components of the vector xi,t which represents the time-varying economic
activity of an entity are defined as follows: The production, pi,t is the sum of the worth
of all economic activities of entity i at instant t that increase the wealth. Therefore, it
includes plain production, as well as, any rent, interest, or any other form of income.
Similarly, the consumption, ci,t is the sum of the worth of all activities of entity i at
instant t that decrease the wealth, and that includes the debt service, if any, as well.
Surely, any consumption can also be considered as a negative production, and vice
versa, and therefore, one of the vector elements (either p or c) can be eliminated;
however, it is convenient to represent these two inverse activities with two separate
variables since their statistical neighborhood dependencies are likely to be different,
and therefore, they may have different roles in the GRF model that we construct.
Indeed, if needed, the entity variables could be further partitioned to model more
complicated business-type entity behavior, by defining other variables associated with
further details. For example, to match the commonly used income statement tables
used in standard accounting practices, the consumption variable may be partitioned
to track the “cost of goods produced”, cig , and the “overhead costs”, cio, where ci =
cig + cio. If this detail is incorporated into the model, then, naturally, cig will be
strongly correlated with pi , whereas, cio will have much less correlation; therefore,
the statistical associations of these components will be different to reflect a more
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realistic model. However, this will complicate the model and the related simulations.
We will not incorporate these possible details into the model, to keep it simple, at
this time. Obviously, there will be constraints of local and global nature within the
constructed GRF model to reflect the nature of the underlying economic facts. For
example, si,t , which represents the accumulated wealth (net worth) of entity i at time
instant t , and the production and consumption levels are related as,

si,t+1 = si,t + pi,t − ci,t (2)

which is a very strong local constraint. Clearly, si,t is a state variable, and the system
is also one-stepMarkovian in time. Even though the model which tracks the consump-
tion, production and storage activities of entities is complete, as also brieflymentioned
before, for various reasons a more detailed version which further decomposes these
variables, may be needed. For example, due to its special nature, a new debt variable,
di may be introduced by further decomposing the storage parameter as,

si = ai − di (3)

where di represents the total debt owed by the entity i , and therefore, the newly
generated variable ai is the rest of assets other than the total debt which is a negative
asset. The variable di may be positive, which represent net debtor; but, it may also be
negative, and in that case, indicates that entity i is a net creditor. The debt variable
di,t is also subject to non-local constraints since there are at least two parties in any
debt/credit related activity: one who receives the loan and the one who grants the loan.
In a simple isolated two-party loan arrangement, say between entities, i and j , the
constraint is, di,t = −d j,t∀t . In a society with more complicated debt/credit behavior,
the constraint could be,

∑

i∈Bk

di,t = 0 ∀t (4)

where Bk , k = 1, 2 . . . K form a partition for the set of all entities B; i.e.,
⋃

k Bk = B
and Bk ∩ Bl = ∅∀k, l, where Bk represents a loan-wise closed group of entities
where all debt/credit activities are conducted within the group; none of the members
of Bk can receive loans from or grant loans to outsiders. Clearly, the largest of such a
set is the collection of all entities, B.

We will omit the time dependence of these variables in the notation whenever there
is no ambiguity. The accumulated wealth as represented by the storage parameter,
si , is also commonly referred to as the “net worth”, or as the “owners equity” in
different contexts. We have already indicated that si = ai − di ; indeed, any two
of these three variables, si , ai and di , may be designated as the primary variables
since the third variable is algebraically linearly dependent to the other two. If needed,
the consumption variable ci can be further partitioned to explicitly indicate the debt
service (interest paid) bi , for example, in the form ci = gi + bi , where in that case,
gi represents the consumption other than the interest payments. Similarly, if there are
any interest payments received as a consequence of a granted loan to another entity,
this can also be explicitly indicated by replacing pi by hi + ri where ri represents
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(a) (b)

Fig. 1 A simple single clique potential may be designed to impose a rather unlikely behavior outside of the
given limits by adopting steep walls, or b a more flexible behavior which allows more frequent deviations
from the likely outcomes

received interest, and therefore, hi represents the rest of the production. We will keep
the model simple, and therefore, choose not to incorporate these details.

We start building our GRF model by specifying the energy function as,

U (X) =
∑

i

Vi (xi ) +
∑

{i, j}
V{i, j}(xi , x j ) (5)

where Vi (xi ) and V{i, j}(xi , x j ) represent, single and double site cliques, respectively.
Therefore, we assume that all other higher order cliques have zero potentials. Since
the site variable x is a vector, the model is still quite involved.

The specifications of Vi (xi ) and V{i, j}(xi , x j ) must represent the natural behavior
of an economic entity to get meaningful results. For example, if the entity is a single
person, or if it is a simple household, Vi (xi ) should be specified to reflect unavoidable
physical consumption needs of the entity for survival, and probably some additional
intrinsically hard to avoid consumption needs of the entity. It should also reflect self-
initiated motivation for productivity and self-initiated tendencies for storage. It could
also model intrinsic tendencies associated with borrowing habits. Considering these
observations, one can conclude that this single clique potential will have a multi-
dimensional well-shaped form where the bottom represents the more likely outcomes.
The slope of the walls represent how flexible the deviations from those more likely
outcomes; this slope should be steep for less flexible behavior. A representative figure
for the one-dimensional case is depicted in Fig. 1.

One may first attempt to further simplify the single clique potential function by
specifying that the components of the vector xi to be statistically independent (sepa-
rable Vi (xi ) in terms of its components). However, that might not be realistic. A more
realistic specification will probably satisfy some qualitative requirements as follows:
(i) Production, pi,t is strongly correlated to ci,t , since a prudent entity will adjust its
consumption and production levels to be similar. (ii) pi,t is expected to have a nega-
tive correlation with the storage parameter (accumulated wealth) si,t since a wealthy
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entity does not need to produce to satisfy its consumption habits. (iii) It may also be
expected that the level of production is also positively correlated to the amount of debt;
indeed, in line with the famous saying “Debt is the horsewhip of the brave” (“Borç
yiğidin kamçısıdır.”); however, this may not be correct since maybe what generates
the debt is habitual inadequate production levels; in this case, si,t and pi,t will be
negatively correlated, but obviously this is not a sustainable behavior. (iv) The con-
sumption parameter, ci,t , could be positively correlated with the storage parameter,
si,t , since a wealthy entity is expected to have higher consumption levels. (v) With the
same reasoning, the consumption, ci,t , is expected to have a negative correlation with
the debt variable, di,t , since it will be prudent for an entity to save and thus reduce the
large debt; but there might be cases where this might not be correct, since ability to
receive more debt may also boost the consumption for some entities.

Naturally, it is more difficult, but also more interesting to specify the pairwise
clique potentials, V{i, j}(xi , x j ). Based on common sense and observations, it may be
quite logical to assume the following general statistical behavior patterns among the
neighbors: pi has a strong positive correlationwith neighbors’ production levels; ci has
a strong positive correlation with neighbors’ consumption levels; si has a deterministic
algebraic dependence on production and consumption levels of the population, as
indicated by Eq.2.

We restrict the direct interactions in our GFR model to only those outlined above,
where only direct interactions are either among the components of xi (we call these
intra-site couplings), or among the corresponding components of neighbor sites (in
other words, pi couples with p j ’s only, ci couples with c j ’s only, etc.) (we call these
inter-site couplings). More complicated models are possible but marginal benefits
of such complicated models may not justify the additional burden due to increased
complexity.

Naturally, the introduced model parameters reflect the psychological foundations
of economic behavior. A smaller V{i, j}(xi , x j ) indicates a stronger desire and tendency
between entities i and j to be similar to each other. Furthermore, Vi (xi ) reflects the
self-satisfaction of entity i as a consequence of its own economic state and behavior;
a smaller Vi (xi ) represents a more satisfying, and therefore, a more likely state. A
primary perception that affects the economic behavior of an entity is associated with
the feeling of personal social/economic security; those who feel insecure about their
future economic well-being tend to store (save) more.

4 A Simple Example

This simple example assumes a homogeneous network where the statistical behavior
of all entities are the same, and therefore, the potential functions Vi (·) associated with
each entity i are identical for all i ; subsequently, the index i may be dropped from the
potential functions for a simple notation. This assumption we adopt for this simple
model may not correctly reflect real-life economies since a typical society includes
quite differently behaving entitieswith totally different intentions and capacities. There
is no need to specify a component for the potential function due to the storage variable
si since these values for all times are fully specified in a deterministic manner as
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indicated by Eq.2 from the time sequences of pi and ci . In this simple example, we
specify V (xi ) as,

V (xi ) = Vp(pi ) + Vc(ci ). (6)

More realisticmodels should combine these components inmore complicatedways.
We can then further specify the two components given by Eq.6. The consumption
component Vc(ci ) should represent and depend on self-initiated needs. This includes
physical needs, as well as habitual consumption behavior. We propose a single clique
consumption potential in the form of a binary function for simplicity, as follows:

Vc(ci ) =
{

kc1 if ci ∈ [Tc1, Tc2]
kc2 else,

(7)

where kc2 > kc1. Such a choice will increase the probability of those values of c1 that
are in the specified interval [Tc1, Tc2] relative to the probability of those values which
are not in this interval. The probability of a value within the interval is uniform, as well
as the probability of a value outside the interval, as a consequence of this binary form.
As expected, Tc1 and Tc2 are external parameters and should be chosen to describe
the likely range of self-initiated needs; similarly, kc1 and kc2 values, and especially
the difference between them, will specify the relative likelihood of rather rare out of
interval realizations compared to more likely realizations within the interval.

The production related component of the single clique (self-initiated) potential is
also chosen to be similar to the consumption component which is defined above. Here
the assumption is that the self-initiated production levels do not really show a large
variation from one instant (period) to another (when for example the time interval is
taken as a day or a longer period). Therefore, we specify,

Vp(pi ) =
{

kp1 if pi ∈ [Tp1, Tp2]
kp2 else.

(8)

Another specification is related to possible ranges of these three main variables.
Obviously, both pi and ci should be non-negative. An alternative simpler model may
combine these two variables into a single variable which might be properly named as
the “net production” which is defined as pi − ci ; in that case, all real valued outcomes
could be possible.

In this simple example, we can explicitly define the neighborhood ηi of entity i as
consisting of its a few “nearby” neighbors. The term “nearby” may or may not define a
physical measure of closeness; however, it defines the labels of those entities which are
interacting directly with the entity i . Please note that we are referring to “direct” inter-
actions; indeed, all entities may still, and usually do, interact with each other indirectly
via the consecutive intermingling of all entities via their intersecting neighborhoods.
In other words, the Markovian property as implied by the Gibbs model through the
MRF-GRF equivalence provides an interaction of an entity i with all other entities, via
its neighborhood. For a very simple interaction model, we define the neighborhood,
ηi of i as the set {i − 1, i + 1} for all i’s. If the number of entities are finite and equal
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to N , we may define the set of all i as integers in [0, N − 1], and in that case, the
addition i +1 and the subtraction i −1 should be implemented as modulo N arithmetic
operations. Such a choice indicates a ring form of a network where each entity directly
interacts only with its left and right immediate neighbors. We further assume that the
economic entities adjust their economic activities to be similar to their neighbors. This
assumption seems quite valid within the society; people, or households, tend to have
similar consumption behaviors as their neighbors. This similarity may then induce
similar levels of production activity, which in turn may induce similar storage results.
This similarity may be quite strong or quite weak. However, it is not expected to have
a negative correlation among the neighbor behaviors. With these observations and
simplifying assumptions, we may choose to define the pairwise clique potentials as,

V{i, j}(xi , x j ) = V{i, j},c(ci , c j ) + V{i, j},p(pi , p j ) i �= j, (9)

which implies no direct interaction between pi and ci components. More realistic
models, however, may include those cross-coupling terms, as well. Again, a homo-
geneity (spatial stationarity) assumption allows us to drop the i and j subscripts and
write the potential as, Vq(xi , x j ), where the new index q represents only the clique
shape (connectivity) and not its absolute location. Since our simple ring model has
only one clique shape {i, i + 1} which represents direct interactions of only two side-
by-side entities, we can further drop the index q, as well. We may then specify the
components indicated by Eq.9, for our simple model, as,

Vp(pi , p j ) =

⎧

⎪

⎨

⎪

⎩

vp1 if |pi − p j | ≤ Tvp and if |i − j | = 1

vp2 if |pi − p j | > Tvp and if |i − j | = 1

0 else,

(10)

where vp1 < vp2. We used V , which labels a two-variable function V(·, ·), to dis-
tinguish it from the single clique potential function V (·), which is a single-variable
function, when the label indices are omitted in the homogeneous field cases. The impli-
cations of this chosen form is to assign higher probabilities to those patterns X inwhich
the production level of an entity is similar to that of its two neighbors. Therefore, those
X ’s with frequently unmatched production levels among the two consecutive entities
within the formed ring structure will have lower probabilities. The term “similarity”
means that the difference is within an externally provided threshold level Tvp. The
range defined by this threshold, as well as the difference between the values vp,1 and
vp,2, will impose more relaxed or tight conditions to enforce the implied similarity
conditions. The pairwise clique potentials associated with the consumption can also
be defined similarly, as,

Vc(ci , c j ) =

⎧

⎪

⎨

⎪

⎩

vc1 if |ci − c j | ≤ Tvc and if |i − j | = 1

vc2 if |ci − c j | > Tvc and if |i − j | = 1

0 else.

(11)
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We will later show by simulations that even such a simple model could simulate
some realistic cases, quite well.

The structure of direct couplings can be easily altered by defining larger neighbor-
hood sets. In the extreme case, if the neighborhood of an entity consists of all other
entities in the universe, then we achieve a model for a fully connected network.

This simple model in this example does not consider any debt/credit activity.
If, in case, Vp(pi , p j ) = Vc(ci , c j ) then the model can be even further simplified

by combining pi and ci as a single variable, for example, as zi = pi − ci , and then
proceeding as a scalar random field of variable zi ’s; in that case, zi represents net
production.

5 Financial Networks

A concern among the creditors is the timely collection of the loans they granted to
borrowers on thematurity dates. As the loan activity is quite extensive and inter-related
in a typical society, defaults may trigger large scale problems since they may quickly
propagate. This creates a public concern and is usually called a crisis; public bodies
often interfere and generate remedies in case such widespread defaults emerge. Fur-
thermore, proactive regulationsmay be imposed to avoid suchwidespread defaults. For
example, the systemic risk and stability of financial networks is studied in Acemoglu
et al. (2015).

It is possible to extend the basic GRF model developed in Sects. 2 and 3 to under-
stand the degree of vulnerability/robustness of a network based on violations of debt
payment obligations. For this purpose, we include into the model a bookkeeping capa-
bility to explicitly keep track of debt obligations and the possible default of debtors,
together with a default procedure. We define a loan as �i j ti tm for the loan given by
entity j (creditor) to entity i (debtor) at instant ti for thematurity instant tm ; the amount
of the loan is �i j ti tm . Each such individual loan is recorded and such records are kept
until maturity.

5.1 Example: Homogenous Network

In this simple case, we assume a homogenous network where all entities have the same
statistical behavior; therefore, in terms of debt/credit relations, any entity is capable
of granting (creditor) or receiving (debtor) loans. The simple rules we adopt are:

• Any entity j may grant a loan to any other entity i , with no discriminating prefer-
ences.

• The interest is included in p j (received interest) or in ci (paid interest) (therefore,
we choose not to keep explicit track of the interest components in p or in c).

• Any asset, or part of it, in a j can be given as a loan. The total of loans to be granted
at an instant of time by j may not exceed the total assets a j , at that time instant.
Therefore, −d j ≤ a j .

• Each loan activity obeys the conservation rule:�i j ti tm = −� j i ti tm . For each entity,
di,t+1 = di,t + ∑

j,tm �i j t tm .
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• We assume that there is no default on debt service in case of a positive ai , i.e.,
interest payments are cost items and always paid if there are resources to do so,
to simplify the example. Therefore, if ai,tm ≥ ∑

j,t �i j t tm on the maturity instant
tm , all obligation �i j t tm are paid back by debtor i to its creditors.

• If, however, ai,tm <
∑

j,t �i j t tm on the maturity instant tm , then entity i defaults.
The default procedure is as follows: entity i pays to its creditor all of its storage si,tm
and disappears. Its neighbors, reorganize their neighborhood, based on a specified
rule, when entity i no longer exists. In case more than one creditor expects capital
payments on the samematurity instant from a defaulting debtor, the storage si,tm of
that debtor is distributed to those creditors in a prorated manner. Those receivables
by defaulting entity i , due to loans granted by i to others in the past, and therefore,
included in assets ai , are kept in the books until their maturity dates, and on the
maturity date, they are paid, again in a prorated manner, to the past creditors of
already defaulted i .

The default rule may be modified for more complicated cases. For example, instead
of not allowing a negative asset entity to survive as in the example above, more relaxed
rules, such as,

∑

i∈Bk
ai ≥ ∑

i∈Bk

∑

j,t �i j t tm may be imposed to a group Bk for
survival. In this case, the group Bk may still be accepted as healthy, since the total
debt they owe is still less than their total assets. If this relaxed rule cannot be satisfied,
all i ∈ Bk default.

The simplemodel as introduced in Sects. 3 and 4 can be easilymodified tomatch the
features of evenmore complicated networks. For example, non-homogenous networks
maybemodeledby addingbankswhomayoverwhelmingly dominate the loangranting
activity to ordinary household entities. Companies whose loan behavior, and therefore,
the model parameters are quite different from a household could be integrated into
the model; typical distributions of different entities, or groups of entities may be
incorporated. The proposed model and its associated structure are still quite simple
and tractable even for such complicated modifications.

This simple model can also be used to investigate robustness of some financial
network topologies.

We have based our system on a GRF model where there are statistical interactions
among production and consumption activities of neighboring entities, as described in
previous sections; that necessitated a neighborhood definition, together with related
parameters. Here in this section, we have also included a debt/loan activity among
the entities; such an extension necessitates one more neighborhood structure for such
debt/loan activities. We define this second neighborhood as the “loan neighborhood”,
and impose a related constraint which restricts the entity i to receive loans from, or
grant loans to those entities in the loan neighborhood of i . The loan neighborhood
also posses the simple properties of a MRF neighborhood: simply, i is not in its own
neighborhood, and if j is in the neighborhood of i , then i is in the neighborhood of
j . In order to avoid any ambiguity, we label the intrinsic neighborhood structure of
the GRF model as the “GRF neighborhood” whenever necessary; however, we will
refer to that neighborhood simply as the “neighborhood” whenever there is no such
ambiguity.
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6 Hierarchic GRF Representation: Coarser Levels

Consolidation of all of these three main variables, pi , ci and si among many entities
is possible. Such consolidations define a hierarchical random field structure. Let us
name the hierarchical levels as “finer” and “coarser” levels. The finest level is the
level where each entity is in its simplest form, and cannot be further decomposed
into smaller entities. The coarsest level is naturally the single entire collection of all
entities, and therefore, represents the global total of production, consumption and
storage. (The global debt sums to zero, by definition.) Let the integer index l represent
the level of coarseness, where l = 0 is the finest level. Therefore, the consequence of
consolidation at the finest level is

p1m =
∑

i∈Sm

p0i

c1m =
∑

i∈Sm

c0i

s1m =
∑

i∈Sm

s0i

d1
m =

∑

i∈Sm

d0
i . (12)

Here, the superscripts indicate the value of the level index l. The indexm represents the
super-entity which emerges as a consequence of consolidation of entities underneath
it; these finer level entities which are consolidated under a super-entity m are defined
by the set Sm ; the elements of this set are simply the labels (i’s) at the l = 0 level
that collectively constitute the super-entity m at level l = 1. We will not use the term
“super-entity” all the time; instead, we will use the simple term “entity” also for higher
levels (for l = 1, · · · ), whenever there is no ambiguity for the level being addressed.
A requirement for the sets Sm is that they are mutually exclusive for different values
of the index m. Furthermore, the union of all such sets covers all elementary entities
for all i . Therefore, Sm’s constitute a partition.

A strong and useful observation is the fact that entire stochastic model at any higher
level of coarseness (i.e., for l = 1, · · · ), with all its structure and parameters, is fully
specified by the stochastic model defined at the finest level, l = 0. Therefore, although
it is mostly the psychological factors that determine the behavior at the finest level
(single person economic entities), it is the induced statistical patterns of those under-
lying psychological factors that determine the collective economic behavior patterns
at coarser levels.

7 Further Remarks

It is worth noting that some closely observed economic and financial parameters
and indicators that are commonly used by policy makers at macro and micro levels
are essentially implicitly within the model provided in this paper, and therefore, can
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be deduced from a given GRF model. Those include prices, inflation rate, growth
rate, interest rates, as well as other economic concepts like elasticity, etc. Actually,
the strength of the proposed model is its ability to yield the statistical properties of
both transient and steady-state global production and consumption levels (and other
parameters), precisely, as indicated in Sect. 6, once the fine level model (structure
and parameters) is known. Those statistics do include how global production and con-
sumption levels are linked to each other; that surely includes deviations and similarities
among global consumption and production behaviors. The statistics that describe such
deviations and similarities are one-to-one related to probabilities, time-variations, and
related features of inflation/deflation fluctuations. (Note: if global production, pt , is
greater than global consumption, ct , then this is a situation of affluence. But if ct , is
greater than pt , then there is scarcity.) The same observation is also true for associated
financial results: those elementary parameters at the fine level do impose mechanisms
and probabilities of global operations, including smooth cases as well as those dis-
ruptive cases that are usually referred as financial crises characterized by widespread
defaults, etc.

7.1 Some Proposed Economic Measures

7.1.1 Robustness

A strong parameter to watch to understand the economic behavior of an entity and to
make predictions about its future states is the rate of relative change of the storage,
si,t . We define the rate of relative change as:

ri (t) =
si (t)−si (t−δt)

si (t−δt)

δt
. (13)

Although it is tempting to let δt → 0, and thus write a derivative to the righthand side,
this can be done only over large aggregates at coarser levels where all time varying
parameters may converge to continuous variables, or when it is known that these
parameters are continuous for an entity. Otherwise, these discrete realizations of a
stochastic process do not have derivatives. Naturally, those entities with negative ri (t)
should worry, and must correct this unsustainable situation. Normally, nonnegative
ri (t) indicates a “healthy” or “robust” economy, and the degree of “robustness” gets
better as ri (t) gets larger.Wewill call parameter ri (t) as the robustness of entity i . Even
though a significantly negative ri (t) is definitely a strong reason for “unhappiness” of
an entity i since it is quickly getting poorer, a similar statement cannot be made for
nonnegative ri (t), since the “happiness” in that case may be a function of both ri (t)
and ci (t); some entities can only be happy when their consumption is large and their
wealth is not diminishing, on the other hand some entities may be perfectly happy
with a small level of consumption as long as their wealth is steady or growing.

A closely related parameter which may be taken as an alternate measure of
robustness is the ratio si/c̄i = yi , where c̄i denotes average consumption. A log-
ical choice of average consumption is a weighted average of consumption ¯ci,t =
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1
N

∑t
τ=t−N+1 wτ ci,τ over a reasonable number of time instants N ; weights,wτ , could

give more emphasis to recent instants. Incidentally, such weighted averages are fre-
quently used in the literature that examines habit formation in consumption (see, for
example, Fuhrer 2000;Havranek et al. 2017). Fuhrer explores amonetary-policymodel
with habit formation for consumers, in which consumers’ utility depends in part on
current consumption relative to past consumption (Fuhrer 2000). The empirical tests
developed in that work show that one can reject the hypothesis of no habit formation
with tremendous confidence (Fuhrer 2000). Havranek et al. (2017) examine estimates
of habit formation reported in published studies. A large yi represents a more robust
entity with a large storage to accommodate current consumption habits, even if there
is a problem with production abilities.

7.1.2 Replenishment Difficulty

This parameter reflects the aggregate of efforts to increase the storage (wealth) for an
entity. We label it as fi and state it as a function of ri . The actual form of the function
depends also on the psychological factors at the finer levels, and on their induced
statistical results at coarser levels. The time variation of the price parameter f at the
coarsest level implies inflationary ( δ f (t)

δt > 0), or deflationary ( δ f (t)
δt < 0) conse-

quences of certain economic behavior patterns as outlined by the model parameters.
We may also call this parameter real price.

7.1.3 Economic Satisfaction

It seems to be logical to define the overall economic satisfaction, ei,t , of an entity i at
present time t as the sum of total consumption in the past and the current storage, as
ei,t = si,t + ∑t

τ=−∞ ci,τ .

7.1.4 Time-Varying Model Parameters

The current model assumes time-invariant model parameters. Such a model is already
quite powerful and already includes feedbacks due to massively interactive network
where each entity affects every other connected entity. However, if this is not satisfac-
tory, it is possible to vary these parameters in an adaptive manner; however, these GRF
model parameters will change slowly compared with the speed of change of the states
of entities that continuously and quite rapidly affect the behavior of each entity. In
that sense, our framework can be adapted quite easily to accommodate time-varying
parameters, advocated by Lucas in his critique (Lucas 1976). However, the model
could be further improved by incorporating time-varying parameters in a meaningful
manner; thus it could be possible tomodel an adaptive system. For example, prevailing
macro results of a given system, like the price parameters fi , as defined above, could
influence the entity parameters, in turn.
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8 The Simulator

A computer program is developed to simulate the simple model given in Sect. 4; the
entities can grant or receive loans, and therefore, the structure as described by Example
5.1 is included. The details of the simulator is given in itsUser’s Manual (Fırtına 2015).
The simulator is developed in C++ programming language with OpenGL andOpenCL
libraries. A user friendly interface is also provided. The user defines the total number
of entities at the beginning. Furthermore, a connectivity matrix, which defines the
neighbors of an entity, is read from a stored file; the user should generate and store this
matrix before the simulation starts. This matrix represents a graph which defines the
neighborhood as imposed by the employed GRF model; we will call this matrix GRF
Connectivity Matrix. Similarly, a loan neighborhood structure is imposed by defining
the debt/loan neighbors of each entity by a loan connectivity matrix which should also
be generated and stored by the user. If a loan connectivity matrix is not provided, then
an entity can request a debt from any other entity in the entire network, as the default
case. Both of these graphs are undirected, i.e., if entity i is connected to entity j , then
entity j is also connected to entity i . All of the needed model parameters, kc1, kc2, Tc1,
Tc2, kp1, kp2, Tp1, Tp2, vc1,vc2, Tvc, vp1,vp2, Tvp, as described in Sec. 4, are entered
by the user via the interface. The maximum maturity duration that an entity might
request is also requested by the simulator interface.

The simulator uses random integer values to seed the underlying Metropolis algo-
rithm. An option is provided to allow the user to locate a file in which random integer
values are stored.

The simulator implements the Metropolis algorithm that evolves from a given state
of the Markov chain to a steady-state where the probability of an emerging state
(pattern) is as implied by the parameters of the Gibbs random field model (Beichl and
Sullivan 2000). The simulator, therefore, is a Markov chain that evolves in discrete
time instants; at each step, randomly selected values of variables ci , pi , si and therefore
resultant for a set of entities are collectively tested for a possible alteration, and the state
is either kept as is, or altered as proposed. The selection of a test state for a possible
transition requires care to satisfy the theoretical concerns that assure convergence
to the prescribed steady-state distribution (Onural 1991, 2016). A range of possible
discrete values are defined for each variable, depending on the nature of that variable.
For example, pi and ci variables are restricted to integers in [0, 255]; surely, these
ranges may be modified to fit a certain simulation case, if needed.

The Metropolis algorithm evolves from state to state; each state is defined as the
collection over all entities, of the specific values that the entire set of parameters of each
entity is set to Beichl and Sullivan (2000). At each state, X

˜

= X, a transition to a new
state, X

˜

= Y is proposed. The probabilities of the proposed state and the current state
are compared, under the imposed GRF model as indicated by the model parameters.
Even though the probabilities are difficult to compute, the computation of the ratio, of
those probabilities, P(X

˜

= Y)/P(X
˜

= X), is quite simple and straightforward. Let
us denote this ratio as r ; if r > 1, i.e., if the proposed state Y is more likely than the
current state X, then the proposed transition is accepted (the chain changes its state).
Otherwise, if r < 1, the alteration is accepted with probability r ; in other words, less
likely states may also be accepted, but the probability of accepting such a transition is
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low in line with a low r . After a sufficient number of transitions, the outcome becomes
a sampler from the implied Gibbs distribution. Metropolis algorithm and its many
variants are well investigated in the literature (Beichl and Sullivan 2000).

For our simulator, the discrete evolution steps of the Metropolis algorithm do not
necessarily represent equal real-time steps. Rather, it represents the real-time instant
that the partition of entities does its consideration for an alteration of its variables (test
instant). For the sake of fast convergence to steady state, as indicated by the model
and its parameters, all of the entities are split into sets Pk such that the collection of
those Pk’s form a partition:

⋃

k Pk = set of all entities, and Pk
⋂

Pl = ∅ if k �= l;
a set Pk may include only those entities which are not in the neighborhood of any
other entity in the same Pk . The simulator forms such Pk’s at the beginning, and this
is transparent to the user. The Markov chain evolves sequentially starting from k = 1,
progressing by increasing k by one, modulo K , where K is the number of sets in the
partition. At each time instant, all of the entities in Pk are subject to change randomly
to form Y, whereas, all other entities in all other sets Pl , l �= k are kept unchanged.
Depending on the model parameters, transition to a tested state may be rather easy; in
other words, accepted transitions do occur quite often, even in the steady state. On the
other hand, model parameters may dictate quite stiff systems which rarely perform a
transition, and therefore, quite persistent to keep its state.

The simulator also implements the hierarchical structure presented in Sect. 6. The
user can interactively enter the indices of finer level sites which consolidate to form
a super-entity at a coarser level. It is possible to observe the activity at any level of
coarseness of choice.

The simulator output is a graphic output, which designates a location for an entity
on the screen. Depending on the choice of a user, locations of the entities might be set
either randomly or in a sequential order. The entity is represented as a simple geometric
cubic shape located at that designated site. The brightness of that geometric shape
represents the numerical value of the variable being observed, i.e. the storage value;
high values are represented as greenish, whereas, low values are closer to red color,
with a linear mapping of brightness for the range of the variable. User interface of the
simulator allows a user to define minimum value for an entity that will be completely
red if it has higher than or equal to thatminimumvalue.Otherwise, an entity is assigned
to a color between green and red. This minimum value can be changed dynamically as
the simulator runs. Furthermore, if an entity goes into a default procedure, the cubic
shape representing that entity disappears from the screen. A complete transcript of
each and every test and its consequence may also be kept as a file, provided that the
total number of entities, and the total number of transitions are reasonable; for a large
network the computer disk capacity might not be enough to keep such a transcript
especially for longer runs.

The simulator mostly makes use of parallel computation power of graphic process-
ing units (GPUs) to calculate the formulas that are described in Sects. 3 and4 for each
entity. Thus, each random variable for an entity, decision for a default procedure, and
calculations of Vi (xi ) and V{i, j}(xi , x j ) for each entity i and j ∈ ηi are performed
in parallel. This parallelism allows the simulator to be able to simulate a model that
includes hundreds of thousands of entities while displaying the results in real time,
which would not be possible with a standard CPU.
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For the simulation of economic networks with financial (debt/credit) activities, the
Metropolis algorithm ismodified to take care of the imposed restrictions (Onural 1991,
2016):

(1) At an instant t , group entities into Pk’s such that each entity is included in exactly
one such set Pk and no two neighbor entities are in the same set Pk , i.e. if i ∈ Pk ,
and if i ∈ η j , then j /∈ Pk ∀i ∈ S, where Pk is k’th set and S is set of all entities;
k = 1, · · · , K , where K is the number of sets in the partition. The storage values
of each entity is initialized by setting them to a default value, which is chosen to
be high enough to assure that premature defaults are unlikely during the initial
transition period; therefore, it can be assumed that the system reaches statistical
steady-state before the defaults are observed.

(2) Set k = 1.
(3) • ∀i ∈ Pk choose test variables test_ci , test_pi randomly, from uniform dis-

tributions.
• Compute the ratio, r , of the probabilities of the current state and the proposed
next state above, using the proposed changes in the parameters as prescribed
above (test_ci , test_pi ). If r > 1 accept the transition (the chain always
evolves if the next state is more likely); if r < 1 accept the transition with
probability r (the chain evolves with probability r if the proposed state is less
likely than the current state.)

• If the proposed next state transition is accepted, set the proposed test_ci ,
test_pi values as the ci and pi values of entity i , respectively, ∀i ∈ Pk .
Otherwise, ci and pi remain unchanged.

(4) If k �= K , k ← (k + 1) and go to Step 3.
(5) Update storage values, si , ∀i ∈ S: si = pi − ci .
(6) Check for all debt payments whose maturity date is this time instant t . If the assets

of an entity allow such due debt payments, perform the payments. If however,
assets of an entity are not sufficient to pay all such due debt, the entity defaults,
and the default procedures are applied:

• If entity i defaults, then;
– Pay all creditors using all of the net assets si in a prorated manner. The
future receivables of a defaulting entity i , as a consequence of loans
granted to others by i in the past, are kept in the books, and when the
due date comes, creditors of the defaulting entity i receive the payments,
again in a prorated manner, provided that the debtor who will make the
payments is still alive at the due date; if the debtor has also disappeared
by defaulting in the mean time, such debts are totally erased from the
books.

– Remove i from the network.
– Form the new neighborhoods according to preset neighborhood rules.

• Rearrange the loan connectivity graph according to preset rules.

(7)

• Randomly form pairs {i, j}where j is in the loan neighborhood of i (therefore,
i is also in the loan neighborhood of j since we have a GRF model in place).
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Thus, all entities in a partition are paired for a possible loan activity; in case
the total number of entities in the partition is odd, the last single entity does
not participate in a loan activity. Choose randomly a�i j t tm ∈ [range] from a
uniform distribution. This is the possible new loan from j to i if a j ≥ �i j t tm ;
if however, a j < �i j t tm , there is no any debt activity among i and j . The
maturity date, tm , for any such loan is also randomlydetermined fromauniform
distribution in the range 1 to Tm where the maximum duration Tm is an input
controlled by the user at the beginning of each simulation and kept unchanged
throughout the simulation.

• Update the loan parameters of i and j as di,t+1 = di,t + �i j t tm , and d j,t+1 =
d j,t − �i j t tm .

(8) Increment t by one and go back to Step 1 until the simulator is stopped by an
external user interrupt.

This algorithm assures that the constraint imposed by Eq.4 is satisfied while assur-
ing that a state reached after a sufficient number state transitions is a sample from
the constrained Gibbs distribution implied by the chosen model parameters (Onural
2016).

Consideration of consumption, production and storage parameters, together with
the debt parameter is essential to have meaningful results, since the ability to meet
debt obligations is inherently related to the actual production and savings abilities and
behaviors of entities. Each entity is provided with a reasonable amount of net worth
(storage) si at the beginning of the simulations; the starting si is the same for all i’s
and good enough to assure that premature defaults, before the Metropolis iterations
reach its steady state, are unlikely.

A feature of the simulator is an external button to pause the Markov chain at any
instant. This allows modification of storage values of any entity externally; this feature
allows to implement external shocks by explicitly reducing the storage of any entity.
The chain is then started to evolve from its externally modified state to observe the
associated transient and steady-state behavior. It is possible to implement many such
modifications, one after another, by pausing the chain as many times as desired.

Depending on the hardware resources of the computer that the simulator is imple-
mented, the number of entities in the network may go upto a few hundred thousands;
this will allow to test realistic populations, if desired.

9 Some Simulation Results

Here in this section we run a few simple simulations; even though the simulations
are simple, we can still draw some conclusions. The intention here is to demonstrate
that the proposed model, and the associated simulator, can be used to draw such
conclusions, provided that careful simulation based experiments are designed, and a
statistically meaningful number of simulations are conducted. The entities and the
neighborhood structures, and therefore, the associated network topologies in the three
sets of simulations presented below are similar to those financial networks analyzed
by researchers (see for example, Acemoglu et al. 2015).
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Table 1 Simulation 1 parameters

kc1 kc2 Tc1 Tc2 k p1 k p2 Tp1 Tp2 vc1 vc2 Tvc vp1 vp2 Tvp

−0.3 0.3 100 120 −0.1 0.1 100 120 −0.3 0.3 30 −0.3 0.3 30

Simulation 1We set the number of entities to 20, and theMaximumMaturity Time
as 10. We set the GRF Connectivity Matrix to indicate simple ring-type connectivity;
i.e., each entity is statistically directly influenced only by its left and right (total
of two) neighbors. We also defined the Debt Connectivity Matrix to have the loan
activity restricted to those immediate two neighbors only. Therefore, both the statistical
interactions and the loan/debt activity has a ring connectivity. The parameters are set
as in Table1.

Therefore, these parameters describe a network of 20 entities where each entity is,

• quite likely to have intrinsic (self-generated) consumption between 100 and 120
units per unit time as indicated by Tc1 and Tc2 parameters; it is quite rare to be
outside of this interval since the kc1 and kc2 parameters are numerically rather large
in absolute value which indicates a single entity behavior induced by the Gibbs
probability density function whose single clique potentials are as those shown by
Fig. 1a,

• quite likely to have intrinsic (self-generated) production, again 100-120 units per
unit time, as indicated by Tp1 and Tp2 parameters; though it is still less likely to
observe deviations outside of this interval, this is not as strict as the consumption,
as implied by still strong kp1 and kp2 values which are weaker than kc1 and kc2,

• there is a strong coupling of both production and consumption levels between
the directly connected two (left and right) neighbors; the levels of neighbors are
unlikely to deviate more than 30 units, as indicated by Tvc and Tvp parameters.
Since the likely production and consumption levels are both in the same [100-
120] interval, the system is balanced; in other words, the system does not have a
preferred tendency to evolve towards systemic surplus or scarcity.

We ran a total of 20 simulations and recorded the number of surviving entities,
at the steady-state, out of the initial 20 in each simulation. The term “steady-state”
should be rather taken lightly: we run each simulator for a fixed amount of real-time
that is long enough. These recorded number of surviving entities, and therefore, the
number of defaults, may form the statistical basis for the assessment of the stability
and the robustness of the network, as defined in Acemoglu et al. (2015).

To compare, we run another set of 20 simulations, by keeping all the parameters
and the GRF Connectivity Matrix the same, but changing only the Debt Connectivity
Matrix, so that an entity can grant/receive loans from any other entity in the network.
Therefore, the statistical interactions form a ring type connected neighborhood net-
work, whereas loan/debt interactions form a fully connected network. We observed
that the average number of surviving entities are 12 for the ring type loan network,
whereas, the average is 12.8 in the fully connected loan network. The estimated stan-
dard deviations are 1.3 and 1.6, respectively. Therefore, and as expected, we may
conclude that a fully connected loan/debt network is slightly more robust compared to
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Table 2 Simulation 2.b parameters

kc1 kc2 Tc1 Tc2 k p1 k p2 Tp1 Tp2 vc1 vc2 Tvc vp1 vp2 Tvp

−0.03 0.03 100 120 −0.01 0.01 100 120 −0.03 0.03 30 −0.03 0.03 30

the ring connected network, for these statistical interaction topology and parameters.
However, we may also conclude that the steady-state statistics are not too different,
and in both cases we do observe a kind of statistical convergence.

Simulation 2 In this simulation, we kept the parameters as in Table1, but we
changed the topology of both the GRF Connectivity Matrix and the Loan Connec-
tivity Matrix to have full connectivity; therefore, each one of 20 entities are directly
connected to all other 19 entities. Since the parameters that determine the strength of
statistical coupling of production and consumption among the entities, vc1, vc2, vp1
and vp2, are kept the same, but the total number of neighborhood entity number is
almost ten times increased (from 2 to 19), we expect two types of statistical results:
(i) The average of 19 neighborhood consumption or production parameters will have
a much smaller variance; however, the collective statistical influence will be tremen-
dously stronger. In other words, for any entity, now it is almost improbable to deviate
more than 30 units in amount of production or in amount of consumption, from the
neighborhood induced rather stable average, at a given time. (ii) Even though the debt
possibilities are now significantly relaxed, and therefore, it should be easier to cope
with any financial crisis, the overall network of 20 entities are expected to collec-
tively prosper, or collectively fall into extinction, as a consequence of implied strong
coupling as a consequence of the associated parameters given in Table1. Indeed, this
is exactly what the simulation results show: In 11 of the 20 simulations we ran, we
have seen an excellent survival, with good prosperity, of all 20 entities. But in 8 of
those 20 simulations, the entire population defaulted (extinction). In one simulation,
interestingly, it took longer to see a clear result, and 14 entities went to default, with
rather short intervals between such defaults, but then the remaining healthy 6 of them
surprisingly survived.We conclude from these observations that strong statistical cou-
pling results in a strong convergence, but the state that is converged may be either one
of the two extremes: overall prosperity or overall extinction. If accidentally, the overall
system starts with a bright performance, the entire network will continue to prosper as
a whole; on the other hand, if accidentally something goes wrong, the entire system
collapses.

We then changed the interaction parameters of the model as given in Table2.
The reductions in kc1, kc2, kp1 and kp2 indicate that the intrinsic (solo) production

statistics are nowmore relaxed, and therefore, extreme variations on these components
are allowed; the statistical behavior is now governed by a GRF probability density
function whose single clique potentials are as in Fig. 1b. However, this is not the prime
concern for the simulationwe conducted. Rather, the reduction in coupling parameters,
vc1, vc2, vp1 and vp2, brings the overall statistical influence of the neighbors (now we
have 19 neighbors for each entity) pretty much to the level of overall influence of
the two neighbors of Simulation 1. Please note that the debt structure is much more
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permissive since each entity can now grant or receive loans from all other entities. We
see what we expect in this case: we saw that all 20 entities prosper, with zero default
in any run. Due to ease in getting loans, and due to weaker coupling parameters that
significantly reduces overall failures, the economic system operates perfectly well. No
domino effect is observed.

Simulation 3We also ran some experiments to test the system for negative impul-
sive inputs, using the parameters and the topology of the previous two examples. The
simulator allows the user to pause the system at any instant, and change the storage
value of any entity, externally. Using this facility, we ran the simulation for a while,
and then paused it and manually change the storage value of the richest entity to zero,
and then continued the iterations. Though we did not conduct extensive tests to draw
conclusions, we observed that the external push to send one entity to default did not
make a noticeable change in the statistical behavior of the network with the remaining
entities. This feature is very useful to test the overall response of the system to external
negative and positive impulsive inputs; it is possible to apply simultaneous changes
to any number of entities at any time, and also, it is possible to repeat this as often as
needed.

10 Summary and Conclusions

A complete statistical model for a collection of economic entities is given as a Gibbs
random field. The statistical behavior of each entity, as well as the statistical behavior
of the collection of those entities are modeled, and the model is complete in terms
of its mathematical grounds. It is possible to look at the model in a hierarchical
fashion by forming clusters of entities, if desired. Rather less complicated versions
of the given model require a small number of parameters, and even in that case,
still quite strong models, that are applicable to real-life situations, are feasible. It is
possible to incorporate economic activities (consumption and production) as well as
financial activities (loans) into the model. A computer simulator, based on state-of-
the-art technology is developed. The simulator has a friendly user interface, and gives
the user a visual display to track the time evolution of the economic system, based on
the presented model and user-chosen parameters. It is possible to track a large number
of entities, where the number may go up to a few hundred thousands, both visually and
through stored fine detail data. The simulator is based on a variation of the Metropolis
algorithm. A few simulation results we have included in this paper show that it is
possible to predict the statistical steady-state outcome of a given structure: The form
and degree of statistical coupling among the entities, as well as the extent and topology
of the loan neighborhood, may drastically influence the overall behavior, as expected.
As a consequence of the provided model and the simulator, now it is possible to test
different forms and degrees of couplings among the entities, and different forms of
financial (loan/debt) network topologies. The results may be useful for the community
who conducts research in economic andfinancial policies and their expected outcomes.

In line with the goals of the paper that are outlined in Section1 (i) a general, flexible
and hierarchical random field model is presented for economic and financial activities;
(ii) themodel can representmanydifferent situationswhere simple local entities,which
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directly interact only with their neighbors, form large size aggregates; (iii) a simulator,
with a user friendly interface and a full user’smanual, iswritten and implemented, (iv) a
simple set of simulations to check the resultant global effects of simple entity behavior
in an hypothetical financial network is run and interesting results are obtained; (v) even
such simple simulations show that the developed tool can be used to test robustness of
those hypothetical financial networks; (vi) the developed simulation tool can be used
to track and test the time evolution, and eventually the steady-state behavior, of a large
size network; (vii) the developed model and the associated simulator may be used to
test the resultant macro effects of various local economic behavior and interactions;
(viii) the presented toolsmay be used to develop and test policies that targetmicro level
behavior changes to achieve desired global effects; (ix) the presented toolsmay be used
to check some theoretical results presented in the literature via designed simulations
that generate the same network topologies and use the same parameters.

We have already got some interesting results as a consequence of the simulations
presented in this paper. For example, we observed that a fully connected financial net-
work, that represents the loan activities among interacting entities which also produce
and consume, is more robust compared to a sparse ring-connected financial network;
however, the difference is rather small if the underlying direct influences among the
consuming and producing entities are restricted to a ring-connected topology. If, on
the other hand, the underlying network is also fully connected, where the production
and consumption behavior of each entity is affected by all other entities, the parallel
running fully connected debt/loan network is significantlymore robust, compared to its
ring-connected counterpart; however, even in such a case, too strong economic behav-
ior couplings among entitiesmay not be desirable sincewe observed occasional default
(extinction) of the entire population due to prevailing domino effect; instead, if the
couplings are somewhat weakened, we always observed total prosperity. These obser-
vations imply that balanced aggregate consumption and production levels in a society,
together with well-connected but not too strong economic behavioral influences and
well-extended loan/debt interactions among the entities lead to total prosperity of all
entities.

In conclusion we described a simulation tool that can be utilized in several man-
ners for policy analysis and research: e.g., it can be used to check computationally
the theoretical results obtained, for example, by Acemoglu et al. (2015) for network
contagion in case of financial shocks, and to extend the results to cases which are
not amenable to theoretical analysis due to increased complexity. Or it may mimic an
actual interbank/financial network with all its connections after a careful calibration
to relevant data to observe the impact of different scenarios to cthe current financial
system. The possibilities for future uses are indeed numerous.

The presented work does not attempt to estimate, or adapt, the parameters of the
presented GRF model to fit the model to a set of real-life data. However, this is a
feasible future work.

Furthermore, the model is quite flexible to handle heterogeneous networks, as well
as time-varying trends; we presented the general model which can easily handle such
cases, but we did not included those in the current simulator. This could also be a
future work.
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As the topic of the present paper entails inferences about aggregate macroeconomic
variables departing frommicroeconomic behavior it would be natural to study models
on the links between microecomic entities to macroeconomic level. A recent study
by Acemoglu et al. (2017) argues that aggregating microeconomic variables under
a Gaussian distribution assumption and using the central limit theorem may fail to
explain macroeconomic tail risks. They use a model economy of n competitive sectors
that are linked to each other and are subject to idiosyncratic productivity shocks. Their
results indicate that some idiosyncratic microeconomic shocks can be at the origin of
such macroeconomic downturns. The paper contains an extensive list of references
on related literature. A simulation-based evaluation of the model of Acemoglu et al.
(2017) could be undertaken as future study using the software tools of the present
paper.

Obviously, extensive sets of simulationsmust be conducted to comeupwith depend-
able empirical results.But an alternative is tomathematically investigate the underlying
Markov chains and, if possible, to come up with theoretical results on the transient
and steady-state behavior, at least for some cases. Neither of these were the purposes
of this paper; we have just provided a mathematical tool, together with a simulator, to
pave the way for such research work.
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(Eds.), The Third international symposium on computer and information sciences (ISCIS), Izmir,
Turkey.

Onural, L. (2016). Gibbs random fields and Markov random fields with constraints.
Onural, L. (1991). Generating connected textured fractal patterns using markov random fields. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 13(8), 819–825.
Peltonen, T. A., Scheicher, M., & Vuillemey, G. (2014). The network structure of the CDS market and its

determinants. Journal of Financial Stability, 13, 118–133.
Spitzer, F. (1971). Markov random fields and Gibbs ensembles. The American Mathematical Monthly,

78(2), 142–154.
Zawadowski, A. (2013). Entangled financial systems. The Review of Financial Studies, 26(5), 1291–1323.

https://doi.org/10.1093/rfs/hht008.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1257/jel.20151228
https://doi.org/10.1111/j.1540-6261.2005.00821.x
https://doi.org/10.1257/aer.20140759
https://doi.org/10.1093/rfs/hht008

	Modeling Economic Activities and Random Catastrophic Failures of Financial Networks via Gibbs Random Fields
	Abstract
	1 Introduction
	1.1 Literature Review

	2 The Gibbs Random Field Model for Economic Activities
	2.1 Mathematical Preliminaries

	3 A Simple GRF to Model Economic Networks
	4 A Simple Example
	5 Financial Networks
	5.1 Example: Homogenous Network

	6 Hierarchic GRF Representation: Coarser Levels
	7 Further Remarks
	7.1 Some Proposed Economic Measures
	7.1.1 Robustness
	7.1.2 Replenishment Difficulty
	7.1.3 Economic Satisfaction
	7.1.4 Time-Varying Model Parameters


	8 The Simulator
	9 Some Simulation Results
	10 Summary and Conclusions
	Acknowledgements
	References




