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Abstract. We propose a novel hub location model that jointly eliminates some of the tradi-
tional assumptions on the structure of the network and on the discount as a result of econo-
mies of scale in an effort to better reflect real-world logistics and transportation systems.
Our model extends the hub literature in various facets: instead of connecting nonhub no-
des directly to hub nodes, we consider routes with stopovers; instead of connecting pairs
of hubs directly, we design routes that can visit several hub nodes; rather than dimension-
ing pairwise connections, we dimension routes of vehicles; and rather than working with a
homogeneous fleet, we use intermodal transportation. Decisions pertinent to strategic and
tactical hub location and transportation network design are concurrently made through
the proposed optimization scheme. An effective branch-and-cut algorithm is developed to
solve realistically sized problem instances and to provide managerial insights.
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1. Introduction
Campbell and O’Kelly (2012) provide a synthesis of
the 25 years of the vast hub location research follow-
ing the seminal works of O’Kelly (1986a, b; 1987). Al-
though the will to solve instances of realistic sizes has
geared the literature toward models with strong as-
sumptions, the real challenges have been in defining
and solving realistic problems. Integrating the
strategic-level hub location decisions with the trans-
portation network design has been identified as a cru-
cial yet rather challenging research direction. We take
up this challenge with this paper.

On par with the academic interest, the practical mo-
tivation for the hub network design is on the rise. The
explosive growth in the business-to-consumer form of
e-commerce has made logistics a prominent determi-
nant in gaining the competitive edge in this market.
Logistics service providers have to distinguish them-
selves both in prices and in service quality, which is
mainly identified with short delivery times. Carriers,
in general, employ hub-and-spoke networks in their
many-to-many distribution systems to meet custom-
ers’ high-service-level expectations (i.e., faster deliv-
ery, larger coverage, and higher availability) without
additional costs (monetary and environmental) that
customers are quite reluctant to face (Joerss et al.
2016). Strategically located operations centers can

drastically increase the efficiency of the transportation
network by providing opportunities to consolidate
freight from different originating branch offices, dis-
seminate it according to destined branch offices, and
enable a seamless intermodal integration. With these
critical capabilities, hub networks are at the core of
the emerging revolutionary logistic concepts, such as the
physical internet (Montreuil 2011; Crainic and Montreuil
2016) and mobility as a service (MaaS) (Hietanen 2014;
Maheo, Kilby, and Van Hentenryck 2017).

Motivated by these novelties, we investigate the
next-day delivery network design problem where
hubs do not solely function as consolidation points
but are also required to facilitate mode shifts (trans-
fers) in a multimodal transportation network, and the
classical assumption of cost reduction in interhub
transfer may or may not be valid depending on the
vehicles used, the settings, and the assumptions
made. In our setting, as is customary in the operations
of the cargo sector, each branch office (demand center)
will be assigned to an operations center (hub), where
packages can be transferred between the vehicles. To
benefit from economies of scale, stopovers will be per-
mitted in both the spoke and hub networks. Service
quality will be ensured by limiting both the spoke and
hub segments in terms of time. The resulting network
will be intermodal, utilizing various ground and air
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transportation means. To this end, a parcel that is
picked up from its originating branch office will (i)
first travel on some form of transportation, perhaps
visiting other demand centers on the way, until reach-
ing its designated hub, (ii) then get transferred to an-
other vehicle (possibly plane) that is either bypassing
through or originating from the designated hub, (iii)
traverse the hub network, perhaps visiting some stop-
over hubs on the way, until reaching its destination’s
designated hub, where (iv) it will get transferred to
another vehicle and (v) travel until its final destina-
tion, possibly visiting other demand centers on the
way. The parcel will travel on at most three different
vehicles, and there will be a transfer of vehicles only
at the hub nodes upon entering and leaving the hub
network. Routes between demand centers and their
designated hubs are called access routes, and routes
traversing the hub network are called hub routes.
Choosing the access and hub routes to operate and de-
termining the types and numbers of vehicles to assign
to those paths (to build enough capacity) are the deci-
sions for the transportation network design and di-
mensioning. On the other hand, locations of the hubs,
as strategic-level decisions, need to be determined to
support the mentioned intermodal structure of the
transportation network. Clearly, transportation mode
switches (change of vehicles) can only be performed
in “hub” nodes with proper sorting and packaging
capabilities as well as the facilities that can conduct
intermodal transfer between involved vehicles (i.e.,
planes, ships, trains, trucks). As such, the hub deploy-
ment decisions are strongly connected with the trans-
portation network design decisions and need to be
considered jointly, as we do with our model. In partic-
ular, our model provides the answers for the follow-
ing questions:

• What are the locations of hubs?
• Which is the designated hub of each demand

center?
• How should the demand centers of a particular

hub be partitioned to a collection of access routes?
• What should be the route of each vehicle used on

access and hub routes?
• How many vehicles of a certain type (with a given

capacity) should be used on each route?
The classical hub location problem has some intrin-

sic as well as extrinsic assumptions that challenge its
match to realistic transportation settings. Since the
seminal paper of O’Kelly (1987), many variants of the
hub location problem have been studied with an effort
to relax some of the assumptions of the basic problem
(Campbell 1996; Alumur et al. 2021) to make it more
realistic. This is also our aim in this study. In particu-
lar, we jointly eliminate the following assumptions/
restrictions that have also been relaxed in various
studies.

Complete Hub Network: In the classical version,
hubs are interconnected via direct links. An effi-
ciently designed incomplete hub network may be
cost beneficial without sacrificing service quality.
Various research works in the literature have re-
laxed this assumption and tackled the design prob-
lem of the hub network (O’Kelly and Miller 1994;
Nickel, Schöbel, and Sonneborn 2001; Yoon and
Current 2008; Alumur, Kara, and Karasan 2009; Cal-
ık et al. 2009; Contreras, Fernández, and Marı́n 2010;
de Camargo et al. 2017). Most of these studies focus
on designing a connected topology in the strategic
level without detailing the underlying transporta-
tion network (i.e., the actual routes). Some studies
such as Gelareh and Pisinger (2011) handle specific
hub network designs such as rings together with
fleet deployment. We, on the other hand, design
routes that visit a set of hub nodes and carry the
flow originating from hubs visited earlier on the
route destined to hubs that are visited later. Hub
routes are served by capacitated vehicles, and con-
sequently, it may be necessary to allocate more than
one vehicle on a hub route depending on the traffic.
These routes are also bounded in length and/or in
hops. The resulting hub network does not have any
particular property other than being connected.
Note that even our connectivity assumption is re-
laxed in some studies such as Campbell, Ernst, and
Krishnamoorthy (2005a, b).

Star Access Network: The access network is typi-
cally star shaped in the classical hub location prob-
lem. In the single allocation variant, each nonhub
node is allocated to exactly one hub node, and all
its traffic transits through this hub. In the multiple
allocation variant (Ebery et al. 2000), a node’s traf-
fic can transit through all hubs. In both cases, the
traffic from a node to another node passes through
at least one hub and no other nonhub nodes. Con-
sistent with the literature utilizing more realistic
access networks with stopovers (Yaman, Kara, and
Tansel 2007) or ring topologies (Nagy and Salhi
1998; Wasner and Zäpfel 2004; Rodrı́guez-Martı́n,
Salazar-González, and Yaman 2014; Lopes et al.
2016; Kartal, Hasgul, and Ernst 2017, Kartal, Krish-
namoorthy, and Ernst 2019), we also benefit from
the consolidation of flows on our access routes car-
rying traffic of several nonhub nodes to their desig-
nated hub and back. These access routes may start
and end at the hub as in the hub location and rout-
ing problem (Çetiner, Sepil, and Süral 2010; de Ca-
margo, de Miranda, and Løkketangen 2013) or can
start at a nonhub node and end at a hub node as in
the hub location problem with stopovers. Each ac-
cess route is served by one vehicle, and conse-
quently, the total traffic that can be picked up or
delivered on it cannot exceed the capacity of the
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vehicle. In addition, the length of an access route is
bounded to ensure quality of service. This bound
can be in terms of the distance, travel time, and/or
the number of nonhub nodes on the route (hops).
The cost of an access route is the cost of allocating a
vehicle to this route. If routes start at nonhub no-
des, the access network of a particular hub is the
union of paths that cover a subset of nonhub nodes
and end at the hub. If routes start and end at the
hub node, then each access network is a union of
cycles. Though we relax the star access network to-
pology assumption, we still have the single assign-
ment assumption. We opted for single assignment,
as we are interested in the case where some non-
hub nodes do not have sufficient demand to justify
the allocation of a dedicated vehicle, and so ve-
hicles travelling on access routes visit several non-
hub nodes on their way to the hub and back. With
an arbitrary allocation strategy, several vehicles
may need to visit a nonhub node to pick up the de-
mand going toward different hubs, and such a net-
work can be very difficult to handle from an opera-
tional point of view.

Constant Discount Factor: In the classical hub loca-
tion problem, the unit shipment cost on the hub net-
work is discounted by a constant factor independent
of the actual flow. Campbell (2013) observes that in
optimal solutions of the basic hub location problems,
it happens quite frequently that the connections be-
tween nonhub nodes and hub nodes carry more flow
than hub-to-hub connections. In other words, the as-
sumption that there is more traffic flow between hubs
is usually not verified, and modelling the economies
of scale by using a constant discount factor for inter-
hub flows might not be representative in most cases.
Several studies in the literature challenged the validity
of this fundamental assumption and suggested differ-
ent means to relax it. Podnar, Skorin-Kapov, and
Skorin-Kapov (2002) discount the transportation cost
on a link if the flow on this link exceeds a threshold.
O’Kelly and Bryan (1998), Horner and O’Kelly (2001),
and de Camargo, de Miranda, and Luna (2009) model
economies of scale as a function of flow on the inter-
hub links. Campbell, Ernst, and Krishnamoorthy
(2005a, b), to this end, study the problem of locating a
given number of hub arcs with discounted costs rather
than locating hubs. Our models design and dimension
the transportation network by assigning a fleet of ve-
hicles to routes and include as costs the vehicle-route
cost information acquired from the underlying
setting.

Link-Based Dimensioning: Be it an incomplete or a
complete hub network design, the details on the trans-
portation end as to how the flow will actually traverse
this network are typically left out in the literature.
Studies such as Yaman and Carello (2005), Yaman

(2005), Corberán et al. (2016), Serper and Alumur
(2016), and Tanash, Contreras, and Vidyarthi (2017)
dimension the links; that is, they decide on a fleet of
vehicles enough in capacity to carry the associated
link flow. With our model we determine (i) which
possibly multistep access routes to use, (ii) which pos-
sibly multistop hub routes to use, and (iii) the number
of vehicles of different types to use on these routes. In
other words, our dimensioning is route based, and as
such, the demand on a hub route will be simply trans-
ferred without any intermediate handling on the stop-
over hubs.

Means of Transportation: Most of the existing hub
location literature do not specify the transportation
mode. Within the existing hub location literature
operating with multimodes, the networks of differ-
ent modes are typically assumed to be disjoint (Alu-
mur, Yaman, and Kara 2012) or hubs are reserved
for a single mode (Alumur, Kara, and Karasan
2012). The studies such as Serper and Alumur (2016)
that dimension links with different modal vehicles
leave out the routing issue of such vehicles. Net-
work-loading-type studies such as Jaillet, Song, and
Yu (1996) that distribute flows among hubs into
paths might result in transportation networks al-
lowing for any number of exchanges at stopover
hubs, which we deliberately escape from in our de-
signs. We simultaneously route and dimension
routes with an appropriate fleet and as such detail
the transportation network. Because vehicles or a se-
quence of vehicles is routed between demand pairs,
we assume our resulting networks are connected.
We also assume that the vehicles traverse simple
paths (not repeating vertices), which might even be
relaxed to utilize the vehicle capacities to their ful-
lest extent.

Single Objective: Models appearing in the litera-
ture typically design hub networks solely with cost
or service-level objectives. Studies on time-definite
deliveries such as Alumur, Yaman, and Kara (2012)
and Campbell (2009) combine both cost- and service-
level dimensions. Peiró et al. (2018) consider a multiob-
jective hub location problem in a multiallocation set-
ting. To ensure the quality of service, our access and
hub routes are bounded. Our models allow for this
bound to be in terms of the distance, travel time, and/
or the number of hops on the route. With the underly-
ing realistic application in mind, we choose to put time
limits on the access and hub routes in order to meet
the desired next-day delivery service level. The cost of
an access or a hub route is simply the cost of the vehi-
cle assigned to it. To this end, both cost- and service-
level objectives reflect the real-life operating
characteristics.

There is a large amount of literature on hub location
problems. We refer the reader to Alumur and Kara
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(2008), Alumur (2019), Campbell and O’Kelly (2012),
Contreras (2015), Contreras and O’Kelly (2019), and
Farahani et al. (2013) for overviews of the existing hub
location literature. Here, we focus on the few repre-
sentative studies on variants relaxing the listed
assumptions.

Though we manage to relax the above-mentioned
restrictions/assumptions simultaneously, we adopt
some assumptions. In particular, we assume that each
access node is assigned to a single hub, the hub net-
work is connected, demand carried between any pair
of hubs traverses the hub network on a single vehicle,
and all the access and hub paths are simple. We
manage to face the challenges of relaxing some of the
simplifying assumptions through our novel modeling
approach. Even though we work with incomplete de-
signs, the demand between an origin-destination pair
is carried on at most one interhub and two access ve-
hicles: one for collecting from the origin and the other
for distributing to the destination. As such, the materi-
al handling burden is the same as in the basic com-
plete hub network designs, and the transfer between
origin and destination hubs is virtually direct. Even
though we model multimodal transportation, we still
can keep track of the particular hub pair demand at
the level of partition to different vehicles on the hub
network.

We impose upper bounds on the lengths/travel
times of access routes and hub routes separately.
We do this by dividing the allotted time horizon
into three parts: one for collection on access routes,
one for transfer between hubs, and the last one for
delivery on access routes. In addition to ensuring a
desired level of service quality, this helps to re-
solve any issues concerning synchronization: the
vehicles on hub routes start their trips only after
all vehicles on access routes have arrived at
their designated hubs. Similarly, the vehicles that
travel on access routes from hubs toward demand
centers start their trips after all vehicles travelling
on hub routes have arrived at their destinations.
Even though we exert a hub covering type of con-
straint to provide a service quality, we manage to
identify the actual transportation cost that this
service will incur and, to this end, manage to inte-
grate the cost and service bifurcation in the hub lo-
cation models.

In light of the preceding, we contribute the hub
location, routing, and route dimensioning (HLRD)
problem to the literature. Figure 1 contrasts the pro-
posed network structure with that of a classical hub
network. In both figures, circles and squares corre-
spond to demand and hub locations, respectively. In
Figure 1(a), we see a classical design where the hub
network is complete and each access network is a
star. Figure 1(b), on the other hand, depicts a typical

HLRD design. The access networks consist of stop-
over paths visiting several demand locations. The
hub network may be incomplete. Several vehicles
with different capacities may carry the demand in
the resulting network. For example, the red and
green paths might be the routes of two different
types of trucks, the purple path might correspond to
a two-segment plane route, and the blue arc might
correspond to rented aircraft belly capacity. The
hub locations, allocations, and the hub routes are
determined based on deterministic demand, which
could be the mean or the worst-case demand based
on past data. However, further operational planning
can reoptimize the access routes based on changing
demand.

The remainder of this paper is organized as fol-
lows. In Section 2, we formally define the problem
and introduce our compact mathematical model to
solve it. In Section 3, we discuss the projection of
the continuous variables. The branch–and-cut algo-
rithm we propose to solve the resulting model is
discussed in Section 4. In Section 5, we present and
analyze the results of an extensive computational
study. In Section 6, we conclude with some final
remarks.

2. Preliminaries and HLRD Model
In this section we formally describe HLRD. We are
given a set N of nodes with pairwise traffic demand.
We define the set of distinct pairs of nodes,
D � {(i, j) : i ∈N, j ∈N\{i}}, and denote by wij the de-
mand for pair (i, j) ∈D. Our designs will select p nodes
from the set N as hub locations, and the remaining
will be access nodes. As depicted in Figure 1(b), these
two sets of nodes will be connected to each other. We
shall seek the effective routing and dimensioning of
different vehicle types traversing these networks and
carrying the demand with a promised quality level of
service. In particular:

Access Networks: We assume each access node is
assigned to exactly one hub and its traffic transits
through this hub. We do not impose a direct connec-
tion from each nonhub node to its hub; instead, we
design routes that connect several nonhub nodes to
their hub. An access route may be a simple path that
starts at a nonhub node and ends at a hub node. In
this case, a vehicle starts its trip at the first nonhub
node, visits other nonhub nodes—each time picking
up their outgoing traffic demand—and brings this
load to the hub. Then it picks up the incoming traffic
demand of the nonhub nodes from the hub and starts
its return trip toward the nonhub nodes. Alternative-
ly, an access route may be a directed cycle visiting a
set of nonhub nodes and one hub. In both cases, we
assume that each nonhub node is served by exactly
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one access route. To ensure the quality of service and
coordinate access and hub route operations (as men-
tioned in Section 1), we limit the travel time on an ac-
cess route to Ta.

We denote by P the set of feasible access routes and
by Pk the set of feasible access routes ending at node
k ∈N. Note here that for a given access route ρ ∈ P,
we know the order in which nodes are visited and the
required capacity of a vehicle that can serve this route.
Consequently, the lowest-cost vehicle type that meets
the travel time requirement and that has sufficient ca-
pacity can be chosen a priori. We denote the corre-
sponding cost by c′ρ.

Hub Network: We do not assume direct connec-
tions between hubs; we rather design and dimension
the hub routes. A hub route is a simple directed path
that visits a subset of hub nodes. As we did for access
routes, to ensure the quality of service and coordinate
with access routes, we impose a travel time limit of Th

on the hub routes. Different from the case of access
routes, we do not know a priori the amount of traffic
that is carried on a hub route, as this depends on the
assignment of nodes to hubs. Consequently, the
choice of vehicles for hub routes is part of the decision
to be made by the model.

For hub routes, we use the following notation: We
define Π to be the set of feasible hub routes, Πkl to be
the set of feasible hub routes in which node k ∈N
comes before node l ∈N\{k}, and πkl to be the subpath
from k to l in route π ∈Πkl. We have a set of vehicles,
each with a capacity, a fixed and a variable cost, and a
speed. For a hub route π ∈Π, we define Vπ to be the
set of vehicles that can traverse route π in the allowed
amount of travel time. For v ∈ Vπ, let cvπ be the cost of
using one vehicle of type v on route π, and let Qv be
the capacity of this vehicle. Our model designs hub

routes and decides how many of each type of vehicle
to use on each route.

We use the following decision variables: xik is 1 if
node i ∈N is assigned to hub node k ∈N and 0 other-
wise. If node k is a hub, then xkk is 1. For an access
route ρ ∈ P, zρ is 1 if this route is used and is 0 other-
wise. The continuous variable yijkl is the amount of
flow of pair (i, j) ∈D that enters the hub network at
hub k ∈N and leaves it at hub l ∈N, and f klπ is the
amount of flow from hub k ∈N to hub l ∈N\{k}
routed on hub route π ∈Πkl. Finally, uvπ is the number
of vehicles of type v ∈ Vπ used on hub route π ∈Π.

Using these variables, we model HLRD with a
mixed integer program IPHLRD, which we define as
follows:

min
∑
π∈Π

∑
v∈Vπ

cvπu
v
π +∑

ρ∈P
c′ρzρ (1)

s:t:
∑
k∈N

xik � 1 ∀i ∈ N, (2)

xik ≤ xkk ∀i, k ∈ N, i ≠ k, (3)∑
k∈N

xkk � p, (4)

xik �
∑

ρ∈Pk :i∈ρ
zρ ∀i, k ∈ N : i ≠ k, (5)

∑
l∈N

yijkl ≥ wijxik ∀(i, j) ∈ D, k ∈ N, (6)

∑
k∈N

yijkl ≤ wijxjl ∀(i, j) ∈ D, l ∈ N, (7)

∑
π∈Πkl

f klπ ≥ ∑
(i, j)∈D

yijkl ∀k, l ∈ N, k ≠ l, (8)

∑
k,l∈N :k≠ l,

a∈πkl

f klπ ≤∑
v∈Vπ

Qvuvπ ∀π∈Π,a∈π, (9)

uvπ≤Mxkk ∀π∈Π,k∈π,v∈Vπ, (10)
xik∈{0,1} ∀i,k∈N, (11)

Figure 1. (Color online) Classical vs. HLRDHub Network Designs
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zρ∈{0,1} ∀ρ∈P, (12)
uvπ≥0 and integer ∀π∈Π,v∈Vπ, (13)

f klπ ≥0 ∀k,l∈N,k≠l,π∈Πkl, (14)
yijkl≥0 ∀(i,j)∈D,k,l∈N: (15)

The objective function (1) minimizes the total cost
(fixed and variable) of the vehicle fleet. Constraints
(2)–(4) ensure that each node either becomes a hub or
is assigned to exactly one hub node and p hubs
are chosen. Constraints (5) relate the assignments and
the access routes: if node i is assigned to hub k, then
one access route that visits node i and ends at hub k is
used. Otherwise, no such route can be part of the solu-
tion. For binary x, Constraints (6) and (7) imply that
yijkl � wijxikxjl. The amount

∑
(i,j)∈Dyijkl is the amount of

traffic that enters the hub network at hub k and that
leaves it at hub l. Using Constraints (8), we allocate
this traffic to hub routes that visit k before l. Note that
Constraints (6)–(8) can also be written as equalities
without changing the optimal value. For a hub route
π ∈Π, the required capacity is the maximum traffic
carried on any of its arcs. The traffic on arc a ∈ π is the
sum of the traffic from hubs k to hubs l so that a is on
the subpath of π from k to l. For example, if the hub
route is 123, then arc (1, 2) carries the traffic from hub
1 to hubs 2 to 3, whereas arc (2, 3) carries the traffic
from hubs 1 and 2 to hub 3. These capacity restrictions
are imposed through Constraints (9), where the left-
hand side is the traffic on arc a and the right-hand
side is the total capacity of vehicles allocated to route
π. Constraints (10) ensure that hub routes only go
through hubs. In our case, as the costs satisfy the tri-
angle inequality, we drop these constraints. The re-
maining constraints are domain restrictions for the
variables.

To better illustrate the hub routes and what they
can carry as traffic, we refer the reader to Figure 2. In
this figure, we have four hubs and five hub routes,
each depicted with a different color. The red route
1→ 2→ 3→ 4 can carry the traffic from hub 1 to
hubs 2, 3, and 4 on arc (1, 2). The traffic from hub 1 to
hub 2 is unloaded at hub 2, and the traffic from hub 2
to hubs 3 and 4 is loaded on the vehicle. Hence on arc
(2, 3), the load on the vehicle is the traffic from hubs 1
and 2 to hubs 3 and 4. At node 3, the traffic from hubs
1 and 2 to hub 3 is unloaded, and the traffic from 3 to
4 is loaded. These three commodities are routed to
hub 4, which is the final hub of this route.

The total traffic that needs to travel from hub 1 to
hub 2 can use the red route and the green route. How-
ever, the traffic from hub 4 to hub 3 cannot first use
the green route (4→ 1→ 2) and then the (2→ 3) seg-
ment of the red route because this would require an
unloading and loading operation at hub 2. For ease of
operations and synchronization, we do not allow such

actions and enforce that each demand is carried in one
vehicle through the hub network (i.e., through the yel-
low line for this particular traffic).

From the technical point of view, there are two po-
tential difficulties when solving IPHLRD: (1) the large
number of paths (access and hub routes) one might
need to consider in the model and (2) the need for a
large number of flow variables (i.e., f and y) to proper-
ly determine the required capacity in the interhub
transport network. For the former, one can directly
employ a column generation approach to iteratively
include the path-based variables in the model as they
are needed. However, in many real-world applica-
tions, the operational requirements, service quality
considerations, government regulations (driving
hours, flight routes, etc.), and the conditions of the ex-
isting road network significantly limit the alternative
number of routes and make it a computationally via-
ble option to include all possible paths directly in the
model, which is what we do in our numerical studies.
However, a similar approach fails to address the com-
putational difficulty that arises as a result of the high
number of flow variables, which directly depends on
the number of origin-destination pairs and alternative
hub locations, as well as the number of hub paths. We
next discuss the projection approach we propose in
order to handle this issue.

3. Projection of Continuous Variables
As our model contains a large number of variables, in
this section, we project out the continuous variables—
namely, variables y and f. This gives us a formulation
in the space of x, z, and u variables. However, this for-
mulation is not compact.

Proposition 1. A solution (x, z, u) that satisfies (2)–(5)
and (10)–(13) is feasible for HLRD if and only if the projec-
tion inequality

∑
π∈Π

∑
a∈π

δπa
∑
v∈Vπ

Qvuvπ ≥ ∑
(i, j)∈D

wij
∑
k∈N

αijkxik −
∑
l∈N

βijlxjl

( )

(16)

is satisfied for all (α,β,γ,δ) such that
αijk − βijl − γkl ≤ 0 ∀(i, j) ∈D, k, l ∈N : k≠ l, (17)

αijk − βijk ≤ 0 ∀(i, j) ∈D, k ∈N, (18)

γkl −
∑
a∈πkl

δπa ≤ 0 ∀k, l ∈N : k≠ l,π ∈Πkl, (19)

α,β,γ,δ ≥ 0: (20)

Proof. A solution (x, z, u) that satisfies (2)–(5) and
(10)–(13) is feasible if and only if there exist y and f
such that∑

l∈N
yijkl ≥ wijxik ∀(i, j) ∈ D, k ∈ N, (21)
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−∑
k∈N

yijkl ≥ −wijxjl ∀(i, j) ∈ D, l ∈ N, (22)

∑
π∈Πkl

f klπ − ∑
(i, j)∈D

yijkl ≥ 0 ∀k, l ∈ N, k ≠ l, (23)

− ∑
k, l ∈ N : k ≠ l,

a ∈ πkl

f klπ ≥ −∑
v∈Vπ

Qvuvπ ∀π ∈ Π, a ∈ π, (24)

yijkl ≥ 0 ∀(i, j) ∈ D, k, l ∈ N, (25)

f klπ ≥ 0 ∀k, l ∈ N : k ≠ l,π ∈ Πkl: (26)

We associate dual variables αijk, βijl, γkl, and δπa to
Constraints (21), (22), (23), and (24), respectively. The
feasibility problem (21)–(26) has a solution if and only
if the dual problem

max
∑

(i, j)∈D
wij

∑
k∈N

αijkxik −
∑
l∈N

βijlxjl

( )

−∑
π∈Π

∑
a∈π

δπa
∑
v∈Vπ

Qvuvπ

s:t: (17)−(20)
is bounded. As the feasible set of the dual problem is
a cone, Inequalities (16) impose that no feasible direc-
tion is an improving direction. w

Projection inequalities (16) can be separated by solv-
ing the linear program (LP)

θ � max
∑

(i,j)∈D
wij

∑
k∈N

αijkxik−
∑
l∈N

βijlxjl

( )
−∑

π∈Π

∑
a∈π

δπa
∑
v∈Vπ

Qvuvπ

s:t: (17)−(19),
0 ≤ α, β, γ, δ ≤ 1:

where the variables are bounded above by 1 for nor-
malization. If θ ≤ 0, then all projection inequalities are
satisfied. Otherwise, an optimal solution gives a most
violated projection inequality.

Next we provide a set of vectors (α,β,γ,δ) that satis-
fy (17)–(20).

Lemma 1. Let D′ ⊆D, S,T ⊆N with S ∩ T � ∅. Consider
the following vector (α,β,γ,δ): αijk � 1 for (i, j) ∈D′ and
k ∈ S, βijl � 1 for (i, j) ∈D′ and l ∈N\T, γkl � 1 for k ∈ S
and l ∈ T. We compute δ as follows: Let π ∈Π, and let r be
the number of arcs on path π. Unmark all arcs on π. For
s � 1, : : : , r, do the following: For each subpath πkl of π with
length s, if k ∈ S and l ∈ T and if no arc on subpath πkl is
marked, then set δπa � 1=s for all arcs a ∈ πkl and mark all
these arcs. Set all remaining entries of (α,β,γ,δ) to 0. This
vector (α,β,γ,δ) satisfies (17)–(20).
Proof. It is easy to check that (α,β,γ,δ) satisfies (17),
(18), and (20). Suppose, to the contrary, that it does not
satisfy (19). Let π ∈Π be such that π has a subpath πkl

with k ∈ S, l ∈ T,
∑

a∈πkl
δπa < 1 and the number of arcs

on πkl is the smallest among all such subpaths of π. Be-
cause

∑
a∈πkl

δπa < 1, when we processed subpath πkl, at
least one of the arcs on this subpath was marked previ-
ously. Then path π contains another subpath πmn that
has a common arc with πkl, m ∈ S, and n ∈ T and πmn

does not contain more arcs than πkl. This implies that ei-
ther πml or πkn is a subpath of πkl and has fewer arcs
than πkl. Suppose that it is subpath πml. Because∑

a∈πk l
δπa < 1, then

∑
a∈πml

δπa < 1. This contradicts the
assumption that πkl is a subpath of π with the smallest
number of arcs such that k ∈ S, l ∈ T, and

∑
a∈πkl

δπa < 1.

Consider a small example with N � {1, 2, 3, 4},
S � {1, 2}, and T � {3}. Suppose that only hub routes
with at most two legs are allowed. Then

∑
a∈πkl

δπa ≥ 1
for all paths π ∈Π13

⋃
Π23. The above-mentioned ap-

proach produces the following vector δ: δ1→3,(1,3) �
δ2→3,(2,3) � δ1→3→2,(1,3) � δ1→2→3,(2,3) � δ2→3→1,(2,3) �
δ2→1→3,(1,3) � δ1→3→4,(1,3) � δ4→1→3,(1,3) � δ2→3→4,(2,3) �
δ4→2→3,(2,3) � 1, δ1→4→3,(1,4) � δ1→4→3,(4,3) � δ2→4→3,(2,4)
� δ2→4→3,(4,3) � 1=2, and others are 0.

Now suppose that N � {1, 2, 3, 4}, S � {1, 2}, and
T � {3, 4}, and hub routes with at most three legs are
allowed. We do not give the full vector δ, as the

Figure 2. (Color online) Hub Transportation Network
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number of paths is rather large. However, we look at
two paths as examples. The first path is
1→ 3→ 2→ 4. For this path, we have δ1→3→2→4,(1,3) �
δ1→3→2→4,(2,4) � 1 and δ1→3→2→4,(3,2) � 0. The second
path is 1→ 2→ 3→ 4 and δ1→2→3→4,(2,3) � 1, and
δ1→2→3→4,(1,2) � δ1→2→3→4,(3,4) � 0. The variables associ-
ated with the first path appear with a coeffcient of 2
(δ1→3→2→4,(1,3)+ δ1→3→2→4,(2,4) + δ1→3→2→4,(3,2) � 2) on
the left-hand side of Inequality (16), as this path can
carry the traffic from 1 to 3 and 2 to 4 but on two dif-
ferent legs. On the other hand, the variables associated
with the second path appear with a coefficient of 1 be-
cause this path can carry traffic from 1 to 3, 1 to 4, 2 to 3,
and 2 to 4 but all this traffic uses the common leg (2, 3).

3.1. Hub Routes with a Single Leg
In an attempt to gain insight into the projection inequal-
ities, we analyze the special cases of short hub routes. If
each hub route consists of a single leg, thenΠkl contains
only one path that corresponds to arc (k, l). For that rea-
son, the f variables in (23) and (24) can be eliminated,
and these constraints can be combined into

− ∑
(i, j)∈D

yijkl ≥ −∑
v∈Vkl

Qvuvkl ∀k ∈ N, l ∈ N\{k}:

In a similar manner, associating dual variables αijk
and βijl to Constraints (21) and (22), respectively, and
γkl to the above-mentioned inequalities, we can show
that a solution (x, z, u) that satisfies (2)–(5) and
(10)–(13) is feasible if and only if

∑
k∈N

∑
l∈N\{k}

γkl

∑
v∈Vk l

Qvuvk l ≥
∑

(i, j)∈D
wij

∑
k∈N

αijkxik −
∑
l∈N

βijlxjl

( )

(27)

is satisfied for all (α,β,γ) ≥ 0 such that

αijk − βijl − γkl ≤ 0 ∀(i, j) ∈D, k, l ∈N : k≠ l, (28)

αijk − βijk ≤ 0 ∀(i, j) ∈D,k ∈N: (29)

This projection has been studied in Labbé and Yaman
(2004) and Labbé, Yaman, and Gourdin (2005) for a
single type of vehicle. From the results of these stud-
ies, we can see easily that, in the case of hub routes of
single arcs (i.e., the classical complete hub networks),
the projection inequalities∑

v∈Vkl

Qvuvkl ≥
∑

(i, j)∈D′
wij xik + xjl − 1

( )
(30)

for all D′ ⊆D, k ∈N and l ∈N\{k} are sufficient to
have a valid formulation of the problem. Inequalities
(30) can be separated by enumerating all pairs k and
l and choosing D′ � {(i, j) ∈D : xik + xjl > 1}. The more
general class of Inequalities (27) can be separated in
polynomial time by solving a linear program; howev-
er, we are not aware of any polynomial-time combina-
torial algorithm for their separation.

3.2. Hub Routes with at Most Two Legs
Now we analyze the projection inequalities for the
special case with hub routes of at most two legs. Ob-
serve that in this case we have hub routes of the form
k→ l and k→ l→m. The traffic from hub k to hub
l can be carried on paths k→ l, k→ l→m,
m→ k→ l, and k→m→ l for m ∈N\{k, l}.
Proposition 2. Suppose that hub routes can contain at
most two arcs. Let D′ ⊆D, S,T ⊆N with S ∩ T � ∅. The
projection inequalities∑
k∈S

∑
l∈T

(∑
v∈Vkl

Qvuvkl +
∑

m∈N\{k, l}

∑
v∈Vklm

Qvuvklm + ∑
v∈Vmkl

Qvuvmkl

( )

+ ∑
m∈N\(S⋃T)

∑
v∈Vkml

Qvuvkml

)
≥ ∑

(i, j)∈D′
wij

∑
k∈S

xik +
∑
l∈T

xjl − 1

( )

are valid inequalities.

Proof. We use the vectors (α,β,γ,δ) defined in Lemma 1
to derive these projection inequalities. For the case of at
most two arcs, these vectors take the following form:

• αijk � 1 for (i, j) ∈D′ and k ∈ S,
• βijl � 1 for (i, j) ∈D′ and l ∈N\T,
• γkl � 1 and δkl,(k,l) � 1 for k ∈ S and l ∈ T,
• δklm,(k,l) � δmkl,(k,l) � 1 for k ∈ S, l ∈ T andm ∈N\{k, l},
• δkml,(k,m) � δkml,(m,l) � 1=2 for k ∈ S, l ∈ T and m ∈N\

(S⋃T), and
• other entries are 0.
Next, we derive the projection inequality for this

dual solution. The right-hand side is equal to∑
(i,j)∈D

wij
∑
k∈N

αijkxik−
∑
l∈N

βijlxjl

( )
� ∑
(i,j)∈D′

wij
∑
k∈S

xik−
∑
l∈N\T

xjl

( )
:

Using Constraint (2), we can substitute
∑

l∈N\Txjl �
1−∑

l∈Txjl to see that∑
(i,j)∈D′

wij
∑
k∈S

xik−
∑
l∈N\T

xjl

( )
� ∑

(i,j)∈D′
wij

∑
k∈S

xik+
∑
l∈T

xjl−1

( )
:

Finally, we need to show that∑
π∈Π

∑
a∈π

δπa
∑
v∈Vkl

Qvuvπ�
∑
k∈S

∑
l∈T

(∑
v∈Vkl

Qvuvkl+
∑

m∈N\{k,l}

( ∑
v∈Vklm

Qvuvklm

+ ∑
v∈Vmkl

Qvuvmkl

)
+ ∑
m∈N\(S⋃T)

∑
v∈Vkml

Qvuvkml

)
:

For a path π ∈Π that consists of one arc—say, π �
k→ l, δkl,(k,l) � 1 if k ∈ S and l ∈ T.

For a path π ∈Π that consists of two arcs,
π � k→ l→m,

∑
a∈πδπa � δklm,(k,l) + δklm,(l,m). If k ∈ S

and l ∈ T, then δklm,(k,l) � 1 and δklm,(l,m) � 0, and if l ∈ S
and m ∈ T, then δklm,(l,m) � 1 and δklm,(k,l) � 0. Also, if k ∈
S, m ∈ T and l ∈N\(S⋃T), then δklm,(k,l) � δklm,(l,m)
� 1=2. In all other cases, δklm,(k,l) � δklm,(l,m) � 0. As these
events are mutually exclusive, we can conclude that
for path π � k→ l→m,

∑
a∈πδπa � 1 if and only if one

of the following is true:
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i. k ∈ S and l ∈ T,
ii. l ∈ S andm ∈ T, and
iii. k ∈ S, m ∈ T and l ∈N\(S⋃T);
otherwise,

∑
a∈πδπa � 0.

We do not know an efficient separation algorithm
for Inequalities (31). For given sets S and T, the best
set D′ can be computed as D′ � (i, j) ∈D :

∑
k∈Sxik+

{
∑

l∈Txjl > 1}.
It is interesting to note that unlike the case of hub

routes with single arcs, when hub routes can contain
two legs, including all of the inequalities (31) does not
yield a valid formulation. To see this, consider the fol-
lowing very simple example where we have three
hubs, a, b, and c. Each hub wants to send one unit of
traffic to every other hub. There is a single type of ve-
hicle, and its capacity is 1. For this problem instance,
the solution where one vehicle is allocated to each
route abc, bca, and cab satisfies Inequalities (31) for all
subsets S and T. However, this solution is not feasible.
Each route, indeed, requires two vehicles.

4. Branch-and-Cut Algorithm
The model (1)–(15) contains a large number of varia-
bles for two reasons. First, we enumerate all feasible
access routes and hub routes. Second, we have a large
number of continuous variables yijkl and f klπ . Our pre-
liminary analysis with the Turkish data showed that
the biggest problem was due to the large number of
continuous variables. For this reason, we developed a
branch-and-cut algorithm, referred to as BC, based on
the projection of continuous variables. To enhance the
computational effectiveness of BC, we consider a heu-
ristic separation procedure, two repair heuristics to
improve the upper and lower bounds during the
branch-and-bound search, and valid inequalities to
strengthen our formulation.

4.1. Heuristic Separation
Let (x̄, z̄, ū) be a solution that satisfies (2)–(5) and
(10)–(13). We define the candidate set C � {k : x̄kk > 0}
and for all distinct k, l ∈ C we define Dkl � {(i, j) ∈D :
x̄ik + x̄jl − 1 > 0} and check whether the following pro-
jection inequality,∑

π∈Πkl

∑
v∈Vπ

Qvuvπ ≥ ∑
(i, j)∈Dk l

wij xik + xjl − 1
( )

, (32)

is violated. Note that (32) is a straightforward ex-
tension of the projection inequalities (31) for single-
tons (i.e., when |S| and |T| are 1), when the hub paths
are not limited to two legs. Our preliminary results
showed that applying the heuristic separation at
fractional solutions does not improve the solution
performance. This is also true for the exact separa-
tion. So we add projection inequalities as lazy
constraints.

4.2. Repair Heuristics
To further increase the computational efficiency, we
also consider two alternative methods (H1 and H2) as
repair heuristics to process integer solutions for which
the heuristic separation method cannot find any viola-
tions. We use the repair heuristics not only to find
high-quality feasible solutions to update the upper
bound and the incumbent but also to cut off infeasible
solutions in a computationally efficient way. In H1,
we compute the optimal cost for the given set of hubs
in this solution—say, N′—by solving Model (1)–(15).
Note that the resulting model is much smaller when
the hub locations are fixed and we can simply disre-
gard all the hub paths that contain stops that are not
hubs and access paths that end at a nonhub node (i.e.,
remove respective f and u variables from the model).
Because the number of hubs to open (p) is typically
much smaller compared with the size of the candidate
locations, such a reduction can, indeed, reveal formu-
lations that can be directly solved in small run times
with small memory requirements, for the large-sized
problem instances we consider in our study. We com-
pare the optimal cost of the reduced problem with the
best upper bound and update the latter and the in-
cumbent, if necessary. Then we also add the following
cut in order not to consider the same set of hubs
again: ∑

k∈N′
zkk ≤ p− 1: (33)

Note that if the integer solution we test is not capaci-
ty feasible (i.e., violates any of the projection in-
equalities) H1 would find the best possible solution
one would get from the suggested hub locations
and effectively cut off this solution by adding (33).
Similarly, in H2, we compute the optimal cost for the
given set of assignments—say, A—by solving Model
(1)–(15) after fixing the values for the assignment
variables x as

xij � 1 if (i, j) ∈ A
0 otherwise ∀(i, j) ∈ N × N:

{

As before, we compare the optimal cost with the best
upper bound and update the latter and the incumbent
if necessary. In this case, we add the following cut in
order not to consider the same set of assignments
again: ∑

(i, j)∈A
xij ≤ |N| − 1: (34)

Clearly, H2 requires to solve a simpler (more restrict-
ed) problem, which demands less computational ef-
fort. However, in this case the resulting integer-
feasible solutions can be worse, and the no-good cuts
(Codato and Fischetti 2006) are much weaker, com-
pared with those obtained with H1. So one needs to
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carefully consider the trade-off between the level
of computational effort to solve the restricted
problems and the quality of the integer-feasible solu-
tions as well as the strengths of the no-good cuts. In
Section 5.2 we explain the details of our implementa-
tion to enhance the computational performance of the
BC algorithm for the problem instances we study in
this paper.

4.3. Valid Inequalities
We also consider valid inequalities to strengthen our
formulation to improve the computational efficiency
of BC. Note that, with the removal of continuous vari-
ables yijkl and f klπ , the cost of interhub transfers can
simply be avoided by the optimizer, by setting all uvπ
to 0 at the root node at the initial relaxations, giving a
quite loose LP relaxation bound. As such, we use the
following valid inequalities to strengthen our model
without the mentioned continuous variables:

∑
π∈Πkl

∑
v∈Vπ

uvπ ≥
⌈

wkl

max
v∈⋃π∈Πkl

Vπ

Qv

⌉
(xkk + xll − 1)

∀(k, l) ∈D:

(35)

As a logical cut, Inequalities (35) simply enforce that if
there is a positive amount of traffic between a pair of
hubs, then a set of hub routes, with a total capacity
that is no less than the traffic between the two cities,
should be activated. Our numerical studies have
shown that the inclusion of (35) can drastically in-
crease the LP relaxation bound and speed up the con-
vergence of the branch-and-cut algorithm.

Note that the valid inequalities (35) are based on the
hub location decisions. However, one can also
consider similar cuts by considering the assignment
decisions that are either directly indicated by the as-
signment variables or implied by the access path vari-
ables. Respective families of valid inequalities can be
written as follows:∑
π∈Πkl

∑
v∈Vπ

uvπ ≥
⌈
wkl + wkj + wil + wij

max
v∈⋃π∈ΠklVπ

Qv

⌉
(xik + xjl − 1) (36)

for all distinct i, j,k, l ∈N, and

∑
π∈Πkl

∑
v∈Vπ

uvπ ≥
⌈∑

i∈ρ
∑

j∈ρ′wij

max
v∈⋃π∈ΠklVπ

Qv

⌉
(zρ + zρ′ − 1) (37)

for all ρ ∈ Pk and ρ′ ∈ Pl and distinct k and l in N.
Clearly, Inequalities (36) and (37) can potentially

cut off integer-infeasible solutions (with inadequate
interhub transfer capacities) that do not violate (35).
However, their numbers are also large, and when the

capacities of the vehicles that can be used in the inter-
hub transfers are large (as we have in our numerical
experiments), then the coefficient on the right-hand
side turns out to be 1 for most of these inequalities. In
this case, (36) and (37) are implied by (35) because xik ≤
xkk for all i,k ∈N and zρ ≤ xkk for all k ∈N, p ∈ Pk.

4.4. Remarks
Note that the projection and the resulting branch-and-
cut algorithm can be also considered as a Benders de-
composition approach where continuous variables are
handled in a subproblem that provides feasibility
cuts. In our preliminary studies we observed that be-
cause of long run times and large memory needed for
solving the respective Benders subproblem, which is a
large LP model, the classical Benders decomposition
approach does not work well for the problem instan-
ces we consider in this study. Different from the clas-
sical approach, instead of solving the subproblem as a
linear program, we first use a heuristic to find violated
feasibility cuts, and we solve the subproblem in an ex-
act manner only when the heuristic fails.

Because of various service quality considerations, in
many real-world applications, the number of stop-
overs on access and hub paths and the travel times on
these paths are limited. Hence, the number of feasible
access and hub paths does not grow excessively, and
the BC algorithm can be used to solve large-sized
problem instances, as we show in our numerical
experiments in the next section. Obviously, as the ser-
vice quality restrictions become tighter (i.e., guaran-
teed delivery lead times are shortened), the number of
access and hub paths is reduced, and BC can solve the
resulting problems faster. On the other hand, when
the service quality restrictions are loose, the number
of hub and access paths can grow prohibitively large.
In such settings, one can consider combining the BC
algorithm with a column generation approach to gen-
erate access and hub paths as needed, or heuristic ap-
proaches can be developed to pick a subset of the fea-
sible access and hub paths in the model. Clearly, the
entailed computational difficulties for successful im-
plementation of these ideas pose new research ques-
tions in their own right. Keeping our focus on the
practical applications with tight service quality restric-
tions (i.e., next-day delivery), we leave it to future
studies to explore such extensions.

5. Computational Study
In order to investigate the potential applications and
the computational efficacy of our solution methodolo-
gy, we have conducted comprehensive numerical ex-
periments, composed of problem instances from two
widely used data sets in the literature: Turkish and
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CAB data sets. In the following sections, we discuss
the goals of the study, the instances used, the analysis
of the results, and the insights obtained.

5.1. Experimental Design
In this section we focus on a time-constrained package
delivery network design problem faced by the pack-
age carriers to offer next-day/next-morning delivery
services. As a test bed we consider the problem in-
stances in Turkey where multiple transportation
modes (vans, trucks, planes, rented aircraft belly ca-
pacity, etc.) with different costs, speeds, and capacities
need to be used in coordination to meet a stringent
service time requirement over a large geographical
area in a cost-effective way (Yaman, Karasan, and
Kara 2012). We also study problem instances from the
CAB data set, to have a more comprehensive compu-
tational effectiveness analysis of the methodology.

With the apparent cost advantages, vans and trucks
are preferred for short-/medium-distance access and
hub routes, whereas cargo planes and rented aircraft
belly capacities are needed to execute the long-
distance hub routes to meet the delivery time
constraints. In order to achieve load consolidation and
facilitate mode switches, strategically located hubs are
needed to be employed in the network. Clearly,
imposing time limits on the access and hub routes
is essential for meeting the service time require-
ments, achieving sustainability, and abiding by the
regulations (Barnhart and Schneur 1996; Armacost,
Barnhart, and Ware 2002; Yildiz and Savelsbergh
2019). We next present the details of the experimental
setting that aims to answer, among other things, the
following questions:

• What are the basic characteristics of the (optimal)
networks?

• What are the benefits of allowing stopovers and
multiple legs in the access and hub routes?

• What is the gain of using rented aircraft belly
capacity?

• What is the computational efficacy of the proposed
methodology?

To answer such questions, we consider 39 different
problem instances from the Turkish data set and 27
problem instances from the CAB data set that are gen-
erated by varying the basic problem parameters as we
discuss in the following.

5.1.1. Turkish Data Set Instances. All instances from
the Turkish data set consider cargo demand between
81 cities of Turkey. For the distances between the cit-
ies and the weights for the flow between them (nor-
malized next day delivery demand volume), we use
the Turkish network data (Kara 2009). In Figure 3(a)

we illustrate the locations of the cities (dots with sizes
drawn proportional to the total in and outflow) and
the normalized weight of next-day delivery demand
among them (edge thicknesses are proportional to the
normalized flow weights). All 81 cities are considered
to be candidate hub locations.

Using the cost structure suggested in Serper and
Alumur (2016), we consider three types of vehicles for
the access routes: vans, trucks, and trailers with capac-
ities of 3.5, 15, and 25 tons; fixed costs of 250, 309, and
364; and variable costs (per kilometer) of 0.5, 1, and
1.2. The capacities for the owned cargo planes are as-
sumed to be 18 tons, with a fixed operating cost of
5,000 and variable cost of 6.4 (per kilometer). The per-
kilometer cost of renting 5 tons of belly capacity is
also assumed to be 6.4, which makes using belly ca-
pacity more advantageous for relatively small load
amounts. Up to two slots of belly capacity (total of 10
tons) can be rented by the cargo company. We consid-
er aircraft belly capacity only for the inbound and
outbound flights to/from Istanbul, Ankara, and Izmir
airports (the largest airports in Turkey with direct
commercial flights to all other airports). For vans,
trucks, and trailers, the vehicle speeds are assumed to
be 80 km/hour, and for the passenger and cargo
planes, we consider the ground speed of 750 km/
hour. For each access route stop we add 45 minutes to
the total travel time of the path (because of inner city
traffic and loading/unloading operations). We only
impose a total time limit on the access routes and do
not directly limit the number of stops on them. For the
hub route stops we also use 45 minutes for the needed
loading/unloading, sorting, and repackaging opera-
tions. The flight times are calculated by dividing the
great-circle distance between the origin and destina-
tion cities (found by the haversine formula) to the
ground speed of the plane and adding 40 minutes to
account for the time spent during the taxi and waiting
for takeoff and landing permissions. Deducting six
hours for inner city pickup, delivery, sorting, and
packaging operations, we consider the time limit of
T � 18 hours to complete all transfers.

5.1.2. CAB Data Set Instances. All instances from the
CAB data set consider cargo demand between the 100
U.S. cities listed in O’Kelly (2017). All cities are as-
sumed to be candidates to be chosen as hubs, and we
use the great-circle distances between them to deter-
mine the distances. The weights of the flow between
the cities are calculated with a gravity model in which
we multiply the populations of the cities (as indicated in
the data set) and divide it by the distance. In Figure 3(b)
we illustrate the locations of the cities (dots with sizes
are drawn proportional to the total in- and outflow) and
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the normalized weight of next-day delivery demand
among them (edge thicknesses are proportional to the
normalized flow weights). The rest of the problem pa-
rameters are used as defined for the aforementioned
Turkish data set instances.

To generate different problem instances, we consid-
er the following variations of the respective problem
parameters:

• For the number of hubs, we consider p ∈ {3, 4, 5, 6}
for the Turkish data set instances and p ∈ {10, 11, 12, 13}
for the CAB data set instances.

• For the total daily next-day delivery demand (in
tons), we considerW ∈ {100, 125, 150}.

• For the time allocations of the access and hub
routes, we consider (Ta,Th) ∈ {(7:5, 3), (7, 4), (6:5, 5),
(6, 6)} and disregard those problem instances when the
number of hubs is too small to ensure feasibility for the
given access and hub route time limits.

5.2. Implementation Details
In our preliminary studies we have observed that
when the assignment and/or hub location decisions
are fixed, the resulting restricted problem can be
solved in a short time. To take advantage of this to
speed up the whole solution process, we follow the
following steps in our implementation.

We replace (1) with minimize Z and add the follow-
ing constraint to our model:

Z ≥ ∑
π∈Π

∑
v∈Vπ

cvπu
v
π +

∑
ρ∈P

c′ρzρ: (38)

For each solution candidate (found by CPLEX during
the branch-and-cut procedure), we first use the repair
heuristic H2 and H1, in sequence (with a time limit of
150 seconds for H1), and add the respective no-good
cuts to the model, if found. If H1 stops without find-
ing the optimal solution for the restricted problem

Figure 3. (Color online) The Spatial Distribution of Demand in Turkish and CAB Data Set Instances
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(because of the time limit), we still use the best lower
bound value L (found in H1 after 150 seconds) and
the set of opened hubs N′ in the solution candidate to
generate the following cut:

Z ≥ L
∑
h∈N′

zhh − (p− 1)
( )

: (39)

Our algorithm is implemented in Java using IBM
ILOG Concert technology with CPLEX 12.10 solver
with its default settings. All experiments are run on a
Linux workstation with 96 GB RAM and Intel Xeon
Gold 6134 processor at 3.20 GHz. The time limit is set
to two hours.

5.3. Analysis
In this subsection we present the results of our numer-
ical experiments and discuss the computational and
managerial insights we derive from them.

The detailed results about the computational per-
formance of the BC algorithm in the Turkish and CAB
data set instances are presented in Tables 1 and 2 in
Online Appendix A, and the solution statistics are
provided in Tables 3 and 4 in Online Appendix B. De-
tails about the table headers are provided in the re-
spective appendixes. In the following we summarize
and discuss the critical insights.

We first focus on the computational performance of
the BC algorithm. Our results in Tables 1 and 2 (in the
online appendix) clearly indicate the computational
effectiveness of the algorithm in solving problem in-
stances from both the Turkish and CAB data sets. We
see that for more than 79% of the Turkish data set in-
stances (31 of the 39 instances), the BC algorithm
could find an optimal solution within the given time
limit, and for those instances where the algorithm
stopped reaching the time limit, the average optimali-
ty gap is less than 5.8%. We see a similar performance

in the CAB instances, where more than 74% of the in-
stances (20 of the 27 instances) are solved to optimali-
ty within the given time limit. As we see in Figure 4,
which illustrates the distribution of optimality gaps
averaged over all p-values, for different levels of de-
mand volume and time allocated for interhub trans-
fers, problem instances with small Th values are hard-
est to solve for both network topologies. However, the
impact of the total demand volume on the problem
difficulty is not the same in the two networks. For the
Turkish data set instances, the problem difficulty in-
creases with the total demand volume, whereas the
hardest instances from the CAB data set are the ones
withW � 100.

Investigating Table 1 in the online appendix, we can
see that the high computational performance of the
BC algorithm can be explained by two basic factors: a
relatively small number of (separation) cuts added
during the execution of the branch-and-cut method
and the high efficiency of BC to solve the separation
problem with the suggested two-phase approach. As
we can observe from Table 1, the total number of cuts
added during the algorithm (2,878, on the average) is
quite small (relative to the problem sizes), and most of
the time the heuristic approach can solve the separa-
tion problem (on average, 74.8% of the cuts are found
by the heuristic separation approach, which elimi-
nates the need for resorting to computationally (more)
expensive exact separation—including the no-good
cuts generated by H1 and H2). A similar conclusion
can be drawn from Table 2 in the online appendix,
which shows that more than 85% of the cuts are found
by the heuristic separation approach in CAB data set
instances. In Figure 5 we plot the number of violated
cuts, averaged over all p-values, and what percentage
of those cuts are found by the heuristic separation. In-
specting Figures 4 and 5, we clearly see that the

Figure 4. (Color online) Average Gap Values

Average optimality gaps (Turkish data set
instances).

Average optimality gaps (CAB data set
instances).

(a) (b)
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number of cuts needed to be added by the BC algo-
rithm is one of the most important determinants of
the problem difficulty, and the use of heuristic separa-
tion provides significant computational advantages to
solve those hard problems. It is also interesting to see
that the number of cuts needed to be added to the
model is higher in Turkish data set instances. The rea-
son for such a result is due to the differences in sizes
of the geographical areas. Because the CAB data set
covers a much larger geography, a larger number of
hubs is needed to have feasible solutions. As such, In-
equality (35) becomes much stronger in CAB
instances.

We next examine the structure of the optimal solu-
tions obtained by our model. In Figure 6 we present
the optimal solution values for the TR0–TR12 instan-
ces (see Table 3 in the online appendix for respective
problem parameters). As we can see from the graph,
the total cost is lowest when the interhub transfer
time is four hours (Th � 4) and four hubs are opened
(p � 4). On the other hand, Th � 3 and p � 6 has the
highest cost (more than two times larger than the one
for Th � 4 and p � 4). These results clearly show that
the number of hubs and the interhub transfer times
should be chosen carefully so that multileg interhub
transfers can be effectively used to compensate for the
reduced consolidation opportunities as the number of
hubs are increased (to reduce the total costs of the ac-
cess paths).

To take a closer look at the structure of the optimal
solutions, in Figure 7 we illustrate the particular de-
signs for TR0, TR5, TR8, and TR12 instances, which
have the smallest total costs for Th � 3, 4, 5, and 6
among the instances with W � 100 (i.e., TR0–TR12).
For the access routes, the line thicknesses are propor-
tional to the total capacity of the vehicles assigned to

the respective paths. For the hub routes, the straight
lines indicate the paths that use trucks, and dot-
dashed (thicker) curves illustrate the routes run with
owned cargo planes.

Inspecting Figure 7, we observe that the optimal de-
signs may favor hub locations with smaller interhub
path distances, even though this may necessitate lon-
ger access routes. For example, in Figure 7(c) we see
that instead of Eskişehir (the hub in the west), an alter-
nate location further west could have shortened most
of the incoming access paths. But then the multileg
hub paths from this hub would become infeasible,
and more expensive interhub paths would need to be
used. In fact, in Figure 7(e) we see that this actually
happens, when Th is increased to five hours (from
four in Figure 7(c)). In our setting, when land trans-
portation is considered, interhub transportation can
still be less costly because larger vehicles with higher
utilization levels can be used in hub routes. However,

Figure 5. (Color online) Average Number of Cuts AddedDuring the Branch and Cut and the Percentage of Cuts Found by the
Heuristic Separation Procedure

Turkish data set instances. CAB data set instances.

(b)(a)

Figure 6. (Color online) Optimal Costs for TR0–TR12
Instances
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the time restriction does not allow using trucks be-
tween many interhub trips; hence more expensive air
transportation (provided by rented aircraft belly ca-
pacity or owned cargo aircraft) needs to be used.
Moreover, because we allow stopovers, access routes
already provide opportunities for load consolidation
and better use of vehicle capacities. For these reasons,
the interhub transportation becomes more expensive

(in general), and network designs with closely located
hubs are favored. Related to this observation, we also
see in Table 3 (in the online appendix) that p � 3 and p
� 4 typically give lower-cost solutions compared with
higher p-values. With a smaller number of hubs, high-
er levels of load consolidation become possible in
interhub transportation and utilization rates of the ve-
hicles increase. Considering the fact that many hub

Figure 7. (Color online) Illustration of the Solutions for TR0, TR5, TR8, and TR12 Problem Instances

(a) TR0 (Th = 3 , p= 3) access routes. (b) TR0 (Th = 3 , p= 3) hub routes.

(c) TR5 (Th = 4 , p= 4) access routes. (d) TR5 (Th = 4 , p= 4) hub routes.

(e) TR8 (Th = 5 , p= 4) access routes. (f) TR8 (Th = 5 , p= 4) hub routes.

(g) TR12 (Th = 6 , p= 6) access routes. (h) TR12 (Th = 6 , p= 6) hub routes.
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routes use air transportation with high costs, the im-
portance of high-capacity utilization in those paths is
obvious. We can clearly see this relation in Figure 8,
which presents the cost and vehicle utilization percen-
tages for access and hub routes in the optimal solu-
tions, for different p-values considered in problem
instances TR4–TR7, where we have W � 100 and Th �
4. As we see in Figure 8(a) the cost of interhub trans-
portation increases dramatically beyond p � 4, where-
as the reduction in the access route costs is rather lim-
ited compared with this increase. We also see that the
vehicle utilization levels drop significantly (from 56%
to 14%) in the hub routes as p increases from 3 to 6,
where the access route vehicle utilizations stay almost
the same. As we see in Table 3 the same conclusion re-
mains valid for different values of total demand vol-
ume W. More than that, we see that the optimal hub
locations stay the same for the different W values
when p and Th are fixed. Related to this observation,
we observe that, on average, the total costs increase
less than 7% when the demand volume is increased
from 100 tons to 150 tons. The reason for such a result
is the availability of redundant capacity on both the
access and interhub routes (as can be observed from
the capacity utilization levels), which can be used to
support higher levels of demand without increasing
the cost.

Different from classical hub network design mod-
els, our approach considers multiple-stop access and
hub routes as well as a multimodal structure en-
hanced by the inclusion of the rented aircraft belly ca-
pacity. We now investigate the impact of having these
flexibilities on the total cost. In Table 5 in Online Ap-
pendix C, we present the detailed solution statistics
for the instances TR0–TR12, when we consider (1)
single-leg hub routes, (2) single-leg access routes

(no stopovers), and (3) no-belly capacities cases sepa-
rately. However, the critical information is captured
in Figure 9, where we illustrate the cost increases
(compared with the base case with no restrictions, as
reported in Table 3 in the online appendix) for each
restriction type (single-leg access routes, single-leg
hub routes, and no-belly capacity), for each problem
instance.

The first thing one notices looking at Figure 9 is the
drastic cost increase when access or hub routes are re-
stricted to one-leg trips and Th ≥ 4. For the hub routes,
this result is not very surprising, because the fixed
costs of the cargo planes are quite high, and even
for the relatively small Th values, the benefit of us-
ing the same aircraft in multiple legs is obvious. As
an interesting insight, a closer look at Table 5 (in
the online appendix) reveals that restricting inter-
hub transfers to single-leg transfers makes belly ca-
pacity more attractive, and the optimal solution
starts to use belly capacity heavily (almost three
times more than the base case with no restrictions).
We also see that restricting the access routes to sin-
gle stops has a significant impact on the total cost,
which supports our previous discussions that with
stopovers, access routes provide a significant load
consolidation opportunity to reduce the costs (up to
25% in the considered instances). As expected, the
cost increase with single-leg access paths is higher
for smaller p-values, because the distances between
the hubs and the spokes (i.e., average length of the
access paths) increase, and consolidation becomes
more critical in those cases.

Focusing on the role of the belly capacity, we see
from Figure 9 that it can provide solid cost benefits
(up to 30% savings) when the interhub transfer time is
low and number of hubs is high.

Figure 8. (Color online) Access and Hub Route Costs and Vehicle Utilization Levels for Different p-Values

Costs. Vehicle utilizations.

(b)(a)
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6. Final Remarks
In this study we develop a new hub network design
model that makes few assumptions on the structure of
the network and relaxes the assumption of a constant
cost reduction factor between hubs. The novelty of the
approach lies in its linkage of the strategic and
tactical-level decisions related to hub layout and
transportation network design to jointly determine
the locations of the hubs, hub assignments, types and
number of vehicles to use, and routes to operate. We
show in our numerical experiments that our model
brings important practical benefits in utilizing the ve-
hicle capacities, improving load consolidation in both
access and hub routes and taking better advantage of
multimodal transportation capabilities. Our results
also show that hubs can play critical roles not only by
facilitating load consolidation but also by functioning
as transfer points to enable end-to-end intermodal

transportation. Besides the managerial insights, these
experiments also show that with the recent advances
in integer programming methodologies, it is possi-
ble to solve realistically sized problem instances
without resorting to two-stage solution heuristics
or restrictive assumptions on the solutions. This
suggests that developing new hub network design
models that can answer the specific needs of the
novel logistics and mobility concepts such as the
physical internet and mobility as a service provides
rich opportunities for potential high-impact re-
search in hub network design.
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Single leg hub paths. Single leg access paths.

No belly capacity.

(c)

(a) (b)
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