
5522 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 11, NOVEMBER 2021

Risk-Averse Allocation Indices for Multiarmed Bandit Problem

Milad Malekipirbazari and Özlem Çavuş

Abstract—In classical multiarmed bandit problem, the aim is to
find a policy maximizing the expected total reward, implicitly as-
suming that the decision-maker is risk-neutral. On the other hand,
the decision-makers are risk-averse in some real-life applications.
In this article, we design a new setting based on the concept of
dynamic risk measures where the aim is to find a policy with the
best risk-adjusted total discounted outcome. We provide a theo-
retical analysis of multiarmed bandit problem with respect to this
novel setting and propose a priority-index heuristic which gives
risk-averse allocation indices having a structure similar to Gittins
index. Although an optimal policy is shown not always to have
index-based form, empirical results express the excellence of this
heuristic and show that with risk-averse allocation indices we can
achieve optimal or near-optimal interpretable policies.

Index Terms—Coherent risk measures, dynamic allocation in-
dex, dynamic risk-aversion, Gittins index, multiarmed bandit
(MAB).

I. INTRODUCTION

In multiarmed bandit (MAB) problem, a gambler facing a line of
arms (slot machines) should decide on which arm to play at each
step. In classical MAB, each arm represents an independent Markov
chain. Whenever a specific arm is played, its state changes to a new
one with respect to state transition probabilities, providing an income
depending on the current state. On the other hand, the arms that are not
played maintain their current states. The typical goal is to maximize the
expected value of the discounted total reward over an infinite horizon.
This problem arises in many practical applications, such as clinical
trials, portfolio design, Internet advertisement, and adaptive routing in
networks.

In order to solve MAB with Markovian structure, we may consider
the problem as a Markov decision process (MDP) and apply Markov
decision theory to find the best policy. However, the size of bandit prob-
lem increases exponentially as the number of arms increases; therefore,
solving large-scale MABs would be computationally challenging. In
this regard, Gittins [1] provides a decomposition for the problem by
proposing an index policy approach, where these indices are called
dynamic allocation indices, afterwards referred to as Gittins indices.
Regarding the specific setting of that problem, he shows that an index
can be allocated to each state with respect to the data of the arm so that,
in each step, by playing the arm having the highest index, the maximum
expected total discounted reward is obtained.
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Generalizations of Gittins work usually are based on new frame-
works proposed as the consequence of relaxing some assumptions
provided in the original study [1]. In this regard, Whittle [2] introduces
Whittle indices to solve restless MAB problem in which states of the
arms not being played also change. He expresses this index as the
Lagrangian multiplier corresponding to the activation constraint, which
specifies the number of arms activated at each step.

One other important assumption of Gittins work is that the decision-
maker is risk-neutral, i.e., the aim is to maximize the expected total
reward. This assumption can be a limitation when the decision-maker
is risk-averse and wants to manage the variability of total reward.
Applications of MAB with risk-aversion include portfolio selection [3],
energy [4], routing [5], ambulance redeployment [6], and clinical
trials [7]. Despite this wide range of application areas, literature on
incorporating risk into MABs with Markovian setting is very poor.
Denardo et al. [8] introduce the concept of risk in Markovian setting
by employing concave utility functions. They introduce a state ranking
method and illustrate that it is optimal to play the arm with the state of
the highest rank. Improvements and modifications of this approach are
presented in [9]. Another work with risk-aversion in Markovian setting
is [5]. They study risk-aversion in route choosing, where they model
the problem of choosing between a random or a safe selection as a
one-armed bandit problem under different information regimes. In [5],
similar to [8], the risk preference is incorporated into the model using
utility functions.

As described above, existing studies on selection of the arm with
the best risk-return tradeoff is limited to incorporating the risk by using
some utility functions. However, utility functions have been the subject
of considerable criticism over the years. The greatest burden of this ap-
proach is that the decision-maker needs to specify an appropriate utility
function with respect to the degree of risk-aversion, which is not always
an easy task to perform. It is also argued that it is impossible to measure
utility across individuals objectively. Moreover, the resulting solutions
may be difficult to interpret [10]. In order to handle these difficulties, in
this article, we propose a different approach for risk incorporation by
using coherent risk measures [11]. To model our problem, we employ
the idea of the study [12], where discounted risk-averse discrete-time
Markov models with infinite horizon are formulated using dynamic
coherent measures of risk, and value and policy iteration algorithms
are proposed to find an optimal policy.

Our article aims to develop the classical work of Gittins [1] and pro-
vide index-based solutions for risk-averse MAB with dynamic coherent
risk measures. In this regard, we seek to achieve the following:

1) the characterization of an indexable and decomposable problem
close to risk-averse MAB;

2) definition of indices to obtain an optimal solution to this new
problem;

3) an algorithm to compute these indices;
4) an experimental approach to check how good these indices are for

original problem.
To the best of authors’ knowledge, this version of MAB is new, and

no study exists on this setting.
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II. PROBLEM DESCRIPTION AND PRELIMINARIES

In the classical risk-neutral MAB, the aim is to maximize the ex-
pected total discounted reward. More specifically, MAB can be modeled
as an MDP, in which a decision-maker decides which ofK arms to play
at each decision step t ∈ N = {1, 2, 3, . . . }. Here, we are considering
a risk-averse MAB with dynamic risk measures. For mathematical
convenience, we take into account negative of rewards, which can be
interpreted as costs. The details of our problem setting are described as
follows.
1) With the assumption that there exists no common state in distinct

arms, let X =×K

i=1X i be the state space of the resulting MDP,
where each arm i is a Markov chain with a finite state space X i,
i ∈ K = {1, 2, . . . ,K}.

2) At step t ∈ N, an action ut = {u1
t , u

2
t , . . . , u

K
t } is applied, where

ui
t ∈ {−1, 0} is the action applied to arm i ∈ K. Here, ui

t = 0
denotes that arm i is played at step t; on the other hand, ui

t = −1
represents that arm i is not played. The admissible actions are the
ones for which exactly one element of ut equals zero at each step
t ∈ N. That is, at each step, under any choice of admissible actions,
the state of one and only one arm evolves independently from the
states of other arms in a Markovian manner, and the states of the
remaining arms are frozen.

3) The state of the arm we play at each step changes in a Marko-
vian fashion with respect to the transition probabilities P i

mn(0) =
P (xi

t+1 = n | xi
t = m, ui

t = 0), i ∈ K, m,n ∈ X i, t ∈ N. How-
ever, the state of an arm remains unchanged if it is not played, that
is, for all i ∈ K, m,n ∈ X i, t ∈ N, we have

P i
mn(−1) = P (xi

t+1 = n | xi
t = m, ui

t = −1)

=

{
1, if m = n
0, otherwise.

4) For each i ∈ K, the cost function gi : X i → R− is the finite and
nonpositive cost of playing arm i at state xi. We define ci(xi, ui)
as the cost incurred by arm i at state xi ∈ X i under action ui ∈
{−1, 0}, i ∈ K:

ci(xi, ui) :=

{
gi(xi), if ui = 0

0, if ui = −1.
(1)

We also define c(x, u) representing the cost over all arms, that
is, c(x, u) =

∑
i∈K ci(xi, ui), x = (x1, . . . , xK) ∈ X , and u =

(u1, . . . , uK) where ui ∈ {−1, 0}, i ∈ K.
5) We denote a stationary (Markov) policy as π : X → {−1, 0}K .

Note that, with respect to our notation, ut = π(xt), that is, both
denote the decision to be taken at state xt ∈ X for t ∈ N. We also
define πi : X i → {−1, 0}. which prescribes the action to be taken
for arm i ∈ K at a particular state.

Here, we look for a stationary Markov policy in order to minimize the
total risk-averse discounted cost incurred over an infinite horizon. With
respect to the theory of [12], an infinite horizon stationary MDP with
dynamic risk measures has a stationary optimal policy and it is possible
to find this policy using value iteration or policy iteration algorithms.
However, these algorithms may be computationally expensive or even
practically infeasible for large-scale real-life problems. Furthermore, in
some cases, the structure of optimal policy makes it difficult to interpret,
which creates complication while applying them in real-life problems.
Motivated to overcome these issues, we seek good index-based heuristic
policies.

Before providing our model, we first introduce dynamic risk mea-
sures. Consider a probability space (Ω,F , P ), a filtration {∅,Ω} =
F1 ⊂ . . . ⊂ FT ⊂ F , and an adapted sequence of random variables

Zt, t ∈ {1, . . . , T}. Define the spaces Zt of Ft-measurable random
variables on Ω, t ∈ {1, . . . , T} and Z1,T = Z1 × · · · × ZT . In our
case, since each Ft is finite, the spaces Zt can be identified with
finite-dimensional vector spaces. With respect to the above setting, each
policy would result in cost sequences of Zt = c(xt, ut) ∈ Zt.

In this context, ρt : Zt+1 → Zt, t ∈ {1, . . . , T} satisfying the fol-
lowing axioms is defined as one-step conditional risk measure (see [13]
and [14]):
A1) ρt(αZ + (1− α)W ) ≤ αρt(Z) + (1− α)ρt(W ) ∀α ∈

(0, 1), Z,W ∈ Zt+1;
A2) if Z � W , then ρt(Z) ≤ ρt(W ) ∀Z,W ∈ Zt+1;
A3) ρt(Z +W ) = Z + ρt(W ) ∀Z ∈ Zt, W ∈ Zt+1;
A4) ρt(αZ) = αρt(Z) ∀Z ∈ Zt+1, α ≥ 0.

Conditions (A1)–(A4) are called convexity, monotonicity, trans-
lation invariance, and positive homogeneity, respectively. They are
analogous to the axioms introduced by [11] for coherent measures of
risk.

Two important coherent risk measures, which have been extensively
studied in the literature, are first-order mean-semideviation [15] and
mean-average value-at-risk (mean-AVaR) [16]. We now provide the
conditional versions of these two risk measures. Conditional first-order
mean-semideviation risk measure is defined as

ρt(Zt+1)=E[Zt+1|Ft]+κE[(Zt+1−E[Zt+1|Ft])+|Ft] (2)

where κ ∈ [0, 1] and (a)+ := max{a, 0} for a ∈ R. Given two param-
eters ofα ∈ (0, 1) and λ ∈ [0, 1], conditional mean-AVaR risk measure
is defined as

ρt(Zt+1) = λ E[Zt+1|Ft] + (1− λ)AVaRα(Zt+1|Ft) (3)

where conditional AVaRα can be represented as

AVaRα(Zt+1|Ft) = min
η∈Zt

{
η +

1

1− α
E [(Zt+1 − η)+|Ft]

}
.

A dynamic risk measure is a sequence of one-step conditional risk
measures (see [12] and the references therein). Thereby, dynamic risk
measure�β1,T : Z1,T 
→ Z1 on a finite horizon of lengthT with discount
factor β ∈ (0, 1) is defined as follows:

�β1,T (Z1, Z2, . . . , ZT ) :=

Z1+ρ1
(
βZ2 + ρ2

(
β2Z3 + · · ·+ ρT−1

(
βT−1ZT

)
. . .
))

. (4)

Accordingly, in the infinite horizon, the dynamic risk measure can
be described as

�β(Z1, Z2, Z3, . . . ) = lim
T→∞

�β1,T (Z1, Z2, . . . , ZT ). (5)

Applying the dynamic risk measure (5), we can now evaluate the
risk of the cost sequences c(xt, ut) ∈ Zt, t ∈ N resulted by policy π.
Let R(x1) be the optimal risk-averse total discounted cost under the
constraint that one arm will be played at each step

R(x1) = min
π∈Π

�β (c(x1, u1), c(x2, u2), . . . )

= min
π∈Π

∑
i∈K

ci(xi
1, u

i
1) + ρ1

(
β
∑
i∈K

ci(xi
2, u

i
2)

+ ρ2

(
β2
∑
i∈K

ci(xi
3, u

i
3) + . . .

))
(6)

where Π is the class of stationary admissible policies for our problem,
that is, at each step, we are only allowed to play one arm. Note that
second equality is due to definition of c(xt, ut). Since additivity of
risk measure is one main assumption in [1] to guarantee the optimality
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of an index policy, it follows that index policies may not be optimal
for the risk-averse problem, as coherent risk measures are subadditive.
Therefore, optimal policy can only be achieved by performing the far
more difficult task of solving the risk-averse dynamic programming
equations. At this point, following the classic works of [1] and [2], and
based on the theory and presentation of [17], we aim to find a heuristic
solution of the problem in the form of index policies. Therefore, in
order to find proper actions in each state, we need to design a calibrating
function for each arm. To come up with such indices, we need to perform
a decomposition of our problem into K separate problems, where each
of which would relate to one individual arm. Moreover, with the help
of these separate problems, we can acquire the appropriate calibrating
functions.

III. RELAXATION AND DECOMPOSITION

With the aim of attaining an index heuristic for problem (6), we
obtain an equivalent optimization problem by extending Π to the class
Π′ of stationary policies, which allows a free choice of action, i.e., no
arm or more than one arm can also be played at a step

R(x1) = min
π∈Π′

∑
i∈K

ci(xi
1, u

i
1) + ρ1

(
β
∑
i∈K

ci(xi
2, u

i
2)

+ ρ2

(
β2
∑
i∈K

ci(xi
3, u

i
3) + · · ·

))
(7)

s.t.
∑
i∈K

ui
t = 1−K ∀t ∈ N, (8)

ui
t ∈ {−1, 0} ∀i ∈ K, t ∈ N. (9)

Here, constraint (8) implies that playing exactly one arm is allowed at
each step. Further, we can relax this constraint by replacing it with

�β

(∑
i∈K

ui
1,
∑
i∈K

ui
2, . . .

)
=

1−K

1− β

which can also be written as follows using definitions (4) and (5):

∑
i∈K

ui
1 + ρ1

(
β
∑
i∈K

ui
2 + ρ2

(
β2
∑
i∈K

ui
3 + · · ·

))
=

1−K

1− β
. (10)

Now, replacing constraint (8) with (10) and relaxing it in Lagrangian
manner, we obtain the following Lagrangian dual function:

LD(ν, x1) = min
π∈Π′

L(ν, x1)

s.t. ui
t ∈ {−1, 0} ∀i ∈ K, t ∈ N (11)

where ν ∈ R is the Lagrangian multiplier and

L(ν, x1)=
∑
i∈K

ci(xi
1, u

i
1)+ρ1

(
β
∑
i∈K

ci(xi
2, u

i
2)

+ ρ2

(
β2
∑
i∈K

ci(xi
3, u

i
3) + · · ·

))
+ ν

(∑
i∈K

ui
1

+ ρ1

(
β
∑
i∈K

ui
2+ρ2

(
β2
∑
i∈K

ui
3+· · ·

)))
− ν

(
1−K

1− β

)
. (12)

Note that, by duality, we have

LD(ν, x1) ≤ R(x1)

for any ν ∈ R. Therefore, if we restrict ν ∈ R+, the above inequality is
still satisfied. Before going any further, we need to show subadditivity

of dynamic risk measures, which will be used to obtain an indexable
problem.

Lemma III.1: Consider the dynamic risk measure �β1,T in (4) and
random costs Zi

t ∈ Zt, t ∈ {1, . . . , T}, i ∈ K. Then we have

�β1,T

(∑
i∈K

Zi
1,
∑
i∈K

Zi
2, . . . ,

∑
i∈K

Zi
T

)

≤
∑
i∈K

(
Zi

1 + ρ1
(
βZi

2 + · · ·+ ρT−1

(
βT−1Zi

T

)
. . .
))

.

Proof: From axioms (A1) and (A4), we get

ρT−1

(
βT−1

∑
i∈K

Zi
T

)
≤
∑
i∈K

ρT−1

(
βT−1Zi

T

)
. (13)

Then, we obtain

ρT−2

(
βT−2

∑
i∈K

Zi
T−1 + ρT−1

(
βT−1

∑
i∈K

Zi
T

))

≤ ρT−2

(∑
i∈K

(
βT−2Zi

T−1 + ρT−1

(
βT−1Zi

T

)))

≤
∑
i∈K

ρT−2

(
βT−2Zi

T−1 + ρT−1

(
βT−1Zi

T

))
where the first inequality follows from monotonicity axiom (A2)
and inequality (13), and the second inequality is due to (A1) and
(A4). Iterating similarly down to t = 1, the assertion of the lemma
follows. �

Let us now define a function L′(ν, x1) as follows:

L′(ν, x1)=
∑
i∈K

(
ci(xi

1, u
i
1)+ρ1

(
βci(xi

2, u
i
2)

+ ρ2(β
2ci(xi

3, u
i
3)+· · · )

)
+ν
(
ui
1

+ ρ1
(
βui

2+ρ2(β
2ui

3+· · · )
)))

−ν

(
1−K

1− β

)
(14)

where ν ∈ R+ and x1 ∈ X . Note that, for ν ∈ R+, using Lemma III.1
and (5), we get

L(ν, x1) ≤ L′(ν, x1). (15)

We now define a dual function L′
D(ν, x1) based on L′(ν, x1) and

use it in order to obtain an approximation of R(x1)

L′
D(ν, x1) = min

π∈Π′
L′(ν, x1)

s.t. ui
t ∈ {−1, 0} ∀i ∈ K, t ∈ N (16)

where ν ∈ R+. Note that, from (15), for ν ∈ R+, we obtain

LD(ν, x1) ≤ L′
D(ν, x1). (17)

Although LD(ν, x1) is a lower bound for R(x1), L′
D(ν, x1) might not

be smaller than R(x1). On the other hand, problem (16) provides us
with an index-based policy, which is an interpretable feasible policy
for the risk-averse MAB problem (6). For the rest of the study, we will
derive this index-based policy and computationally show that it is close
to an optimal policy of (6).

Note that problem (16) can be decomposed into K subproblems,
each of which relates to different arms. For each arm i ∈ K, we have
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L′
Di(ν, x

i
1) = min

πi∈Π′i
ci(xi

1, u
i
1) + ρ1

(
βci(xi

2, u
i
2)

+ ρ2(β
2ci(xi

3, u
i
3) + · · · )

)
+ ν

(
ui
1 + ρ1

(
βui

2 + ρ2(β
2ui

3 + · · · )
))

s.t. ui
t ∈ {−1, 0} ∀t ∈ N (18)

where Π′i is a class of stationary policies for arm i which has no
restriction regarding the action to be taken at each step. Also, the term
ν( 1−K

1−β
) in (14) does not appear in subproblem (18), without changing

the optimal policies.
In the next section, we discuss the indexability of subproblem (18)

and explain the structure of the indices by developing a calibrating
function for each arm.

IV. INDEXABILITY AND INDICES

In this step, in search of the structure of optimal policy for sub-
problem (18), we need to follow [2] and [17]. Regarding Whittle’s
discussion in [2], the indexability argument is related with the class
of bandit problems centering on individual arms. Therefore, we focus
our attention on subproblem (18), which we call as arm i, and provide
below a lemma describing a key property of its optimal policy.

Lemma IV.1: Consider the subproblem (18). For i ∈ K, if action
“not play” is optimal for state xi

t ∈ X i, then it is also optimal for state
xi
t+1 ∈ X i ∀t ∈ N.

Proof: If action “not play” is optimal for xi
t, with respect to the

rested property of the problem, in the next step, the arm will be
in the same state. And due to stationary property of the feasible policies,
the same action will be optimal for xi

t+1. �
Now, in order to find an optimal policy of (18), we will consider the

evolution of arm i ∈ K under some policy πi ∈ Π′i starting from the
initial state xi

1, and from Lemma IV.1, we will restrict our attention to
two specific stationary policies of never playing as well as playing the
arm from the beginning until some random time τ i, which, for brevity,
will be referred to as τ i policy. To do so, we need to find a proper
calibration function νi : X i → R+ for arm i ∈ K. The index νi(xi) of
arm i when in state xi ∈ X i is defined as the value of ν which makes
two actions of “play” and “not play” equally attractive.

However, for νi(xi) to be meaningful, it requires to induce a con-
sistent ordering of the states, such that if arm i being at state xi is
not played under νi(xi), it will also not be played under ν > νi(xi).
For this, we define Θi

ν as the set of states of arm i, for which the
action is “not play” for a given value of ν. According to [2], arm i ∈ K
is indexable if there exists a family of policies in which each policy,
corresponding to a specific ν ∈ R+, is optimal for subproblem (18)
and the cardinality of Θi

ν is nondecreasing as ν increases. Under these
conditions, the corresponding index would be

νi(xi) = inf{ν ∈ R+ : xi ∈ Θi
ν}. (19)

As an interpretation of (19), νi(xi) is a fair charge we pay to go
from “not play” to “play” when arm i is in state xi. For any ν ∈ R+, if
ν ≤ νi(xi), then playing arm i is optimal; otherwise the optimal action
will be not playing it. In this case, for a given ν ∈ R+, the stopping
time τ i can be computed as

τ i = inf{t ≥ 2 : xi
t ∈ Θi

ν}. (20)

From Lemma IV.1 and using (20), we have xi
t ∈ Θi

ν , ∀t ≥ τ i. There-
fore, finding an optimal policy boils down to searching for some
stopping time, which would be obtained by employing the indices
described in Definition IV.1. Here, with a slight abuse of notation

and referring to (6) in [12], we consider �β1,τ−1(Z1, Z2, . . . , Zτ−1) =
�β(Z1, Z2, . . . , Zτ−1, 0, 0, . . . ).

Definition IV.1: For i ∈ K, the risk-averse allocation index (RAI)
for each initial state xi

1 ∈ X i is given by

νi(xi
1) := sup

τi≥2

�β
1,τi−1(c

i(xi
1, 0), c

i(xi
2, 0), . . . , c

i(xi
τi−1, 0))

�β
1,τi−1

(−1,−1, . . . ,−1)
. (21)

Note that based on (19) and (20), the stopping time in which we
attain the supremum in (21) is τ i∗ = inf{t ≥ 2 : xi

t ∈ Θi
νi(xi

1
)
}.

Remark: It is not difficult to show finiteness of RAI using axioms
(A2) and (A4) of coherent risk measures. RAI is, therefore, guaranteed
to be finite and has the similar structure and interpretation as the Gittins
index and may be considered as a generalized form of Gittins index that
is capable of taking dynamic risk-aversion into account.

In the next theorem, we show that each arm i ∈ K is indexable. For
this purpose, let us define T i as the class of stationary positive-valued
stopping times for arm i, that is, the set of all feasible τ i policies for
all possible Θi

ν ⊆ X i, ν ∈ R+.
Theorem IV.1: Each risk-averse arm i ∈ K is indexable with the RAI

introduced in Definition IV.1.
Proof: Consider the subproblem (18) for arm i ∈ K and for a given

constant ν ∈ R+. Given the previous discussion, we have two policies
to consider: either playing the arm until some stopping time or not
playing it at all. Playing this arm from the initial state xi

1 ∈ X i until
stopping time τ i ∈ T i results in the following objective function value:

�β(ci(xi
1, 0), . . . , c

i(xi
τi−1, 0), 0, 0, . . . )

+ ν�β(0, 0, . . . , 0︸ ︷︷ ︸
τi−1

,−1,−1, . . . ) (22)

for which referring to (6) in [12], we have

�β(ci(xi
1, 0), . . . , c

i(xi
τi−1, 0), 0, 0, . . . )

= �β
1,τi−1

(ci(xi
1, 0), . . . , c

i(xi
τi−1, 0)).

Similarly, if the arm is not played in state xi
1, then from Lemma IV.1,

the objective function value is

�β(0, 0, . . . ) + ν�β(−1,−1, . . . ) (23)

where�β(0, 0, . . . ) = 0 as a result of axiom (A4). Therefore, the “play”
action is strictly optimal for xi

1 when there exists a stopping policy
τ i ∈ T i for which the quantity in (22) falls behind the quantity in (23),
that is

�β
1,τi−1

(ci(xi
1, 0), . . . , c

i(xi
τi−1, 0))

+ ν�β(0, . . . , 0︸ ︷︷ ︸
τi−1

,−1,−1, . . . ) < ν�β(−1,−1, . . . ). (24)

Organizing this inequality, we obtain

�β
1,τi−1

(ci(xi
1, 0), c

i(xi
2, 0), . . . , c

i(xi
τi−1, 0))

< ν
(
�β(−1,−1, . . . )− �β(0, . . . , 0︸ ︷︷ ︸

τi−1

,−1,−1, . . . )
)

= ν

(
−

τi−2∑
t=0

βt

)
= ν�β

1,τi−1
(−1,−1, . . . ,−1)

which results in

�β
1,τi−1

(ci(xi
1, 0), . . . , c

i(xi
τi−1, 0)) < ν�β

1,τi−1
(−1, . . . ,−1).
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Therefore, action “play” is optimal for arm i ∈ K at initial state xi
1,

whenever there exists τ i ∈ T i for which

�β
1,τi−1

(ci(xi
1, 0), c

i(xi
2, 0), . . . , c

i(xi
τi−1

, 0))

�β
1,τi−1

(−1,−1, . . . ,−1)
> ν

and, from (21), we have νi(xi
1) > ν.

Similarly, action “not play” is strictly optimal for xi
1 if ∀τ i ≥ 2

�β
1,τi−1

(ci(xi
1, 0), c

i(xi
2, 0), . . . , c

i(xi
τi−1

, 0))

�β
1,τi−1

(−1,−1, . . . ,−1)
≤ νi(xi

1) < ν.

In conclusion, action “play” is optimal in statexi
1 if and only ifνi(xi

1) ≥
ν. Also, action “not play” is optimal in this state if and only if νi(xi

1) ≤
ν. From this argument, we can infer the existence of a family of optimal
policies whose associated inactive sets Θi

ν , i ∈ K are nondecreasing in
ν. This argument establishes the indexability of each arm i ∈ K with
respect to Definition IV.1. �

In addition, we need to show that, in our definition of RAI, the
supremum is always achieved by stopping time(s) that have a simple
characterization.

Proposition IV.1: For each arm i ∈ K, starting from xi
1 ∈ X i, a pos-

itive stopping time τ i ∈ T i achieves the supremum in Definition IV.1.
Proof: For a fixed nonnegative value of ν, with respect to the

previous proof, we know that it is optimal to play at step t if and only
if νi(xi

t) ≥ ν. It is also optimal not to play if and only if νi(xi
t) ≤ ν.

Particularly, it is optimal to both play and not to play at step one if
νi(xi

1) = ν. If we take action “play” at step one, then it would be
optimal to continue taking this action before step τ i if νi(xi

s) ≥ ν
for 1 ≤ s ≤ τ i − 1. In this case, action “not play” will be optimal
afterwards if νi(xi

τi) ≤ ν. Thus, with respect to the rested nature of
our problem and by assuming that decisions are taken in a stationary
manner, only the sequences of actions where we either do not play or
we play throughout [1, τ i), where τ i ∈ T i, are optimal. Equating the
objective values of these two policies for subproblem (18), provides
us the indifference between these alternative actions for state xi

1. The
result of this, which is calculated by using equality in (24), concludes
that

νi(xi
1) =

�β
1,τi−1

(ci(xi
1, 0), c

i(xi
2, 0), . . . , c

i(xi
τi−1

, 0))

�β
1,τi−1

(−1,−1, . . . ,−1)

which establishes the statement of proposition. �
Note that RAI policy is a priority index policy, that is, a policy

based on playing the arm with the highest index value at each decision
step. It is an optimal solution to problem (16) but does not necessarily
provide optimal policies for our risk-averse MAB. The reason lies in
the fact that problem (16) is the result of several relaxations of the
original problem (6), including the relaxation of activation constraint in
a Lagrangian manner as well as taking the summations over all arms out
in the objective function with respect to subadditivity and monotonicity
properties of dynamic risk measures. Therefore, RAI policy is a feasible
policy for our original problem (6) and provides an upper bound to the
risk-averse value function R(x1) given in (6).

An important exception to the discussion above is one-armed bandit
problem, as it is indexable with RAI, which we state without proof in
Theorem IV.2. One-armed bandit problem is also known as the two-
armed bandit problem, where one arm contains a single state and the
other one is a Markovian arm with finite number of states. This problem
is of interest from both applied and theoretical viewpoints. The reader
is referred to [5], [18], and [19] for some interesting applications of
one-armed bandit problem.

Algorithm 1: Computing RAI for Arm i.

1: for k = 1 to |X i| do
2: if k = 1 then
3: Φi

k = X i

4: else
5: Φi

k = Φi
k−1\αi

k−1

6: end if
7: αi

k = argmax
xi∈Φi

k

N i
xi(Φ

i
k)

8: νi(k) = N i
αi
k

(Φi
k)

9: end for
10: return νi(k), k ∈ {1, . . . , |X i|}

Theorem IV.2: One-armed bandit problem is indexable with the
RAIs introduced in Definition IV.1.

V. COMPUTATION OF THE RISK-AVERSE INDICES

So far, we presented the structure of RAI for risk-averse MAB
problem. Now, we need to provide an algorithm for the computation of
these indices. As stated, RAI has a similar structure to Gittins index,
thereby its computation is not that much more difficult than the Gittins
index calculation. The approach we suggest here is a modified version
of the algorithm presented by [20] for computing Gittins indices. For
both cases, we solve single-arm optimal stopping problems. Let xi be a
generic state of arm i and consider the arm evolving under “play” action
starting from xi. In contrast to Section IV, where the set of states with
“not play” action is provided with respect to a given ν as Θi

ν , here,
we define Φi

k as the stopping set related to the kth highest index state.
Therefore, Φi

k has the same interpretation as Θi
νi(xi)

provided that xi

has the kth highest index value. In other words,Φi
k is the set of all states

of arm i ∈ K excluding the best k − 1 index states. In this regard, we
define τ i

xi(Φ
i
k) as the first time that the state of arm i lies in subset Φi

k

starting from xi. Then, τ i
xi(Φ

i
k) provides the supremum in (21) given

that xi has the kth highest index value. Also, for each set Φi
k ⊆ X i and

xi ∈ X i, we define N i
xi(Φ

i
k) as

N i
xi(Φ

i
k) =

�β
1,τi

xi
(Φi

k
)−1

(ci(xi, 0), ci(xi
2, 0), . . . , c

i(xi
τi

xi
(Φi

k
)−1

, 0))

�β
1,τ

xi(Φ
i
k
)−1

(−1,−1, . . . ,−1)

(25)

which yields the optimal value in (21) as long as xi is the kth highest
index state.

Algorithm 1 computes the RAI for arm i ∈ K, with the inputs as the
costs, discount factor, and the parameters of the risk measure. The out-
put of this algorithm, integer state identifiers,νi(k), k ∈ {1, . . . , |X i|},
provide the RAI of all states of arm i, numbered in increasing order of
their index values, that is, state 1 having the highest and state |X i|
having the lowest RAI. In this algorithm, first, we identify the highest
index state, where all the states in arm i are members of the stopping set
Φi

1, imposing the occurrence of the supremum in (21) in τ i = 2 almost
surely. Afterwards, the second-highest index is computed by repeating
the same computation on a new stopping set obtained by removing the
state with the highest index from previous stopping set. The next steps
employ this idea and progress in similar fashion, until the last iteration,
where Φi

|X i | is left with only one state which has the smallest index
value.
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TABLE I
STATISTICS OF MAXIMUM SUBOPTIMALITY PERCENTAGE OF POLICIES RN

AND RA FOR FIRST-ORDER MEAN-SEMIDEVIATION

VI. COMPUTATIONAL EXPERIMENTS

In this section, we conduct a series of computational experiments
in order to assess the performance of the proposed risk-averse index
policy. For each test instance, we compute the following policies:
1) an optimal policy of our problem, which is obtained by using

the risk-averse policy iteration algorithm with convex optimization
method (see [21]);

2) the risk-averse index policy (RA) obtained via RAIs;
3) the risk-neutral policy (RN) obtained via Gittins indices.

We consider a problem of three-armed bandit, where each arm
contains four states and randomly generate 1000 test instances. In
each test instance, the transition probabilities of each arm under the
play action are sampled from U(0, 1), where U represents uniform
distribution, and the resulting transition matrix is normalized across the
rows, i.e., entries of each row is divided by its sum. Following [22], the
costs in each state are drawn from a truncated normal distribution with
mean value generated fromU(−6,−5) and standard deviationσ taking
values from the set {0.01, 0.5, 1}. The experiments are conducted with
discount factor β ∈ {0.9, 0.95}.

As risk measures, we employ first-order mean-semideviation, given
in (2), with κ ∈ {0.25, 0.50, 0.75, 1}, as well as mean-AVaR, given
in (3), with parameters of α ∈ {0.80, 0.90, 0.95} and λ ∈ {0, 0.5}.
For each test instance, we compare RA and RN policies based on two
different performance measures.
1) The suboptimality percentage of policy π ∈ {RA,RN} for each

initial statex ∈ X . This percentage is computed as 100× (R(x)−
Rπ(x))/R(x), where Rπ(x) denotes the value of objective func-
tion in (6) under policy π.

2) Similarity percentage of policy π ∈ {RA,RN} compared to op-
timal policy π∗. It is computed as 100×

∑
x∈X 1(π,π∗)(x)/|X |,

where 1(π,π∗)(x) is equal to one if π∗(x) = π(x) and zero other-
wise.

For each test instance and risk measure, we compute maximum of
suboptimality percentages over all states. The maximum suboptimality
percentages for first-order mean-semideviation risk measure are sum-
marized in Table I . In the third column, we report mean and maximum of
these percentages over 1000 test instances. It can be seen that RA policy
is much better than RN policy regarding this performance measure.
For instance, for σ = 1, β = 0.90, and κ = 1, the maximum value
for maximum suboptimality percentage for RN is 11.81% while it is
3.813% for RA. As indicated in Table I, by increasing the variability
of cost values, that is σ, we observe higher maximum suboptimality
percentages for both polices RN and RA. However, this increase is

TABLE II
AVERAGE SIMILARITY PERCENTAGES OF POLICIES RN AND RA FOR

FIRST-ORDER MEAN-SEMIDEVIATION

more noticeable for RN. Moreover, increasing the level of risk-aversion
(increasing the value of κ) results in higher maximum suboptimality
percentages for both policies; yet, higher increase belongs to RN.
Concerning the discount factor β, no consistent behavior is observed.
For instance, when κ = 1, the worst suboptimality percentage of policy
RA corresponding to σ = 0.01 decreases as β increases; on the other
hand, it increases for σ = 1.

The average similarity percentage for this risk measure is reported in
Table II. With respect to these results, the performance of our risk-averse
index policy RA is exceptionally well. For instance, for σ = 1, β =
0.95, κ = 1, there is more than 6% difference in the average similarity
percentages of RN and RA.

Moreover, we focus on the percentage of instances RN and RA
policies provide optimal policy. In this respect, RA is optimal in
almost 90% of instances, and in no occasion, it is more than 5%
suboptimal, whereas RN is optimal only in 70% of the instances and
the suboptimality percentage can be more than 10%.

The results related to maximum suboptimality percentage for mean-
AVaR risk measure are summarized in Table III. Similar to first-order
mean-semideviation, increase in cost value variability σ results in
increase in maximum suboptimality percentage of RN and RA, where
the increase in the former is more notable. And, no consistent behavior is
observed with respect to the discount factor β. However, increasing the
level of risk-aversion has a diverse effect in RN and RA. By increasing
the level of risk-aversion, i.e., increasing the value of α or reducing λ,
the performance of RN decreases in general. On the other hand, as α
increases, the performance of RA, in general, increases. Additionally,
forα ∈ {0.80, 0.90}, as λ decreases, the performance of RA decreases;
however, it increases for α = 0.95. Our RA policy is superior to RN
policy. It can be seen that, whenσ = 1,β = 0.90, λ = 0, andα = 0.90,
although the worst suboptimality percentage of RN is 39.692%, it is
2.761% for RA.

The average similarity percentages for this risk measure are summa-
rized in Table IV. In all the performance measures, RA is superior to
RN. While the average similarity percentage is more than 99% for RA,
it can drop to around 85% for RN.

In general, the performance of our index policy RA is more superior
to RN when mean-AVaR is used as the risk measure instead of first-order
mean-semideviation. This superiority is more clear when we focus on
the maximum values in Table III for σ = 1, where, in general, the
suboptimality percentage of RN is more than 10 times than that of RA.

Additionally, our index policy is optimal in 97% of instances and
in no occasion it is more than 7.6% suboptimal, whereas RN policy
is optimal only in 50% of the instances and can have a suboptimality
percentage around 40%.

Moreover, in a separate experiment, in order to visualize the time
efficiency of our index policy compared to solving the corresponding
MDP optimally, we record the CPU time of the algorithms for 12

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on November 26,2021 at 11:58:03 UTC from IEEE Xplore.  Restrictions apply. 



5528 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 11, NOVEMBER 2021

TABLE III
STATISTICS OF MAXIMUM SUBOPTIMALITY PERCENTAGE OF POLICIES RN AND RA FOR MEAN-AVAR

TABLE IV
AVERAGE SIMILARITY PERCENTAGES OF POLICIES RN AND RA FOR MEAN-AVAR

Fig. 1. Runtime of obtaining the optimal policy and index policy for
first-order mean-semideviation.

problem sizes for first-order mean-semideviation. These problem sizes
start from problem size 1 where we have two arms with three states
each and ends with problem size 12 where we have three arms with
five states each. The results are presented in Fig. 1 where the CPU
time is in logarithmic scale to provide better comparison. It is seen that
the computation of our risk-averse index heuristic takes significantly
less time than that of finding optimal policy. By increasing the problem
size, computation time of our risk-averse indices seems to grow linearly
while the computation time of solving the risk-averse MDP optimally
shows an exponential growth. The computation time of the same
instances for mean-AVaR is longer but provides a similar pattern.

We further remark that an optimal solution of risk-averse MAB is not
always priority-index based, and in first-order mean-semideviation and
mean-AVaR risk measures, in 0.175% and 0.042% of cases the optimal
policy could not be represented as an index policy, respectively.

VII. CONCLUSION

We introduce a new approach in incorporating risk into MAB
problem by using dynamic coherent measures of risk and propose a
priority-index heuristic, analogous to the structure of Gittins index.
The experiments we conduct to test the performance of our index
policy indicate the excellence of the policy. Compared to the policy
derived from Gittins index, the proposed index policy provides much
lower suboptimality percentages and it is more similar to the optimal
policy. Our experiments comparing the computational complexity of
our index heuristic to solving the corresponding MDP reveal that our
method is time efficient and the computation time grows linearly with
the problem size, whereas the risk-averse MDP computation time shows
an exponential growth.

As future research, one direction would be to perform a regret
analysis of the RAI heuristic for this MAB problem, which would
further solidify the current computational results indicating that the
RAI provides near-optimal policies. The other direction would be to
extend this framework to the restless setting or to the settings with
imperfect information.
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Programming: Modeling and Theory. Philadelphia, PA, USA: SIAM,
2009.

[11] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, “Coherent measures of
risk,” Math. Finance, vol. 9, no. 3, pp. 203–228, 1999.
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