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Abstract: In this article, standard bases of some toric ideals associated to 4-generated pseudo symmetric semigroups
with not Cohen-Macaulay tangent cones at the origin are computed. As the tangent cones are not Cohen-Macaulay,
nondecreasingness of the Hilbert function of the local ring was not guaranteed. Therefore, using these standard bases,
Hilbert functions are explicitly computed as a step towards the characterization of Hilbert function. In addition, when
the smallest integer satisfying k(a2 +1) < (k—1)a1 + (k+ 1)a21 + a3 is 1, it is proved that the Hilbert function of the

local ring is nondecreasing.
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1. Introduction

Let n; < ng < --- < ng be positive integers with ged(nq,...,n,) = 1 and let S be the numerical semigroup
k

S=(ny,...,nE) = {Z u;n;lu; € N}. K being an algebraically closed field, let K[S] = K[t™,t"2,...,t"*] be
i=1

the semigroup ring of S and A = K[X1, Xa,..., Xi]. If ¢ : A—K[S] with ¢(X;) =¢™ and kerp = Ig , then
K|[S]| ~ A/Ig. If we denote the affine curve with parametrization

X1 =t", Xo=1t", ..., Xz=t"

corresponding to S with Cg, then Ig is called the defining ideal of Cs. The smallest integer n; in the
semigroup is called the multiplicity of C's. Denote the corresponding local ring with Rg = K[[t",...,t"*]] and
the maximal ideal with m = (t"*, ... t"). Then gryn(Rs) = @jo,m’/mtt = A/T%, is the associated graded
ring where I% = (f*|f € Is) with f* denoting the least homogeneous summand of f.

The Hilbert function Hg,(n) of the local ring Rg is defined to be the Hilbert function of the associated
graded ring grm(Rs) = @jeym’/mi*1. In other words,

Hpg(n) = Hy,, (rs)(n) = dz’mRS/m(m"/m"H) n > 0.

This function is called nondecreasing if Hgrg(n) > Hrg(n — 1) for all n € N. If 3] € N such that Hr () <
Hp (I — 1) then it is called decreasing at level {. The Hilbert series of Rg is defined to be the generating
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function

HSpy(t) =Y Hps(n)t".

By the Hilbert—Serre theorem it can also be written as: HSg,(t) = (f_(gk = (?_(gd , where P(t) and Q(t) are

polynomials with coefficients in Z and d is the Krull dimension of Rs. P(t) is called first Hilbert series and
Q(t) is called second Hilbert series, [6, 14]. It is also known that there is a polynomial Pgr,(n) € Q[n] called
Hilbert polynomial of Rg such that Hgr,(n) = Pg,(n) for all n > ng, for some ng € N. The smallest ng
satisfying this condition is the regularity index of the Hilbert function of Rg. A natural question is whether
the Hilbert function of the local ring is nondecreasing. In general Cohen-Macaulayness of a one dimensional
local ring does not guarantee the nondecreasingness of its Hilbert function for embedding dimensions greater
than three. However, it is known that if the tangent cone is Cohen—Macaulay, then the Hilbert function of
the local ring is nondecreasing. When the tangent cone is not Cohen—Macaulay, the Hilbert function of the
local ring may decrease at some level. Rossi’s conjecture states that "The Hilbert function of a Gorenstein
local ring of dimension one is nondecreasing”. This conjecture is still open in embedding dimension 4 even
for monomial curves. It is known that the local ring corresponding to a monomial curve is Gorenstein iff
the corresponding numerical semigroup is symmetric, [10]. For symmetric semigroups in affine 4-space, under
the condition ”"ay < @91 + ag4”, Arslan and Mete showed that the tangent cone is Cohen—-Macaulay in [1].
They proved that the conjecture is true for 4-generated monomial curves with symmetric semigroup under
this condition. The conjecture is open for local rings corresponding to 4-generated symmetric semigroups with
Qg > (i1 + aigg . For some recent work on the monotonicity of the Hilbert function, see [1-3, 11-13].

Since symmetric and pseudo-symmetric semigroups are maximal with respect to inclusion with fixed
genus, a natural question is whether Rossi’s conjecture is even true for local rings corresponding to 4-generated
pseudo-symmetric semigroups. In [15], we showed that if as < @91 + 1, then the tangent cone is Cohen—
Macaulay, and hence, the Hilbert function of the local ring is nondecreasing. In this paper, we focus on the
open case of 4-generated pseudo symmetric monomial curves with as > ag; + 1. For the computation of the

first Hilbert series of the tangent cone, a standard basis computation with the algorithm in [4] will be used.

Recall from [9] that a 4-generated semigroup S = (ni,na,ns, ny) is pseudo-symmetric if and only if there

are integers o; > 1, for 1 <i <4, and as; >0 with 0 < as; < a; — 1, such that

np = agag(ag—1)+1,

ny = agiazay + (ap —ag —1)(az — 1) + as,

ng = oarog+ (@ —agp — D(ag — (g — 1) —ag + 1,
ng = ojas(as—1)+ agr(ae — 1) + .

Then, the toric ideal is Is = {f1, f2, f3, f4, f5) with

fio= XD = XX f= X - XXy fs= X5 - XTI,
fi = XM - X XXl fy = Xpo gl o X x et

If ny < ng < ns <mny then it is known from [15] that

(1) o] > 0y
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(2) a3z < o] — (91
(3) oy <ag+az—1

and these conditions completely determine the leading monomials of f1, f3 and fs. Indeed, LM(f1) = X3X f“_l
by (1), LM(fs) = X35® by (2), LM(f1) = XJ* by (3) If we also let

(4) g > a9y + 1

then LM(fs) = X7 X4 by (4). To determine the leading monomial of f5 we need the following remark.

Remark 1.1 Let ny < ng < nz <nyg. Then (4) implies
(5) o1+ az > ay

Proof Assume to the contrary as; +ag < ay. Then, ay = a1 + a3z +n, (x), for some nonnegative n. Then
from (1), a1 = a1 +ag+n—+m (xx), for some positive m and also ag = ag; + 14k (* %), for some positive
k by (4). Then from ny < ny we have:

asag(ag — 1)+ 1 < agrazag + (@1 — az; — 1)(a3 — 1) + az. Using (* * *), we have:

agrasay + (1 + k)asay — as(asr + 14+ k) + 1 < agragay + (a1 — agr — 1)(asz — 1)ag,

az((1+k)ag —asg —1—k—a; +a+1—1)+1<1+as; —aj. Then from (kx):

as(og +kag —1—k—oaq) < —ag —n—m. Using (x) and (x*) again, we get:

ag(m+kas —k) < —n—m < 0. As ag > 0, we have m + k(ay — 1) < 0 which is a contradiction as each term

in the sum is positive. O

Remark 1.2 Let n; <ng <ng <ny. Then (1) and (4) implies
(6) a1 +am +1>as+ay

Proof Assume to the contrary a; + ag1 +1 < as + ag. We know from (1) and (4) that oy = oy +m and
as = ag1 + 1+ k, for some positive m and k. Hence

artan+l<ast+ay = agt+tmtan+1l<ag+1+k+ay
= m<k

On the other hand, from n; < ny we have:

asag(ay — 1) + 1 < asragay + (a1 —agy — 1)(as — 1) + as. From (1) and (4):

(o1 + 14+ k)ag(ag — 1) + 1 < asgazay + (g — agr + m — 1)(az — 1) + 3. Expanding this, we obtain
kagoy +ag+m < az(m+14+k)+a. Nowas ag+m =a; and a9y < ay:

kasas +a1 <as(m+14+k)+an <as(m+1+k)+a1 = kasags <as(m+k+1)=kag <m+k+1
= k(ag —1) <m+1 < k+ 1 which is a contradiction as ay — 1 > 1.Hence, a1 + a1 + 1 > as + 4.

O
Being able to determine the leading monomials of the generators of Ig in the open case, lots of different

possibilities must be considered for the leading monomials of the s-polynomials appearing in standard bases
computation. Unfortunately, there is not a general form for the standard basis if as > a1 + 1 contrary to the
case ag < a1 + 1. Though there are five elements in minimal standard basis of Ig if as < ag; +1 (see [15]),

the number of elements in the standard basis increases as a4 increases if as > a1 + 1.
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Example 1.3 The following examples are done using SINGULAR*.

o Standard basis for as = 8,a1 = 16,00 = 20,3 = T,aq = 2 is {X{¢ — X3X,;, X2° — XPX,, XI —
XTXo, X2 — X1 X19X8, XOXE — XoXy, X2 — X20X5, X1TX6 — X321}

e Standard basis for asy = 2,01 = 9,00 = b,a3 = 3,a4 = 3 s {Xg.f — X16X2,X12X4 — XS,XQXZ —
XfXg,XngfX?,XfleXnggz,XfngfX§X4,X§’X3X4fX1H,X210X37X113,X216X47X118X3,X221f
X70X3}

o Standard basis for a1 = 8,01 = 16,00 = 11,03 = 3,04 = 5 is {X5 — X{ X0, Xo X§ — X X3, X3X}
X160 X9 — X1 X0X2 X8X, — X3t X22X3 — X]TX2 X3P X3 X3 — X X23X7 — XPX3, XPX3X2
X332 X3BX2 — X34 X,, XP3X3Xy — X0, XP X3 — X8, X8 X, — XP1 X3, X8 — XPIX3})

We focus on the case ay = 2.

2. Standard bases

A

Theorem 2.1 Let S = (nj,na,n3,ng) be a 4-generated pseudosymmetric numerical semigroup with ny
ng < ng < ng and ag > agy; + 1. If oy = 2 and k is the smallest positive integer such that k(as + 1)
(k—1Dag + (k4 1)agr + ag then the standard basis for Ig is

N

{f1>f27f37f47f5af6,~~~,f6+k}
where fo = X002 _ X0 Xy and fo,; = XU DotUTent yas=i _ yjeatl g g0k

Proof We will prove the theorem by using induction on k and applying standard basis algorithm with
NFMora as the normal form algorithm, see [6]. Here G = {f1, fa, f3, f4, f5, f6, ---, fo+x} and T}, denotes the set
{g € G:LM(g) | LM(h)} and ecart(h) is deg(h) — deg(LM(h)). Note that LM(fs) = X5? X3 by (6).

Before we start the basis step of the induction, note that, we have

k(()é2+1) < (k—l)a1+(k+1)a21+a3<:>k(a1+C¥21—042—].) > o1 — Q] — Q3 .
(4)

We know from (6) that (a3 + g —as —1) > 0. When (a1 + ag; — az — 1) = 0, then it follows from (A) that
a1 — ag1 —ag < 0. However, this contradicts with (2), which says that as < a3 — as1. Therefore, we conclude
that after defining k as in the statement of Theorem 2.1, (A) and a3 + @21 — @z — 1 = 0 can not hold at the

same time under the assumptions that we have done.
For k=1:

In this case fr = X7** 1 X597" — X221 and oy + 1 < 2091 + a3 which implies that LM(f7) = X3! . We
need to show that NF(spoly(fm, fn)|G) =0 for all m,n with 1 <m <n <7.

o spoly(fi, f2) = f¢ and hence NF(spoly(fi, f2)|G) =0

*Singular 2.0 (Year). A Computer Algebra System for Polynomial Computations [online]. Website http://www.singular.uni-kl.de
[accessed 00 Month Year].
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spoly(fi, f3) = XP1X§s~1 — X~ ~1X, X, and LM(spoly(f1, f3)) = X1 X, X, by (5). Let
hi =spoly(fi, f3). If a1 < 2a91 + 1 or 2a91 + az < ag + 1 then T),, = {f5} and since spoly(h1,g) =0,
NF(spoly(fi1, f3)|G) = 0. Otherwise T, = {f2} and spoly(hy, fo) = X202 1 x et _ xo1 xos—1,
Set hy = spoly(hi, f2), LM(hy) = X727 x02H and Ty, = {fs} and spoly(hs, fr) = 0, hence
NF(spoly(fi, f3)|G) =0 .

spoly(f1, f1) = XM Xy — X1 X527 X$% . Set hy = spoly(fi, fa). If LM(h) = X' Xy then Ty, = {fa}
and spoly(hi, fo) = X1 X527 f5. If LM(hy) = X1 X521 X$3 then Ty, = {fs} and spoly(hi, f3) =
X179 f5. Hence in both cases, NF(spoly(fi, f1)|G) =0

spoly(f1, fs) = X7 HIXE° — X" Xy = X7 L f3 hence NF(spoly(f1, f5)|G) =0
spoly(f1, f6) = X7* fo and hence NF(spoly(fi, fs)|G) =0

spoly(f1, f7) = Xf‘1+2a21+1Xg3_2 — X§2+1X4 if ag 4+ 291 < ag+ 1. Set h; = spoly(fi, f7). Using
(6) and the fact that ag; + as > 2, we can conclude that LM(h;) = X527 X, and T), = {fs} then
spoly(hy, f5) = X021 P X372 fo and hence N F(spoly(fi, f7)|G) = 0.

NF(spoly(fi, f7)|G) =0 if az+2ag; > as + 1, as LM(f;) and LM(f7) are relatively prime.

NF(spoly(fa, f3)|G) = 0 as LM(f2) and LM(f3) are relatively prime.

spoly(fa, f1) = XSQ_lff, and hence N F(spoly(fa, f4)|G) =0
spoly(fa, f5) = f7 and hence NF(spoly(fa, f5)|G) =0
NF(spoly(fa, f6)|G) = 0 as LM(f2) and LM(fs) are relatively prime.

spoly(fa, fz) = X352 f5 if 2021 + a3 < ap +1. Otherwise LM(f2) and LM(f7) are relatively prime. Hence,
in both cases NF(spoly(fa, f7)|G) = 0.

NF(spoly(fs, f4)|G) = 0 as LM(f3) and LM(f;) are relatively prime.
NF(spoly(fs, f5)|G) = 0 as LM(f3) and LM(f,) are relatively prime.
spoly(fs, fo) = X ™21 f and hence NF(spoly(fs, fs)|G) =0

spoly(fs, f7) = Xafe if 2a01 + a3 < ag + 1. Otherwise LM(f5) and LM(f7) are relatively prime. Hence,
in both cases NF(spoly(fs, f7)|G) =0

spoly(fa, f5) = X1 X3* ! fo and hence NF(spoly(fs, f5)|G) =0
NF(spoly(fs, f6)|G) = 0 as LM(f4) and LM(fs) are relatively prime.
NF(spoly(fs, fr)|G) = 0 as LM(f4) and LM(f;) are relatively prime.

spoly(fs, fo) = X7 VT Xg2 7 X~ X121 Xy and let hy = spoly(fs, fo). If LM(hy) = X{> T X927 x5
then Tj,, = {f3} and spoly(hi, f3) = X0~ *'"! £, and hence NF(spoly(fs, fs)|G) = 0. If LM(h;) =
Xoteanx, then T, = {fo} and spoly(hi, f2) = X532~ ' f3 and hence N F(spoly(fs, fs)|G) = 0
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o NF(spoly(fs, f7)|G) =0 if as+ 2a2; < az+ 1, as LM(f5) and LM(f7) are relatively prime. Otherwise
spoly(fs, fr) = X7 1X5° 71 f and hence NF(spoly(fs, f7)|G) =0

o spoly(fs, f7) = fs if ag+ 2a21 < @z + 1 and hence NF'(spoly(fs, f7)|G) = 0. Otherwise spoly(fs, f7) =
X2ext £ and hence N F(spoly(fs, f7)|G) = 0

Assume the statement is true for k < [:

If k is the smallest positive integer such that k(az + 1) < (k—1)ag + (kK + 1)ag; + o then the standard basis
for Ig is

{f1, f2: f3, fa, f55 fos oo fori }
where fg = X01+02 _ X902 Xy and fo,; = XU DertUTentl yeamy _ ygoatl o 519 k.
For k=1:

Now let I be the smallest positive integer such that I(as +1) < (I — 1)ag + (I + 1)az; + a3. Note that for any
G <1, jlaz+1) > (j— Day + (j + Dags + a3 and LM(fgy;) = XU D0t entl yea=i g 519 11
and LM(fey;) = X.*2™ | Note also that NF(spoly(fm, fn)|G) = 0 for 1 < m < n < 6 from the basis step

since LM(f7) is not involved in calculations. Hence it is enough to prove NF(spoly(fpm, f»)|G) = 0 for all other
1<m<n<6+I1

o spoly(fi, for;) = XiortUthen yeamj=l _ yjeatly, — p LM(hy) = X3°*'X, by (5) and (6)
and Tp, = {fs}. spoly(hy, fs) = X021t xgee xoo—t _ xjeatGrbeatd yas—i=1 _ p and LM(hy) =
XeoFX302 X! by (6). As a rvesult, Th, = {fo} and spoly(hs, fo) = X{oH2em xJ—Deexge-2
X{a1+(j+1)a21+1X§zs—j—l = hy, LM(hs) = )(10‘1”“21)(2(3'_1)“2)(?3*2 by (6). T, = {f6} and continuing
inductively, hjt1 = spoly(hy, fs) = X{al+(j+1)a21X§373f6. Hence, NF(spoly(fi, fo+4)|G) =0

o spoly(fa, for;) = XUTDertientl yas yaa=j _ yjeatly, — b, LM(hy) = X3°*1X, by (5) and (6)
and Ty, = {fs}. spoly(hi, fs) = XpaHlxjeexget - xUmDontiostl yoa x o™i — p, o LM(hy) =
Xe2 X302 X527 by (6). As a vesult, Ty, = {fo} and spoly(hy, fg) = X H2entixFmDes yea=2
xUmDentjentl yao yoa=i _ po o LM(hg) = XM +2emtlximbeeyas=2 po (6). T, = {fs} and

continuing inductively, we obtain h; = spoly(h;j_1, fs) = X{jd)m+(j71)a21+1X§‘2X§‘3_jf6. Hence,

NF(spoly(fz, fo+5)|G) =0

o spoly(fs, forj) = Xi“ Xy — X3°T'X] = hy. LM(h) = X3°*7'X] by (6) and Ty, = {fe}.
spoly(hy, fo) = X{itenx(J-Deetlxi=l _ xdeatjea ), — p) 0 LM(hy) = XYV xI71 by (6)
and Tp, = {fs}. Continuing inductively spoly(h;_1,fs) = ij_l)(aﬁazl)ngg = h; and hence
NE(spoly(fs, fo+;)|G) =0

o NF(spoly(fm, fo+;)|G) =0 for m = 4,5 as LM(f,,) and LM(fs+;) are relatively prime for all 1 < j <1

o spoly(fs, fo+;) = fe+(j+1) and hence NF(spoly(fs, fo+;)|G) =0 forall 1 <j <
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o spoly(fori, fors) = XUTDetl=hen yiaatl _ yjeatlyd=t _ ) LM(hy) = X3°H1XI70 by (6).
T, = {fo}, spoly(hy, fg) = Xton x{—Deetlyi=izt _ yl=ilenton) yioatl _ po and LM(hy) =
X?1+a21X2(j_1)a2+1X§_i_1 by (6) and T, = {fs}. Continuing inductively h;_; = spoly(h;—_;—1, fs) =
xUmimDlentaa) yriaatl ¢ and hence NF(spoly(foris fori)|G) =0 forall 1 <i<j <1,

o NF(spoly(fm, fe+1)|G) =0 for m=1,2,3,4,7,...,54+1 as LM(f,,) and LM(fg4;) are relatively prime.

o spoly(fs, forr) = Xpatlxlesxgo—t _ x(=DeatHhentd yas—lx,  Get by = spoly(fs, forr). 1If
LM(hy) = X{otixleaxos=l Then Ty, = {fs} and spoly(hy, fo) = Xat2emtix(i=hes yas—2
Xm0t IXy = hy. LM(hy) = Xi VO DI QN since (1 - 1)(2 + 1) 2
(I—2)a; +lag; + a3 and (5). Then Ty, = {f1, f2} and since ecart(f2) is minimal by (6), spoly(he, f2)
Xf1+2a21+1X2(l_1)0‘2X§‘3_2 N X£l—1)a1+la21+1X32X§13—l — hs and LM(hd) _ X{l1+2a21+1X2(l—1)a2X§43—2
by (6).Th, = {fs} and spoly(hs, fg) = X2ert3entlx(I=2)e2 yas=3_ x(I=Dertlantl yas yas—l _ p anq
LM(ha) = Xjo+oen gm0 X302 by (6). Th, = {fo} and spoly(ha, fo) = X Hiem LG9 xpamt -
xlmDentleantd o yas—l — poand LM(hg) = Xooatdeatix (=9 yas—4 po(6) and Ty, = {fe}.
Continuing inductively, h; = spoly(h;_1, fs) = Xl(l_Q)al+(l_l)a21+1X§2X§“3_lf6 and this implies that
NE(spoly(fs, fo+1)|G) =0
Otherwise Ty, = {f1, f2} and ecart(f2) is minimal by (6). spoly(hq, f2) = Xl(lfl)aﬁlam“XQaQXg‘rl -
Xontlyloa yos=l — pooand LM(hy) = X2 HXl2 X0~ by (6). Since Ty, = {fs}, we compute
spoly (ha, fo) = X\THertlentl yoo yao—l _ yart2aa4l y(l=Deo yas=2 _ p. 7, = {1 Continu-
ing inductively, h; = spoly(h;_1, fs) = Xl(lfl)o‘1+lo‘2l+1X2a2X?3*l _ Xl(l*2)041+(l*1)a21+1X22a2X§437l+1 _

X:Elﬁ)al+(171)O‘21+1X§‘2X§‘3_lf6 and hence N F(spoly(fs, fe+1)|G) =0

o spoly(fs, for1) = X7 for -1y hence, NF(spoly(fs, fo11)|G) = 0.
Since all normal forms reduce to zero, {f1, f2, f3, f1, f5, f6, -, fo+k } is a standard basis for I O
Corollary 2.2 {f1", fo*, ... f6*s .., foxx "} is a standard basis for I}, where fi* = X3X4, fo" = X' Xy,
f3* _ X§3, f4* _ X42, f5* = Xo X4, fﬁ* _ XQazX?” fg+k _ Xécaz-l—l and f6+j* _ ij—l)a1+(j+1)a21+1X§43—j

for j=1,2,..,k—1. Since X1|f2", the tangent cone is not Cohen—Macaulay by the criterion given in [2] as

expected.

3. Hilbert function

Theorem 3.1 The numerator of the Hilbert series of the local ring Rg is
P([é) =1—3¢2 + 33—t — t0‘21+1(1 _ t)3 _ tas(l _ t) _ ta2+1(1 - t)(l _ ta3—1) - tka2+1(1 _ t)2 . T(t)

where r(t) =0 if k=1 and r(t) = 2?22 tlk=ient(k=j+2antasti—k(1 _ $)2(1 — t22) otherwise.
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Proof To compute the Hilbert series, we will use Algorithm 2.6 of [4] that is formed by continuous use of the
proposition

"If I is a monomial ideal with I =< J,w >, then the numerator of the Hilbert series of A/l is
P(I) = h(J) — t%8¥h(J : w) where w is a monomial and degw is the total degree of w.”

Let P(I%) denote the numerator of the Hilbert series of A/If

o Let wy = X5 then
J1 =< X3 X, X0 Xy, X398, X7, Xo Xy, X§2 Xg, X204 x0a—1x(h=2eat(Rantd yag—htl o
P(I%) = P(Jy) — the2t1P(< Xy, X3 >) = P(Jy) — theet1(1 —1)?
If k=1 then ws = wgy1, otherwise:

o Let wy = X'l(]f—Q)Dél-‘-(14)0621-‘:-1)(;43—k+17 then

Jy =< X5 Xy, X0 Xy, X2 X3, Xo X g, X52 X, X202t xoo—1  x(b=Boat(hmboatl yas =kt o

P(Ji) = P(Jo)—tk=Dorthlen—biest2pc X, X902 X3 >)

P(JQ) _ t(k—2)a1+k(a21—1)+a3+2(1 _ t)2(1 _ tOLg)

« Continue inductively and let wy, = X7*** X371 then
Jp =< X3 Xy, X7 Xy, X5, X7, X2 X4, X52 X3 >,
P(Jg—1) = P(Jy) — t2n e P(< Xy, X$2, X3 >) = P(Jg) — t2ontos (1 — ¢)3(1 — t*2)

o Let Wg+1 = X;QX?,, then
Jrp1 =< Xa Xy, X7 Xy, X520, X3, Xo Xy >,

P(Jy) = P(Jiq1) — 192 P(< X4, X997 ) = P(Jpp) — t92 (1 — £)(1 — tos—1)

o Let wgio = X3°, then

Jiro =< X3 X4, X2 Xy, X5, X0 Xy >,
P(Jk-i-l) = P(J]H_g) — ta3P(< X4 >) = P(Jk+2) — ta"(l — t)

o Let wiis = X7?* Xy, then

Jk+3 =< X3X4,XE,X2X4 >
P(Jk+2) = P(Jk+3) — ta21+1h(< X3,X4,X2 >) = P(Jk+3) — ta21+1(1 — t)g

o Let wgiq = XXy, then
Jk+4 =< X3X4,Xz >

P(Jk+3) = P(Jk+4) — t2P<< X3,X4 >) = P(Jk+4) — t2(1 — t)2
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o Let wpys = X7, then
Jprs =< X3 X4 >

P(Jgsa) = P(Jrys) —2P(< X3 >) = (1 —t2) —t3(1 - t)
Hence, P(I}) = (1—t2)—t?(1—t)—t?(1—t)2—ton+1(1—¢)3 —tos (1—t) —to2 L (1) (1t ) —ghot i (1—4)2 —r (1)
where r(t) =0 if k=1 and r(t) = 22?:2tUH)m+<k*j+2>a21+as+i*k(1 —1)2(1 —t22) if k> 1 m

Clearly, since the krull dimension is one, if there are no negative terms in the second Hilbert series, then the

Hilbert function will be nondecreasing. We can state and prove the next theorem.

Theorem 3.2 The local ring Rg has a nondecreasing Hilbert function if k= 1.

Proof Observe that
P(I5) = (1-t)Pi(t)

with Pi(t) = 1+t —12 —12(1 —t) =t T1(1 —¢)2 — s — o2t (1 —¢ae—L) _ghaztl(1 —¢) —p)(t) where r1(t) =0
if k=1 and r(t) = 25:2 tlk=gent(k=j+2)aatasti=k(] _)(1 —t22) if k > 1.

Pi(t) = (1 =1)Pa(t)

with Py(t) = 14+t +t(1 4+t + ...+ t272) — 2 —gont1(1 —¢) — o2t (1 ft 4 .. 4 t¥372) —thatl 4o () where
ro(t) = 0 if k =1 and ro(t) = Z?:z tk=part(b=j+2antasti—k(] _ ta2) if > 1. Combining some terms,

Po(t) =1 —t2 +t(1 —tFo2) + (1 — t*2)(1 + t + ... + t*72) — t¥2:+1(1 — ) — ry(¢) which shows that,
Py(t) = (1= 1)Q(¢)
with
Q) =1+t +t(1+t 4 o+ t"2 ) bt (Tt 4 122 (1t 1237 2) — oL pa(y)

where r3(t) = 0 if £ =1 and r3(t) = 2522 tk=g)eat(k—j+2)antasti=k(] 4 ¢ 4 . 4 ¢*271) if & > 1.Then

HSR(t) = (gs = (2, and Q(t) = 1+t +#(1+t+ .. +tF2 ) t(1 4t 4.+ 1027 ) (1t 4. 4 19072) —

t@21+1 4 3(¢) is the second Hilbert series of the local ring. Note that as > gy +1 and —t*21+! disappear when
we expand Q(t). Hence for k = 1, there are no negative coefficients in the second Hilbert series, the Hilbert

function is nondecreasing. O

Remark 3.3 For k > 1,

k—1
Q) =1+t =t f (Lt 4 2270 [H2 4+t 4+ 12572 + ) S5(t)

j=1

where S;(t) = tWaztl _ G=Dart(G+Dantastl=7  Recgll that k is the smallest positive integer such that
klag+1) < (k—1)ag+(k+1)ag +as hence for any 1 < j < k—1, we have jlas+1) > (j—1)a1+(j+1)ao1 +as,
which means S;(t) >0 for every t € N.
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4. Examples
The following examples are done via the computer algebra system SINGULAR.

Example 4.1 For as; = 8,017 = 16,0 = 20,3 = 7,a4 = 2, k = 1 and the corresponding standard
basis is {fi = X1 — XXy fo = X2 — X3X,, fs = XTI — XTXy, fy = X? — X, XJOXS f5 = XPX$ —
XoXy, fo = X — X3°X;5, fr = X{7X§ — X2}, Numerator of the Hilbert series of the tangent cone is
PIz)=1-3t2+3t3 — ¢t — 7 +18 — 1% + 310 — 3¢ + ¢12 — 221 4 3¢22 — ¢23 + 127 — 28 Direct computation

shows that the Hilbert function is nondecreasing.

Example 4.2 For asy =4, a1 =22,00 =13, a3 =5, ag = 2, we have k = 2 and the corresponding standard
basis is {f1 = X2 —X3Xy, fo= XXXy, f3= X3 - X{"Xo, fa = X7 - X1X32X$, f5 = X7 X§—Xo Xy, f6 =
X326 — XB3X3, fr = X{ X5 — X34, fs = X35X3 — X237} . Numerator of the Hilbert series of the tangent cone is
P(I5) =1-3t2+3t3 —t* =265 + 416 — 37T +48 —¢13 4 14 - ¢18 — 419 4426 — 3427 4 3¢28 — 9. Direct computation

shows that the Hilbert function is nondecreasing.

Example 4.3 For as; =10, a1 = 17,90 =25, ag =4, ay = 2, we have k = 3 and the corresponding standard
basis is {f1 = X17—X3Xy, fo = X5 - X10Xy, f3= X3 —X0Xo, f1 = X3 - X1 X2 X3, f5s = X1 X3 - X0 Xy, fo =
X2T - X25X3, fr = X325 — XH X3, fs = X{8X3 — X531, fo = X{P X3 — XI6}. Numerator of the Hilbert series of
the tangent cone is P(I%) = 1 — 3t% + 3t3 — 2¢4 + 5 — 11 4 312 — 3413 4 414 — 424 4 2425 — 2426 4 427 4 429 —
130 4 49 — 3¢50 1 351 — 52 4 475 3476 4 3177 — 8. Direct computation shows that the Hilbert function is

nondecreasing.

Example 4.4 For a1 =3, a3 = 13,00 =14, a3 =6, ag = 2, we have k = 4 and the corresponding standard
basis becomes {fi = X{3 — X3Xy, fo = X3* — X3Xy, f3 = X§ — X?Xo, f1 = X7 — X1 X23X3, f5 = X{X5 —
XoXy, fo = X106 — X34 X5, fr = XTX5 — X35 fs = XBXS — X29 fo = XP9X3 — X33 fio = XP5X3 — X357}
Numerator of the Hilbert series of the tangent cone is P(I%) = 1 — 3t2 4+ 3t3 — 2t + 3¢5 — 446 + 207 — 12 4

213 — 14 415 16 4 420 421 326 3427 4 3428 429 4 gl 3¢d2 4 3443 A 456 35T 4 358 — 159 Direct
computation shows that the Hilbert function is nondecreasing.
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