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Abstract
Motivated by the recent rise in need for refugee camps, we address one of the
key infrastructural problems in the establishment process: The clean water network
design problem. We formulate the problem as a biobjective integer programming
problem and determine the locations of the water source, water distribution units and
the overall network design (pipelines), considering the objectives of minimizing cost
(total network length) and maximizing accessibility (total walking distance) simul-
taneously. We solve the resulting model using exact and heuristic approaches that
find the set (or a subset) of Pareto solutions and a set of approximate Pareto solu-
tions, respectively. We demonstrate the applicability of our approach on a real-life
problem in Gaziantep refugee camp and provide a detailed comparison of the solu-
tion approaches. The novel biobjective approach we propose will help the decision
makers to make more informed design decisions in refugee camps, considering the
trade-off between the two key criteria of cost and accessibility.
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1 Introduction

Post-disaster operations and related activities differ based on the nature and duration
of the disasters (Holguı́n-Veras et al. 2012). For sudden onset disasters such as earth-
quakes, meeting urgent needs, reaching victims as soon as possible and handling the
scarce resources under chaotic conditions are crucial. Therefore, mainly provisional
solutions are found to respond to the urgency faster for shorter periods. For instance,
shelter sites to be established after an earthquake are aimed to serve approximately
one year. Thus, long-term infrastructures such as clean and drain water networks
are not built, instead temporary solutions such as distribution of drinkable water and
installation of toilet containers are implemented in these sites. On the contrary, recov-
ery of long term disasters require more stable solutions which will respond to the
needs for longer periods. Shelter sites to be established after a long term disaster
necessitate additional and more durable features including infrastructure for clean
and drain water. Due to the challenging conditions that the nature of disasters bring,
effective planning of the available resources and operational efficiency are vital for
long term solutions.

The refugee crisis is one of the challenges of today’s world as a harsh long term di-
saster. It requires several actions that should be taken by countries providing asylum
in co-operation with the Non-Governmental Organizations. One of the most impor-
tant of those actions is establishing refugee camps in order to provide sheltering
for refugees. Since the problems causing refugees to flee from their countries may
remain for long periods, refugee camps may have to serve for many years. In the
history, there are several examples of refugee camps that provide service for more
than 20 years such as camps established in Bosnia and Herzegovina, Sudan and
Afghanistan (UNHCR 2016). Therefore, refugee camps require long-term infrastruc-
tural planning.

The purpose of this study is addressing the clean water distribution network design
problem in refugee camps. The paper is organized as follows. In Section 2, the clean
water network design problem for refugee camps is defined and the related literature
is presented. Then, a bi-objective mathematical model is given and exact and heuristic
solution methodologies are stated in Sections 3 and 4, respectively. In Section 5, a
case study with real life data is presented including computational results. The paper
ends with concluding remarks.

2 ProblemDefinition and Related Literature

The long lasting nature of refugee crises necessitates detailed planning of the infras-
tructure of refugee camps to be established. One of the substantial resources that
should be provided for refugees is water. Due to the long-servicing characteristic of
the camps, water distribution network should be designed and it should fulfill the
requirements that United Nations High Commissioner for Refugees (UNHCR 2007)
or The sphere project (2011) has stated.

Water distribution in the camp can be achieved in different ways based on the
local infrastructure and underground water availability. If a local water network is
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available, water can be provided by extending it and this can be considered as an
urban network design/extension problem. If the local infrastructure is not accessible
from the refugee camp or not sufficient, and there is no spring water at a reachable
distance, then drilling wells is the only choice as a water source for the camp. In that
case, the problem can be considered as a stand alone network design problem includ-
ing its own source and distribution decisions. For instance, in the refugee camps in
Turkey, water need is met with local water supply, since the local water network is
expandable. But in Somalia refugee camp (TRC 2015), water is supplied by wells,
as there is no local water network accessible and the region is arid. In both cases, the
underlying OR problem is a specialized network flow problem including additional
constraints due to the application dynamics.

Water network design in refugee camps is quite different from public water net-
work design. In a public water network, water should be accessible from each demand
point. Contrarily, in refugee camps, there should not necessarily be a water tap in
every tent. In this case, water can be supplied to common use areas such as kitchens,
showers, toilets and to the additional water taps for common use of collection of
tents. For instance, in a camp in Somalia that serves internally displaced people,
water requirement is met with common use water taps (TRC 2015) and there is one
shared kitchen, whereas a kitchen and water are provided in each shelter in the Syrian
refugee camp in Kilis, Turkey (The new york times magazine 2014).

In this study, we consider a water distribution network design problem for refugee
camps. We study the case in which water source is a water well. Note that, a water
well can be drilled only on a point where underground water exists and drilling is
possible. Therefore, when well is used as the source, candidate locations for the well
should be determined according to the underground water availability information.
The network consists of a water well, water distribution units (WDUs) and pipelines
connecting WDUs. In the context of our problem, WDU represents all types of
water distribution points such as water taps, kitchens, showers and toilets. The main
decisions are where to drill the well, where to locate WDUs and how to connect them.

While locating WDUs along the camp, one should make sure that the residents of
each tent will have access to a WDU. Accessibility is an important concern in various
domains and depending on the specifics of the problem it may be defined with respect
to different resources or opportunities such as health care, drinking water or jobs (see
Bielik et al. (2018) and the references therein). Here, access means ensuring that the
distance between a tent and its closest WDU is below a certain threshold. There are
various sources in the literature which define thresholds for access to clean water,
Handbook for Emergencies and The Sphere Project Handbook are among the mostly
used ones. Threshold distance is stated as 100 meter in Handbook for Emergencies
by UNHCR (2007) and 500 meters in The Sphere Project Handbook (The sphere
project 2011).

In this paper, we construct a bi-objective mathematical model for the clean water
network design problem. The model aims to optimize two criteria, which are the
construction cost of the network and walking distance of the users. We assume that
the cost is directly proportional to the pipeline length, and ignore fixed costs if there
are any. This issue, however, could be handled by modifying the model we provided
and is considered as a future research topic. We define walking distance as the total
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walking distance of the refugees from shelters to the nearest WDU. The first criterion
aims cost efficiency and the second one aims convenience for refugees to access
water.

A substantial body of literature is devoted to the urban water network design prob-
lem in which decisions regarding the physical features of pipelines such as pipe
length and radius are made (see D’Ambrosio et al. (2015) for a survey on mathemat-
ical programming approaches to drinking water distribution network optimization
problems). Alperovits and Shamir (1977) and Eiger et al. (1994) develop systems that
determine the pipe length and radius for a given water distribution network design.
There are some other studies using heuristic methods such as simulated annealing
and harmonic search for similar water network design problems (Cunha and Sousa
(1999), Eusuff and Lansey (2003), Geem (2006), and Geem (2009)).

Farmani et al. (2005) approach the water network design problem from a multi
criteria point of view. They use cost and utilization as their decision criteria and solve
the same problem of finding the pipe length and radius using two multi criteria evolu-
tionary algorithms which are non-dominated sorting genetic algorithm (NSGA) (Deb
et al. 2002) and strong pareto evolutionary algorithm (SPEA), then compare the
obtained results. Tanyimboh et al. (2010) use two different methods to design urban
water network. They develop a multi-objective genetic algorithm and a stochastic
search program which uses the concepts of evolution and a heuristic method. Maier
et al. (2014) use evolutionary algorithms and other meta-heuristics to solve multi cri-
teria optimization problems related to water resources systems. Iancu et al. (2006)
analyze the trade-off between network length and cost criteria in water network
design.

In the studies mentioned above, models and solution methodologies are used for
finding the optimal pipe diameter and length, mostly for the given network of cities
(some examples are New York and Hanoi). In such distribution systems, layout is
pre-established. The main difference between the studies conducted in the literature
and our work is the fact that network design of cities are predetermined i.e., the
locations of both supply and demand nodes and the placement of pipes are known
and the only concern is deciding on the specifications of the pipes, namely radius
and length. In our problem, we do not have such a predetermined network, indeed
we aim to determine the network design. However, in this study, we do not con-
sider the physics of the flow and the required pipe settings. Specifically, we do not
consider hydraulic parameters such as water pressure, water flow rate and water fric-
tion. Instead, while designing a water distribution network, we focus more on the
requirements and dynamics of shelter sites for refugees.

Different from the studies mentioned previously, Nolz et al. (2010) propose a
location-routing model for planning water distribution tours in disaster relief, in
which there is no established water distribution network. The described problem aims
to find optimal tours, travel modes and population nodes to be visited while opti-
mizing two objectives. The first objective is minimizing a weighted sum of facility
location criterion and maximal covering location criterion. A population node is con-
sidered to be covered if it is possible to reach a water distribution point within 2
hours travel time. The second objective is minimizing cost, measured in terms of
travel time. They consider heterogeneous modes of transportation and different road
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categories e.g., damaged roads. Considering the problem requirements and multi-
ple objectives stated, a decision support system is developed using a multi-objective
meta-heuristic algorithm, NSGA-II. Although, the study of Nolz et al. (2010) and
this study both use the coverage concern, the problems addressed are significantly
different. First of all, in our problem we have to cover all demand nodes, which is
guaranteed by covering constraints while in Nolz et al. (2010), all population center
nodes are not necessarily covered (one of their objectives is minimizing the num-
ber of population center nodes remained uncovered). Nolz et al. (2010) plan water
distribution tours (routes), we, however, design the water distribution network.

To the best of our knowledge, there are no studies that find the optimal clean water
network design for a refugee camp while determining the locations of water source
and WDUs. Our study considers minimal requirements and two objectives, and thus
offers an important contribution to the literature.

3 Model Development

The water network design problem for refugee camps aims to locate a water well,
WDUs and the pipelines to ensure the distribution of water among these components.
In order to address the problem, a bi-objective mixed integer linear programming
model is formulated given the locations of settlements, any predetermined WDU
locations (such as kitchens, WCs), maximum number of WDUs that can be located,
threshold distance for access of refugees and alternative well locations based on the
underground water network.

When designing the water network, various objectives can be taken into consider-
ation. As our focus is water network design for refugee camps, the decision makers
should consider water accessibility of refugees in addition to the common concern
in network design problem, which is cost. Thus, in this problem two objectives are
utilized. The first objective is minimizing construction cost defined as the total pipe
length and the second one is minimizing the total distance from each residential
point to its closest WDU. With these objectives we intend to provide refugees with
reasonably easy access to water.

In the stated problem, the locations of the well, WDUs and pipelines are aimed to
be decided, so that the water distribution network can be designed. In that respect,
the problem is similar to facility location and network design problems. Since water
need not be available at tents in a refugee camp, WDUs will have to be located within
the camp on specific spots such that all tents are covered within the threshold dis-
tance (UNHCR (2007) and The sphere project (2011)), as in set covering problems
(Farahani et al. (2012) and Hakimi (1965) Also see Curtin et al. (2010) and Drezner
and Drezner (2019) for some recent applications and extensions of the basic cover
model). However there are some notable differences between the set covering and
the clean water network design problem that we consider.

In the set covering problem, locations of facilities are determined, but the underly-
ing distribution network infrastructure is assumed to exist. However, in the proposed
water network design problem, the pipes between wells and WDUs will also be deter-
mined. Another difference between these two problems is the objective functions. In
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the set covering problem (Hakimi 1965), the objective is minimizing the total number
of located facilities. However, in our refugee camp water network design problem,
the maximum number of facilities that can be located is bounded by a constraint
and the objectives are minimizing cost (total network length) and minimizing total
walking distance of refugees to the nearest WDU.

We provide the bi-objective mathematical model that we propose, with the
objectives of minimum total network length and total walking distance.

The following nomenclature will be used throughout the paper:

Sets

I = {0, 1, 2, . . . , n}: the set of water demand points, and set of locations that a
WDU can be established

S = set of candidate water well locations, S ⊂ I (since a WDU is assumed to be
established at the well location)

Parameters

dij : the distance between two points i ∈ I and j ∈ I
p : maximum number of WDUs to be established
γ : maximum distance allowed between a demand point and its closest WDU

aij =
{

1, if dij ≤ γ

0, otherwise

Decision Variables

ws =
{

1, if water well is drilled at point s; s ∈ S

0, otherwise

yi =
{

1, if a WDU is installed at i, i ∈ I
0, otherwise

zij =
{

1, if a pipe is installed between points i and j ; i, j ∈ I (if xij >0)
0, otherwise

uij =
{

1, if WDU at point i covers demand point j ; i, j ∈ I
0, otherwise

xij = total number of WDUs after link (i, j ), i ∈ I, j ∈ I

We assume that the set of demand points I also represents the set of locations that a
WDU can be established. If applicable, one can also define a set of specific locations
at which a WDU should be established such as kitchens and bathrooms. The location
of the well will be selected from the set of candidate locations S, which is determined
in advance based on the underground water information. Decision variable ws is
defined to choose the location of the water well among the elements of set S. It
is assumed that all candidate water wells have the same characteristics e.g., water
supply capacity. Decision variable yi shows whether a WDU is located at point i

or not. It is assumed that a WDU is also available at the location of well. Variable
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zij is used to determine between which WDUs the pipelines should be installed and
shows the network design. Decision variable uij shows which WDUs can serve which
demand points. Variable xij is defined for connectivity between points i and j and it
represents the total flow between these points.

Considering the requirements of the problem and its structural characteristics, the
following bi-objective model is constructed.

Minimize f1 =
∑
i∈I

∑
j∈I

dij .uij

Minimize f2 =
∑
i∈I

∑
j∈I

dij .zij

Subject to∑
i∈I

aij .yi ≥ 1 ∀j ∈ I (1)

∑
i∈I

yi ≤ p (2)

∑
i∈I

xik −
∑
i∈I

xki ≥ yk − p.wk ∀k ∈ I, k �= i (3)

∑
i∈S

ws = 1 (4)

∑
i∈I/S

ws = 0 (5)

0 ≤ xij ≤ p.zij ∀i, j ∈ I (6)

0 ≤ xij ≤ p.(yj + wj) ∀i, j ∈ I (7)∑
i∈I

uij ≥ 1 ∀j ∈ I (8)

uij ≤ yi ∀i, j ∈ I (9)

ws, yi, zij , uij ∈ {0, 1} ∀i, j ∈ I, s ∈ S (10)

xij integer ∀i, j ∈ I (11)

The objective functions are minimizing total walking distance of refugees and
minimizing total network length calculated as total pipe length. Constraint Eq. 1 is
the mandatory closeness constraint and it ensures that the distance between each
residential point and its closest WDU is less than or equal to accessibility threshold
γ . Constraint Eq. 2 guarantees that the total number of WDUs is less than or equal to
p. Constraints Eqs. 3, 4 and 5 guarantee the flow balance of the network considering
location of the well. For the case where there is no well (ws=0), constraint Eq. 3
ensures the difference between in and out flows, when there is a well, the constraint
just becomes a non-active valid inequality.

Constraints Eqs. 4 and 5 ensure that a water well can only be drilled in one of
the candidate well locations in S. Constraint Eq. 6 guarantees that if there is no pipe
installed between i and j , then there cannot be any flow from i to j . Since the flow
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on any pipe cannot be more than p, this is a big M type linearization with p working
as M . Constraint Eq. 7 provides the relation between the decision variables yj , wj

and xij . This constraint implies that if there is pipe and flow between points i and j ,
there should be either well or WDU located at point j . Constraint Eq. 8 represents
the coverage of each demand point j with its closest WDU. Constraint Eq. 9 stands
for connectivity of decision variables yi and uij , since it is not possible to cover any
demand point from a node i without establishing a WDU at that node. Constraints
Eqs. 10 and 11 are the domain constraints.

Although the problem can be modeled by using each of the objective functions
separately, the results obtained from those single objective programming models do
not address the problem in the way we intend. For instance, when the only objective
is minimization of total network length, WDUs are located very close to each other
and clustered at a certain area in order to make the network as short as possible. In
such a design, while some refugees are very close to WDUs, even having more than
one WDU in a very short distance, majority of the refugees have their closest WDU
at a distance of γ (the threshold for access). When the objective function is mini-
mization of total walking distance of refugees, water network is designed as a star
network, meaning that for each individual WDU, there is a different pipe installed
from the well, which is costly. Between these two extreme solutions, there are other
Pareto optimal ones, which can only be found considering the two objectives simul-
taneously in a biobjective programming model as we propose. We intend to present
the decision makers the entire set of Pareto optimal solutions for them to observe the
trade-off between the two concerns of accessibility and cost. The decision maker can
implement any Pareto solution that she chooses to provide more convenient access to
water for refugees while still considering the cost aspect.

4 SolutionMethodologies and PerformanceMeasures

In this section, we first describe the solution methods we used for the above bi-
objective programming problem. We propose using the ε-constraint method to obtain
the exact Pareto set for small to medium sized problems and heuristic algorithms
for obtaining an approximate Pareto set for large-sized problems. We then explain
performance measures utilized for assessing the quality of heuristic solutions.

4.1 ε-Constraint Method

To find the exact Pareto solutions of the model, we use epsilon constraint method
(Haimes et al. 1971). In this method, one of the objectives is used as the objective
function of the model, whereas the second one is iteratively bounded in a constraint.
At each iteration, the bound on the second objective is decreased by a step size and
the model is re-solved. Iterations are repeated in this manner, until the corresponding
model becomes infeasible.

Without loss of generality, we take the first objective as total walking distance
of refugees and the second objective as total network length denoted by f1 and f2,
respectively.
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Let f UB
2 be an upper bound on the second objective value, NS be the set of non-

dominated solutions found so far, and k be a predetermined step size parameter. Steps
of the ε-constraint method are as follows:

– Step (1) Set ε = f UB
2 and NS = ∅

– Step (2) Solve:
Minimize f1 + λ.f2
Subject to
x ∈ X f2 ≤ ε

If the model is infeasible, go to Step (3). Otherwise, let the optimal objective
function vector be (f ∗

1 , f ∗
2 ). NS=NS ∪ (f ∗

1 , f ∗
2 ). Set ε =f ∗

2 − k and repeat Step
(2).

– Step (3) Stop and return NS.

Here, x is the decision variable vector and X is the feasible region of the corre-
sponding problem. λ is a parameter that is used to avoid weakly non-dominated but
dominated solutions. In other words, when minimizing the first objective (f1), among
the solutions that minimize f1 the one that gives the minimum value for the second
objective (f2) should be selected. To ensure this, in the objective function, the second
objective is multiplied by the coefficient λ which should be selected small enough in
order not to head off the first objective. In our calculations, we set λ to 0.001, which
is sufficiently small due to orders of magnitude.

If the second objective function could take only integer values, setting the step size
k to 1 would guarantee that the algorithm returns all Pareto solutions. However, in
our problem, the distance matrix does not consist of integer values meaning that the
second objective can take continuous values. In our computational analysis, we set k

to 0.1.
Whenever possible, we find the whole Pareto set using this approach. However,

since we observe that the single objective models become hard to solve for small
γ values, we also use this approach as a heuristic employing a time limit. The rea-
son why the problem becomes harder to solve as γ gets smaller is that when γ is
decreased, more WDUs should be used in order to satisfy the accessibility thresh-
old constraint. Since the locations of additional WDUs and new connections between
WDUs lead to different network designs, when the number of WDUs increases, the
number of solution combinations also increases and feasible solution set builds up.
This leads to higher computational times.

Note that one could also choose the minimizing network length as the main objec-
tive and gradually restrict the total walking distance in a constraint. However, the
mathematical models become more difficult to solve when more emphasis is given
to the network length. This is because, minimizing network length objective requires
focusing on locating both WDUs and pipelines, i.e. it concentrates on the design
of the whole network, which makes the problem more complicated. On the other
hand, minimizing total walking distance leads to relatively easier-to-solve models as
it mainly focuses on determining the locations of WDUs, not putting much emphasis
on the locations of pipelines except connecting WDUs. We also observe this in our
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preliminary experiments, hence use total walking distance as the main objective in
our computational analysis.

4.2 Metaheuristic Algorithms

To find the approximate Pareto solutions, we use two metaheuristic algorithms.
The first algorithm used is Non-Dominated Sorting Genetic Algorithm for Multi-
Objective Optimization (NSGA-II) proposed by Deb et al. (2002).

The MOEA Framework source code of the NSGA-II algorithm is modified taking
the problem specifications into account (MOEA 2016). For the working principle of
the algorithm, see Fig. 1. As it is seen in the figure, Prim’s algorithm is used for
finding the optimal total network lengths for a given set of candidate solutions, since
it finds the optimal network tree (Ahuja et al. 1993).

The adapted NSGA-II algorithm is solved for each candidate well location in S.
A pool of solutions that are obtained for each candidate location are gathered and the
non-dominated solutions are selected among those.

The second metaheuristic algorithm used is an improved version of the Strength
Pareto Evolutionary Algorithm (SPEA2) proposed by Zitzler et al. (2001). Similar to
the NSGA-II algorithm, the MOEA Framework source code of the SPEA2 algorithm
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Fig. 1 Working principle of adapted NSGA-II algorithm
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is modified taking the problem specifications into account (MOEA 2016). That is,
Prim’s algorithm is used for finding the optimal total network lengths for a given
set of candidate solutions and SPEA2 algorithm is solved for each candidate well
location in S. The working principle of the algorithm can be seen in Fig. 2.

As we will discuss in Section 5.1 in detail, in the computational analysis on small
scale problems, we observe that SPEA2 algorithm requires significantly more time
to solve the problem. Thus for larger problems we only utilized NSGA-II algorithm.

4.3 PerformanceMeasures

Performance measures are used in order to assess the quality of the solutions returned
by the NSGA-II and SPEA2 algorithms. Whenever possible, we compare the results
of the metaheuristic algorithms with the exact Pareto set using three performance
measures. The first performance measure shows the percentage of exact Pareto solu-
tions found by the metaheuristic algorithm and the others show the average and
maximum distances from the exact Pareto frontier.

• P % : Ratio of nondominated objective vectors returned by the metaheuristic
algorithm;

P % = |ANS ∩ NS|
|NS| (12)

OFFSPRING

INITIALIZE 
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& ARCHIVE

FITNESS FUNCTIONS 
EVALUATION

Total Walking
Distance

Total Network 
Length 

(Prim’s Algorithm)
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Fig. 2 Working principle of SPEA2 algorithm
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where NS represents the exact set of nondominated objective vectors and ANS
represents the set of nondominated objective vectors returned by metaheuristic
algorithm. Note that, in the remainder of the paper, the sets of nondominated
objective vectors returned by NSGA-II and SPEA2 are distinguished as ANS1
and ANS2, respectively.

In order to consider the closeness of the approximate solutions to their non-
dominated counterparts, we make use of two distance measures. To state these
measures, we assume that (f r

1 , f r
2 ) is in set NS and (f q

1 , f
q

2 ) is in set ANS, then
we calculate the following values:

R1 = max
(f r

1 ,f r
2 )∈NS

f r
1 − min

(f r
1 ,f r

2 )∈NS
f r

1 (range for the f1 values in set NS)

R2 = max
(f r

1 ,f r
2 )∈NS

f r
2 − min

(f r
1 ,f r

2 )∈NS
f r

2 (range for the f2 values in set NS)

R((f r
1 , f r

2 ), (f
q

1 , f
q

2 )) = max{0,
1

R1
.(f q

1 − f r
1 ),

1

R2
.(f q

2 − f r
2 )}

Here, value of the function R equals to zero, if solutions q and r are the
same. Otherwise, R takes the value of the maximum component-wise normalized
distance between point q and point r.

Using these functions, the following distance measures are defined:
• Distance1 (D1): The average distance between the points of set NS and the points

in set ANS

D1 = 1

|NS|
∑

(f r
1 ,f r

2 )∈NS

min
(f

q
1 ,f

q
2 )∈ANS

{
R

((
f r

1 , f r
2

)
,
(
f

q

1 , f
q

2

))}
(13)

• Distance2 (D2): The maximum distance between the points of set NS and the
points in set ANS

D2 = max
(f r

1 ,f r
2 )∈NS

{ min
(f

q
1 ,f

q
2 )∈ANS

{
R

((
f r

1 , f r
2

)
,
(
f

q

1 , f
q

2

))}} (14)

The smaller the distance values are, the better the performance of the metaheuristic
algorithm is.

For the instances in which finding the exact Pareto solutions is not possible in
reasonable time, we set a time limit for each model that we solve in the epsilon con-
straint method and find solutions with gaps. Then, we compare the solutions returned
by the metaheuristic algorithms with this set of approximate Pareto solutions. Since
the reference set is also an approximate set, the performance measures that we use
in such cases are different from the ones stated above. We utilize the following
measures to check the performance of the set of solutions returned by the metaheuris-
tic algorithms, which is denoted by ANS in comparison with the set of solutions
returned by time limited epsilon constraint method, denoted by GNS. As the set of
solutions returned by time limited epsilon constraint method (GNS) is an approxi-
mate set, we also utilize the same performance measures to check the quality of this
set.
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• Spacing (SP): This metric shows the diversity of the solutions in a given solution
set (ANS/GNS). Let (f i

1 , f i
2 ) and (f

j

1 , f
j

2 ) be two different solutions in a given
set A. SP is evaluated using the following equation:

SP =
√√√√ 1

n − 1
.

n∑
i=1

(di − d̄)2 (15)

di = min
j

|f i
1 − f

j

1 | + |f i
2 − f

j

2 | i, j = 1, ..., n (16)

where n is the number of solutions in the given set, di is the minimum Manhattan
distance between the solution (f i

1 , f i
2 ) and any other solution (f

j

1 , f
j

2 ) in the
same set and d̄ is the mean value of all dis.

Smaller SP values indicate more uniformly distributed points, which is
desirable.

• Maximum Spread (MS): This measure shows the maximum extension covered
by the solution set (ANS/GNS) (Li and Zheng 2009). For a given solution set A,
it is evaluated using the following equation:

MS =
√√√√ 2∑

m=1

(
max

(f1,f2)∈A
fm − min

(f1,f2)∈A
fm

)2

(17)

The larger MS value is, the better the solution set is, because higher MS value
indicates that the solutions are more spread.

• Set coverage (SC): Let Set1 and Set2 be two sets of solution vectors.
SC(Set1,Set2) is the ratio of points that are dominated (for two vectors v and t , t

dominates v when t ≤ v) by at least one point in Set1.

SC(Set1, Set2) = |{v ∈ Set2 | ∃ t ∈ Set1 : t ≤ v}|
|Set2| (18)

SC(Set1,Set2) can take a value in [0,1] interval. Both SC(ANS,GNS) and
SC(GNS, ANS) values are calculated.

If points in ANS dominate all points in GNS, then by definition
SC(ANS,GNS) is 1, while SC(ANS,GNS)=0 implies the opposite. In general,
both SC(ANS, GNS) and SC(GNS, ANS) should be considered, as there can
be intersections between sets. For instance, SC(ANS, GNS)=1 and SC(GNS,
ANS)=0.5 means ANS dominates all points in GNS (in the weak sense), but half
of the vectors in GNS are the same with those of ANS. If SC(ANS, GNS)=1 and
SC(GNS, ANS)=0, we can say that ANS is strictly better than GNS.

5 Case Study: The Refugee Camp in Gaziantep, Turkey

To test the behavior of the mathematical model and proposed solution methodolo-
gies, computational studies are performed. In these studies, data based on a refugee
camp in Gaziantep, Turkey is used. The data to be used in the model includes distance
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between nodes, threshold value for access and candidate nodes for well locations.
(The distances are actual distances between nodes in the Gaziantep refugee camp.
We then created different instances by changing the threshold levels (γ ’s) and try-
ing alternative well locations.) Generation of the data sets and the instances created
from this data are discussed below. (The data is also available from the authors upon
request.)

The Gaziantep refugee camp is established by Turkish Red Crescent (TRC),
following the layout standards of the Sphere Project.

According to minimum requirements of Sphere Project, the tents should be
grouped with enough spaces in between, for fire breaks and transportation pur-
poses. Based on those standards, we first formed the block structure of the Gaziantep
Refugee Camp. We consider each housing cluster as a demand node in our network.
With this assumption and the standards stated above, we create a distance matrix
that shows the Euclidean distances between each pair of demand nodes. There are 73
housing clusters, namely nodes in Gaziantep refugee camp.

We use the standards of Handbook for emergencies by UNHCR (2007) and take
accessibility threshold (γ ) values as 60, 80 and 100 meters in the computational
studies. For determining the location of the well, we use different candidate well
locations. Random sets of candidate well locations (S) are generated with different
cardinalities: 1, 5, 15, 25 respectively. In the special case where the cardinality of S

is equal to 1, the location of the well is fixed.
In the computational analysis, the model is solved for two different layouts, one

consisting of 38 nodes and the other one consisting of 73 nodes. For each cardinality
of S and accessibility threshold combination, 2 different sets of candidate well loca-
tions (S) is used and in total 24 instances are created for each layout. For the first
layout consisting of 38 nodes, which is a subset of all nodes in Gaziantep refugee
camp, the model is solved for each instance created using the ε-constraint approach,
NSGA-II and SPEA2 algorithms, and the performance of NSGA-II and SPEA2 are
assessed compared to the exact set of solutions, whenever possible. For the second
layout considering all 73 nodes in Gaziantep refugee camp, due to the computational
challenges, solutions are obtained using ε-constraint approach with a time limit and
the NSGA-II algorithm. In the computational analysis, the mathematical models are
solved using CPLEX 12 with default CPLEX parameter settings on a PC with Intel
Core 2 Duo T6400 (2.0 GHz) processor and 4GB RAM.

5.1 Results for 38 Nodes

While solving models, different upper limits for the number of WDUs (p) are defined
for different γ values. When γ = 60, p is set as 9. Likewise, when γ is 80 and 100,
p is set as 6, and 5 respectively. As γ gets larger, we expect a decrease in the number
WDUs that should be located, hence we decrease p. Besides, we ensured that at least
one WDU is established in a common use kitchen and another one in a common use
WC by fixing 2 WDU locations in the 38 node setting.

The corresponding models are solved with both ε-constraint method and NSGA-II
algorithm. When γ = 80 and 100, the exact Pareto solutions are found. When γ = 60,
each single objective model in the ε-constraint method is solved for 10 minutes and
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the resulting solutions are reported with corresponding optimality gaps. Then, the
solutions obtained are assessed using the performance measures stated in Section 4.3.

Since the whole set of exact Pareto solutions can be found for γ = 80 and 100,
but only approximate Pareto solutions can be found for γ = 60, they are discussed in
different tables. Comparative summary of exact and heuristic solutions for the model
with accessibility thresholds γ = 80 and 100, and two different sets of candidate well
locations (S) for each cardinality level is given in Table 1. In the table, # of NS repre-
sents number of nondominated solutions returned by the epsilon-constraint method,
# of ANS1 represents number of approximate nondominated solutions returned by
NSGA-II and # of ANS2 represents number of approximate nondominated solutions
returned by SPEA2. S is the set of randomly selected candidate well locations and
|S| represents the cardinality of this set.

It can be observed from Table 1 that the solution time of the epsilon constraint
approach increases as the number of candidate well locations increases, and the
increase is more pronounced when γ = 80. The solution time of NSGA-II linearly
increases as cardinality of well set increases. This is because the NSGA-II algorithm
is run |S| times, each time fixing a different candidate as the well. The solution time
of SPEA2 increases in a similar manner. However, SPEA2 takes much more longer
time to solve the problem compared to NSGA-II and in most instances the solution
times of SPEA2 are even longer than those of the epsilon constraint approach.

Table 1 Summary table for γ=80 and 100

Epsilon Constraint Approach NSGA-II SPEA2

γ Set No # of NS Time(sec) # of ANS1 Time(sec) # of ANS2 Time(sec)

80 |S|=1 1 5 140 5 2 5 305

2 14 917 14 2 14 108

|S|=5 3 9 449 9 10 9 1449

4 10 338 10 10 10 1163

|S|=15 5 14 3001 14 30 14 3955

6 13 1434 13 30 13 3712

|S|=25 7 14 3310 14 50 14 6369

8 14 3288 14 50 14 6233

100 |S|=1 9 6 13 6 1 6 25

10 12 87 12 1 12 18

|S|=5 11 12 94 12 5 12 112

12 17 913 17 5 17 110

|S|=15 13 22 2174 21 15 21 400

14 21 1610 21 15 21 326

|S|=25 15 22 2530 22 25 22 638

16 22 2355 22 25 22 561

Clean Water Network Design.. 189



In order to assess the performance of NSGA-II and SPEA2, we use performance
measures P%, D1 and D2 that can be seen on Table 2. Note that both meta-heuristic
algorithms return the same set of solutions, therefore we only report a single value for
each of the related performance measure. Since the results were similar for different
cardinality of well sets, we show the minimum, average and maximum values of P%,
D1 and D2 for the instances with the same γ .

For γ = 80 instances, both NSGA-II and SPEA2 find the whole set of exact Pareto
solutions showing that the algorithms work very well for these instances. The results
are similar for γ = 100, average value of P% is equal to 89.21, indicating that most
of the exact Pareto solutions are found in these instances by the meta-heuristic algo-
rithms. As a result, the distance values are negligible. An exception occurs for one
instance where P% is around 13, yet the maximum distances are small indicating that
the approximate Pareto frontiers are close to the exact one. Although NSGA-II and
SPEA2 perform similarly in terms of solution quality, NSGA-II may be preferable,
since its solution times are significantly shorter than those of SPEA2.

Figure 3 illustrates the layout designs for different solutions on the Pareto Frontier
of an instance where γ = 80 and |S| =5. More specifically, candidate well locations
are restricted to the set {1, 7, 11, 16, 22} and the locations of two fixed WDUs are
nodes 15 and 28, as they are the common kitchen and WC in the camp. Figure 3a
represents the solution with the minimum walking distance value 1289.8, which also
has the longest network length: 387.55. Figure 3b shows an intermediate solution,
where total walking distance is 1347.8 and the network length is 338.46. Finally,
Fig. 3c represents the solution with the total walking distance 1470.8 and the mini-
mum network length value 302.07. It can be observed from Fig. 3 that the network
design changes in favor of network length as one moves from Fig. 3a to Fig. 3c. This
is a direct result of the epsilon constraint algorithm starting with minimizing total
walking distance edge of the Pareto frontier.

For γ =60 instances, we report the minimum, average and maximum number of
solutions found and solution times in Table 3. Each single objective model in the
epsilon constraint approach is solved for 10 minutes and the solutions are reported
with the corresponding optimality gaps. In Table 3, # of GNS denotes the number of
approximate nondominated solutions with gaps returned by the ε-constraint method.
Similarly, # of ANS1 and # of ANS2 are the number of approximate nondominated
solutions returned by the NSGAII and SPEA2 algorithms, respectively. In Table 3,
we do not categorize the solutions by the cardinality of well sets as we do in Table 1
for γ =80 and 100 since we have not observed a significant change in # of GNS, # of
ANS and solution times for different cardinality levels.

Table 2 Performance measures for NSGA-II and SPEA2 with γ =80 and 100

P% D1 D2

γ Min Avg Max Min Avg Max Min Avg Max

80 100 100 100 0 0 0 0 0 0

100 13.64 89.21 100 0 0.0103 0.0826 0 0.0224 0.1791
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Fig. 3 γ = 80, S = {1, 7, 11, 16, 22}. The minimum total walking a. An intermediate solution b. The
minimum network length c

As seen in Table 3, the number of solutions returned by the epsilon-constraint
approach (GNS) is quite less than the number of solutions returned by the NSGA-
II and SPEA2. This is because, to obtain GNS, the single objective models in the
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Table 3 Summary table with γ =60

Epsilon Constraint NSGA-II SPEA2

Approach (with gap)

Min Avg Max Min Avg Max Min Avg Max

# of GNS/ANS1/ANS2 6 8.3 12 22 23.1 27 23 23.5 27

CPU Time (sec) 1998 3865.9 6081 3 35.5 75 92 1208.88 2660

ε-constraint approach are solved for ten minutes. If this time limit is exceeded and
no integer solution is found, ε-constraint algorithm stops. Although there are fewer
solutions in epsilon constraint method, solution times are considerably longer than
those of NSGA-II.

To assess the quality of the solutions returned by metaheuristic algorithms and
epsilon constraint method with gap, we use SP, MS and SC metrics. The performance
measures can be seen on Table 4. Recall that the less the SP value is and contrarily
the more the MS value is, the better the solution set is. Therefore, both NSGA-II and
SPEA2 outperform ε-constraint approach with respect to spacing (SP) and spread
(MS). This is because of the early termination of the ε-constraint algorithm due to
the time limit. However, part of the solutions returned by the NSGA-II and SPEA2
are dominated by the ones returned by the epsilon constraint approach, as seen in the
SC(GNS,ANS1) and SC(GNS,ANS2) metrics. We observe that if the epsilon con-
straint approach can find a solution within the time limit, it is better than the ones
returned by the heuristic algorithms in the same part of the Pareto frontier. However,
epsilon constraint approach explores only a part of the Pareto frontier, failing to find
solutions in the minimum total network length part of the frontier, while metaheuris-
tic algorithms offer solutions representing that part. As it can be seen from Table 4,
NSGA-II and SPEA2 perform similarly with respect to all performance measures. In
fact, SC(ANS1, ANS2) and SC(ANS2, ANS1) measures indicate that on the average
96% of the SPEA2 solutions are the same with those of NSGA-II.

Figure 4 shows the solutions for an instance with |S| = 1 and γ = 60, where
SC(ANS1, ANS2) is 0.87. In this chart, GNS found by ε-constraint method, ANS1
found by NSGA-II and ANS2 found by SPEA2 are shown. It is seen that NSGA-II
and SPEA2 offer more solutions but some of them are dominated by the solutions
found by the epsilon constraint solutions. Note that, ANS1 and ANS2 solutions are
more spread and also represent the minimum total network length edge of the frontier
while the GNS solutions are clustered at a certain area, the minimizing total walking
distance edge of the frontier. Therefore, the solutions in GNS are not able to capture
the entire spectrum of the Pareto frontier.

While finding solutions, the epsilon constraint algorithm starts with minimizing
total walking distance edge and the first iterations are solved in relatively shorter
times compared to further ones. After a few iterations, as we approach to the mini-
mum network length side of the Pareto front, the solution time of the models increases
significantly and no integer solution is found in a given time limit, thus the algorithm
stops.
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Table 4 Performance measures for NSGA-II and SPEA2 with γ =60

Epsilon Constraint NSGA-II SPEA2

Approach (with gap)

Measures Min Avg Max Min Avg Max Min Avg Max

SP 3.39 7.16 11.28 3.02 4.81 10.35 3.15 5.29 10.00

MS 64.08 89.48 128.45 128.85 149.10 187.26 128.85 152.22 187.26

SC(GNS,ANS1) 0.50 0.67 1.00

SC(GNS,ANS2) 0.52 0.68 1.00

SC(ANS1,GNS) 0.00 0.10 0.25

SC(ANS1, ANS2) 0.87 0.96 1.00

SC(ANS2,GNS) 0.00 0.10 0.25

SC(ANS2, ANS1) 0.91 0.99 1.00

As it can be seen in Fig. 4, even for the instance having the lowest
SC(ANS1, ANS2) value, i.e. the instance in which ANS1 has the worst quality com-
pared to ANS2, the quality difference between the two solution sets is not high. That
is, NSGA-II and SPEA2 perform similarly in terms of solution quality. However, the
solution times of SPEA2 are considerably higher than NSGA-II even for the small
scale problems. Therefore, we use NSGA-II algorithm in our computational analysis
for larger problem instances having 73 nodes.

Fig. 4 Comparison of NS, ANS1 and ANS2 for an instance of γ = 60, |S| = 1
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5.2 Results for 73 Nodes

Based on the preliminary studies, it is observed that for larger problem instances, it
is harder to obtain exact solutions with the ε-constraint method in reasonable time.
Since it is shown in the previous part that NSGA-II algorithm performs considerably
well, we solve the larger models with 73 nodes using NSGA-II. We also solve these
instances with ε-constraint approach with a time limit. We consider the same γ values
as 60, 80 and 100. Since number of nodes are approximately doubled, the upper limit
for WDUs (p) is also increased. We set p as 20, 12 and 8 for γ = 60, 80 and 100
respectively. Similar to the 38-node setting, we fix the locations of some WDUs, in
this case 4 of them, with the same assumption that they are common use kitchens and
WCs whose locations are predetermined. 2 instances for each cardinality level of the

Table 5 Summary table for γ =60, 80 and 100

Epsilon Constraint NSGA-II

Approach (with gap)

γ Set No # of GNS CPU Time (sec) # of ANS CPU Time (sec)

60 |S| = 1 1 1 827 31 45

2 1 715 37 55

|S| = 5 3 1 650 132 225

4 1 753 66 246

|S| = 15 5 1 820 82 717

6 1 763 163 675

|S|= 25 7 1 617 97 1133

8 1 779 171 1116

80 |S| = 1 9 2 676 100 48

10 2 667 13 52

|S| = 5 11 1 610 110 248

12 2 689 110 252

|S| = 15 13 1 614 123 627

14 1 69 115 631

|S| = 25 15 2 703 129 1238

16 1 606 126 1254

100 |S| = 1 17 8 1930 6 46

18 6 1250 9 34

|S| = 5 19 7 2214 10 202

20 6 2201 7 237

|S| = 15 21 7 2510 8 648

22 7 1403 12 693

|S| = 25 23 7 2218 39 1225

24 7 2840 12 1097
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Table 6 Performance measures for NSGA-II

Epsilon Constraint NSGA-II

Approach (with gap)

γ Measures Min Avg Max Min Avg Max

60 SP − − − 3.58 8.27 11.72

MS − − − 287.51 1118.56 2334.90

SC(GNS,ANS) 0.00 0.00 0.00

SC(ANS,GNS) 0.00 0.00 0.00

80 SP − − − 6.40 14.71 25.75

MS − − − 212.81 1195.70 2190.70

SC(GNS,ANS) 0.00 0.02 0.09

SC(ANS,GNS) 0.00 0.13 1.00

100 SP 10.96 18.66 31.36 0.05 19.45 25.92

MS 59.63 135.42 207.71 207.71 486.04 1192.80

SC(GNS,ANS) 0.00 0.51 1.00

SC(ANS,GNS) 0.00 0.54 0.86

well sets, in total 8 instances for each γ value and overall 24 instances are created. In
Table 5, detailed results for instances with accessibility thresholds γ = 60, 80 and 100,
and two different sets of candidate well locations (S) for each cardinality are shown.

Fig. 5 Comparison of GNS and ANS for an instance of γ =100, |S|=25
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As it can be seen from the Table 5, the epsilon constraint approach fails to find
more than one solution in instances with small γ values. Since both ANS and GNS
contain approximate Pareto solutions, the number of solutions returned may not be
a good indicator of quality. Therefore, we compare the solutions in GNS and ANS
using SP, MS, and SC metrics and report the results in Table 6.

Note that for most of the instances with small γ values, the epsilon constraint
approach with time limit returns a single solution, hence SP and MS measures can not
be calculated. It is seen that NSGA-II outperforms the epsilon constraint approach
with gap with respect to spacing and spread. Moreover, the solutions are of compara-
ble quality indicated by the set coverage metric: Both for γ = 80 and γ = 100, more
solutions in set GNS are dominated by at least one point in ANS, than vice versa. We
provide the sets for an example instance in Fig. 5.

6 Conclusion

In this study, we address the clean water network design problem in refugee camps
and propose a bi-objective programming model that determines the locations of the
water well, WDUs and designs the general network structure by taking relevant con-
straints such as threshold for access into account. To the best of our knowledge, our
study offers the first problem definition, model and solution methods for clean water
distribution network in refugee camps. Moreover, considering two relevant criteria
of cost and accessibility simultaneously, the approach helps the decision makers to
observe the trade-offs and make more informed design choices.

Exact and heuristic solution methodologies are proposed to solve the bi-objective
models. In order to find the exact Pareto frontier, the epsilon constraint method is uti-
lized. It is observed that for some instances, ε-constraint method takes considerably
long time to solve. Therefore, NSGA-II algorithm is adapted to find the solutions
in shorter times. Our computational experiments demonstrated that the algorithm
returns good quality solutions.

In the cases where the exact Pareto set could not be found in reasonable time, we
also use the epsilon constraint approach in a heuristic manner. We solve each single
objective model in the epsilon constraint method with a gap and compare the corre-
sponding results with those of the NSGA-II. It is observed that NSGA-II algorithm
outperforms this heuristic version of the epsilon constraint method.

This study can be extended in several directions. One possible extension would
be incorporating a fixed cost associated with the construction of the network, which
is independent of the network length, into our model. Another extension would be
considering hydraulic parameters and associated costs, which make water network
design problems harder to solve. Another research direction worth exploring is con-
sidering other components of the water network such as water storage units, tanks and
depots, which leads to more extensive problems. Finally, a third objective about the
utilization of WDUs can be considered. Exact algorithms could be improved to solve
larger problems in reasonable time or alternative heuristic solution methodologies
can be implemented.
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