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Abstract
This paper revisits a unified framework of sequential change-point detection and hypothesis
testing modeled using hidden Markov chains and develops its asymptotic theory. Given a
sequence of observations whose distributions are dependent on a hidden Markov chain, the
objective is to quickly detect critical events, modeled by the first time the Markov chain
leaves a specific set of states, and to accurately identify the class of states that the Markov
chain enters. We propose computationally tractable sequential detection and identification
strategies and obtain sufficient conditions for the asymptotic optimality in two Bayesian
formulations. Numerical examples are provided to confirm the asymptotic optimality.

Keywords Hypothesis testing · Change point detection · Optimal stopping · Asymptotic
optimality · Hidden Markov models

Mathematics Subject Classification 62L10 · 62L15 · 62C10 · 60G40

1 Introduction

In this paper, we revisit the joint problem of sequential change-point detection and hypothesis
testing generalized in terms of hidden Markov chains. For a sequence of random variables
whose distributions are functionals of a hiddenMarkov chain, the objective is to quickly detect
the disorder, described by the event in which the hiddenMarkov chain leaves a specific set of
states, and to accurately identify its cause, as represented by the class of states into which the
Markov chain is absorbed. The problem reduces to solving the trade-off between minimizing
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Fig. 1 Transition of the status of a contagious disease. The node (Hi , α), i = 0, 1 and α = A,B,C,B&C,
corresponds to the state where the hypothesis Hi is true and County α is infected. The node (Hi , extinct) is
where Hi is true and the disease has become extinct before reaching A

the expected detection delay and the false alarm and misdiagnosis probabilities. A Bayesian
formulation was studied in Dayanik and Goulding (2009).

The sequential change-point detection, hypothesis testing, and their combinations are
applied in a wide array of fields. Classic examples include signal, speech, and image pro-
cessing; radio astronomy; finance/economics; and seismology. Theirmethodologies are often
essential in the control of epidemics; see, e.g., (Baron 2004; Yu et al. 2013), which explores
the detection of an influenza outbreak. The common objective in these applications is to
derive efficient stopping rules that minimize the required observation size and the false
alarm/misidentification probabilities. For a comprehensive review of this subject, see, e.g.,
(Poor 2013; Tartakovsky et al. 2014; Tartakovsky 2020).

While classical formulations have focused on settings with i.i.d. (independently and
identically distributed) observations and simple (usually binary) decision rules, real-life
decision-making is often more complex. Therefore, most of the past research on this subject
has extended the classical settings to accommodate more realistic scenarios – typically by
relaxing the i.i.d. assumptions and allowing for more complex (multiary) decision rules. This
paper discusses one way to generalize using hidden Markov chains.

Tomotivate theMarkov chainmodel studied in this paper, consider the following problem,
as graphically illustrated in Fig. 1. There are three counties A, B, and C facing an infectious
disease. Suppose a case of infections is reported in County B, and the agency of County
A must promptly detect the event of the infection transmission to County A. Initially, two
hypotheses exist regarding the disease: human-to-human transmission possible (H1) and its
negation (H0). Suppose Counties A, B and C are adjacent to each other and transmission can
occur between these counties, except for the route from County C to A under H0. The agency
wants to quickly detect two events: transmission to County A and the disease becoming
extinct before reaching County A. Hypothesis H1 versus H0 must also be identified to take
suitable actions. Note that this formulation can be applied more widely outside of epidemic
control; for example, rather than disease, computer viruses can be studied, or rumors that
tend to change forms through social networks can be analyzed.

These dynamics can be efficiently modeled via a Markov chain, say Y = (Yn)n≥0: the
decision-maker wants to detect the first time Y enters one of the four shaded nodes and to
identify which node is entered. However, Y is not directly observable, and one must make a
guess through indirect observations, say X = (Xn)n≥0.
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This problem includes the features of both change-point detection and sequential hypoth-
esis testing. The decision-maker must select the time to detect critical events and identify
the true status of the disease (Y ) to take appropriate actions. More precisely, one observes a
sequence of random variables whose distributions are functionals of a hidden Markov chain
Y . The objective is to as quickly as possible detect the event that the hidden Markov chain
leaves a specific set of states and to accurately identify the class of states into which the
Markov chain is absorbed.

The scenario in Fig. 1 is merely one example, but the expanded Markov chain is capable
of modeling various decision-making problems in various fields. The classical change-point
detection with geometrically distributed disorder time and binary hypothesis testing under
i.i.d. observations can be modeled by two-state Markov chains. Additional states to the
Markov chain enable the modeling of the sequential change diagnosis (detection/isolation)
problem, which was first studied in Nikiforov (1995) for the non-Bayesian (minimax) for-
mulation and was further elaborated by, e.g., (Lai 2000; Nikiforov 2000, 2003; Oskiper and
Poor 2002; Tartakovsky 2008); the Bayesian model has been studied in Dayanik et al. (2008).
In fact, the range of problems the hidden Markov model encompasses is broad. For example,
the geometrically distributed disorder time can be generalized to a phase-type distribution
(the distribution of the absorption time of a Markov chain); see the examples described in
Sections 1 and 2 of Dayanik and Goulding (2009).

There are twomain research approaches of this subject – (i) to find themeans to compute an
optimal solution and (ii) to design asymptotically optimal solutions that are easy to compute
and implement. In the first direction, the problem can typically be expressed in terms of the
optimal stopping of the posterior probability process of each alternative hypothesis. However,
few examples admit analytical solutions, and in practice, one needs to rely on numerical
approximations, for example, via value iteration in combination with the discretization of
the space of the posterior probability process. The computational burden and nontrivial
computer representation of the optimal solution hinder the application of the findings of this
first direction in practice. The second direction pursues a strategy that provides simple and
scalable implementation but gives only near-optimal solutions. The asymptotic optimality as
a certain parameter of the problem approaches an ideal value is commonly used as a proxy
for the near-optimality.

Asymptotically optimal strategies are in most cases derived via renewal and nonlinear
renewal theories (see Tartakovsky et al. 2014 for a comprehensive reference).

In the sequential (multiple) hypothesis testing with i.i.d. observations, the log-likelihood
ratio (LLR) processes become conditional random walks. By utilizing the ordinary renewal
theory, the asymptotic behaviors of the expected sample size and the misidentification costs
can be approximated; see, for example, (Baum and Veeravalli 1994). Similar approaches are
possible for change-point detection. In particular, when the disorder time is geometrically
distributed and theobservations are conditionally i.i.d., ordinary renewal theory canbe applied
to the LLR processes, which are conditional random walks.

On the other hand, when the observed random variables are not i.i.d. or when the change-
point is not geometrically distributed, the asymptotic optimality is in general not guaranteed;
instead, the existing literature typically shows that the r-quick convergence of Lai (1977,
1981) of a certain LLR process is a sufficient condition for asymptotic optimality. Tar-
takovsky (1998) and Dragalin et al. (2000) generalized Lai’s results to multi-hypothesis
sequential tests and for more general models; Dragalin et al. (2000) further obtained higher-
order approximations by taking into account the overshoots at up-crossing times of the LLR
processes. As for the change-point detection, Tartakovsky and Veeravalli (2004b) consider
the non-i.i.d. case and show the asymptotic optimality of the Shiryaev procedure under the
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r -quick convergence. Its continuous-time version is studied (Baron and Tartakovsky 2006).
Dayanik et al. (2013) obtained asymptotically optimal strategies for sequential change diag-
nosis, showing that the r -quick convergence is again a sufficient condition for asymptotic
optimality.

Recently, Tartakovsky (2017) successfully obtained a weaker alternative sufficient con-
dition, known as the r-complete convergence, for the non-i.i.d. case of the change-point
detection. The r -quick convergence condition can be replaced by the r -complete conver-
gence condition for a more general class of problems. For a comprehensive account on both
analytical and asymptotic optimality of the change-point detection and sequential hypothesis
testing, we refer the reader to Tartakovsky et al. (2014); Tartakovsky (2020). For up-to-date
results on the general detection-identification problem for non-i.i.d. data, see (Tartakovsky
2021).

This paper presents an asymptotic analysis of the detection and identification problem
in terms of the hidden Markov chains described above and derives asymptotically optimal
strategies, focusing on the following two Bayesian formulations:

The minimum Bayes risk formulationminimization of the sum of the expected detection
delay time and the false alarm and misdiagnosis probabilities (known as the Bayes risk).

The Bayesian fixed-error-probability formulation minimization of the expected detec-
tion delay time subject to certain upper bounds on the false alarm and misdiagnosis
probabilities.

The optimal strategy of the former was derived in Dayanik and Goulding (2009). The
latter is usually solved through its Lagrange relaxation, which is a minimum Bayes risk
problem where the costs are the Lagrange multipliers of the constraints on the false alarm
andmisdiagnosis probabilities. In theory, by employing a hiddenMarkov chain of an arbitrary
number of states, a wide range of realistic models can result. However, the implementation
is computationally feasible only for simple cases. The problem dimension is proportional to
the number of states of the Markov chain, and the computation complexity increases expo-
nentially, which hinders the applications of the hidden Markov model. In practice, obtaining
exact optimal strategies is still limited to simple and classical examples.

We propose simple and asymptotically optimal strategies for both the minimum Bayes
risk and the Bayesian fixed-error-probability formulations. The asymptotic analysis is sim-
ilar for both formulations and can be conducted almost simultaneously. Similar to Dayanik
et al. (2013), we show that the r -complete convergence for an appropriate choice of the
LLR processes is a sufficient condition for asymptotic optimality. This is of particular
importance because it was recently verified in Pergamenchtchikov and Tartakovsky (2018),
Pergamenchtchikov and Tartakovsky (2019) that the r -complete convergence holds for a
large class of Markov processes. We also show in certain cases that the limit can be analyti-
cally derived in terms of the Kullback-Leibler divergence. Through a sequence of numerical
experiments, we further acknowledge the convergence results of the LLR processes and the
asymptotic optimality of the proposed strategies.

The remainder of the paper is organized as follows. In Sect. 2, the two Bayesian formu-
lations are defined. Section 3 presents strategies and the derivation of sufficient conditions
for asymptotic optimality in terms of the r -complete convergence of the LLR processes.
In Sect. 4, we present examples where the limits of the LLR processes can be analytically
obtained via the Kullback-Leibler divergence. Section 5 concludes the paper with numerical
results. Long proofs are deferred to the appendix.
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2 Problem formulations

In this section, we define two Bayesian formulations: the minimum Bayes risk formulation
(Problem 2.1) and the Bayesian fixed-error probability formulation (Problem 2.2). In particu-
lar, the former has been studied and its non-asymptotic solution has been derived in Dayanik
and Goulding (2009).

Consider a probability space (�,F, P) hosting a time-homogeneous Markov chain Y =
(Yn)n≥0 with some finite state space Y , initial state distribution η = {η(y) ∈ [0, 1], y ∈ Y},
and one-step transition matrix P = {P(y, y′) ∈ [0, 1], y, y′ ∈ Y}. Suppose that Y1, . . . ,YM

are M closed (but not necessarily irreducible) mutually disjoint subsets of the state space Y ,
and letY0 := Y \⋃M

k=1 Yk . In other words,Y0 is transient and theMarkov chain Y eventually
gets absorbed into one of the M closed sets. Let us define

θ := min {t ≥ 0 : Yt /∈ Y0} and μ := arg
{
1 ≤ j ≤ M : Yθ ∈ Y j

}

as the absorption time and the closed set that absorbs Y , respectively. Here because Y0 is
transient (i.e. θ < ∞ a.s.), the random variable μ is well-defined. We also define M :=
{1, . . . , M} and M0 := M ∪ {0}.
Remark 2.1 In the example of Fig. 1,Y1 = {(H1,A)},Y2 = {(H0,A)},Y3 = {(H1, extinct)},
Y4 = {(H0, extinct)}, and Y0 consists of the other nodes; the absorption time θ models the
first time when the disease arrives in County A if μ = 1, 2 and when it is extinct when
μ = 3, 4.

The Markov chain Y can be indirectly observed through another stochastic process X =
(Xn)n≥1 defined on the same probability space (�,F, P). We assume that there exists a set of
probability measures {P(y, dx); y ∈ Y} defined on some common measurable space (E, E)

such that

P {Y0 = y0, . . . , Yt = yt , X1 ∈ E1, . . . , Xt ∈ Et } = η(y0)
t∏

n=1

P(yn−1, yn)P(yn, En)

for every (yn)0≤n≤t ∈ Y t+1, (En)1≤n≤t ∈ E t , t ≥ 1. For every y ∈ Y , we assume that
P(y, dx) admits a density function f (y, x) with respect to some σ -finite measure m on
(E, E); namely,

f (y, x)m(dx) = P(y, dx).

Remark 2.2 In this paper, we focus on the case the distribution of X is only dependent on
the (unobservable) state of Y . However, in many applications such as the detection of the
autoregressive (AR) process, the distribution of observation is also dependent on the past
observations. For a hidden Markov model that encompasses this general setting, see (Fuh
and Tartakovsky 2018) (see also Remark 2.5).

Remark 2.3 In practical applications, the parameters of the post-change observation distri-
butions are unknown (composite hypothesis). The considered model assumes to know more
concrete information on the post-change observation distribution and it does not cover the
composite hypothesis cases existing in the literature. In general, the parameter set is not a
finite set and one natural way to handle, as in many of the existing literature, is to consider
the robust version using the worst-case error probabilities. We refer the reader to, for exam-
ple, (Tartakovsky 2020, Chapter 7) for the Beyesian formulation of the composite case. One
potential extension of the current hidden Markov model is to consider the composite version
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where the observation is further dependent on additional unknown parameter as well as the
state of the Markov chain.

Remark 2.4 It is common in the literature to use X for the hiddenMarkov chain and Y for the
observation process. In this paper, however, we follow the notations in Dayanik andGoulding
(2009) and use Y for the hidden Markov chain and X for the observation process.

Let F = (Fn)n≥0 denote the filtration generated by the stochastic process X ; namely,

F0 = {∅,�} and Fn = σ(X1, . . . , Xn), n ≥ 1.

A (sequential decision) strategy (τ, d) is a pair of an F-stopping time τ (in short, τ ∈ F) and
a random variable d : � → M that is measurable with respect to the observation history Fτ

up to the stopping time τ (namely, d ∈ Fτ ). Let

� := {(τ, d) : τ ∈ F and d ∈ Fτ is an M-valued random variable}
be the set of strategies.

Our objective is to obtain a strategy (τ, d) thatminimizes them-thmoment of the detection
delay cost

D(c,m)(τ ) := E

[( ∞∑

t=0

c(Yt )1{t<τ }
)m]

(2.1)

for some m ≥ 1 and deterministic nonnegative and bounded function c : Y → [0,∞), as
well as the terminal decision losses (TDLs)

Ryi (τ, d) := P {d = i, Yτ = y, τ < ∞} , i ∈ M, y ∈ Y \ Yi . (2.2)

Regarding the function c, if we set c(y) = 0 for y ∈ Y0 and c(y) = const for y /∈ Y0,
then it can model a classical expected detection delay E[((τ − θ)+)m]. By allowing c to
be state-dependent, it gives more flexibility in modeling; see, e.g., the examples given in
Dayanik and Goulding (2009).

The Bayes risk is a linear combination of all of these losses,

u(c,a,m)(τ, d) := D(c,m)(τ ) +
∑

i∈M

∑

y∈Y\Yi

ayi Ryi (τ, d) (2.3)

for somem ≥ 1, c, and a set of strictly positive constantsa = (ayi )i∈M,y∈Y\Yi . In (2.1),while
it is natural to assume c(y) = 0 for y ∈ Y0, we allow c(y) to take any nonnegative values for
y ∈ Y0. On the other hand, in (2.2) and (2.3), we assume that any correct terminal decision
(i.e., {d = i, Yτ ∈ Yi , τ < ∞}) is not penalized because otherwise the terminal decision loss
(2.2) cannot be bounded by small numbers and Problem 2.2 (defined subsequently) would
not make sense.

Problem 2.1 (Minimum Bayes risk formulation) Fix m ≥ 1, c, and a set of strictly positive
constants a = (ayi )i∈M,y∈Y\Yi , we want to calculate the minimum Bayes risk

inf
(τ,d)∈�

u(c,a,m)(τ, d)

and find a strategy (τ ∗, d∗) that attains it, if such a strategy exists.
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Problem 2.2 (Bayesian fixed-error probability formulation) Fixm ≥ 1, c, and a set of strictly
positive constants R = (Ryi )i∈M,y∈Y\Yi , we want to calculate the minimum m-th moment
of the detection delay cost

inf
(τ,d)∈�(R)

D(c,m)(τ )

over the set of strategies

�(R) := {(τ, d) ∈ � : Ryi (τ, d) ≤ Ryi , i ∈ M, y ∈ Y \ Yi
}
,

and find a strategy (τ ∗, d∗) ∈ �(R) that attains it, if such a strategy exists.

Remark 2.5 (Connection with the hidden Markov model of Fuh and Tartakovsky (2018))
Problem 2.2 in our setting and the problem considered in Fuh and Tartakovsky (2018) com-
plement each other. In Fuh and Tartakovsky (2018), they considered a version of change point
detection (without identification) using a hidden Markov chain that changes its dynamics at
an unobservable time θ , whose initial distribution is independent of the observation process.

In Fuh and Tartakovsky (2018), the distribution of the observation Xt at time t is a function
of both the state of the hidden Markov chain Yt as well as the previous observation Xt−1,
such that the conditional probability given the change has occurred and has not occurred can
be written

P
( j) {Y1 ∈ A, X1 ∈ B|Y0 = y0, X0 = x0} =

∑

y′∈A

∫

x ′∈B
P( j)(y0, y

′) f ( j)(y′, x ′; x0)m(dx ′),

with P
( j)(y, dx; x0) = f ( j)(y, x; x0)m(dx) for j = 0 (pre-change) and 1 (post-change).

When f ( j)(y, x; x0) is invariant of x0 (i.e. the distribution of observation only depends
on the current state of the Markov chain), it can be modeled as a special case of Problem
2.2 with M = 1. To see this, consider the case when θ ∼ Geom(p) and the state space of
the Markov chain Y is Ẽ . Construct two Markov chains on Y j = {(i, j); i ∈ Ẽ}, j = 0, 1
with corresponding transition matrices P( j). Then, the model of Fuh and Tartakovsky (2018)
corresponds to Problem 2.2 with a newMarkov chain with state space Y = Y0 ∪Y1 with the
new transition matrix P given by, for i, i ′ ∈ Ẽ ,

P((i, 0), (i ′, 0)) = (1 − p)P(0)(i, i ′),
P((i, 1), (i ′, 1)) = P(1)(i, i ′),
P((i, 0), (i ′, 1)) = p1{i=i ′}.

This can be generalized by considering the case θ is phase-type (see Example 1 of Dayanik
and Goulding (2009)) and modeling Y0 in an analogous way using N copies of the Markov
chain where N is the number of states necessary to describe the phase-type distribution.

With the framework of Dayanik and Goulding (2009), we can consider various general-
izations such as the case with identification (M ≥ 2) and also the case when the disorder
time θ depends on μ (see Example 2 of Dayanik and Goulding (2009)).

For every i ∈ M, define

R̃ ji (τ, d) :=
∑

y∈Y j

Ryi (τ, d) =
{

P {d = i, τ < θ} , j = 0,
P {d = i, μ = j, θ ≤ τ < ∞} , j ∈ M \ {i}. (2.4)
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Remark 2.6 Fix a set of positive constants R. We have

�(R) ⊂
{
(τ, d) ∈ � : R̃ ji (τ, d) ≤

∑

y∈Y j

Ryi , i ∈ M, j ∈ M0 \ {i}
}

=: �(R),

�(R) ⊃
{
(τ, d) ∈ � : R̃ ji (τ, d) ≤ min

y∈Y j
Ryi , i ∈ M, j ∈ M0 \ {i}

}
=: �(R).

In our analysis, we will need to reformulate the problem in terms of the conditional
probabilities

Pi {X1 ∈ E1, ..., Xn ∈ En} := P { X1 ∈ E1, ..., Xn ∈ En | μ = i} ,

P
(t)
i {X1 ∈ E1, ..., Xn ∈ En} := P { X1 ∈ E1, ..., Xn ∈ En | μ = i, θ = t} , t ≥ 0,

defined for every i ∈ M, n ≥ 1 and (E1×· · ·×En) ∈ En . LetEi andE
(t)
i be the expectations

with respect to Pi and P
(t)
i , respectively. We also let

νi := P {μ = i} , i ∈ M,

be the unconditional probability of the event that Y is absorbed byYi . BecauseY0 is transient,
we must have

∑
i∈M νi = 1. Without loss of generality, we assume

νi > 0, i ∈ M
because otherwise we can disregard Yi and consider the Markov chain on Y \ Yi .

In terms of those conditional probabilities, we have D(c,m)(τ ) = ∑
i∈M νi D

(c,m)
i (τ ),

where

D(c,m)
i (τ ) := Ei

[( ∞∑

t=0

c(Yt )1{t<τ }
)m]

, i ∈ M, (τ, d) ∈ �.

We decompose the Bayes risk such that

u(c,a,m)(τ, d) =
∑

i∈M
νi u

(c,a,m)
i (τ, d)

where we define

u(c,a,m)
i (τ, d) := D(c,m)

i (τ ) + R(a)
i (τ, d), (2.5)

R(a)
i (τ, d) := 1

νi

∑

y∈Y\Yi

ayi Ryi (τ, d) (2.6)

for every (τ, d) ∈ �. In particular, if we set ayi = 1 for all y ∈ Y\Yi , using (2.4),

R(1)
i (τ, d) := 1

νi

∑

y∈Y\Yi

Ryi (τ, d) = 1

νi

∑

j∈M0\{i}
R̃ ji (τ, d), (τ, d) ∈ �. (2.7)

3 Asymptotically optimal strategies

We now introduce two strategies. The first strategy triggers an alarm when the posterior
probability of the event that Y has been absorbed by a certain closed set exceeds some
threshold for the first time, andwill be later proposed as an asymptotically optimal solution for
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Problem 2.1. The second strategy is its variant, expressed in terms of the log-likelihood ratio
(LLR) processes and will be proposed as an asymptotically optimal solution for Problem 2.2.

For all y ∈ Y , let (
n(y))n≥0 be the posterior probability process defined by


n(y) := P {Yn = y|Fn} , y ∈ Y.

Then, for y ∈ Y , 
0(y) = η(y) and for n ≥ 1


n(y) = αn(X1, . . . , Xn, y)
∑

y′∈Y αn(X1, . . . , Xn, y′)

where

αn(x1, . . . , xn, y) :=
∑

(y0,...,yn−1)∈Yn

(

η(y0)
n−1∏

k=1

P(yk−1, yk) f (yk, xk)

)

P(yn−1, y) f (y, xn);

(3.1)

see Dayanik and Goulding (2009) for how these can be derived. Also define


̃(i)
n := P {Yn ∈ Yi |Fn} =

{
P {θ > n|Fn} , i = 0
P {θ ≤ n, μ = i |Fn} , i ∈ M

}

.

Then 
̃
(i)
0 =∑y∈Yi


0(y) =∑y∈Yi
η(y), i ∈ M0, and for n ≥ 1


̃(i)
n =

∑

y∈Yi


n(y) = α̃
(i)
n (X1, . . . , Xn)

∑
j∈M0

α̃
( j)
n (X1, . . . , Xn)

,

where

α̃(i)
n (x1, . . . , xn) :=

∑

y∈Yi

αn(x1, . . . , xn, y), i ∈ M0, (x1, . . . , xn) ∈ En . (3.2)

For the rest of the paper, we use the short-hand notations: α̃
(i)
n := α̃

(i)
n (X1, . . . , Xn) for

n ≥ 1 and i ∈ M0. We also assume the following, which is imposed so that the LLR process
is well-defined. Note, however, that this naturally holds except for pathological (and non-
interesting) cases. This fails for example when θ is a deterministic constant (which can be
modeled by using the transition matrix with elements 0 and 1) and M = 1.

Assumption 3.1 We assume, there exists T such that 0 < 
̃
(i)
n < 1 a.s. for every finite n ≥ T

and i ∈ M.

Let �(i, j) = (�n(i, j))n≥1 be the LLR processes;

�n(i, j) := log

̃

(i)
n


̃
( j)
n

= log
α̃

(i)
n

α̃
( j)
n

, n ≥ 1, i ∈ M, j ∈ M0 \ {i}. (3.3)

Definition 3.1 ((τA, dA)-strategy for the minimum Bayes risk formulation) Fix a set of
strictly positive constants A = (Ai )i∈M, define strategy (τA, dA) by

τA = min
i∈M τ

(i)
A and dA ∈ argmini∈M τ

(i)
A , (3.4)

where

τ
(i)
A := inf

{

n ≥ 1 : 
̃(i)
n >

1

1 + Ai

}

, i ∈ M. (3.5)
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Define the logarithm of the odds-ratio process

�(i)
n := log


̃
(i)
n

1 − 
̃
(i)
n

= − log
[ ∑

j∈M0\{i}
exp (−�n(i, j))

]

= log
α̃

(i)
n

∑
j∈M0\{i} α̃

( j)
n

, i ∈ M, n ≥ 1. (3.6)

Then, (3.5) can be rewritten as

τ
(i)
A = inf

{

n ≥ 1 : 1 − 
̃
(i)
n


̃
(i)
n

< Ai

}

= inf
{
n ≥ 1 : �(i)

n > − log Ai

}
, i ∈ M. (3.7)

Definition 3.2 ((υB , dB)-strategy for the Bayesian fixed-error-probability formulation) Fix
a set of strictly positive constants B = (Bi j )i∈M, j∈M0\{i}, define

υB := min
i∈M υ

(i)
B and dB ∈ arg min

i∈Mυ
(i)
B (3.8)

where

υ
(i)
B := inf

{
n ≥ 1 : �n(i, j) > − log Bi j for every j ∈ M0 \ {i}} , i ∈ M. (3.9)

Remark 3.1 In (3.4) and (3.8), when the minimizer is not unique, dA and dB can be selected
arbitrarily among the minimizers.

Fix i ∈ M. Define

Bi := max
j∈M0\{i}

Bi j and Bi := min
j∈M0\{i}

Bi j ,

and the minimum of the LLR processes,

�(i)
n := min

j∈M0\{i}
�n(i, j), n ≥ 1.

Then we have

υ
(i)
B ≤ υ

(i)
B ≤ υ

(i)
B ,

where

υ
(i)
B := inf

{
n ≥ 1 : �(i)

n > − log Bi

}
and υ

(i)
B := inf

{
n ≥ 1 : �(i)

n > − log Bi

}
.

Notice, by (3.6), that �(i)
n ≤ �n(i, j) for every n ≥ 1 and j ∈ M0 \ {i}, and hence

�(i)
n ≥ �(i)

n , n ≥ 1. (3.10)

We will show that, by adjusting the values of A and B, the strategy (τA, dA) is asymptot-
ically optimal in Problem 2.1 as

‖c‖ := max
y∈Y c(y) ↓ 0

for fixed a, and the strategy (υB , dB) is asymptotically optimal in Problem 2.2 as

‖R‖ := max
i∈M, y∈Y\Yi

Ryi ↓ 0
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for fixed c. For the latter, we assume that, in taking limits, Ri := (Ryi )y∈Y\Yi satisfy

miny∈Y\Yi Ryi

maxy∈Y\Yi Ryi
> βi , i ∈ M, (3.11)

for some strictly positive constants (βi )i∈M. This limit mode will still be denoted by “‖R‖ ↓
0” for brevity. We assume (3.11) for our asymptotic optimality results. We choose the values
of the barriers B as functions of R, and, for our strategies to be asymptotically optimal, it is
necessary to assume that Ryi for each y needs to decrease at a similar speed (see Remark 3.4
and (3.22)).

We will find functions A(c) and B(R) so that

u(c,a,m)(τA(c), dA(c)) ∼ inf
(τ,d)∈�

u(c,a,m)(τ, d) as ‖c‖ ↓ 0, (3.12)

D(c,m)(υB(R)) ∼ inf
(τ,d)∈�(R)

D(c,m)(τ ) as ‖R‖ ↓ 0, (3.13)

where

xγ ∼ yγ as γ → γ0 ⇐⇒ lim
γ→γ0

xγ

yγ
= 1.

In fact, we will obtain results stronger than (3.12) and (3.13); we will show

u(c,a,m)
i (τA(c), dA(c)) ∼ inf

(τ,d)∈�
u(c,a,m)
i (τ, d) as ‖c‖ ↓ 0, (3.14)

D(c,m)
i (υB(R)) ∼ inf

(τ,d)∈�(R)

D(c,m)
i (τ ) as ‖R‖ ↓ 0, (3.15)

for every i ∈ M.

3.1 Convergence of terminal decision losses and detection delay

As c and R decrease in Problems 2.1 and 2.2 , respectively, the optimal stopping regions
shrink and one should expect to wait longer. In Problem 2.1, when the unit sampling cost
is small, one should take more advantage of it and sample more. In Problem 2.2, when the
upper bounds on the TDLs are small, one expects to wait longer to collect more information
in order to satisfy the constraints. On the other hand, the size of the stopping regions for
(τA, dA) and (υB , dB) decrease monotonically as A and B decrease. Therefore, functions
A(c) and B(R) should be monotonically decreasing as c and R decrease, respectively. We
explore the asymptotic behaviors of the detection delay cost and the TDL as A ↓ 0 and
B ↓ 0.

Define

‖A‖ := max
i∈M Ai and ‖B‖ := max

i∈M, j∈M0\{i}
Bi j .

Moreover, assume, while taking limits ‖B‖ ↓ 0, that the ratio Bi/Bi for every i ∈ M is
bounded from below by some strictly positive number so that it is consistent with how ‖R‖
decreases to 0 as we assumed in (3.11).

We first obtain bounds on the TDLs that are shown to converge to zero in the limit.
The LLR processes can be used as Radon-Nikodym derivatives to change measures as the
following lemma shows. The proof only requires the change of measure and the same result
holds more generally. For the proof, see, e.g., Lemma 2.3 of Dayanik et al. (2013).
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Lemma 3.1 (Changing Measures) Fix i ∈ M, an F-stopping time τ , and an Fτ -measurable
event F. We have

P (F ∩ {μ = j, θ ≤ τ < ∞}) = νi Ei

[
1F∩{θ≤τ<∞}e−�τ (i, j)

]
, j ∈ M \ {i},

P (F ∩ {τ < θ}) = νi Ei

[
1F∩{θ≤τ<∞}e−�τ (i,0)

]
.

The next proposition can be obtained by setting F := {d = i} ∈ Fτ in Lemma 3.1.

Proposition 3.1 For every strategy (τ, d) ∈ �, we have

R̃ ji (τ, d) = νi Ei

[
1{d=i, θ≤τ<∞}e−�τ (i, j)

]
, i ∈ M, j ∈ M0 \ {i}.

In particular, (2.7) can be rewritten

R(1)
i (τ, d) = Ei

[
1{d=i, θ≤τ<∞}

∑

j∈M0\{i}
e−�τ (i, j)

]
, i ∈ M, (τ, d) ∈ �. (3.16)

Remark 3.2 Fix i ∈ M. Let

ai := max
y∈Y\Yi

ayi .

By (2.6), (2.7) and (3.16),

R(a)
i (τ, d) ≤ 1

νi

∑

j∈M0\{i}
(max
y∈Y j

ayi )R̃ ji (τ, d) ≤ ai R
(1)
i (τ, d)

= aiEi

[
1{d=i, θ≤τ<∞}

∑

j∈M0\{i}
e−�τ (i, j)

]
.

With this remark and Definitions 3.1 and 3.2 and (3.7), we attain a slight modification of
Proposition 3.4 of Dayanik et al. (2013).

Proposition 3.2 (Bounds on the TDL) We can obtain the following bounds on the TDLs.

(i) For every fixed A = (Ai )i∈M and a = (ayi )i∈M,y∈Y\Yi , we have

R(a)
i (τA, dA) ≤ ai Ai , i ∈ M.

(ii) For every B = (Bi j )i∈M, j∈M\{i}, we have

R̃ ji (υB , dB) ≤ νi Bi j , i ∈ M, j ∈ M0 \ {i}.
Using the bounds in Proposition 3.2 and Remark 2.6, we can obtain feasible strategies by

choosing the values of A and B accordingly.

Proposition 3.3 (Feasible Strategies for Problem 2.2) Fix a set of strictly positive constants
R = (Ryi )i∈M,y∈Y\Yi . If Bi j (R) ≤ miny∈Y j Ryi/νi for every i ∈ M and j ∈ M0 \ {i},
then (υB(R), dB(R)) ∈ �(R).

We now analyze the asymptotic behavior of the detection delay. The next remark allows
us to use τ

(i)
A ↑ ∞ (resp. υ(i)

B ↑ ∞) and Ai ↓ 0 (resp. Bi ↓ 0 where Bi := (Bi j ) j∈M0\{i})
interchangeably for every i ∈ M. Its proof is the same as that of Proposition 3.6 of Dayanik
et al. (2013).

Remark 3.3 Fix i ∈ M. We have Pi -a.s.,
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(i) τ
(i)
A → ∞ as Ai ↓ 0 and τA → ∞ as ‖A‖ ↓ 0,

(ii) υ
(i)
B → ∞ as Bi ↓ 0 and υB → ∞ as ‖B‖ ↓ 0.

The posterior probability process (
̃
(i)
n )i∈M0 has been shown to converge a.s. in Dayanik

and Goulding (2009). Moreover, because the posterior probability of the correct hypothesis
should tend to increase in the long run, on the event {μ = i}, i ∈ M, it is expected that 
̃(i)

n

converges to 1 and that 
̃( j)
n converges to 0 for every j ∈ M0 \{i}with probability one. This

suggests the a.s.-convergence of �n(i, j) to infinity given μ = i for every j ∈ M0 \ {i}.
For the rest of this section, we further assume that the average increment converges to some
strictly positive value.

Assumption 3.2 For every i ∈ M, we assume that

�n(i, j)/n
Pi−a.s.−−−−→
n↑∞ l(i, j),

for some l(i, j) ∈ (0,∞] for every j ∈ M0 \ {i}, and
min

j∈M0\{i}
l(i, j) < ∞.

This is indeed satisfied in the i.i.d. case (Dayanik et al. 2013). For the case |M| = 1, stronger
convergence results (for a more general hiddenMarkov setting) beyond Assumption 3.2 hold
as shown by (Fuh and Tartakovsky 2018, Lemma 1). In Sect. 4, we will show that this is also
satisfied in certain settings and that the limit can be expressed in terms of theKullback-Leibler
divergence.

Let us fix i ∈ M. We show that, for small values of A and B, the stopping times τ
(i)
A and

υ
(i)
B in (3.4) and (3.9) are essentially determined by the process �(i, j(i)), where

j(i) ∈ argmin j∈M0\{i} l(i, j) is any index in M0 \ {i} that attains
l(i) := min

j∈M0\{i}
l(i, j) > 0,

and Pi -a.s. �n(i, j(i))/n ≈ �
(i)
n /n ≈ �

(i)
n /n ≈ l(i) for sufficiently large n as the next

proposition implies.

Proposition 3.4 For every i ∈ M, we have Pi -a.s. (i) �
(i)
n /n → l(i) and (ii) �

(i)
n /n → l(i)

as n ↑ ∞.

For the proof of Proposition 3.4 above, (ii) follows immediately by Assumption 3.2 and
(i) follows from the next lemma after replacing Y ( j)

n , P, and (μ j ) j∈M0\{i} in the lemma with
�n(i, j)/n, Pi , and (l(i, j)) j∈M0\{i}, respectively, for every fixed i ∈ M.

Lemma 3.2 For every j = 1, . . . ,m, let Y ( j) = (Y ( j)
n )n≥1 be a sequence of random variables

defined on a common probability space (�, E, P), and suppose that Y ( j)
n converges a.s. to

some constant μ j ∈ [−∞,∞] for every j = 1, . . . ,m. Then − 1
n log

∑m
j=1 e

−nY ( j)
n

a.s.−−−→
n↑∞

min1≤k≤m μk .

Lemma 3.2 is a straightforward extension of Lemma 5.2 of Baum and Veeravalli (1994) and
hence its proof is omitted.

The following lemma can be derived from Proposition 3.4. The proof is the same as that
of Lemma 3.9 of Dayanik et al. (2013).
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Lemma 3.3 For every i ∈ M and any j(i) ∈ argmin j∈M0\{i} l(i, j), we have Pi -a.s.

(i) − τ
(i)
A

log Ai

Ai↓0−−−→ 1

l(i)
, (ii) − (τ

(i)
A − θ)+
log Ai

Ai↓0−−−→ 1

l(i)
,

(iii) − υ
(i)
B

log Bi j(i)

Bi↓0−−−→ 1

l(i)
, (iv) − (υ

(i)
B − θ)+
log Bi j(i)

Bi↓0−−−→ 1

l(i)
.

Remark 3.4 Without loss of generality, we shall assume that 0 < Bi j < 1 (i.e. −∞ <

log Bi j < 0) for all i ∈ M and j ∈ M0 \ {i} as we are interested in the limits of certain
quantities as ‖B‖ ↓ 0. Recall also that the ratio Bi/Bi for every i ∈ M is bounded from
below by some strictly positive number. Hence

1 = lim
Bi↓0

log Bi j
log Bi

= lim
Bi↓0

log Bi

log Bi
= lim

Bi↓0
log Bi j
log Bi

for every i ∈ M, j ∈ M0 \ {i}.

Here, the last equality follows from the first two equalities.

For every i ∈ M, conditionally on {Y0 ∈ Yi }, the finite-state Markov chain Y always
admits a unique distribution wi (y), y ∈ Yi , such that

1

n + 1

n∑

m=0

1{y}(Ym)
n↑∞−−−→ wi (y), a.s. on {Y0 ∈ Yi };

see, e.g., (Tijms 2003). Then

1

n + 1

n∑

m=0

c(Ym)
n↑∞−−−→ ci :=

∑

y∈Yi

c(y)wi (y), a.s. on {Y0 ∈ Yi }.

This and the a.s. finiteness of θ together with Lemma 3.3 prove the next lemma.

Lemma 3.4 For every i ∈ M and any j(i) ∈ argmin j∈M0\{i} l(i, j), we have Pi -a.s.

(i) −
∑τ

(i)
A

m=0 c(Ym)

log Ai

Ai↓0−−−→ ci
l(i)

, (ii) −
∑τ

(i)
A ∨θ

m=θ c(Ym)

log Ai

Ai↓0−−−→ ci
l(i)

,

(iii) −
∑v

(i)
B

m=0 c(Ym)

log Bi j(i)

Bi↓0−−−→ ci
l(i)

, (iv) −
∑v

(i)
B ∨θ

m=θ c(Ym)

log Bi j(i)

Bi↓0−−−→ ci
l(i)

.

Because we want to minimize themth moment of the detection delay time for anym ≥ 1,
we will strengthen the convergence results of Lemma 3.3. We require Condition 3.1 below
for some r ≥ m.

Condition 3.1 (Uniform Integrability) For given r ≥ 1, we assume that

(i) (τ
(i)
A /(− log Ai ))

r
Ai>0 is Pi -uniformly integrable for every i ∈ M,

(ii) (υ
(i)
B /(− log Bi j(i)))rBi>0 is Pi -uniformly integrable for every i ∈ M.

Because c(·) is bounded, this also implies the following.

Lemma 3.5 For every i ∈ M, we have the followings.

(i) UnderCondition 3.1 (i) for somer ≥ 1,
(
(
∑τ

(i)
A

m=0 c(Ym))/(− log Ai )
)r
Ai>0 isPi -uniformly

integrable.
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(ii) Under Condition 3.1 (ii) for some r ≥ 1,
(
(
∑υ

(i)
B

m=0 c(Ym))/(− log Bi j(i))
)r
Bi>0 is Pi -

uniformly integrable.

Hence, Condition 3.1 for some r ≥ m is sufficient for the Lm-convergence.

Lemma 3.6 For every i ∈ M and m ≥ 1, we have the following.

(i) If Condition 3.1 (i) holds for some r ≥ m, then we have

τ
(i)
A /(− log Ai )

in Lm (Pi )−−−−−−→
Ai↓0

l(i)−1 and D(c,m)
i (τA)/(− log Ai )

Ai↓0−−−→ (ci/l(i))
m .

(3.17)

(ii) If Condition 3.1 (ii) holds for some r ≥ m, then we have

υ
(i)
B /(− log Bi j(i))

in Lm (Pi )−−−−−−→
Bi↓0

l(i)−1 and D(c,m)
i (υB)/(− log Bi j(i))

Bi↓0−−−→ (ci/l(i))
m .

(3.18)

Alternatively to Condition 3.1, it can be shown that the r -quick convergence is a sufficient
condition as in (Baron and Tartakovsky 2006; Dragalin et al. 2000; Lai 1981; Tartakovsky
and Veeravalli 2004b). However, here we obtain a weaker sufficient condition known as the
r -complete convergence recently verified to act as a sufficient condition for a related problem
in Tartakovsky (2017).

Lemma 3.7 Fix i ∈ M. (i) If

∞∑

n=1

nm−1
Pi

{
�n(i)/n < l(i) − ε

}
< ∞,

for all ε > 0, we have τ
(i)
A /(− log Ai )

in Lm (Pi )−−−−−−→
Ai↓0

l(i)−1. (ii) If

∞∑

n=1

nm−1
Pi

{
�n(i)/n < l(i) − ε

}
< ∞,

for all ε > 0, we have υ
(i)
B /(− log Bi )

in Lm (Pi )−−−−−−→
Bi↓0

l(i)−1.

Proof We only prove (ii). The proof for (i) is similar and slightly simpler.
First, Fatou’s lemma and Lemma 3.3 give the lower bound: l(i)−m ≤ lim infBi↓0 Ei

[(υ(i)
B )m]/(− log Bi )

m , and hence it suffices to obtain the upper bound.
By following (A.5) of Tartakovsky (2017), we have a bound: for 0 < ε < l(i),

Ei [(υ(i)
B )m] ≤ NB(ε)m + m2m−1

∞∑

n=NB (ε)

nm−1
Pi {υ(i)

B > n}

where

NB(ε) := 1 +
⌊− log Bi

l(i) − ε

⌋

. (3.19)
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For all n ≥ NB(ε) (so that (l(i) − ε)n > − log Bi ),

Pi {υ(i)
B > n} ≤ Pi

{
�n(i) ≤ − log Bi

} ≤ Pi
{
�n(i)/n < l(i) − ε

}
.

Therefore, by (3.19) and the assumption,

lim sup
Bi↓0

Ei [(υ(i)
B )m]

(− log Bi )
m

≤ lim sup
Bi↓0

NB(ε)m + m2m−1∑∞
n=1 n

m−1
Pi

{
�n(i)
n < l(i) − ε

}

(− log Bi )
m

=
( 1

l(i) − ε

)m
.

Because ε > 0 is arbitrary, we have the result. ��

Corollary 3.1 Fix i ∈ M. Suppose (C1) for all j ∈ argmink∈M0\{i} l(i, k) (such that l(i, j) =
l(i)),

∞∑

n=1

nm−1
Pi
{
�n(i, j)/n < l(i) − ε

}
< ∞,

for all ε > 0, and (C2) for all j ∈ M0\({i} ∪ argmink∈M0\{i} l(i, k)) (such that l(i, j) >

l(i)),

∞∑

n=1

nm−1
Pi
{
�n(i, j)/n < l(i)

}
< ∞.

Then, we have (i) τ (i)
A /(− log Ai )

in Lm (Pi )−−−−−−→
Ai↓0

l(i)−1 and (ii) υ(i)
B /(− log Bi )

inLm (Pi )−−−−−→
Bi↓0

l(i)−1.

Proof The claim (ii) holds by Lemma 3.7 because, for 0 < ε < min j∈M0\{i}:l(i, j)>l(i)(l(i, j)
− l(i)) and n ≥ 1,

Pi
{
�n(i)/n < l(i) − ε

} ≤
∑

j∈M0\{i}
Pi
{
�n(i, j)/n < l(i) − ε

}

≤
∑

j∈M0\{i}:l(i, j)=l(i)

Pi
{
�n(i, j)/n < l(i) − ε

}

+
∑

j∈M0\{i}:l(i, j)>l(i)

Pi
{
�n(i, j)/n < l(i)

}
.

On the other hand, as in the proof of Remark 3.16 of Dayanik et al. (2013), we have, for all
ε > 0 and n > 2 logM/ε,

{�(i)
n /n ≥ l(i) − ε} ⊃ {�n(i, j)/n ≥ l(i, j) − ε/2, ∀ j ∈ M0\{i}},
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and hence, for sufficiently small ε,

Pi

{
�(i)

n /n < l(i) − ε
}

≤ Pi

{
�

(i, j)
n /n < l(i, j) − ε/2 for some j ∈ M0\{i}

}

≤
∑

j∈M0\{i}
Pi

{
�

(i, j)
n /n < l(i, j) − ε/2

}

≤
∑

j∈M0\{i}:l(i, j)=l(i)

Pi

{
�n(i, j)/n < l(i) − ε/2

}

+
∑

j∈M0\{i}:l(i, j)>l(i)

Pi

{
�n(i, j)/n < l(i)

}
.

Hence, (i) holds as well under C1 and C2. ��
Proposition 3.5 Fix i ∈ M. Suppose conditions C1 and C2 of Corollary 3.1 hold. Then,
(3.17) and (3.18) hold.

Proof Fix i ∈ M. (i) Because Ei (τ
(i)
A )m ∼ (− log Ai/l(i))m , (

τ
(i)
A− log Ai

)mAi>0 is Pi -uniformly

integrable. In addition, because
∑τ

(i)
A

t=1 c(Yt )

τ
(i)
A

is bounded,
(∑τ

(i)
A

t=1 c(Yt )

τ
(i)
A

τ
(i)
A− log Ai

)m

Ai>0
is also Pi -

uniformly integrable and converge to (ci/l(i))m , and hence we have

lim
Ai↓0

Ei [(∑τ
(i)
A

t=1 c(Yt ))
m]

Ei [(τ (i)
A )m]

= Ei

[
lim
Ai↓0

(∑τ
(i)
A

t=1 c(Yt )

τ
(i)
A

τ
(i)
A

− log Ai

)m]
lim
Ai↓0

(− log Ai )
m

Ei [(τ (i)
A )m]

= cmi .

This and Corollary 3.1 show (3.18). The proof of (3.17) is similar. ��

3.2 Asymptotic optimality

We now prove the asymptotic optimality of (τA, dA) and (υB , dB) for Problems 2.1 and 2.2
under Conditions 3.1 (i) and (ii), respectively.

We first derive a lower bound on the expected detection delay under the optimal strategy
(see Lemma 3.8). The lower bound on the expected detection delay under the optimal strategy
can be obtained similarly to CPD and SMHT (see Baron and Tartakovsky 2006; Baum and
Veeravalli 1994; Dragalin et al. 1999, 2000; Lai 2000; Tartakovsky and Veeravalli 2004a).
This lower bound and Lemma 3.6/Proposition 3.5 can be combined to obtain asymptotic
optimality for both Problems 2.1 and 2.2 .

Lemma 3.8 For every i ∈ M and j(i) ∈ argmin j∈M0\{i} l(i, j), we have

lim inf
Ri↓0

inf
(τ,d)∈�(R)

D(c,m)
i (τ )

(
ci
l(i)

∣
∣
∣log

(
1
νi

∑
y∈Y j(i)

Ryi

)∣
∣
∣
)m ≥ 1.

We now study how to set A in terms of c in order to achieve asymptotic optimality in
Problem 2.1. We see from Proposition 3.2 and Lemma 3.6 that the TDLs decrease faster than
the detection delay cost and are negligible when A and B are small. Indeed, we have, with
c̃i := cmi , in view of the definition of the Bayes risk in (2.5), by Proposition 3.2 and Lemma
3.6, for every i ∈ M,

u(c,a,m)
i (τA, dA) ∼ c̃i

(− log Ai

l(i)

)m

+ Ai ∼ c̃i

(− log Ai

l(i)

)m

, as Ai ↓ 0. (3.20)
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Following the same idea of Baron and Tartakovsky (2006) for the change detection prob-
lem, we choose the value of Ai as the minimizer of the mapping

x �→ g(c̃i )
i (x) := c̃i

(− log x

l(i)

)m

+ x (3.21)

over x ∈ (0,∞). In other words,

Ai (ci ) ∈ argminx∈(0,∞) g
(c̃i )
i (x), c̃i > 0.

In particular, when m = 1, Ai (ci ) = ci/l(i).
The proof of the following is similar to that of Proposition 3.18 of Dayanik et al. (2013)

and is hence omitted.

Proposition 3.6 (Asymptotic optimality of (τA, dA) in Problem 2.1) Fix m ≥ 1 and a set of
strictly positive constants a. Under Conditions 3.1 (i) or C1 and C2 of Corollary 3.1 for the
given m, the strategy (τA(c), dA(c)) is asymptotically optimal as ‖c‖ ↓ 0; that is, (3.14) holds
for every i ∈ M.

We now show that the strategy (υB , dB) is asymptotically optimal for Problem 2.2. It
follows from Proposition 3.3 that, if we set

Bi j (R) := miny∈Y j Ryi

νi
, for every i ∈ M, j ∈ M0 \ {i},

thenwehave (υB(R), dB(R)) ∈ �(R) for everyfixedpositive constants R = (Ryi )i∈M, y∈Y\Yi .

Assuming the conditions in Lemma 3.6 (ii) or Proposition 3.5 hold, because υB(R) ≤ υ
(i)
B(R)

and miny∈Y j(i) Ryi ↓ 0 is equivalent to Bi j(i)(R) ↓ 0, we have

lim sup
Ri↓0

D(c,m)
i (υB(R))

(
ci
l(i) | log

(
miny∈Y j(i) Ryi/νi

) |
)m = lim sup

Ri↓0

D(c,m)
i (υB(R))

(
ci
l(i) | log Bi j(i)(R)|

)m ≤ 1. (3.22)

This together with Lemma 3.8 shows asymptotic optimality.

Proposition 3.7 (Asymptotic optimality of (υB , dB) in Problem 2.2) Fix m ≥ 1. Under
Condition 3.1 (ii) or C1 and C2 of Corollary 3.1 for the given m, the strategy (υB(R), dB(R))

is asymptotically optimal as ‖R‖ ↓ 0; that is, (3.15) holds for every i ∈ M.

4 Convergence results of LLR processes

In this section, we consider two particular cases where Assumption 3.2 holds with l(i, j)
expressed in terms of the Kullback-Leibler divergence. We assume that Xθ , Xθ+1, . . . are
identically distributed on {μ = i} given θ , for every i ∈ M. For the purpose of determining
the limit l(i, j), because each class is closed, we can assume without loss of generality that
Yi consists of a single state, say,

Yi = {i} with fi (·) ≡ f (i, ·), (4.1)

for every i ∈ M.
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The conditional probability of the event that Y is absorbed by Yi = {i} at time t ≥ 0,
given {μ = i}, is

ρ
(i)
t := P{θ = t |μ = i} =

{
η(i)
νi

, t = 0,
1
νi

∑
(y0,...,yt−1)∈Y t

0
η(y0)

∏t−1
k=1 P(yk−1, yk)P(yt−1, i), t ≥ 1.

(4.2)

We assume the following throughout this section.

Assumption 4.1 For every i ∈ M, we assume that

�(i) := − lim
t→∞

log ρ
(i)
t

t
= − lim

t→∞
log(1 −∑t

k=0 ρ
(i)
k )

t
(4.3)

exists and �(i) ∈ (0,∞].
Here, �(i) = ∞ holds for example when Pi {θ < M} = 1 for some M < ∞. On the
other hand, we must have �(i) > 0. To see this, because θ is the exit time from a set of
transient states, using the facts on absorption probabilities (see e.g. Çınlar 2013, Chapters
5 and 6), it can be shown that P{θ > t} = o(zt ) as t → ∞ for some z < 1. Now, fix
i ∈ M. Because P{θ > t} = ∑

j∈M ν jP{θ > t |μ = j} ≥ νiP{θ > t |μ = i}, we have
P{θ > t |μ = i} ≤ P{θ > t}/νi . Hence,

lim inf
t→∞

(
− logP{θ > t |μ = i}

t

)
≥ lim inf

t→∞
(

− logP{θ > t} − log νi

t

)
≥ − log z > 0.

In a special case where the change time is geometric with parameter p > 0 as in Dayanik
et al. (2013), this is satisfiedwith�(i) = | log(1−p)|. Assumption 4.1 also holds, for example,
when θ is a mixture or a sum of geometric random variables; see the examples given in Sect.
5.1.

4.1 Example 1

Suppose that the distribution of X given Y is identical in the transient set Y0; namely,

f (y, ·) = f (z, ·) =: f0(·), y, z ∈ Y0.

This models, for example, the case the change point θ is phase-type. See Example 1 of
Dayanik and Goulding (2009).

We denote the Kullback-Leibler divergence of fi (·) from f j (·) by

q(i, j) :=
∫

E

(

log
fi (x)

f j (x)

)

fi (x)m(dx), i ∈ M, j ∈ M0 \ {i}, (4.4)

which always exists and is nonnegative.
We assume fi (·) and f j (·) as in (4.1) for any i �= j are distinguishable; namely, we

assume the following.

Assumption 4.2 We assume
∫
{x∈E : fi (x)�= f j (x)} fi (x)m(dx) > 0 for every i ∈ M and j ∈

M0 \ {i}. This ensures that
q(i, j) > 0, i ∈ M, j ∈ M0 \ {i}. (4.5)

To ensure that
∫
E

(
log f0(x)

f j (x)

)
fi (x)m(dx) exists for every i ∈ M and j ∈ M0 \ {i}, we

further assume the following.
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Assumption 4.3 For every i ∈ M, we assume that q(i, 0) < ∞.

Indeed, since
∫
E (log fi (x)

f j (x)
)− fi (x)m(dx) ≤ 1 for every i ∈ M and j ∈ M0 \ {i},

∫

E

(

log
f0(x)

f j (x)

)

fi (x)m(dx) =
∫

E

(

log
fi (x)

f j (x)

)

fi (x)m(dx)

−
∫

E

(

log
fi (x)

f0(x)

)

fi (x)m(dx) = q(i, j) − q(i, 0), (4.6)

exists by Assumption 4.3. Here, we allow (4.6) to be +∞ but we assume the following.

Assumption 4.4 For every i ∈ M and j ∈ M \ {i}, we assume min{�( j), q(i, j)} < ∞.

We shall prove the following under Assumptions 4.1-4.4.

Proposition 4.1 (Limits of LLR processes in Example 1) For every i ∈ M, Assumption 3.2
holds with the limits

l(i, j) :=
⎧
⎨

⎩

q(i, 0) + min
k∈M �(k), j = 0

min
{
q(i, j), q(i, 0) + �( j)}, j ∈ M \ {i}

⎫
⎬

⎭

≡

⎧
⎪⎪⎨

⎪⎪⎩

q(i, 0) + min
k∈M �(k), j = 0

q(i, j), j ∈ �i

q(i, 0) + �( j), j ∈ M \ (�i ∪ {i})

⎫
⎪⎪⎬

⎪⎪⎭

, (4.7)

where �i := { j ∈ M \ {i} : q(i, j) < q(i, 0) + �( j)}.
Remark 4.1 (1) Assumptions 4.3 and 4.4 ensure that

q(i, j) < ∞, j ∈ �i ,

q(i, 0) + �( j) < ∞, j ∈ M \ (�i ∪ {i}).
(2) Assumption 4.2 guarantees that l(i, j) > 0 for every i ∈ M and j ∈ M0 \ {i}. In

particular, (1) ensures 0 < l(i, j) < ∞ for any j ∈ M \ {i}. Hence, 0 < l(i) < ∞.
(3) By (4.7), we can choose j(i) ∈ {0} ∪ �i . If j(i) = 0, we must have mink∈M �(k) < ∞.

In order to show Proposition 4.1, we first simplify the LLR process as in (3.3). Define, for
each j ∈ M,

L( j)
n := log

(

ρ
( j)
0 +

n∑

k=1

ρ
( j)
k

k−1∏

l=1

f0(Xl)

f j (Xl)

)

,

K ( j)
n := log

(
ρ

( j)
0

ρ
( j)
n

n∏

k=1

f j (Xk)

f0(Xk)
+

n∑

k=1

ρ
( j)
k

ρ
( j)
n

n∏

m=k

f j (Xm)

f0(Xm)

)

= − log ρ
( j)
n +

n∑

k=1

log
f j (Xk)

f0(Xk)
+ L( j)

n .

(4.8)

Lemma 4.1 Fix i ∈ M. For any n ≥ 1,

�n(i, 0) =
n∑

k=1

log
fi (Xk)

f0(Xk)
+ L(i)

n − log
[ ∑

j∈M
ν j
(
1 −

n∑

t=0

ρ
( j)
t
)]+ log νi
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and for j ∈ M\{i}

�n(i, j) =
n∑

k=1

log
fi (Xk)

f j (Xk)
+ L(i)

n − L( j)
n + log νi − log ν j

= − log ρ
( j)
n +

n∑

k=1

log
fi (Xk)

f0(Xk)
+ L(i)

n − K ( j)
n + log νi − log ν j .

By this lemma, each LLR process admits a decomposition

�n(i, j) =
n∑

l=1

hi j (Xl) + εn(i, j), j ∈ M0 \ {i},

where

hi j (x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

log
fi (x)

f0(x)
+ min

k∈M
�(k), j = 0

log
fi (x)

f j (x)
, j ∈ �i

log
fi (x)

f0(x)
+ �( j), j ∈ M \ (�i ∪ {i})

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, x ∈ E,

εn(i, j) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L(i)
n − log

[ ∑

j∈M
ν j
(
1 −

n∑

t=0

ρ
( j)
t
)]− n min

k∈M
�(k) + log νi , j = 0

L(i)
n − L( j)

n + log νi − log ν j , j ∈ �i

L(i)
n − K ( j)

n + log νi − log ν j − log ρ
( j)
n − n�( j), j ∈ M \ (�i ∪ {i})

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

n ≥ 1. (4.9)

Here notice that �( j) < ∞ for j ∈ M \ (�i ∪ {i}) by Remark 4.1(1).
We explore the convergence for (

∑n
l=1 hi j (Xl))/n and εn(i, j)/n separately. For

i ∈ M and j ∈ M0 \ {i}, because θ is an a.s. finite random variable (so that

n−1∑n∧(θ−1)
l=1 hi j (Xl)

n↑∞−−−→ 0), a direct application of the strong law of large number
(SLLN) leads to

1

n

n∑

l=1

hi j (Xl)
Pi -a.s.−−−→
n↑∞ l(i, j). (4.10)

We now show that εn(i, j)/n in (4.9) converges almost surely to zero.

Lemma 4.2 For every i ∈ M, we have the followings under Pi .

(i) L(i)
n /n

n↑∞−−−→ 0 a.s.

(ii) L( j)
n /n

n↑∞−−−→ [
q(i, j) − q(i, 0) − �( j)

]
+ a.s. for every j ∈ M \ {i}.

(iii) K ( j)
n /n

n↑∞−−−→ [
q(i, j) − q(i, 0) − �( j)

]
− a.s. for every j ∈ M \ (�i ∪ {i}).

(iv) L(i)
n converges a.s. as n ↑ ∞ to an a.s. finite random variable L(i)∞ .

(v) L( j)
n converges a.s. as n ↑ ∞ to an a.s. finite random variable L( j)∞ for every j ∈ �i .

(vi) For every j ∈ M, (|L( j)
n /n|r )n≥1 is uniformly integrable for every r ≥ 1, if

∫

E

f0(x)

f j (x)
f0(x)m(dx) < ∞ and

∫

E

f0(x)

f j (x)
fi (x)m(dx) < ∞. (4.11)

123



282 Statistical Inference for Stochastic Processes (2022) 25:261–301

(vii) For every j ∈ M\(�i ∪{i}), (|K ( j)
n /n|q)n≥1 is uniformly integrable for every 0 ≤ q ≤ r ,

if (vi) holds, and
∫

E

∣
∣
∣
∣
f j (x)

f0(x)

∣
∣
∣
∣

r

f0(x)m(dx) < ∞ and
∫

E

∣
∣
∣
∣
f j (x)

f0(x)

∣
∣
∣
∣

r

fi (x)m(dx) < ∞, for some r ≥ 1.

(4.12)

By the characterization of εn(i, j) in (4.9) and Lemma 4.2 (i)-(iii),

εn(i, j)/n
Pi−a.s.−−−−→ 0, i ∈ M, j ∈ M \ {i}.

This also holds when j = 0 because

−1

n
log
[ ∑

j∈M
ν j
(
1 −

n∑

t=0

ρ
( j)
t
)] n↑∞−−−→ min

j∈M �( j). (4.13)

Indeed, the left-hand side of (4.13) equals

−1

n
log
[ ∑

j∈M
exp

(
log ν j + log

(
1 −

n∑

t=0

ρ
( j)
t
))] = −1

n
log
( ∑

j∈M
e−nA j (n)

)
,

where A j (n) := − 1
n

(
log ν j + log

(
1 −∑n

t=0 ρ
( j)
t
))
. Because A j (n) → �( j) by Assump-

tion 4.1 and by Lemma 3.2, we have (4.13). This together with (4.10) shows Proposition
4.1.

The a.s. convergence can be extended to the Lr (Pi )-convergence for r ≥ 1 as well, under
additional integrability conditions. Firstly, as in Lemma 4.3 of Dayanik et al. (2013), for

every i ∈ M, j ∈ M0 \ {i} and r ≥ 1, we have n−1∑n
l=1 hi j (Xl)

Lr (Pi )−−−→
n↑∞ l(i, j), if

∫

E

∣
∣hi j (x)

∣
∣r f0(x)m(dx) < ∞ and

∫

E

∣
∣hi j (x)

∣
∣r fi (x)m(dx) < ∞. (4.14)

Here, (4.14) holds if the following condition holds.

Condition 4.1 Given i ∈ M, j ∈ M0 \ {i}, and r ≥ 1, suppose that

∫

E

∣
∣
∣
∣log

fi (x)

f j (x)

∣
∣
∣
∣

r

f0(x)m(dx) < ∞ and
∫

E

∣
∣
∣
∣log

fi (x)

f j (x)

∣
∣
∣
∣

r

fi (x)m(dx) < ∞ if j ∈ �i ,

∫

E

∣
∣
∣
∣log

fi (x)

f0(x)

∣
∣
∣
∣

r

f0(x)m(dx) < ∞ and
∫

E

∣
∣
∣
∣log

fi (x)

f0(x)

∣
∣
∣
∣

r

fi (x)m(dx) < ∞ if j ∈ M0\�i .

In addition, when j = 0, we assume min j∈M �( j) < ∞.

On the other hand, by Lemma 4.2, εn(i, j)/n → 0 as n ↑ ∞ in Lr (Pi ) under the following
condition (Condition 4.2). Notice in Lemma 4.2 (vi) when j = i that in order for L(i)

n /n to
converge in Lr (Pi ) to zero, it is sufficient to have

∫

E

f0(x)

fi (x)
f0(x)m(dx) < ∞, (4.15)

because
∫
E

f0(x)
fi (x)

fi (x)m(dx) = ∫E f0(x)m(dx) = 1 < ∞.

Condition 4.2 Given i ∈ M, j ∈ M\ {i} and r ≥ 1, we suppose that (4.11) and (4.15) hold,
and, if j ∈ M \ �i , (4.12) holds for the given r .
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In summary, we have the following Lr -convergence results.

Proposition 4.2 For every i ∈ M and j ∈ M0\{i}, we have�n(i, j)/n → l(i, j) as n ↑ ∞
in Lr (Pi ) for some r ≥ 1 if Conditions 4.1 and 4.2 hold for the given r.

4.2 Example 2

As a variant of Example 1, we consider the case X is not necessarily identically distributed
when Y is in Y0. Suppose Y0 = Y(1)

0 � · · · � Y(M)
0 and Y(i)

0 is absorbed with probability one
by Yi = {i} for each i ∈ M. This implies that

P
{
μ = i |Y0 ∈ Y(i)

0

} = 1, i ∈ M.

Also let

f (y, ·) ≡ f (z, ·) =: f (0)
i (·), y, z ∈ Y(i)

0 , i ∈ M.

This can model the case when the distribution of X and θ depends on μ. See Sect. 5.1 for
an example.

Because, given μ = i , Y0, . . . , Yθ−1 ∈ Y(i)
0 and Yθ = i , the conditional probability of

θ = t given {μ = i} as in (4.2) can be written

ρ
(i)
t =

{
η(i)
νi

, t = 0,
1
νi

∑
y0,...,yt−1∈Y(i)

0
η(y0)

∏t−1
k=1 P(yk−1, yk)P(yt−1, i), t ≥ 1.

Assumption 4.5 For every i ∈ M, we assume fi (·) is distinguishable from f j (·) for

j ∈ M \ {i} and from f (0)
j (·) for every i ∈ M:

∫
{x∈E : fi (x)�= f j (x)} fi (x)m(dx) > 0 and

∫
{x∈E : fi (x)�= f (0)

j (x)} fi (x)m(dx) > 0. This ensures that q(i, j) > 0 and q(0)(i, j) > 0 where

we use (4.4) and define

q(0)(i, j) :=
∫

E

(
log

fi (x)

f (0)
j (x)

)
fi (x)m(dx), i, j ∈ M.

We assume the following to ensure that
∫
E

(
log

f (0)
j (x)

f j (x)

)
fi (x)m(dx) exists for every i, j ∈

M.

Assumption 4.6 For every i, j ∈ M, we assume that q(0)(i, j) < ∞.

We shall show the following under Assumptions 4.1, 4.4, 4.5, and 4.6 .

Proposition 4.3 (Limits of LLR processes in Example 2) Assumption 3.2 holds with the
limits

l(i, j) :=
⎧
⎨

⎩

min
k∈M

{
q(0)(i, k) + �(k)}, j = 0

min
{
q(i, j), q(0)(i, j) + �( j)}, j ∈ M \ {i}

⎫
⎬

⎭

≡

⎧
⎪⎪⎨

⎪⎪⎩

min
k∈M

{
q(0)(i, k) + �(k)}, j = 0

q(i, j), j ∈ �i

q(0)(i, j) + �( j), j ∈ M \ (�i ∪ {i})

⎫
⎪⎪⎬

⎪⎪⎭

, (4.16)

where �i := { j ∈ M \ {i} : q(i, j) < q(0)(i, j) + �( j)
}
for every i ∈ M.
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Remark 4.2 (1) Assumptions 4.4 and 4.6 ensure that

q(i, j) < ∞, j ∈ �i ,

q(0)(i, j) + �( j) < ∞, j ∈ M \ (�i ∪ {i}).
(2) Assumption 4.5 guarantees that l(i, j) > 0 for every i ∈ M and j ∈ M0 \ {i}. In

particular, by (1) 0 < l(i, j) < ∞ for any j ∈ M \ {i}. Hence, 0 < l(i) < ∞.
(3) By (4.16), we can choose j(i) ∈ {0}∪�i . If j(i) = 0, we must have mink∈M �(k) < ∞.

As we did for Example 1 of Sect. 4.1, we simplify the LLR process as follows. Define

�(0)
n (i, j) := log


̃
(i)
n∑

y∈Y( j)
0


n(y)
, i, j ∈ M;

we later show that �n(i, 0)/n ∼ min j∈M �
(0)
n (i, j)/n as n → ∞ under Pi (see (4.20)).

Lemma 4.3 For i, j ∈ M, we have

�(0)
n (i, j) =

n∑

k=1

log
fi (Xk)

f (0)
j (Xk)

+ L(i)
n − log

(
1 −

n∑

t=0

ρ
( j)
t
)+ log νi − log ν j ,

and for i ∈ M and j ∈ M \ {i}

�n(i, j) =
n∑

k=1

log
fi (Xk)

f j (Xk)
+ L(i)

n − L( j)
n + log νi − log ν j

= − log ρ
( j)
n +

n∑

k=1

log
fi (Xk)

f (0)
j (Xk)

+ L(i)
n − K ( j)

n + log νi − log ν j ,

where for each j ∈ M

L( j)
n := log

(

ρ
( j)
0 +

n∑

k=1

ρ
( j)
k

k−1∏

l=1

f (0)
j (Xl)

f j (Xl)

)

,

K ( j)
n := log

(
ρ

( j)
0

ρ
( j)
n

n∏

k=1

f j (Xk)

f (0)
j (Xk)

+
n∑

k=1

ρ
( j)
k

ρ
( j)
n

n∏

m=k

f j (Xm)

f (0)
j (Xm)

)

= − log ρ
( j)
n +

n∑

k=1

log
f j (Xk)

f (0)
j (Xk)

+ L( j)
n .

As in Example 1, we decompose each LLR process for every i ∈ M such that

�n(i, j) =
n∑

l=1

hi j (Xl) + εn(i, j), j ∈ M \ {i},

�(0)
n (i, j) =

n∑

l=1

h(0)
i j (Xl) + ε(0)

n (i, j), j ∈ M,
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where

hi j (x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log
fi (x)

f j (x)
, j ∈ �i

log
fi (x)

f (0)
j (x)

+ �( j), j ∈ M \ (�i ∪ {i})

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, x ∈ E,

h(0)
i j (x) := log

fi (x)

f (0)
j (x)

+ �( j), x ∈ E,

εn(i, j) :=
{
L(i)
n − L( j)

n + log νi − log ν j , j ∈ �i

L(i)
n − K ( j)

n + log νi − log ν j − log ρ
( j)
n − n�( j), j ∈ M \ (�i ∪ {i})

}

, n ≥ 1,

ε(0)
n (i, j) := L(i)

n − log
(
1 −

n∑

t=0

ρ
( j)
t
)− n�( j) + log νi − log ν j , n ≥ 1.

By the SLLN and Assumption 4.1, for every i ∈ M, we have Pi -a.s. as n ↑ ∞
1

n

n∑

l=1

hi j (Xl) −→ l(i, j), j ∈ M \ {i},

1

n

n∑

l=1

h(0)
i j (Xl) −→ q(0)(i, j) + �( j), j ∈ M.

(4.17)

We now show that εn(i, j)/n converges almost surely to zero as n → ∞. Similar to
Lemma 4.2, the following holds.

Lemma 4.4 For every i ∈ M, we have the following under Pi .

(i) L(i)
n /n

n↑∞−−−→ 0 a.s.

(ii) L( j)
n /n

n↑∞−−−→ [
q(i, j) − q(0)(i, j) − �( j)

]
+ a.s. for every j ∈ M \ {i}.

(iii) K ( j)
n /n

n↑∞−−−→ [
q(i, j) − q(0)(i, j) − �( j)

]
− a.s. for every j ∈ M \ (�i ∪ {i}).

(iv) L(i)
n converges a.s. as n ↑ ∞ to an a.s. finite random variable L(i)∞ .

(v) L( j)
n converges a.s. as n ↑ ∞ to an a.s. finite random variable L( j)∞ for every j ∈ �i .

(vi) For every j ∈ M, (|L( j)
n /n|r )n≥1 is uniformly integrable for every r ≥ 1, if

∫

E

f (0)
j (x)

f j (x)
f (0)
i (x)m(dx) < ∞ and

∫

E

f (0)
j (x)

f j (x)
fi (x)m(dx) < ∞. (4.18)

(vii) For every j ∈ M\(�i ∪{i}), (|K ( j)
n /n|q)n≥1 is uniformly integrable for every 0 ≤ q ≤ r ,

if (4.18) holds and

∫

E

∣
∣
∣
∣
∣

f j (x)

f (0)
j (x)

∣
∣
∣
∣
∣

r

f (0)
i (x)m(dx) < ∞ and

∫

E

∣
∣
∣
∣
∣

f j (x)

f (0)
j (x)

∣
∣
∣
∣
∣

r

fi (x)m(dx) < ∞, for some r ≥ 1.

(4.19)

By this lemma, for every i ∈ M, we have εn(i, j)/n → 0 for j ∈ M\{i}, and ε
(0)
n (i, j)/n →

0 for j ∈ M, as n ↑ ∞ Pi -a.s. By this and (4.17), the proof of Proposition 4.3 is complete
once we show that

1

n
�n(i, 0)

Pi -a.s.−−−→
n↑∞ min

j∈M
{
q(0)(i, j) + �( j)}. (4.20)
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Indeed,

1

n
�n(i, 0) = 1

n
log

⎛

⎝ 
̃
(i)
n∑

j∈M
∑

y∈Y(0)
j


n(y)

⎞

⎠ = −1

n
log

⎛

⎝
∑

j∈M

∑
y∈Y(0)

j

n(y)


̃
(i)
n

⎞

⎠

= −1

n
log

⎛

⎝
∑

j∈M
e−nA( j)

n

⎞

⎠ (4.21)

where A( j)
n := �

(0)
n (i, j)/n → q(0)(i, j) + �( j) as n ↑ ∞ Pi -a.s. Hence by Lemma 3.2,

(4.20) holds.
We now pursue the convergence in the Lr -sense. In view of (4.21), we have �n(i, 0)/n ≤

�
(0)
n (i, j)/n for any j ∈ M and

1

n
�n(i, 0) ≥ −1

n
log

⎛

⎝M max
j∈M

∑
y∈Y(0)

j

n(y)


̃
(i)
n

⎞

⎠ = − logM

n
+ min

j∈M
1

n
�(0)

n (i, j)

≥ − logM

n
−
∑

j∈M

1

n
(�(0)

n (i, j))−.

Therefore, for the proof of the uniform integrability of �n(i, 0)/n, it is sufficient to show
that of �

(0)
n (i, j)/n for every j ∈ M.

As in Example 1, for every i ∈ M and r ≥ 1, we have n−1∑n
l=1 hi j (Xl)

Lr (Pi )−−−→
n↑∞ l(i, j)

for j ∈ M \ {i}, if
∫

E

∣
∣hi j (x)

∣
∣r f (0)

i (x)m(dx) < ∞ and
∫

E

∣
∣hi j (x)

∣
∣r fi (x)m(dx) < ∞,

which are satisfied under the following condition.

Condition 4.3 For given i ∈ M, j ∈ M \ {i}, and r ≥ 1, suppose that if j ∈ �i

∫

E

∣
∣
∣
∣log

fi (x)

f j (x)

∣
∣
∣
∣

r

f (0)
i (x)m(dx) < ∞ and

∫

E

∣
∣
∣
∣log

fi (x)

f j (x)

∣
∣
∣
∣

r

fi (x)m(dx) < ∞,

and if j ∈ M \ (�i ∪ {i})
∫

E

∣
∣
∣
∣
∣
log

fi (x)

f (0)
j (x)

∣
∣
∣
∣
∣

r

f (0)
i (x)m(dx) < ∞ and

∫

E

∣
∣
∣
∣
∣
log

fi (x)

f (0)
j (x)

∣
∣
∣
∣
∣

r

fi (x)m(dx) < ∞.

(4.22)

Moreover, n−1∑n
l=1 h

(0)
i j (Xl)

Lr (Pi )−−−→
n↑∞ q(0)(i, j) + �( j) for j ∈ M, if

∫

E

∣
∣
∣h

(0)
i j (x)

∣
∣
∣
r
f (0)
i (x)m(dx) < ∞ and

∫

E

∣
∣
∣h

(0)
i j (x)

∣
∣
∣
r
fi (x)m(dx) < ∞,

which is satisfied if �( j) < ∞ and the following holds.

Condition 4.4 For given i ∈ M, j ∈ M, and r ≥ 1, suppose that (4.22) holds.
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On the other hand, byLemma4.2, εn(i, j)/n → 0 as n ↑ ∞ in Lr (Pi ) underCondition 4.5
given subsequently for j ∈ M \ {i}, and, for j = 0, ε(0)

n (i, j)/n → 0 as n ↑ ∞ in Lr (Pi )

under Condition 4.6 given subsequently for j ∈ M. Notice as in Lemma 4.2 (vi) that in order
for L(i)

n to converge in Lr under Pi to zero, it is sufficient to have
∫

E

f (0)
i (x)

fi (x)
f (0)
i (x)m(dx) < ∞, (4.23)

because
∫
E

f (0)
i (x)
fi (x)

fi (x)m(dx) = ∫E f (0)
i (x)m(dx) = 1 < ∞.

Condition 4.5 Given i ∈ M, j ∈ M \ {i} and r ≥ 1, we suppose that (4.23) holds, and

1. if j ∈ �i , (4.18) holds, and
2. if j ∈ M \ �i , (4.19) holds for the given r .

Condition 4.6 Given i ∈ M, we suppose that (4.23) holds and max j∈M �( j) < ∞ holds.

In summary, we have the following Lr -convergence results.

Proposition 4.4 (1) For every i ∈ M and j ∈ M \ {i}, we have �n(i, j)/n → l(i, j) as
n ↑ ∞ in Lr (Pi ) for some r ≥ 1 if Conditions 4.3 and 4.5 hold for the given r,

(2) For every i ∈ M, we have �n(i, 0)/n → l(i, 0) as n ↑ ∞ in Lr (Pi ) for some r ≥ 1 if
Condition 4.4 holds for every j ∈ M and Condition 4.6 holds.

5 Numerical examples

In this section, we verify the effectiveness of the asymptotically optimal strategies through
a series of numerical experiments. Because the optimality results are fundamentally relying
on the existence of the limits l(i, j) as in Assumption 3.2, we first verify their existence
numerically and show that they can be obtained efficiently via simulation. We then evaluate
the performance of the asymptotically optimal strategies in comparison to the optimal values.

5.1 Verification of Assumption 3.2

We consider both the case when X is i.i.d. in each of the closed sets as studied in Sect.4 and
also the non-i.i.d. case where each closed set may contain multiple states.

In order to verify the convergence results in Sect. 4, we consider Example 2 of Sect. 4.2
with M = 2 and the hidden Markov chain Y1 = {1}, Y(1)

0 = {(1, 1), (1, 2)}, Y2 = {2}, and
Y(2)
0 = {(2, 1), (2, 2)} with

P =

(1, 1)
(1, 2)
1

(2, 1)
(2, 2)
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

.85 .15 0 0 0 0
0 .9 .1 0 0 0
0 0 1 0 0 0
0 0 0 .8 0 .2
0 0 0 0 .95 .05
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and η =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

.25

.25
0

.25

.25
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.1)

See Fig. 2 for the diagram showing the transition of Y .
UnderP1,Y starts at either (1, 1) or (1, 2) and gets absorbed by 1,while underP2 it starts at

either (2, 1) or (2, 2) and gets absorbed by 2. Conditionally given Y0 = (1, 1), the absorption
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Fig. 2 Markov chain with
transition matrix P in (5.1)

(1, 1) (1, 2) 1

(2, 1) 2

(2, 2)

.15
.85

.9

.1
1

1
.2

.05

.8

.95

Y(1)
0 Y1

Y2
Y(2)
0

Table 1 The LLR process at time n = 500, 1000, 1500: mean and standard deviation along with theoretical
values

n 500 1000 1500 theoretical values

�n(1, 0)/n under P1 .2790 (.0272) .2818 (.0193) .2830 (.0154) .2854

�n(1, 2)/n under P1 .1218 (.0225) .1231 (.0161) .1238 (.0128) .1250

�n(2, 0)/n under P2 .0721 (.0084) .0715 (.0062) .0714 (.0051) .0713

�n(2, 1)/n under P2 .0948 (.0096) .1006 (.0063) .1032 (.0048) .1104

time θ is a sum of two independent geometric random variables with parameters 0.15 and
0.1; conditionally on Y0 = (1, 2), it is geometric with parameters 0.1. It is easy to show that
the exponential tail (4.3) under P1 is �(1) = | log(1 − min(0.1, 0.15))|. On the other hand,
regarding Y2 ∪ Y(2)

0 , the absorption time θ is a mixture of two geometric random variables
with parameters 0.2 and 0.05. Its exponential tail is �(2) = | log(1 − min(0.2, 0.05))|.

For the observation process X , we assume that it is normally distributed with a common
variance 1 and its conditional mean given Y is {λ(y); y ∈ Y}. As is assumed in Example 2, we
let λ

(0)
1 := λ((1, 1)) = λ((1, 2)) and λ

(0)
2 := λ((2, 1)) = λ((2, 2)). We also let λk := λ(k)

for k = 1, 2. The Kullback-Leibler divergence is q(i, j) = (
λi − λ j

)2
/2 for every i ∈ M,

j ∈ M \ {i} and q(0)(i, j) = (
λi − λ

(0)
j

)2
/2 for every i, j ∈ M. Here we assume that

λ
(0)
1 = 0.1, λ1 = 0.7, λ

(0)
2 = 0 and λ2 = 0.2. Using Proposition 4.3, the analytical limit

values l(i, j) are obtained and are listed in the last column of Table 1.
In Fig. 3, we plot sample paths of �n(1, ·)/n under P1 and �n(2, ·)/n under P2 along

with the theoretical limit l(i, j). In order to verify their almost sure convergence, we show
in Table 1 the statistics on the position at time n = 500, 1000, 1500 based on 1000 samples
for each. We indeed see that the mean value approaches the theoretical limit and the standard
deviation diminishes as n increases, verifying the almost sure limit of the LLR processes.
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(a) n �→ Λn(1, ·)/n under P1 (b) n �→ Λn(2, ·)/n under P2

Fig. 3 Sample realizations of LLR Processes: a �n(1, 0)/n (red) and �n(1, 2)/n (blue) under P1 and b
�n(2, 0)/n (red) and �n(2, 1)/n (blue) under P2. The theoretical limit values l(·, ·) are also given by dotted
lines

We now consider the non-i.i.d. case where each closed set consists of multiple states.
Because this case has not been covered in Sect. 4 and the limit l(i, j) has not been derived,
we shall confirm this numerically via simulation. We consider a Markov chain with M = 2,
Y0 = {0}, Y1 = {(1, 1), (1, 2), (1, 3)} and Y2 = {(2, 1), (2, 2)}. We consider case 1 and case
2 with respective transition matrices:

P1 :=

0
(1, 1)
(1, 2)
(1, 3)
(2, 1)
(2, 2)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

.75 .05 .05 .05 .05 .05
0 .5 .2 .3 0 0
0 .3 .5 .2 0 0
0 .3 .2 .5 0 0
0 0 0 0 .7 .3
0 0 0 0 .2 .8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P2 :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

.75 .05 .05 .05 .05 .05
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.2)

Here we model the acyclic case for the former and cyclic case for the latter. See Fig. 4 for
the diagram showing the transition of Y . For both cases, we assume the initial distribution
η = [1, 0, 0, 0, 0, 0]T and X is again normally distributed with variance 1 and mean function
λ = [0, 0.2, 0.4, 0.6,−0.2,−0.4]T .

We plot in Fig. 5 sample paths of the LLR processes �n(1, ·)/n under P1 and �n(2, ·)/n
under P2 and also show in Table 2 the statistics on their positions at n = 500, 1000, 1500
based on 1000 sample paths.Weobserve that these processes indeed converge to deterministic
limits almost surely. It is also noted that the convergence holds regardless of the cyclic/acyclic
structure of the closed sets.

5.2 Numerical results on asymptotic optimality

We now evaluate the asymptotically optimal strategy in comparison with the optimal Bayes
risk focusing on Problem 2.1 with m = 1. Dayanik and Goulding (2009) showed that the
problemcanbe reduced to an optimal stopping problemof the posterior probability process
,
and in theory the value function can be approximated via value iteration in combination with
discretization. In practice, however, the state space increases exponentially in the number
of states |Y|, and it is computationally feasible only when |Y| is small (typically at most
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(1, 1) (1, 2)

(1, 3)

(2, 1)

(2, 2)

0.75

.05 .05

.05

.05

.05

.5 .5

.5

.7

.8

.3

.2

.3

.2
.2

.3

.3 .2

Y0

Y1

Y2

(1, 1) (1, 2)

(1, 3)

(2, 1)

(2, 2)

0.75

.05 .05

.05

.05

.05

1

11

1 1

Y0

Y1

Y2

Fig. 4 Markov chain with transition matrix P1 (left) and P2 (right) in (5.2)

three or four). Moreover, we need to deal with small detection delay costs c and hence the
resulting stopping regions tend to be very small in practical applications. For this reason, the
approximation is affected severely by discretization errors as well. Here in order to provide
reliable approximation to the optimal Bayes risk, we consider the following simple examples.

We suppose M = 2, Y0 = {(0, 1), (0, 2)}, Y1 = {1} and Y2 = {2} and consider Case 1
with

P1 :=
(0, 1)
(0, 2)
1
2

⎡

⎢
⎢
⎣

.95 0 .05 0
0 .9 0 .1
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ and η1 :=

⎡

⎢
⎢
⎣

.5

.5
0
0

⎤

⎥
⎥
⎦ (5.3)

and Case 2 with

P2 :=
(0, 1)
(0, 2)
1
2

⎡

⎢
⎢
⎣

.95 .05 0 0
0 .85 .05 .1
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ and η2 :=

⎡

⎢
⎢
⎣

.5

.5
0
0

⎤

⎥
⎥
⎦ . (5.4)

Case 1 has been considered in Dayanik and Goulding (2009) where θ is geometric with
parameter .05 under P1 and .1 under P2. In Case 2, it is a sum of two geometric random
variables under P. See Fig. 6 for the diagram showing the transition of Y for Cases 1 and 2.
For X , we assume for both cases that it takes values in E = {1, 2, 3, 4} with probabilities
P{X1 = k|Y1 = y} = f (y, k) given by

f =

⎡

⎢
⎢
⎣

.25 .25 .25 .25

.25 .25 .25 .25

.4 .3 .2 .1

.1 .2 .3 .4

⎤

⎥
⎥
⎦ .
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(a) case 1 under P1 (b) case 1 under P2

(a) case 2 under P1 (b) case 2 under P2

Fig. 5 Sample realizations of LLR processes: a n �→ �n(1, 0)/n (red) and n �→ �n(1, 2)/n (blue) under
P1 and b n �→ �n(2, 0)/n (red) and n �→ �n(2, 1)/n (blue) under P2, along with the mean of �1500/1500
given in Table 2

Table 2 The LLR process at time n = 500, 1000, 1500: mean and standard deviation

500 1000 1500

�(1, 0)/n under P1 .3636 (.0171) .3641 (.0130) .3639 (.0104)

�(1, 2)/n under P1 .2451 (.0299) .2456 (.0228) .2450 (.0182)

�(2, 0)/n under P2 .3364 (.0139) .3376 (.0104) .3375 (.0085)

�(2, 1)/n under P2 .2393 (.0293) .2415 (.0221) .2412 (.0181)

case 1

500 1000 1500

�(1, 0)/n under P1 .3775 (.0188) .3801 (.0133) .3804 (.0112)

�(1, 2)/n under P1 .2575 (.0313) .2610 (.0220) .2614 (.0186)

�(2, 0)/n under P2 .3340 (.0146) .3362 (.0101) .3361 (.0081)

�(2, 1)/n under P2 .2508 (.0324) .2564 (.0224) .2567 (.0182)

case 2
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(0, 1) 1

(0, 2) 2

.05
.95

.1
.9

1

1

Y1

Y2

Y0

(0, 1) (0, 2)

1

2

.05
.95

.05

.1

.85

1

1

Y1

Y2

Y0

Case 1   Case 2

Fig. 6 Markov chain with transition matrix P1 (left) in (5.3) and P2 (right) in (5.4)

Table 3 Comparison with the optimal value function

Case 1

c asymptotic optimal ratio

0.30 1.1267 (1.1240,1.1294) 0.9842 (0.9797,0.9887) 1.1447

0.20 1.0591 (1.0566,1.0616) 0.9497 (0.9445,0.9549) 1.1152

0.10 0.8887 (0.8864,0.8909) 0.8392 (0.8328,0.8455) 1.0589

0.05 0.6717 (0.6696,0.6738) 0.6564 (0.6496,0.6632) 1.0232

Case 2

c asymptotic optimal ratio

0.30 1.1360 (1.1332,1.1389) 0.9913 (0.9868,0.9958) 1.1460

0.20 1.0740 (1.0714,1.0767) 0.9497 (0.9444,0.9549) 1.1309

0.10 0.9077 (0.9053,0.9101) 0.8404 (0.8340,0.8468) 1.0801

0.05 0.6904 (0.6882,0.6925) 0.6729 (0.6661,0.6797) 1.0259

We set the detection delay function c = [0, 0, c̄, c̄] and the terminal decision loss function
ayi = 1 for y /∈ Yi and it is zero otherwise. The limits l(i, j) can be analytically computed
by Propositions 4.1 and the asymptotically optimal strategy can be constructed analytically.
Here we have Ai (c) = c̄/l(i), for every i ∈ M. In order to compute the optimal Bayes
risk, we first discretize the state space of 
 (which is |Y| − 1-simplex) by 70|Y|−1 mesh
and then obtain the stopping regions by solving the optimality equation provided in Dayanik
and Goulding (2009) via value iteration. The optimal Bayes risk is then approximated via
simulation based on 10, 000 paths. The risk under the asymptotically optimal strategy is
approximated based on 100, 000 paths.

Table 3 shows the results. It shows the approximated Bayes risk (with 95% confidence
interval) for both strategies and also the ratio between the two. It can be seen that the ratio
indeed converges to 1. In fact, the results show that the convergence is fast and it approximates
the optimal Bayes risk precisely even for a moderate value of c̄. The proposed strategy can
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be derived analytically and its corresponding Bayes risk can be computed instantaneously
via simulation.
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Appendix A Proofs

A.1 Proof of Lemma 3.8

The proof of Lemma 3.8 requires the following lemmas. Note that the proof is similar to that
of Theorem 3.5 of Baron and Tartakovsky (2006).

Lemma 5.1 For every i ∈ M and j ∈ M0 \ {i}, L > 0, γ > 0 and k > 1, we have

inf
(τ,d)∈�(R)

Pi

{ τ−1∑

t=0

c(Yt ) > γ L
}

≥ 1 −
∑

y∈Y\Yi
Ryi

νi
− ekLl(i, j)

νi

∑

y∈Y j

Ryi

− Pi

{
sup

n≤θ+L
�n(i, j) > kLl(i, j)

}
− Pi

{
min
n≥L

∑n−1
t=0 c(Yt )

n
< γ

}
.

Proof We have

Pi

{τ−1∑

t=0

c(Yt ) > γ L
}

≥ Pi

{∑τ−1
t=0 c(Yt )

τ
≥ γ, τ > L

}

= Pi {τ > L} − Pi

{∑τ−1
t=0 c(Yt )

τ
< γ, τ > L

}
.

Moreover, we have

Pi

{∑τ−1
t=0 c(Yt )

τ
< γ, τ > L

}
≤ Pi

{
inf
n≥τ

∑n−1
t=0 c(Yt )

n
< γ, τ > L

}

≤ Pi

{
inf
n≥L

∑n−1
t=0 c(Yt )

n
< γ, τ > L

}
≤ Pi

{
inf
n≥L

∑n−1
t=0 c(Yt )

n
< γ

}
.
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As in the proof of Lemma A.1 of Dayanik et al. (2013),

Pi {τ > L} ≥ Pi {τ − θ > L} ≥ 1 − R(1)
i (τ, d) − ekLl(i, j)

νi
R̃ j i (τ, d)

− Pi
{

sup
n≤θ+L

�n(i, j) > kLl(i, j)
}
.

Combining the above and taking infimum over �(R),

inf
(τ,d)∈�(R)

Pi

{ τ−1∑

t=0

c(Yt ) > γ L
}

≥ 1 − sup
(τ,d)∈�(R)

R(1)
i (τ, d) − ekLl(i, j)

νi
sup

(τ,d)∈�(R)

R̃ ji (τ, d)

− Pi

{
sup

n≤θ+L
�n(i, j) > kLl(i, j)

}
− Pi

{
min
n≥L

∑n−1
t=0 c(Yt )

n
< γ

}
.

Now, the lemma holds because (τ, d) ∈ �(R) implies that R(1)
i (τ, d) ≤ ∑

y∈Y\Yi
Ryi/νi

and R̃ ji (τ, d) ≤∑y∈Y j
Ryi . ��

Lemma 5.2 Fix 0 < δ < 1, i ∈ M and j(i). We have

lim inf
Ri↓0

inf
(τ,d)∈�(R)

Pi

{ τ−1∑

t=0

c(Yt ) ≥ δ
ci
∣
∣ log

( 1
νi

∑
y∈Y j(i)

Ryi
)∣
∣

l(i)

}
= 1.

Proof Fix R such that 0 <
∑

y∈Y j(i)
Ryi < νi . Then we have − log(

∑
y∈Y j(i)

Ryi/νi ) =
| log(∑y∈Y j(i)

Ryi/νi )|. Now in Lemma 5.1, we set j = j(i),

L = √
δ

∣
∣ log

(
1
νi

∑
y∈Y j(i)

Ryi

) ∣
∣

l(i)
and γ = √

δci ,

and choose k > 1 such that 0 < k
√

δ < 1. Then we have

inf
(τ,d)∈�(R)

Pi

⎧
⎨

⎩

τ−1∑

t=0

c(Yt ) ≥ δ
ci
∣
∣
∣log

(
1
νi

∑
y∈Y j(i)

Ryi

)∣
∣
∣

l(i)

⎫
⎬

⎭

≥ 1 −
∑

y∈Y\Yi
Ryi

νi
−
(∑

y∈Y j(i)
Ryi

νi

)1−k
√

δ

− Pi

{

sup
n≤θ+L

�n(i, j(i)) > kLl(i)

}

− Pi

{

min
n≥L

∑n−1
t=0 c(Yt )

n
< γ

}

.

The right hand side goes to 1 as Ri ↓ 0 because 0 < 1 − k
√

δ < 1, Ri ↓ 0 �⇒ L ↑ ∞,
and 0 < γ < ci . Indeed, by (Dayanik et al. 2013, Lemma A.2), for any k > 1,

Pi
{
supn≤θ+L �n(i, j(i)) > kLl(i)

} L↑∞−−−→ 0, and because
∑n−1

t=0 c(Yt )/n converges Pi -

a.s. to ci , we have Pi
{
minn≥L

∑n−1
t=0 c(Yt )

n < γ
} L↑∞−−−→ 0, for any 0 < γ < ci . ��
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Proof of Lemma 3.8 Fix a set of positive constants R, 0 < δ < 1 and (τ, d) ∈ �. We have by
Markov inequality

D(c,m)
i (τ )

(
ci
l(i)

∣
∣
∣log

(
1
νi

∑
y∈Y j(i)

Ryi

)∣
∣
∣
)m ≥ δPi

⎧
⎪⎨

⎪⎩

(∑τ−1
t=0 c(Yt )

)m

(
ci
l(i)

∣
∣
∣log

(
1
νi

∑
y∈Y j(i)

Ryi

)∣
∣
∣
)m ≥ δ

⎫
⎪⎬

⎪⎭

= δPi

⎧
⎨

⎩

τ−1∑

t=0

c(Yt ) ≥ δ
1
m

ci
∣
∣
∣log

(
1
νi

∑
y∈Y j(i)

Ryi

)∣
∣
∣

l(i)

⎫
⎬

⎭
.

By taking infimum and then limits on both sides,

lim inf
Ri↓0

inf
(̃τ ,d̃)∈�(R)

D(c,m)
i (̃τ )

(
ci
l(i)

∣
∣
∣log

(
1
νi

∑
y∈Y j(i)

Ryi

)∣
∣
∣
)m

≥ δ lim inf
Ri↓0

inf
(̃τ ,d̃)∈�(R)

Pi

⎧
⎨

⎩

τ̃−1∑

t=0

c(Yt ) ≥ δ
1
m

ci
∣
∣
∣log

(
1
νi

∑
y∈Y j(i)

Ryi

)∣
∣
∣

l(i)

⎫
⎬

⎭
,

which is greater than or equal to δ by Lemma 5.2. Now, the claim holds because 0 < δ < 1
is arbitrary. ��

A.2. Proof of Lemma 4.1

We first simplify α̃
(i)
n (x1, ..., xn) in (3.2). Corresponding to the event that Y is absorbed by

Yi at time t ≥ 0, let the set of paths of Y until time n be denoted by S(i)
t,n where

S(i)
0,n := {(i, . . . , i)} and S(i)

t,n :={(y0, . . . , yn) : y0, . . . , yt−1 ∈ Y0, yt , . . . , yn = i},
1 ≤ t ≤ n,

and by assumption

f (y0, ·) ≡ · · · ≡ f (yt−1, ·) ≡ f0(·) and f (yt , ·) ≡ · · · ≡ f (yn, ·) ≡ fi (·),
y = (y0, . . . , yn) ∈ S(i)

t,n .

Lemma 5.3 For any n ≥ 1 and (x1, . . . xn) ∈ En,

α̃(i)
n (x1, ..., xn) =

{∏n
l=1 f0(xl)

∑
i∈M νi

(
1 −∑n

t=0 ρ
(i)
t
)
, i = 0,

νi

[
ρ

(i)
0

∏n
k=1 fi (xk) +∑n

t=1 ρ
(i)
t
∏t−1

k=1 f0(xk)
∏n

k=t fi (xk)
]
, i ∈ M.

Proof Because S(i)
0,n,S(i)

1,n, . . . ,S(i)
n,n are mutually disjoint and

S(i)
0,n � S(i)

1,n � · · · � S(i)
n,n = {(y0, . . . , yn−1, i) : y0, . . . , yn−1 ∈ Y0 ∪ {i}} =: S(i)

n
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or the set of paths under which Y is in {i} at time n, and because yn = i for any y in
S(i)
0,n, . . . ,S(i)

n,n , we have

α̃(i)
n (x1, . . . , xn) = η(i)

n∏

k=1

fi (xk) +
n∑

t=1

∑

y∈S(i)
t,n

η(y0)
( n∏

k=1

P(yk−1, yk) f (yk, xk)
)

= η(i)
n∏

k=1

fi (xk)

+
n∑

t=1

∑

y∈S(i)
t,n

[
η(y0)

( t−1∏

k=1

P(yk−1, yk) f (yk, xk)
)
P(yt−1, i) fi (xt )

n∏

k=t+1

fi (xk)
]

= η(i)
n∏

k=1

fi (xk)

+
n∑

t=1

( t−1∏

k=1

f0(xk)
n∏

k=t

fi (xk)
)

∑

y∈S(i)
t,n

[
η(y0)

t−1∏

k=1

P(yk−1, yk)P(yt−1, i)
]

= νi

[
ρ

(i)
0

n∏

k=1

fi (xk) +
n∑

t=1

ρ
(i)
t

t−1∏

k=1

f0(xk)
n∏

k=t

fi (xk)
]
,

by (4.2). On the other hand,

α̃(0)
n (x1, ..., xn) =

∑

y∈Y0

αn(x1, ..., xn, y)

=
n∏

l=1

f0(xl)

∑

Yn\(∪i∈MS(i)
n )

(
η(y0)

n−1∏

k=1

P(yk−1, yk)
)
P(yn−1, y)

=
n∏

l=1

f0(xl)
(
1 −

∑

i∈M

n∑

t=0

νiρ
(i)
t
) =

n∏

l=1

f0(xl)
∑

i∈M
νi
(
1 −

n∑

t=0

ρ
(i)
t
)
,

as desired. ��
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Proof Fix i ∈ M. By Lemma 5.3,

�n(i, 0) = log

(
νi
[
ρ

(i)
0

∏n
k=1 fi (Xk) +∑n

k=1 ρ
(i)
k

∏k−1
l=1 f0(Xl)

∏n
m=k fi (Xm)

]

∏n
l=1 f0(Xl)

∑
j∈M ν j

(
1 −∑n

t=0 ρ
( j)
t
)

)

=
n∑

k=1

log
fi (Xk)

f0(Xk)
+ log

⎛

⎝
νi

[
ρ

(i)
0 +∑n

k=1 ρ
(i)
k

∏k−1
l=1

f0(Xl )
fi (Xl )

]

∑
j∈M ν j

(
1 −∑n

t=0 ρ
( j)
t
)

⎞

⎠

=
n∑

k=1

log
fi (Xk)

f0(Xk)
+ L(i)

n + log νi − log
( ∑

j∈M
ν j
(
1 −

n∑

t=0

ρ
( j)
t
))

.

For j ∈ M\{i}, we have

�n(i, j) = log
νi

ν j
+ log

(
ρ

(i)
0

∏n
k=1 fi (Xk) +∑n

k=1 ρ
(i)
k

∏k−1
l=1 f0(Xl)

∏n
m=k fi (Xm)

ρ
( j)
0

∏n
k=1 f j (Xk) +∑n

k=1 ρ
( j)
k

∏k−1
l=1 f0(Xl)

∏n
m=k f j (Xm)

)

= log
νi

ν j
+ log

(
n∏

k=1

fi (Xk)

f j (Xk)

exp L(i)
n

exp L( j)
n

)

= log
νi

ν j
+

n∑

k=1

log
fi (Xk)

f j (Xk)
+ L(i)

n − L( j)
n ,

and we can also write

�n(i, j) = log
νi

ν j
+ log

⎛

⎜
⎜
⎝

1

ρ
( j)
n

n∏

k=1

fi (Xk)

f0(Xk)

ρ
(i)
0 +∑n

k=1 ρ
(i)
k

∏k−1
l=1

f0(Xl )
fi (Xl )

ρ
( j)
0

ρ
( j)
n

∏n
k=1

f j (Xk )

f0(Xk )
+∑n

k=1
ρ

( j)
k

ρ
( j)
n

∏n
m=k

f j (Xm )

f0(Xm )

⎞

⎟
⎟
⎠

= log
νi

ν j
− log ρ

( j)
n +

n∑

k=1

log
fi (Xk)

f0(Xk)
+ L(i)

n − K ( j)
n ,

as desired. ��

A.3. Proof of Lemma 4.2

The proof requires the following lemma, whose proof is similar to that of Lemma A.4 of
Dayanik et al. (2013).

Lemma 5.4 Let (ξn)n≥1 be a positive stochastic process and T an a.s. finite random time
defined on the same probability space (�, E, P). Given T , the random variables (ξn)n≥1

are conditionally independent, and (ξn)1≤n≤T−1 and (ξn)n≥T have common conditional
probability distributions P∞ and P0 on (R,B(R)), the expectations with respect to which
are denoted by E∞ and E0, respectively. Suppose that E∞[log ξ1] and E0[log ξ1] exist, and
define

λ := E0[log ξ1], α := E∞[ξ1], β := E0[ξ1], γ := max{α, β},

�n := 1

n
log

n∏

k=1

ξk, ψn := log
(
c +

n∑

l=1

el(�l+δl )
)
, ηn := ψn

n
, n ≥ 1,

(5.5)
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for some fixed constant c > 0 and deterministic sequence δl
l↑∞−−→ 0. Then the following

results hold under P:

(i) We have ηn
n↑∞−−−→ λ+ a.s.

(ii) If λ < 0, then the process ψn converges as n ↑ ∞ to a finite limit a.s.
(iii) If γ < ∞, then (|ηn |r )n≥1 is uniformly integrable.
(iv) If r ≥ 1 and max{E∞

[| log ξ1|r
]
, E0

[| log ξ1|r
]} < ∞, then (|�n |q)n≥1 is uniformly

integrable for every 0 ≤ q ≤ r .

With this lemma, we prove Lemma 4.2. We first suppose �( j) < ∞. Setting in (5.5),
ξk := e−�( j) f0(Xk )

f j (Xk )
and c = ρ

( j)
0 + ρ

( j)
1 > 0, we have

L( j)
n = log

(
ρ

( j)
0 +

n∑

k=1

ρ
( j)
k e(k−1)(�k−1+�( j))

)
= log

(
c +

n∑

k=2

ρ
( j)
k e(k−1)(�k−1+�( j))

)

= log
(
c +

n−1∑

k=1

ρ
( j)
k+1e

k(�k+�( j))
)

= log
(
c +

n−1∑

k=1

exp(log ρ
( j)
k+1 + k�( j))ek�k

)
= log

(
c +

n−1∑

k=1

ek(�k+δk )
)

where δk := (log ρ
( j)
k+1)/k + �( j) k↑∞−−−→ 0 by Assumption 4.1. Given that μ = i and θ = t

for any fixed i ∈ M and t ≥ 1, the random variables ξt , ξt+1, . . . are conditionally i.i.d.
with a common distribution independent of t ; thus, the change time θ plays the role of the

random time T in Lemma 5.4. Now, by Lemma 5.4 (i) and (4.6) we have L( j)
n /n

Pi−a.s.−−−−→
n↑∞

[ ∫
E

( − �( j) + log f0(x)
f j (x)

)
fi (x)m(dx)

]
+ = [

q(i, j) − q(i, 0) − �( j)
]
+, which proves (ii)

immediately for j ∈ M\{i}, and (i) and (iv) by Lemma 5.4 (ii) for j = i because (4.5) gives

∫

E

(

−�(i) + log
f0(x)

fi (x)

)

fi (x)m(dx) = q(i, i) − q(i, 0) − �(i) = −q(i, 0) − �(i) < 0.

Similarly, for j ∈ �i , (v) holds by Lemma 5.4 (ii), since

∫

E

(

−�( j) + log
f0(x)

f j (x)

)

fi (x)m(dx) = q(i, j) − q(i, 0) − �( j) < 0

by the definition of �i . By (4.8), the SLLN and (ii),

1

n
K ( j)
n = −1

n
log ρ

( j)
n + 1

n

n∧(θ−1)∑

l=1

log
f j (Xl)

f0(Xl)
+ 1

n

n∑

l=θ∧n
log

f j (Xl)

f0(Xl)
+ 1

n
L( j)
n

Pi−a.s.−−−−→
n↑∞ �( j) + 0 − q(i, j) + q(i, 0) +

[
q(i, j) − q(i, 0) − �( j)

]

+ ,

123



Statistical Inference for Stochastic Processes (2022) 25:261–301 299

which equals
[
q(i, j) − q(i, 0) − �( j)

]
− and proves (iii). For the proof of (vi), it holds by

Lemma 5.4 (iii) and the assumption (4.11). Finally, for the proof of (vii), (4.8) implies

∣
∣
∣
1

n
K ( j)
n

∣
∣
∣
r =

∣
∣
∣− 1

n
log ρ

( j)
n − �( j) + 1

n
log

n∏

k=1

e�( j) f j (Xk)

f0(Xk)
+ 1

n
L( j)
n

∣
∣
∣
r

≤ 2r−1
(∣
∣
∣
1

n
log ρ

( j)
n + �( j)

∣
∣
∣
r +

∣
∣
∣
1

n
log

n∏

k=1

e�( j) f j (Xk)

f0(Xk)

∣
∣
∣
r +

∣
∣
∣
1

n
L( j)
n

∣
∣
∣
r)

.

Because (4.11) holds, (|L( j)
n /n|)n≥1 is uniformly integrable by (vi). If we set ξk :=

e�( j) [ f j (Xk)/ f0(Xk)] for every k ≥ 1 in (5.5), then (4.12) and Lemma 5.4 (iv) imply

that (| 1n log
∏n

k=1(e
�( j) f j (Xk )

f0(Xk )
)|r )n≥1 is uniformly integrable. Therefore, (|K ( j)

n /n|r )n≥1 is
uniformly integrable, and the proof of (vii) is complete.

By Remark 4.1 (1), it is now sufficient to prove (ii), (v) and (vi), when �( j) = ∞ (which
implies q(i, j) < ∞ by Assumption 4.4). For any M > q(i, j) − q(i, 0), L( j)

n is bounded
by

L( j,M)
n := log

(
c +

n∑

k=2

(ρ
( j)
k ∨ e−(k−1)M )

k−1∏

l=1

f0(Xl)

f j (Xl)

)

= log
(
c +

n−1∑

k=1

(ρ
( j)
k+1 ∨ e−kM )

k∏

l=1

f0(Xl)

f j (Xl)

)

= log
(
c +

n−1∑

k=1

(ρ
( j)
k+1e

kM ∨ 1)
k∏

l=1

e−M f0(Xl)

f j (Xl)

)

= log
(
c +

n−1∑

k=1

ek([M+(log ρ
( j)
k+1)/k]∨0) exp

( k∑

l=1

(−M + log
f0(Xl)

f j (Xl)
)
))

.

Because [M + (log ρ
( j)
k+1)/k] ∨ 0

k↑∞−−−→ 0 by �( j) = ∞, applying Lemma 5.4 (i) we obtain

L( j,M)
n /n

Pi−a.s.−−−−→
n↑∞ 0. Because L( j)

n is bounded from below and above by log c and L( j,M)
n

respectively, we obtain L( j)
n /n

Pi−a.s.−−−−→
n↑∞ 0 proving (ii). Because L( j)

n is increasing Pi -a.s.,

its limit L( j)∞ exists. Moreover, because it is bounded by L( j,M)∞ < ∞, L( j)∞ is finite Pi -
a.s., showing (v). Finally, because L( j)

n /n is bounded by L( j,M)
n /n and the latter is Lr (Pi )-

uniformly integrable, we also have (vi).

A.4. Proof of Lemma 4.3

Fix i ∈ M. Similar to Lemma 5.3, for any n ≥ 1 and (x1, . . . , xn) ∈ En , we obtain

α̃(i)
n (x1, . . . , xn) = νi

[
ρ

(i)
0

n∏

k=1

fi (xk) +
n∑

k=1

ρ
(i)
k

k−1∏

l=1

f (0)
i (xl)

n∏

m=k

fi (xm)
]
,

∑

y∈Y(i)
0

αn(x1, ..., xn, y) = νi
(
1 −

n∑

t=0

ρ
(i)
t
) n∏

l=1

f (0)
i (xl).
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Therefore, for every j ∈ M\{i},

�n(i, j) = log

⎛

⎝
νi
[
ρ

(i)
0

∏n
k=1 fi (Xk) +∑n

k=1 ρ
(i)
k

∏k−1
l=1 f (0)

i (Xl)
∏n

m=k fi (Xm)
]

ν j
[
ρ

( j)
0

∏n
k=1 f j (Xk) +∑n

k=1 ρ
( j)
k

∏k−1
l=1 f (0)

j (Xl)
∏n

m=k f j (Xm)
]

⎞

⎠

= log

(
νi

ν j

n∏

k=1

fi (Xk)

f j (Xk)

exp L(i)
n

exp L( j)
n

)

= log
νi

ν j
+

n∑

k=1

log
fi (Xk)

f j (Xk)
+ L(i)

n − L( j)
n ,

and

�n(i, j) = log

⎛

⎜
⎜
⎝

νi

ν j

1

ρ
( j)
n

n∏

k=1

fi (Xk)
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fi (Xk)
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On the other hand, for every j ∈ M,
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ρ
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t
)
,

as desired.
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