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Abstract
We investigate the computation of a sparse solution to an underdetermined system 
of linear equations using the Huber loss function as a proxy for the 1-norm and a 
quadratic error term à la Lasso. The approach is termed “penalized Huber loss”. The 
results of the paper allow to calculate a sparse solution using a simple extrapolation 
formula under a sign constancy condition that can be removed if one works with 
extreme points. Conditions leading to sign constancy, as well as necessary and suf-
ficient conditions for computation of a sparse solution by penalized Huber loss, and 
ties among different solutions are presented.

Keywords Sparse solution · Linear system of equations · Compressed sensing · 
Basis pursuit · Huber loss function · Convex quadratic splines · Linear 
programming · �1-norm · Quadratic perturbation · Strictly convex quadratic 
programming

1  Introduction and Background

The purpose of the present brief paper is to prove an extrapolation property to calcu-
late (the) sparse solutions to an underdetermined linear system by approximating the 
Basis Pursuit (BP) model, and to explore ties between sparse solutions, the L1-norm 
solution and the Huber loss function (c.f. Huber 1981). The problem of interest is 
posed as:
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where ‖x‖0 counts the non-zero elements of the vector x ∈ ℝ
n , A ∈ ℝ

m×n ( m < n ) 
assumed to be a full rank matrix (with rank equal to m), and b ∈ ℝ

m . The problem 
has numerous applications in signal processing, compressed sensing, error decoding, 
image denoising and so on. Since it is NP-hard, one may seek to solve an approxi-
mate problem instead of (1). A popular choice is the Basis Pursuit method (Chen 
et al. 1998). The Basis Pursuit approach to sparse recovery (there is ample literature 
on the subject, which cannot be reviewed within this brief paper; see e.g., (Bryan 
and Leise 2013; Candès and Tao 2006; Donoho 2005, 2006), or (Elad 2010; Foucart 
and Rauhut 2013) for in-depth monographs on the problem of compressive sensing), 
and is based on the following problem referred to as [SL1]:

In addition to the commonly observed fact that the problem (2) usually gives a 
sparsest solution to the linear system in numerical calculation, and with high prob-
ability according to several theoretical results in literature, it was proved that (2) is 
the Lagrange bi-dual of (1); c.f., (Singaraju et al. 2012). An alternative view to dual-
ity for (1) can be found in Chrétien (2010).

Let f ∗ denote the optimal value of (2) and X∗ denote its optimal solution set. The 
dual problem is

Denote the optimal set of the dual problem as Ξ0 . The notation s0 refers to the sign 
vector with components the usual sign function denoted sgn in {0,±1} such that

The diagonal matrix W0(.) is obtained from s0(.) using W0
ii
= 1 − (s0

i
)2 for 

i = 1,… , n . Optimality conditions for (2) can be summarized in the following result 
(see e.g., Fuchs 2004) which is convenient for our purposes.

Proposition 1 Let x ∈ ℝ
n with s = s0(x) and the associated W = W0(x) . Then, 

x solves (2) if and only if Ax = b and there exists � ∈ ℝ
m and d ∈ ℝ

n such that 
‖Wd‖∞ ≤ 1 and AT� = Wd + s.

Clearly, if the minimizer x is unique in (2) the matrix 
(

A

W

)
 has full rank. An 

alternative form of optimality conditions known as complementary slackness condi-
tions, which is at times more convenient (equivalent to the conditions of Proposition 
1) can be given as follows. Let (x∗;�∗) be a primal-dual feasible solution pair to (2) 
and (3); they are an optimal pair if and only if

(1)min
x
{‖x‖0 ∶ Ax = b},

(2)min
x
{‖x‖1 ∶ Ax = b}.

(3)max
�

{bT� ∶ ‖AT�‖∞ ≤ 1}.

sgn (t) =

⎧⎪⎨⎪⎩

0 if t = 0

1 if t > 0

−1 if t < 0.
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Now, we define the Huber loss function depending on a tuning constant 𝛾 > 0:

The Huber function is an example of a convex quadratic spline (a piecewise quad-
ratic); see e.g., (Chen et al. 2005) for background on convex quadratic splines. In a 
previous paper (Pınar 2019) the second author investigated necessary and sufficient 
conditions for exact recovery of an individual sparse vector using the Huber func-
tion instead of the L1 function, i.e., using the problem

where u is some sparse real vector. The approach of the present paper is different 
since we shall consider the problem

where Φ� (x) =
∑n

i=1
�(xi) , as an approximation to (2) for smaller and smaller values 

of � . We shall refer to the problem as penalized Huber Loss as the first term acts as 
a simple penalty function. Problems that are reminiscent of (5) were studied in the 
context of linear and quadratic programming in Madsen and Nielsen (1993), Mad-
sen et al. (1994), Madsen et al. (1998). Reference (Fuchs 2004) is also close in spirit 
to the present paper in that it utilizes quadratic programming problem similar to ours 
for computing a sparse solution although neither Huber loss function nor extrapola-
tion ideas are present in Fuchs (2004). Another reference related to the present is 
Selesnick (2017) where the Huber function is used within the context of a min-max 
concave penalty and saddle point computations for least squares regularization. In 
Lanza et al. (2019), Wang et al. (2018, 2019) the Huber loss function (and its gen-
eralization) are used as the basis of a minimax-concave penalty in the context of 
regularized least squares for sparse recovery in engineering applications. There is 
yet another stream of research that is in line with the theme of the present paper. The 
reference (Wen et al. 2010) studies the solution of the problem with the L1-Least 
Squares objective minx{‖b − Ax‖2

2
+ �‖x‖1}, for a decreasing sequence of positive 

parameters � using a two-phase algorithm embedded in a continuation framework. 
The two-phase algorithm has a first-order iterative shrinkage phase where non-zero 
components are identified, followed by the solution of smaller size quadratic optimi-
zation problem. In Aybat and Iyengar (2011), a first-order smoothed penalty algo-
rithm is designed for solving the problem minx{‖b − Ax‖2 + �‖x‖1}, for a decreas-
ing sequence of parameters � as in Wen et al. (2010). However, the subproblems are 
solved using the Nesterov optimal algorithm for simple sets (Nesterov 2004, 2005). 
The update step in the Nesterov algorithms involves the computation of the gradient 

(4)max{x∗
i
, 0}(1 − [AT�∗]i) = 0, min{x∗

i
, 0}(1 + [AT�∗]i) = 0, i = 1,… , n.

�(t) =

{
1

2�
t2, if |t| ≤ �

|t| − �

2
, otherwise .

min
x

{
n∑
i=1

�(xi)|Ax = Au

}

(5)min
x

�
1

2�
‖b − Ax‖2

2
+ Φ� (x)

�
,
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of a suitably smoothed version of the function ‖b − Ax‖2 + �‖x‖1 and solving mini-
mum norm problems of the form min{cTx +

L

2
‖x − z‖2

2
∶ ‖x‖2 ≤ �} . This is close 

in spirit to the theme of the present paper as the Huber loss function admits a simi-
lar variational representation: Φ� (x) = miny{y

Tx +
�

2
‖y‖2

2
∶ ‖x‖∞ ≤ 1} . In Aybat 

and Iyengar (2012), a first-order augmented lagrangian algorithm is proposed for 
basis pursuit. The algorithm is reported to correctly identify the support of a target 
signal in numerical trials without the need of any thresholding. A more recent set 
of references (Cheng and Dai 2018, 2019; Cheng et al. 2009, 2015; Cheng and Li 
2018; Lee et  al. 2014) explore similar themes. In Cheng and Dai (2018), a more 
general problem of the form minx{f (x) + �‖x‖1}, where f is continously differenti-
able, is tackled with a gradient-based active set identification algorithm. In Cheng 
et al. (2015), an algorithm framework for the more general problem of minimizing 
the sum f (x) + �(x) , where f is smooth and � is convex, but possibly non-smooth, is 
presented. At each step, the search direction of the algorithm is obtained by solving 
an optimization problem involving a quadratic term with diagonal Hessian coupled 
with a non-monotone line search technique. In Lee et al. (2014) a similar problem is 
studied and a Newton-type algorithm is proposed. An iterative shrinkage threshold-
ing algorithm with active set identification properties along with a Newton-Conju-
gate Gradient scheme for L1 optimization is proposed in Cheng and Dai (2019) for 
the problem minx{f (x) + �‖x‖1} . Similarly, a fast conjugate gradient algorithm for 
active set prediction and a preconditioned conjugate gradient algorithm are respec-
tively proposed in [9] and Cheng and Li (2018), for L1-regularized estimation.

The problem (5) aims to achieve two goals at the same time by pushing � to zero: 
recover a solution to the system Ax = b in the limit while the Huber loss function 
collapses to the 1-norm. It may be thought that the method advocated here will 
cause numerical problems as one seems to have to push � to extremely small values 
to obtain an approximate result. However, the crux of the results of the paper is that 
one does not need to deal with very small values of � due to a convenient extrapola-
tion result described in Sect. 2. A variant of the extrapolation property using extreme 
point minimizers is discussed in Sect. 3. Section 4 is devoted to further exploration 
of the ties between a sparse solution, the unique solution to problem (2), and the 
penalized Huber Loss problem (5).

2  An extrapolation procedure

The first (to be expected) result is that the solutions of (5) tend to the solutions of (2) 
as � tends to zero.

Proposition 2 The sequence of solutions {x�} of (5) approaches X∗ as 
� tends to zero: ∀𝜖 > 0 , ∃�(�) such that for � ≤ �(�) , x� solves (5) ⟹ 
dist (x� ,X∗) = minx∈X∗

‖x� − x‖ ≤ �.

Proof Let x0 be a solution to (2). For ease of notation, define 
f� (x) =

1

2�
‖b − Ax‖2

2
+ Φ� (x) . We have for all x ∈ ℝ

n:



1525

1 3

Sparse solutions to an underdetermined system of linear…

Let xi denote a minimizer of f�i . Then one has

On the other hand we have that

because

Using (8) in (7) we get

Now, let xi → x̄ , if necessary after passing to a subsequence. Then x̄ must satisfy 
Ax = b since otherwise we have

and

This leads to a contradiction with (8). So x̄ satisfies Ax̄ = b . By (7) one has

Hence x̄ ∈ X∗ .   ◻

While the above gives a convergence result in the limit, we shall not have to let � 
tend to zero. We shall instead devise a simple extrapolation procedure to get to a solu-
tion of (2) from a solution of (5) under a sign constancy condition.

The optimality conditions of (5) can be expressed in a compact notation as follows; 
define s� ∈ {0,±1}n as follows:

(6)0≤‖x‖1 − Φ� (x) ≤ n
�

2
.

(7)‖xi‖1 ≤ ‖xi‖1 + 1

2�i
‖b − Axi‖2

2
≤Φ�i

(xi) + n
�i

2
+

1

2�i
‖b − Axi‖2

2
.

(8)Φ�i
(xi) +

1

2�i
‖b − Axi‖2

2
≤ f ∗

(9)Φ�i
(xi) +

1

2�i
‖b − Axi‖2

2
≤Φ�i

(x0) +
1

2�i
‖b − Ax0‖22 ≤‖x0‖1= f ∗.

(10)‖xi‖1 ≤ f ∗ + n
�i

2
.

lim
i→∞,𝛾i↘0

Φ𝛾i
(xi) +

1

2𝛾i
‖b − Axi‖2

2
= ‖x̄‖1 + lim

i→∞

1

2𝛾i
‖b − Axi‖2

2

lim
i→∞,�i↘0

1

2�i
‖b − Axi‖2

2
= +∞.

‖x̄‖1 = lim
i→∞

‖xi‖1 ≤ f ∗.

s
𝛾

i
(t) =

⎧⎪⎨⎪⎩

0 if �t� ≤ 𝛾

1 if t > 𝛾

−1 if t < −𝛾
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with the diagonal matrix W� (.) derived from s� (.) using W�

ii
= 1 − (s

�

i
)2 for 

i = 1,… , n . Then, the following result can be stated.

Lemma 1 Let x̄ ∈ ℝ
n . Then x̄ solves (5) if and only if the following equation holds:

We shall obtain an extrapolation procedure based on Lemma 1. Let us rewrite 
equation (11) for a minimizer x� as

Corollary 1 Let x� solve (5) uniquely. Then 
(

A

W� (x� )

)
 has full rank.

Proof If 
(

A

W� (x� )

)
 does not have full rank, there exists h ≠ 0 such that (

A

W� (x� )

)
h = 0 , which implies that there exists 𝛿 > 0 such that 

s� (x� + �h) = s� (x� ) .   ◻

Lemma 2 Let x� solve (5). Then the system of linear equations

is consistent.

Proof By rearranging (12) we obtain

where r� ≡ Ax� − b . Then (13) is equivalent to

which is consistent since it is the normal equations for the system

  ◻

For ease of notation let W = W� (x� ) and s = s� (x� ) . Let the SVD of (
A

W

)
= UΣVT where U ∈ ℝ

(m+n)×(m+n) , Σ ∈ ℝ
(m+n)×n , V ∈ ℝ

n×n with UTU = I(m+n) 

(11)
1

𝛾
W𝛾 (x̄)x̄ + s𝛾 (x̄) −

1

𝛾
AT (b − Ax̄) = 0.

(12)(ATA +W� (x� ))x� = ATb − �s� (x� ).

(13)(ATA +W� (x� ))d = s� (x� )

−
1

�
(AT W� (x� ))

(
r�

x�

)
= s� (x� ),

(AT W� (x� ))

(
A

W� (x� )

)
d = −

1

�
(AT W� (x� ))

(
r�

x�

)
,

(
A

W� (x� )

)
h =

(
r�

x�

)
.
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and VVT = VTV = In . Then we have ATb =
∑n

j=1
�jvj where vj s are columns of V, 

and s =
∑n

j=1
�jvj , for some scalars �j s and �j s. More compactly, we have 

ATb − �s = V� − �V�.
Now, let us re-write (12) as

where S2 = ΣTΣ is n × n diagonal matrix with diagonal entries �2
j
 , j = 1,… , n ( �j 

are singular values of 
(

A

W

)
 ), � is the vector of �j s, and � is the vector with compo-

nents �j s. If 
(

A

W

)
 has full rank, then S2 is invertible, i.e., 𝜎j > 0 for all j = 1,… , n . 

Therefore, an expression for x� is obtained as

Now, if s� (x� ) remains constant at some s for � ∈ (0, �∗] , one has

Now, consider the linear system of equations

for � ∈ (0, �∗] (i.e., the range of � where the sign vector remains constant). By the 

analysis above and under the full rank assumption on 
(

A

W

)
 , one has

Hence, using the expression (14) for x� gives

Combining the above with Proposition 2, one obtains the result below. Let X� denote 
the set of minimizers of (5).

Proposition 3 If X� is a singleton and s� (x� ) remains constant for � ∈ (0, �∗] , and 
then

where d solves

VS2VTx� = V� − �V�

(14)x� =

n∑
j=1

�j − ��j

�2
j

vj.

(15)lim
�→0

x� =

n∑
j=1

�j

�2
j

vj ≡ x#.

(ATA +W)d = s

d =

n∑
j=1

�j

�2
j

vj.

x� + �d = x#.

x� + �d = x0,

(ATA +W� (x� ))d = s� (x� ),
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and x0 solves (2).

Proof If X� is a singleton for sufficiently small 𝛾 > 0 then the 
(

A

W� (x� )

)
 has full 

rank. Then using the sign constancy, the result follows from the previous analysis, 
Corollary 1 and Proposition 2.   ◻

Proposition 3 implies that if for 𝛾 > 0 sufficiently small one has uniqueness of the 
minimizer and the sign constancy condition satisfied then one can zoom along to a 
solution of problem (2) from a solution of (5) after solving a system of linear equa-
tions. Note that we used SVD only for the sake of analysis. In actual computation 
one does not need to compute the SVD. A more economical factorization of (

A

W� (x� )

)
 (e.g., QR) can be used.

Before exploring further the property of sign constancy and ties between the solu-
tions to (2), (5) and a sparse solution, we shall first weaken the uniqueness condition 
on x� in Proposition 3. To do this we need to study the dual problem to (5). First, let 
us observe that the dual problem to (5) is the following strictly concave quadratic 
optimization problem (the dual can be obtained using Lagrange duality similarly to 
the development in Madsen et al. 1998):

with a unique solution, �� . Optimality conditions for the pair of primal-dual prob-
lems imply the following relations between a solution x� to (5) and the dual solution 
��:

Furthermore, by a classical result of Mangasarian and Meyer (1979), for sufficiently 
small 𝛾 > 0 , we have that �� = �∗ is the least weighted-norm solution of the dual 
problem (3) using the norm term ‖( I

AT )x‖2 after viewing the dual problem above as

i.e., �∗ solves the problem

(16)max
�

{−
�

2
�T (Im + AAT )� + bT� ∶ ‖AT�‖∞ ≤ 1},

(17)AT�� =
1

�
W� (x� )x� + s� (x� ),

(18)
1

�
�� = b − Ax� .

max
�

�
−
�

2
‖( I

AT )�‖22 + bT� ∶ ‖AT�‖∞ ≤ 1

�
,

min
�∈Ξ0

‖‖‖‖‖

(
I

AT

)
�
‖‖‖‖‖2
.
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Remark 1 The aforementioned property has an important implication for algorithm 
development. Namely, even if there is no way to compute a priori the critical value 
of � when extrapolation will take us to an optimal solution of (2), we can check com-
plementary slackness conditions (4) at the points x0 and �� . If they are satisfied, we 
stop with an optimal primal-dual pair, otherwise we continue with a smaller � value. 
This remark is valid for all extrapolation results of the subsequent sections.

3  Extreme points and extrapolation

Now recall that x is an extreme point of X� if and only if x = �y + (1 − �)z implies 
x = y = z for any � ∈ (0, 1).

Lemma 3 x is an extreme point of X� if and only if 
(

A

W� (x)

)
 has full rank.

Proof We proceed as in Li and Swetits (1998). Suppose that x ∈ X� and 
(

A

W� (x)

)
 

has rank less than n. Then there exists a vector u ∈ ℝ
n , not identically zero, such that (

A

W� (x)

)
u = 0 . Now we can pick an 𝜖 > 0 sufficiently small such that (x ± 𝜖u)i > 𝛾 

for all i such that xi > 𝛾 and (x ± 𝜖u)i < −𝛾 for all i such that xi < −𝛾 . Observe that 
A(x ± �u) = Ax and W� (x)(x ± �u) = W� (x)x . Thus, we have s� (x ± �u) = s� (x) . 
Hence, both x ± �u satisfy (11) and we get that both x ± �u ∈ X� . Since 
x =

1

2
(x + �u) +

1

2
(x − �u) with u ≠ 0 , x is not an extreme point of X�.

Suppose x ∈ X� and 
(

A

W� (x)

)
 has rank n. If y, z ∈ X� are such that 

x = �y + (1 − �)z for some � ∈ (0, 1) then by (17) we have �(AT�� )i = xi if and only 
if yi = zi = �(AT�� )i . Thus we have W� (x)x = W� (x)y = W� (x)z . By (18) we have 
�(b − Ax)i = �

�

i
 if and only if �(b − Ay)i = �

�

i
= �(b − Az)i , which implies 

Ax = Ay = Az . Hence we have 
(

A

W� (x)

)
x =

(
A

W� (x)

)
y =

(
A

W� (x)

)
z , which in 

turn implies that x = y = z . Therefore, x is an extreme point of X� .   ◻

Remark 2 The proof of the above lemma points out to an algorithmic procedure to 
construct an extreme point optimal solution departing from an optimal point x� 

where 
(

A

W� (x� )

)
 is rank deficient. It suffices to find a non-trivial null-space vector, 

move along this vector to increase rank (i.e., the number of components with abso-
lute value within � ) and repeat this step until one ends up with an extreme point 
optimal solution, which is guaranteed to occur after a finite number of steps.

Using the above lemma and the analysis leading to Proposition 3, we can state 
directly the extrapolation property even in the absence of uniqueness of the mini-
mizer, provided the sign vector associated with an extreme point minimizer remains 
constant for sufficiently small �.
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Proposition 4 Let x� be an extreme point minimizer of (5) for � ∈ (0, �∗] . If s� (x� ) 
remains constant for � ∈ (0, �∗] , then

where d solves

and x0 solves (2).

It turns out that we can weaken the conditions used in the analysis of the pre-
sent section even further.

Lemma 4 For every instance of the problem there exists a sign vector s ∈ {0,±1}n 
where for all 𝛾u > 0 there exists a � ∈ (0, �u] and an extreme point minimizer of (5), 
x� , such that s� (x� ) = s.

Proof Assume that the claim is false. Given S = {0,±1}n , for every s ∈ S there will 
be a 𝛾s > 0 such that for all � ∈ (0, �s] and for every extreme point minimizer x� , we 
have s� (x� ) ≠ s . For all � ∈ (0,mins∈S �s] , there exists a minimizer extreme point, x� , 
of (5) (since the solution set is non-empty and compact for all 𝛾 > 0 ) and s� (x� ) ∈ S , 
which is a contradiction.   ◻

Now, we relax Proposition 3 as follows.

Proposition 5 For sufficiently small �∗ for every � ≤ �∗ any extreme point of X� will 
satisfy

where d solves

and x0 solves (2).

Proof For every extreme point of X� the corresponding 
(

A

W� (x� )

)
 has full rank (by 

Lemma 3). Let Ŝ be the set of vectors s ∈ {0,±1}n , for which there exists a 𝛾s > 0 
such that for all � ∈ (0, �s] and for every extreme point x� of X� , we have s� (x� ) ≠ s 
(Lemma 4 implies {0,±1}n ⧵ Ŝ ≠ � ). Let 𝛾∗ = mins∈Ŝ 𝛾s and for any given 
� ∈ (0, �∗] , let x� be an extreme point of X� . Then for any � ∈ (0, �∗] , there exists a 
� � ∈ (0, �) and a corresponding extreme point minimizer x�

′ such that 
s� (x� ) = s�

�

(x�
�

) . Then for every 𝛾 < 𝛾∗ and any extreme point x� of X� , we can find a 
sequence of extreme point minimizers x�k such that �k → 0 and s�k (x�k ) = s� (x� ) . 

x� + �d = x0,

(ATA +W� (x� ))d = s� (x� ),

x� + �d = x0,

(ATA +W� (x� ))d = s� (x� ),
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Therefore, � = �k satisfies sign constancy in (15), combined with (
A

W�k (x�
k

)

)
=

(
A

W� (x� )

)
 being full rank (Lemma 3) this completes the proof.   ◻

As a consequence of Proposition 5, even if the minimizer of (5) is not unique one 
can use any extreme point of the solution set for sufficiently small 𝛾 > 0 to reach a 
solution of problem (2).

4  Sign constancy and ties among solutions

Now, we shall turn to the question of sign constancy and ties among various 
solutions.

Definition 1 A dual optimal solution �∗ to (3) is called non-degenerate if there exists 
a primal optimal solution x∗ such that the following conditions hold:

For any sign vector s, we define �+
s
= {i ∶ si = 1} , and �−

s
= {i ∶ si = −1} with 

�s = �+
s
∪ �−

s
 , and �0

s
= {i ∶ si = 0}.

Proposition 6 Let x0 be a unique solution to (2) with �0 = s0(x0) and x� be the unique 
minimizer of (5) with dual solution �� satisfying non-degeneracy conditions (1) (with 
x0 ) for sufficiently small 𝛾 > 0 . Then, there exists �∗ such that s� (x� ) remains con-
stant for � ∈ (0, �∗].

Proof Since for sufficiently small 𝛾 > 0 the unique x� → x0 by Proposition 2, we 
have |x𝛾

i
| > 𝛾 for i ∈ �

�0
 and sufficiently small 𝛾 > 0 . Because �� ∈ Ξ0 for sufficiently 

small 𝛾 > 0 and by the non-degeneracy assumption, we have from (17) that 
|x𝛾

i
|∕𝛾 < 1 for i ∈ �0

�0
 and � sufficiently small.   ◻

For the next result, we use s0 ∈ {0,±1}n defined before with the diagonal matrix 
W0(.) derived from s0(.) using W0

ii
= 1 − (s0

i
)2 for i = 1,… , n , as before.

Proposition 7 Let x0 be a (sparse) solution of Ax = b with s = s0(x0) and 
W = W0(x0) . If there exists a solution d to the system of linear equations:

with the property

then there exists �∗ such that

(AT𝜉∗)i = 1 ⟹ x∗
i
> 0,

(AT𝜉∗)i = −1 ⟹ x∗
i
< 0,

|(AT𝜉∗)i| < 1 ⟹ x∗
i
= 0.

(19)(ATA +W)d = s

(20)‖Wd‖∞ ≤ 1,
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and x0 − �d solves (5) for � ∈ (0, �∗] . Furthermore, x0 solves (2).

Proof We can re-write (19) as

for some 𝛾 > 0 since Ax0 = b and Wx0 = 0 . By simple algebra, rearranging the pre-
vious we obtain

Now, let � = min{|(x0)i| ∶ |(x0)i| ≠ 0} . Choose 0 < 𝛾2 < 𝛿 such that for � ∈ (0, �2] 
one has

Combining the above with (20), we have that s� (x0 − �d) = s , and using (21) x0 − �d 
solves (5) for � ∈ (0, �∗] where �∗ = �2.

On the other hand, the fact that there exists a solution d to (19) with ‖Wd‖∞ ≤ 1 
implies that one can take � ≡ Ad . Hence, one has AT� = −Wd + s . But 
‖Wd‖∞ = ‖ −Wd‖∞ . Hence x0 solves (2) by Proposition 1.   ◻

If x0 of the previous result also satisfies a mild regularity condition in addition to 
the one already presented, then an immediate corollary is obtained as follows.

Corollary 2 Let x0 be a (sparse) solution of Ax = b with s = s0(x0) and W = W0(x0) 

such that 
(

A

W

)
 has full rank. If the unique solution d to the system of linear 

equations:

has the property

then there exists �∗ such that

and x0 − �d solves (5) for � ∈ (0, �∗] . Furthermore, x0 solves (2).

In particular, the above two results (Proposition 5 and 2) are valid for a sparse 
solution to the linear system of equations. Hence, they constitute sufficient condi-
tions for the sparsest solution to be a minimizer of (2).

s� (x0 − �d) = s

(ATA +W)d =
1

�
(ATA +W)x0 −

1

�
ATb + s

(21)(ATA +W)(x0 − �d) = ATb − �s

(x0 − 𝛾d)i > 𝛾2 for i ∈ 𝜅+
s
,

(x0 − 𝛾d)i < −𝛾2 for i ∈ 𝜅−
s
.

(22)(ATA +W)d = s

(23)‖Wd‖∞ ≤ 1,

s� (x0 − �d) = s
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A more substantial sign constancy result is proved below relaxing some of the 
conditions imposed previously (i.e., non-degeneracy) in the present section.

Theorem 1 Let x0 be a unique solution to (2) with s0 = s0(x0) . If x� solving (5) is 
unique for sufficiently small � then there exists �∗ such that s� (x� ) remains constant 
for � ∈ (0, �∗] with 𝜅+

s0
⊆ 𝜅+

s𝛾
 , 𝜅−

s0
⊆ 𝜅−

s𝛾
.

Proof Let x0 be the unique solution to (2) with �0 = s0(x0) . Since the number of dif-
ferent sign vectors s is finite, there must a exist a sequence of positive numbers 
�1, �2,… , with �k ↘ 0 for k → ∞ such that s� (x� ) is constant for � = �k for 
k = 1, 2,… . Denote this sign vector by � . Let D = {i ∶ |(AT�� )i| = 1} ∩ �0

�0
 , and 

S = {s ∈ S ∶ si = �0i for i ∉ D} . Since x� → x0 by Proposition 2, we have |x𝛾
i
| > 𝛾 

for i ∈ �
�0

 and sufficiently small 𝛾 > 0 . Since �� ∈ Ξ0 for sufficiently small 𝛾 > 0 , we 
have from (17) that |x𝛾

i
|∕𝛾 < 1 for i ∈ �0

�0
⧵D and � sufficiently small. Therefore, we 

must have that � ∈ S since �k ↘ 0.
Now, consider again � (the sign vector that is encountered infinitely many times 

as defined above) and its associated diagonal matrix � . Let the SVD factorization 

of 
(

A

�

)
= ���

T and consider the system

This system is consistent by Lemma 2 since x� satisfies (12). We have, as previously,

if 
(

A

�

)
 has full rank. Since �i(�) = −�(d� )i is a rational function of � , it can only 

have a finite number of oscillations as � ↘ 0 ; hence there exists 𝛾∗
1
> 0 such that 

either |𝜓i(𝛾)| > 1 for � ∈ (0, �∗
1
] or |�i(�)| ≤ 1 � ∈ (0, �∗

1
] . If i ∉ �0

�0
 then (x0)i = 0 and 

(x0)i − �(d� )i = �i(�) . Hence, the ith component of s� (x0 − �d� ) is constant for 
� ∈ (0, �∗

1
] . Since d� is bounded, the other components of s� (x0 − �d� ) must also be 

constant in some interval (0, �∗
2
] . Therefore, s� (x0 − �d� ) is constant for � ∈ (0, �∗

3
] 

where �∗
3
= min{�∗

1
, �∗

2
}.

Now, let � = �k ∈ (0, �∗
3
] be a value for which s� (x� ) = � . It follows from the 

above development that the unique minimizer x� is given as x0 − �d .   ◻

We can now merge the results of Proposition 3 with Theorem  1 into the 
following.

Theorem 2 Let x0 be a unique solution to (2) with s0 = s0(x0) . If x� solving (5) is 
unique for sufficiently small � , then

where d solves

(24)(ATA +�)d = �.

d� =

n∑
j=1

�j

�
2
j

�j

x� + �d = x0,
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We have made the assumption that both the solution x0 to (2) and a minimizer x� , 
for 𝛾 > 0 sufficiently small, to (5) are unique. A legitimate question is whether the 
uniqueness of x0 implies that of x� . The answer is negative as the following example 
shows.

Example 1 Let

with b = (−1 2)T . The unique solution to (2) is x0 = (0 0 0 1)T . For sufficiently 
small � ∈ (0, 0.195] , the set of minimizers of (5) is the interval between the extreme 
points

and

We can weaken the uniqueness condition of Theorem  1 as shown in the next 
result.

Proposition 8 Let x0 be a unique solution to (2) with s = s0(x0) and W = W0(x0) and 
let s̄ (and W̄derived from s̄ ) be a sign vector such that 𝜅0

s̄
⊆ 𝜅0

s
 with 𝜅+

s
⊆ 𝜅+

s̄
 , and 

𝜅−
s
⊆ 𝜅−

s̄
 with 

(
A

W̄

)
 having full rank.  If the unique solution d∗ to

has the properties ‖W̄d∗‖∞ ≤ 1 , and for all i such that si = 0 and s̄i ≠ 0 it holds that 
s̄id

∗
i
< 0 and |d∗

i
| > maxj∶sj=s̄j=0 |d∗j | then there exists �∗ such that

and x0 − �d is an extreme point minimizer of (5) for � ∈ (0, �∗].

Proof Similar to the proof of Proposition 7, we re-write (25) as

for some 𝛾 > 0 since Ax0 = b and W̄x0 = 0 . Rearranging the previous we obtain

Now, let � = min{(x0)i ∶ |(x0)i| ≠ 0} . Choose 0 < 𝛾2 < 𝛿 such that for � ∈ (0, �2] 
one has

(ATA +W� (x� ))d = s� (x� ).

A =

(
1 − 1 1∕2 − 1

0 0 − 17 2

)
,

(−� 2� − �∕2 1 − 17�∕4)T

(−2� � − �∕2 1 − 17�∕4)T .

(25)(ATA + W̄)d = s̄

s𝛾 (x0 − 𝛾d) = s̄

(ATA + W̄)d∗ =
1

𝛾
(ATA + W̄)x0 −

1

𝛾
ATb + s̄

(26)(ATA + W̄)(x0 − 𝛾d∗) = ATb − 𝛾 s̄.
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due to the conditions imposed on d∗ . Combining the above with (20), we have that 
s𝛾 (x0 − 𝛾d) = s̄ , and using (26) x0 − �d solves (5) for � ∈ (0, �∗] where �∗ = �2 , and 
is an extreme point minimizer.   ◻

Example 2 Notice that all conditions of the previous proposition are fulfilled in 
Example 1. If one takes s̄ = (0 1 0 1)T then one gets d∗ = (1 − 2 1∕2 17∕4) , 
and for � small enough, one obtains the extreme point minimizers 
(−� 2� − �∕2 1 − 17�∕4)T . On the other hand, if one takes s̄ = (−1 0 0 1)T , 
one gets the d∗ = (2 − 1 1∕2 17∕4) and recovers the extreme points 
(−2� � − �∕2 1 − 17�∕4)T for sufficiently small �.

To conclude the paper, we give a necessary condition for recovery of a spars-
est solution; a similar result is also given in Pınar (2019) for exact recovery of an 
individual sparse vector. The necessary condition gives an unexpected relationship 
between the sparsest solution recovery (by recovery it is meant that the sparsest 
solution should be unique in (2)) and the unique solution to (16) being the unique 
solution to (3) as well.

Theorem  3 Let x̂ be a sparsest solution to Ax = b with ‖x̂‖0 < m . If x̂ solves (2) 
uniquely then for sufficiently small 𝛾 > 0 the unique solution to (16) is not the unique 
solution to (3).

Proof For sufficiently small 𝛾 > 0 the unique solution to (16) is the least norm 
solution of (3). By the theory of linear programming (c.f. Bertsimas and Tsiksiklis 
1997), the dual problem (3) admits an extreme point optimal solution �∗ with the 
set A(�∗) = {i ∶ |(AT�∗)i| = 1} having at least m elements. If �∗ is the unique opti-
mal solution to (3) [(it is the unique optimal solution to (16)] then by the Goldman-
Tucker strict complementarity theorem (c.f. Williams 1970) and the uniqueness of 
x̂ , the support of x̂ should have cardinality at least m, which is a contradiction.   ◻

The algorithmic implications of the results of the paper, as well as efficient gradi-
ent-based algorithms for solving the problem (5) (especially for larger instances) are 
the subject of on-going research, c.f., (Kızılkale et al. 2020), and will be discussed 
in a subsequent work.
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