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A B S T R A C T   

Service planning problems typically involve decisions that lead to the distribution of multiple benefits to multiple 
users, and hence include equality and efficiency concerns in a multidimensional way. We develop two mathe
matical modeling-based approaches that incorporate these concerns in such problems. The first formulation 
aggregates the multidimensional efficiency and equality (equitability) concerns in a biobjective model. The 
second formulation defines an objective function for each benefit, which maximizes the total social welfare 
obtained from that specific benefit distribution; this results in an n-objective model, where n is the number of 
benefits. We illustrate and compare these approaches on an example public service provision problem.   

1. Introduction 

The importance of the role of fairness in real-life decisions has been 
acknowledged in many operational research (OR) problems studied in 
recent years [34]. Especially in applications related to social welfare, 
including fairness in the proposed solution methods is a must. In line 
with this, there is a notable increase in the reported studies in the OR 
literature incorporating fairness concerns in various areas, such as 
supply chain [25,47], logistics [27], allocation problems [32,33], 
equitable choice [36], network [45] and action planning [24]. 

A significant challenge that occurs in such applications is the fact 
that fairness arises as an additional criterion to other, mostly system 
efficiency-related, criteria (such as total cost or total benefit), and that 
there a trade-off between these concerns. This calls for the use of mul
tiobjective programming approaches, which enables the decision 
makers (DMs) to analyze such trade-offs. There are studies in the liter
ature that acknowledge and address the trade-off between efficiency and 
fairness (equity) concerns (see e.g., Refs. [15,20,22,28,31,42,43]). 

Fairness is a broad concept involving many dimensions. The DM’s 
ideally fair allocation may correspond to one where every entity receives 
the same amount or to another allocation that considers different 
characteristics of the entities, such as their needs when defining a fair 
allocation [33]. In the first case, the underlying preference model of the 
DM satisfies anonymity as the identities of the entities become irrelevant 
(i.e., an equal allocation is considered as the most fair one by the DM). In 
the second case, however, anonymity no longer holds as the DM has a 

clear desire to prioritize allocation to some of the entities. These two 
concepts are called equitability (or equality) and balance concerns, 
respectively [34]. In this study, we consider cases where the entities are 
indistinguishable; hence, the fairness related concern is an equality 
(equitability) concern. 

If the decision maker considers the distribution of a single benefit to 
multiple users, each distribution alternative corresponds to a vector. 
This allocation vector presents the distribution of that single benefit to 
users/entities. In this case, there are single dimensional efficiency and 
equality concerns. On the other hand, if the decisions will lead to the 
allocation of multiple types of benefits to multiple users, there will be a 
concern for efficiency and equality for each benefit type. We hereby 
consider cases where the DM has equality (equitability) concerns over 
the allocation of multiple types of benefits to multiple users. We call 
such problems multidimensional equitable optimization problems. Most 
of the current work in the literature focuses on settings where a single 
benefit is allocated. This study extends these and contributes to the 
literature by suggesting ways of addressing these concerns in a multi
dimensional domain and demonstrating their potential use in public 
service provision. 

The rest of the paper is organized as follows: In Section 2, we give a 
review of the literature and explain how our study extends the current 
works. In Section 3, we formally define the problem and provide the 
generic formulations of the two approaches that we consider for the 
problem. In Section 4, we demonstrate the usage of our approaches on a 
case study. The specifics of the case study are described, followed by a 
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detailed analysis of the results. We conclude our paper in Section 5 and 
give recommendations for future research. 

2. Literature review 

The problem considered in this paper can be classified as a multi
dimensional equitable optimization problem. We first mention equitable 
optimization problems in which single benefit distributions are consid
ered. Then we discuss the solution methods used in solving multi
objective resource allocation problems with only efficiency-related 
concerns. 

Fig. 1 demonstrates a categorization of the relevant literature. We 
refer to problems aiming at equitable allocations of benefits (or re
sources) to a set of entities as equitable decision-making problems, 
which can be categorized into two main sets based on whether a choice 
or an optimization setting is considered. In the choice settings, the op
tions (alternatives) are explicitly given; hence, the problem is choosing 
the alternative to implement (see e.g. Ref. [35], for a choice problem 
over alternative allocations of a single benefit and [36] for an extension 
to settings with multiple benefits). 

When alternatives are implicitly defined by constraints, the problem 
becomes an equitable optimization problem. We can categorize our 
study under equitable optimization problems in a multibenefit domain 
(see Fig. 1). Most of the current work focuses on equitable optimization 
problems with single benefit concern, and there are not many works on 
the multiple benefit domain. For that reason, we look at the equitable 
optimization problems in the single benefit domain in the next section. 

2.1. Equitable optimization problems (single benefit) 

In these problems, if the decisions are associated with the distribu
tion of a single benefit across multiple entities, then efficiency and 
equality concerns are single dimensional, and the allocation alternatives 
are vectors, showing how the benefit is distributed across entities. Most 
of the current literature is concerned with such settings and mainly relies 
on these three methods: using an (in)equality-related function in addi
tion to an efficiency-related one; combining these two functions in a 
welfare function; or treating the problem as a multiobjective optimiza
tion problem and finding the equitable nondominated solutions (see 
Ref. [37]). 

The first group of studies attempts to quantify the inequality degree 
of an allocation using specific indices, some of which are borrowed from 
the income inequality measurement literature. Our first approach fol
lows this line of thought and is an index based approach. In this method, 
various measures of inequality are used to assess the equality level of a 
given distribution. In the mathematical models, this index is either 
optimized as an objective function or restricted through constraints in an 
efficiency maximizing setting. In the latter approach, the inequality 
measure is ensured to be less than a certain threshold. The most popular 
approach is using the amount that the worst-off entity gets as an indi
cator of inequality, which is called a Rawlsian approach [49]. Examples 
of that type of approach are seen in the hospital location problems, in 
which the total distance is minimized while limiting the longest distance 
to any neighborhood by a certain threshold. Further examples can be 
given from various applications, including (but not limited to) location 
[39,46], scheduling [26,55], logistics [48], resource allocation [13], 
network [14] and project selection [41].  

Rather than using separate equality and efficiency-related functions 
in a model, some studies use special types of functions that incorporate 
both efficiency and equality (or, as called in Ref. [38], equity) concerns 
[17,21,40]. Such functions are called social welfare or equitable aggre
gation functions [38]. Maximizing a function which incorporates both 
efficiency and equity is analogous to the multicriteria decision-making 
methods that assume that the decision maker has a known utility 
function and maximizes this utility function. The welfare function must 
be an increasing function (to encourage efficiency) and must be 

symmetric and satisfy the Pigou-Dalton transfers principle1 (see e.g., 
Ref. [50]) to promote egalitarian allocations. Such functions are selected 
from the set of Schur-concave functions,2 which are symmetric by 
definition [51]. Ordered weighted averaging (OWA) functions, in which 
weights are ordered such that relatively worse-off entities receive rela
tively higher weights, are typical examples of this type of social-welfare 
function [57]. 

[44] studies OWA aggregation for multicriteria problems. They 
introduce two linear programming formulations to linearize OWA-type 
objective functions [40]. uses ordered median functions, which are 
symmetric concave to address equity concerns [52]. tries to allocate 
indivisible tasks while using the Minmax share approach [30]. proposes 
a social welfare function, which combines equity and efficiency con
cerns for a two-person problem and a many-person problem [21]. works 
on a nurse rostering model with a welfare function that determines shifts 
of nurses according to their skills [15]. utilizes OWA functions and in
troduces a parametric welfare dominance concept so as to parameterize 
the degree of inequality aversion in resource allocation settings. 

Our second method is based on the same idea of using welfare 
functions, but since there are multiple benefit allocations the resulting 
optimization problems are multiobjective. 

The third group of methods formulates a single benefit distribution 
problem as a multi-objective optimization problem and suggests finding 
solutions that are equitably nondominated [18].3 

In this paper, we focus on problems where decisions result in the 
distribution of multiple benefits to multiple entities. Examples of this 
setting could be seen in many public and private sector decision-making 
problems, such as location, task assignment, scheduling, bandwidth 
allocation, health investment, health-care systems and course design 
(see e.g. Ref. [52], for an equitable task allocation problem with 
multidimensional cost). In these problems, the DMs have 
efficiency-related concerns and try to maximize the total benefits. 
Moreover, in most of these settings they also have equality concerns, and 
hence, would like to distribute the benefits to users as equally as 
possible. Since multiple benefits exist, the concerns of efficiency and 
equality are multidimensional. A typical example occurs in public edu
cation course allocation settings, where a DM decides which courses to 
will be offered in different neighborhoods. The DM wants to open 
courses so that the population can benefit as much as possible (subject to 
a given budget), while ensuring that equitable service is offered to 
different population groups. 

In such settings, the DM is faced with the problem of evaluating 
alternative distributions of multiple benefits to multiple users (see 
Fig. 1). This problem can be considered as an extension of two different 
problem types in the literature: The first one is the equitable optimiza
tion problem, whose applications in the literature have focused on the 
distribution of a single good or bad as equally and efficiently as possible. 
We mentioned this type above. The problem we define extends such 
problems as it concerns the distributions of multiple goods (bundles) 
across entities; hence, alternatives are matrices. The second one is the 
multiobjective resource allocation problem with only efficiency 
concern, which is discussed below. 

1 Pigou-Dalton transfer principle states that, for an allocation, any new 
allocation created by taking some benefit from a relatively better off entity and 
transferring it to the other(s), should be a more preferred alternative. 

2 A function f(.) : Rm→R is Schur-concave if and only if for all doubly sto
chastic matrices Q, f(Qz) ≥ f(z). 

3 An allocation vector is equitably nondominated if there is no other alloca
tion vector that equitably dominates it, i.e. is preferred to it with respect to all 
rational preference relations that satisfy the additional axioms of symmetry and 
Pigou-Dalton Principle of transfers. Symmetry (anonymity) ensures that the 
decisions are not affected by the identities of the entities [37]. 
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2.2. Multiobjective resource allocation problems with only efficiency 
concern 

Most of the optimization settings in the operations research literature 
formulated multiobjective resource allocation problems so as to maxi
mize the total amount for each type of benefit, and, therefore, consid
ered only efficiency. 

In the optimization field, problems with more than one outcome 
have been studied for multiobjective knapsack problems, though this 
has been done without considering equality [56]. works on a branch and 
cut algorithm, and implements a two-phase algorithm to generate effi
cient solutions for biobjective knapsack problems [19]. provides a new 
dynamic programming algorithm and experimentally compares the 
method with other exact solution methods that have been proposed; it 
shows that their algorithm works faster than the best algorithm ([23]) 
known to date. 

These problems generalize the single benefit knapsack problems to 
multibenefit knapsack problems. However, in these problems, only the 
total output is maximized and distribution is not addressed. In many 
real-life decision-making processes, however, maximizing efficiency 
may not be convenient in terms of equity. Our problem extends these 
problems as well, as it incorporates equality concerns into these settings 
and concerns the distributions of the benefits across entities, defining 
alternatives as matrices. 

The contributions of the current work can be summarized as follows: 
i) We introduce and study the multidimensional equitable optimization 
problems, which extend equitable optimization problems by considering 
allocation of bundles; ii) These problems also extend multiobjective 
resource allocation problems with only efficiency concerns by incorpo
rating equality; iii) We provide generic models to address the multidi
mensional equitable optimization problems. (To the best of our 
knowledge, our work is the first attempt to handle multidimensional 
efficiency and equality concerns in optimization settings by proposing 
generic structures that allow trading equality off-against efficiency or 
trading welfare with respect to one benefit off-against welfare with 
respect to other benefits); and iv) The proposed methodology is generic 
in the sense that it can be adapted to any setting in which decisions lead 
to the allocation of bundles to a number of entities who are considered 
indistinguishable (having equal rights for sharing the benefits). We 
demonstrate the use of the proposed methodology through a public 
sector resource allocation example. Our analysis reveals the benefits of 
considering equality in public service planning. 

3. Problem definition and solution approaches 

Multidimensional optimization problems are multiobjective 

optimization problems by nature due to the existence of multiple effi
ciency and equality concerns. However they are different from classical 
multiobjective optimization problems due to additional properties 
assumed for the underlying preference relation. Therefore handling such 
problems requires customized approaches. 

To be able to incorporate these (multidimensional) efficiency and 
equality concerns in the decision making process, we propose multi
objective mathematical modeling based approaches in this paper. These 
approaches are generic in the sense that they can be adapted to various 
settings in which the decisions result in allocations of multiple goods to 
multiple users. To keep the cognitive burden of the DM at a reasonable 
level, we first formulate biobjective programming problems, the solving 
of which would provide the DM with a set of Pareto solutions. Hence we 
allow the DM to analyze the trade-off between efficiency and equality 
and choose the solution that she will implement. Our second approach 
maximizes welfare functions, each of which is associated with one of the 
benefits distributed. These functions are concave (Schur-concave); 
hence, they encourage efficiency and equality in the allocations. 

Consider an optimization setting where any decision results in allo
cations of a set of benefits over a set of entities and the decision maker(s) 
has efficiency and equality concerns for all benefits. We discuss two 
alternative approaches that could be used in these settings, aggregate 
efficiency-equality framework and concave welfare framework, respec
tively. In the first approach, we aggregate the multidimensional effi
ciency concerns, that is the concern for maximizing the sums of all types 
of benefits, using an efficiency-related aggregation function. Similarly, 
the multidimensional equality concerns, that is the concern for distrib
uting each type of benefit as equally as possible, are aggregated using an 
equality-related aggregation function, resulting in a biobjective pro
gramming problem as follows: 

max “Efficiency, Equality”
Subject to :

zik = gik(x) ∀i ∈ I, ∀k ∈ K
(1)  

x ∈ X (2) 

In this generic formulation x is the decision variable vector and X is 
the set of feasible decisions. Each decision x results in a distribution of 
multiple benefits across a set of entities. zik is the amount of benefit type i 
enjoyed by entity k. gik(x) is a function that determines the value of the 
enjoyed benefit of zik. “Efficiency” and “Equality” refer to the efficiency 
and equality aggregation functions, the explicit forms of which will be 
provided in the upcoming sections. This approach explicitly focuses on 
the trade-off between these concerns. 

In the second approach, we investigate the case where the aggrega
tion is performed over the efficiency and equality concerns of each 
benefit allocation, resulting in the following n-objective programming 

Fig. 1. Categorization of equitable decision-making problems in the literature.  
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problem: 

max “Welfare1, Welfare2,…, Welfaren”
Subject to :

zik = gik(x) ∀i ∈ I, ∀k ∈ K
(3)  

x ∈ X (4)  

(Welfare1, Welfare2, …, Welfaren) is the vector of n objective functions 
where Welfarei is the aggregation function used for benefit i, the exact 
form of which will be given later. 

We now provide the detailed descriptions of these two approaches. 

3.1. Aggregate efficiency-equality framework (AEE) 

This approach aggregates the multidimensional efficiency concerns 
in one objective and the multidimensional equality concerns in the other 
objective. The overall equality and efficiency levels of a decision are 
calculated as the sum of equality and efficiency scores assigned to each 
benefit allocation. 

The efficiency score function is a function of total benefits distributed 
from each benefit type. Since the benefits would typically take values on 
different ranges and are measured in different units, a scalarization 
would be needed to aggregate the total amounts of different benefits. For 
scalarization purposes, we define lower and upper bounds on the total 
amount of benefit i that could be enjoyed by the entities (the upper 
bound is determined by solving the problem as if the only concern were 
maximizing the total amount of that specific benefit; the lower bounds 
are simply taken as 0) and denote these as Li and Hi, respectively. 
Moreover, we assume that the DM would like to avoid cases with very 
high levels of total efficiency score coming only from a small subset of 
the benefit types, which indicates very low totals in other benefit types. 

We propose using an increasing concave function as an aggregation 
function to ensure balance in efficiency score values across multiple 
benefits. 

The equality score function is a function of the benefit proportions, 
showing the proportion of the total benefit distributed to each entity. 
Similar to the efficiency case, we assume that the DM would like to avoid 
cases in which some benefits are equitably distributed while there is 
extreme inequity in other benefit distributions. Hence, we use an 
increasing concave function as an aggregation function to ensure equity 
in equality score values across multiple benefits. 

Note that the aggregated equality function considers proportions and 
hence does not incorporate any efficiency concerns (i.e., there is no 
difference between alternative allocations with different totals as long as 
the users enjoy the total with the same proportions). To illustrate, the 
following two benefit distributions over three entities would have the 
same equality score, although their efficiency levels are different: (10, 
10, 20) and (25, 25, 50). We incorporate the (multidimensional) effi
ciency preferences only in the first objective. In this sense, we use an 
approach that is similar to the index-based approaches discussed in 
Section 2 and capture the degree of equity using our equality score. 
However, unlike the existing methods, our approach aggregates scores 
over multiple benefits; hence, we propose an indicator for multidimen
sional inequality measurement. 

We linearize the concave aggregation functions using piecewise 
linearization in our mathematical models. The formulation is as follows: 

Problem parameters 

K: the set of entities, K = {1, 2, …, l}, index k 
I: the set of benefits, I = {1, 2, …, n}, index i 
M: number of thresholds used for piecewise linearization of the 
concave functions 
Li: a lower bound on the total amount of benefit i enjoyed by the 
entities 

Hi: an upper bound on the total amount of benefit i enjoyed by the 
entities 
ΔTf

m: difference between two consecutive normalized benefit 
thresholds defining interval m in equality aggregation function, 
m = 1, …, (M − 1) 
ΔTe

m: difference between two consecutive normalized benefit 
thresholds defining interval m in efficiency aggregation function, 
m = 1, …, (M − 1) 
ΔUf

m: difference between equality scores of benefit thresholds 
defining interval m, in equality aggregation function, m = 1, …, 
(M − 1) 
ΔUe

m: difference between efficiency scores of benefit thresholds 
defining interval m in efficiency aggregation function, m = 1, …, 
(M − 1) 
Wf

m: ΔUf
m/ΔTf

m, m = 1, …, (M − 1). 

We
m: ΔUe

m/ΔTf
m, m = 1, …, (M − 1). 

Decision variables 

zik: amount of benefit i enjoyed by entity k 
zN

ik: normalized zik ( zik∑
k∈K

zik
)

fik: equality score contribution of zN
ik 

ti: scalarized value of total amount of benefit i 
ei: efficiency score contribution of ti 
Xf

ikm: amount of normalized benefit obtained within interval m for 
entity k from benefit type i in equality aggregation function 
Xe

im: amount of normalized total benefit obtained within interval m 
from benefit type i in efficiency aggregation function 

Aggregate efficiency-equality model (AEE-C) 

Max
∑

i∈I
ei, Max

∑

k∈K

∑

i∈I
fik (5)  

Subject to :

x ∈ X (6)  

zik = gik(x) ∀i ∈ I , ∀k ∈ K (7)  

zN
ik =

(
zik

∑
k∈K zik

)

∀i ∈ I , ∀k ∈ K (8)  

zN
ik =

∑M− 1

m=1
Xf

ikm ∀i ∈ I , ∀k ∈ K (9)  

fik =
∑M− 1

m=1
Wf

mXf
ikm ∀i ∈ I , ∀k ∈ K (10)  

ti =

(∑
k∈K zik

Hi − Li

)

∀i ∈ I (11)  

ti =
∑M− 1

m=1
Xe

im ∀i ∈ I (12)  

ei =
∑M− 1

m=1
We

mXe
im ∀i ∈ I (13)  

0 ≤ Xf
ikm ≤ ΔTf

m ∀i ∈ I , ∀k ∈ K, m = 1,…, (M − 1) (14)  

0 ≤ Xe
im ≤ ΔTe

m ∀i ∈ I , m = 1,…, (M − 1) (15) 

Constraint set (6) ensures that x, the decision vector, is an element of 
X, which is the feasible set in the decision space. The decisions and the 
feasible decision space are problem specific, hence we give them in 
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generic form. Constraint set (7) is used to calculate total amount of 
benefit i enjoyed by entity k as a result of decision x. Constraint set (8) 
scales the total amount of benefit i enjoyed by entity k to a [0,1] interval 
by converting zik to the proportion of the total amount, zN

ik. Note that a 
concave equality function is used to ensure that these equality scores are 
allocated evenly across entities. This function is linearized using piece
wise linearization. For that purpose, the range of normalized benefit 
values, [0,1], is divided into M − 1 intervals as seen in Fig. 2, which 
shows an example equality score function with 10 intervals. Constraint 
sets (9) and (10) are used to calculate the equality score value of the 
entity k’s share from benefit type i (zN

ik). 
We perform a similar linearization for the concave efficiency func

tion. Constraint set (11) is used to calculate the scalarized total value for 
each benefit, and (12)–(13) are used to calculate the efficiency score. 

Finally, constraint sets (14) and (15) ensure that Xf
ikm and Xe

im values are 
all in [0, ΔTf

m] and [0, ΔTe
m], respectively. 

We call the above model AEE-C (Aggregate efficiency-equality model 
with concave efficiency score function). For comparative purposes we 
also consider another variant (AEE-L), where the efficiency aggregation 
function is a linear function instead of a concave one. This implies that 
the DM is only concerned with the total amounts, hence decisions with 
very high totals in one benefit and low totals in others are also deemed 
acceptable. Parameters and decision variables of AEE-L are the same as 
in AEE-C. We delete constraints (12), (13), (15) and replace the first 
objective function with 

∑
i ∈ I ti. 

3.2. Concave welfare model 

This approach defines the objective functions based on the benefit 
types and separately maximizes social welfare obtained from each 
benefit distribution. 

When allocation alternatives are vectors and equality concerns exist, 
the DM’s preference relation is assumed to be an equitable preference 
relation, which satisfies axioms of symmetry and Pigou-Dalton principle 
of transfers. If the DM’s equitable preference relation can be represented 
by a function, the function should be an equitable aggregation function, 
which satisfies Pigou-Dalton transfer, anonymity and monotonicity 
properties. It is well known that equitable aggregation functions should 
be Schur-concave [37]. Hence, in this approach, we use Schur-concave 
welfare functions for single benefit allocations to incorporate effi
ciency and equality concerns. We define the objective functions based on 
the benefit types and separately maximize social welfare obtained from 
each benefit distribution. 

Each such function is defined as a Schur-concave function of the form 
SWi =

∑
k ui(zik), where ui(.) shows the welfare gained by providing zik 

units of benefit i to entity k. Using concave welfare (ui(.)) functions 
encourages equitable distribution of the benefits. We use piecewise 
linearization to calculate the ui(.) values for the benefits from concave 
welfare function. 

In addition to the decision variables and the problem specific pa
rameters of the AEE-C model, we introduce the following: 

Additional parameters for concave welfare model 

ΔTm: difference between two consecutive benefit thresholds defining 
interval m, m = 1, …, (M − 1). 
ΔUm: difference between welfare scores of benefit thresholds 
defining interval m, m = 1, …, (M − 1). 
Wm: ΔUm/ΔTm, m = 1, …, (M − 1). 

Additional decision variables for concave welfare model 

uik: contribution to social welfare from the share of user k in benefit i, 
i.e. ui(zik)

Yikm: amount of benefit type i obtained by entity k within interval m 

Concave welfare model (CW) 

Max “
∑

k∈K
u1k,… ,

∑

k∈K
unk” (16)  

Subject to :

x ∈ X (17)  

zik = gik(x) ∀i ∈ I, ∀k ∈ K (18)  

zik =
∑M− 1

m=1
Yikm ∀i ∈ I, ∀k ∈ K (19)  

uik =
∑M− 1

m=1
WmYikm ∀i ∈ I, ∀k ∈ K (20)  

0 ≤ Yikm ≤ ΔTm ∀i ∈ I, ∀k ∈ K, m = 1,…, (M − 1) (21) 

As in the aggregate efficiency-equality model, x and X denote the 
decision vector and feasible decision space, respectively. Constraint set 
(18) is used to calculate the amount of benefit i enjoyed by the entity k as 
a result of decision x. Constraint sets (19) and (20) are used to calculate 
the utility values of the entity k’s share from benefit type i. Finally, 
constraint set (21) ensures that Y values are all in [0, ΔTm]. 

The following section will discuss a real-life based problem that can 
be tackled using the structure discussed above. 

4. Case study 

We now introduce a real-life case study on a problem that public 
service planners face in Turkey. Public Education Centers (PEC) orga
nize courses in almost all provinces of Turkey. These courses are offered 
year round, seven days a week and are free of charge. They can be 
offered as full day sessions as well as morning, lunch, evening and 
weekend sessions (groups). 

Ankara, as the capital city of Turkey, hosts many of these courses. 
With a population of nearly 5.5 million [9], the city consists of many 
districts, each with residents of various demographic characteristics. 
Planning public education to ensure that the residents are offered 
courses based on their needs, in an equitable and efficient manner, is a 
substantial concern. Indeed, providing indiscriminate education support 
to all segments of the society is stated as a basic principle and a priority 
for these centers [54]. How to ensure this is a challenging question as it 
is not possible to offer all courses in all regions due to limited resources 
(such as budget, physical capacity and personnel) ([4], Directorate of 
Public Education Service). We, therefore, consider the problem of 
planning PECs in the districts of Ankara such that the benefits of the 
courses are distributed among different district groups in an equitable 
and efficient manner. In the current system, courses are offered mostly 
in the city centers, which conflicts with the “equitable education service 
for all segments of the society principle” ([11], Ministry of National 
Education); the low-income districts, which are typically located rela
tively far away from the city centers, are deprived of the service. Poli
cymakers are planning to alleviate service deprivation in regions with 
low income levels and increase the welfare of their residents through 
these courses ([3], Non-formal Education Institutions of the Ministry of 
National Education). Our approach can be seen as a first step towards 
achieving this goal. For these reasons, we define the entities as district 
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groups that are categorized based on poverty rates (see e.g., Fig. 3). It is, 
however, possible to use the proposed methodology on the same plan
ning problem with different entity definitions (e.g., population groups 
can be constructed based on neighborhood, age or other attributes 
deemed relevant.)The problem is also challenging as there are multidi
mensional trade-offs, both between efficiency and equality levels of 
alternative plans for the same type of service, as well as across different 
types of services. Since the resources are limited, it is important for 
public planners to evaluate alternative solutions and make decisions 
based on a transparent mechanism that reveals gains and losses. 

4.1. Data for the case study 

There are different types of possible courses that can be offered (see 
webpages [7,10] for the list of courses). These courses can be gathered 
into two main groups: hobby courses (H) and vocational assistance 
courses (VA). 

The data for the model are based on factors deemed important for the 
illustrative case study and are estimated using publicly available infor
mation [12]. We consider 16 districts, which are: Etimesgut (ET), Çan
kaya (ÇA), Yenimahalle (YE), Sincan (Sİ), Çubuk (ÇU), Keçiören (KE), 

Fig. 2. An example equality score function.  

Fig. 3. Poverty rate level map of districts of Ankara. Group 1 (3) has the minimum (maximum) poverty rate. Ranges of the poverty rate levels: Group 1, [0.4–4]; 
Group 2, [5.9–6.7]; Group 3, [9.6–36.5]. NC: Not considered since data on poverty rates were not available for the area (since the population is below 20000) [1]. 
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Polatlı (PO), Pursaklar (PU), Mamak (MA), Beypazarı (BE), Gölbaşı 
(GÖ), Altındağ (AL), Şereflikoçhisar (ŞE), Kahramankazan (KA), 
Elmadağ (EL) and Akyurt (AK). We divide these districts into three 
groups of similar population size based on relative poverty rate4 [2,53] 
and consider these groups as entities of the allocation problem, as shown 
in Table 1 and Fig. 3. The sizes of district-based population groups are 
estimated using publicly available data [8]. 

Each public educational unit serves only the region it is located in. 
Course participant numbers for each district between 2009 and 2018 are 
publicly available in Ref. [5], which corresponds to approximately 1% of 
the total population for each year. In line with this, we assume that the 
demand for the courses will be 1% of the district’s population and that 
the courses have the capacity to satisfy this demand. The cost of opening 
a new course mainly consists of venue and instructor costs, and varies 
from district to district. We estimate the venue cost by calculating an 
approximate rental cost of the area required for the course, which is 
directly proportional to the district’s population. We also use 
district-based rental rates for this estimation. The teaching cost is 
calculated by multiplying permanent instructors’ salaries by the number 
of instructors that would be needed in the district.5 In districts with a 
higher population, the course classrooms are assumed to accommodate 
25 people; otherwise they are assumed to serve 20 people, based on the 
current practice (see Ref. [7], Ankara Directorate-General Public Edu
cation Service). We assume that the available budget is approximately 
50% of the total cost of the courses. 

We expect that whether people would prefer hobby or vocational 
courses would depend on the average poverty level of the district resi
dents. Therefore, we estimate attendance rates to the hobby and voca
tional assistance courses accordingly, as presented in Table 2. To be 
more specific, we assume that around 1% of the district’s population 
(see Table 3) would be attending the courses, and the participants’ 
preference for hobby and vocational courses would be determined by 
the rates given in Table 2. For example, in the second group, a total of 
15,177 people would be participating, 8965 of whom are expected to 
choose hobby courses (see Table 3). The cost of opening a new course is 
district-specific since it is evaluated by examining both the rental prices 
and the salaries of the course instructors in the districts. We measure the 
benefit of a course in terms of the number of participants. 

4.2. Results 

We formulate the public education provision problem described 
above as a binary knapsack problem. Note that the aggregation based 
framework is a biobjective framework, irrespective of the number of 
benefit types. In the second framework, though, the number of objective 
functions is equal to the number of benefit types. Since we consider two 
benefit types (hobby and vocational-related benefit), all formulations 
result in biobjective programming problems, the details of which are 
provided in Appendix A. We solve these models using the epsilon- 
constraint approach [29].6 All models are coded in Eclipse JAVA Oxy
gen and solved by CPLEX 12.6 on a dual core (Intel Core i7 2.81 GHz) 
computer with 16 GB RAM. All solution times are reported in central 
processing unit (CPU) seconds. 

A common drawback to all approaches relying on inequality indices 
is the fact that these indices only focus on how the total benefit is 
distributed regardless of the level of total benefit: even an allocation not 
distributing any benefit to any of the entities is a perfectly equal one. The 
aggregated efficiency-equality approaches suffer from the same draw
back as they quantify (in)equality based on proportions of benefit 
distributed to the entities. To give an example, consider the following 
two solutions that allocate two benefits and three entities (the rows 

correspond to the allocation vectors of the benefits): 
[

100 300 200
100 300 200

]

, 
[

150 100 100
150 100 100

]

when AEE-C approach is used, the aggregated 

equality and efficiency scores of these matrices are (73.50, 130.64) and 
(65.00, 134.86), respectively; hence none dominates the other in the 
bicriteria sense. However, when the allocation matrices are investigated 
in detail, it is observed that the first allocation is better. This is because 
anonymity is assumed across entities, implying that an allocation matrix 
is equally good as its column permutations. When we permute the sec
ond matrix swapping the first and the second columns, it is seen that in 
the first alternative each element is at least as much as its counterpart in 
the second one. Since the second matrix distributes the benefits in a less 
efficient but relatively more equal way, the equality score of this option 
is higher than that of the first, making it a nondominated alternative. 
This can also be observed looking at the fractional distributions as fol

lows: 
[

0.17 0.5 0.33
0.17 0.5 0.33

]

, 
[

0.42 0.29 0.29
0.42 0.29 0.29

]

; this leads to the second 

matrix having a higher aggregated equality score. This is the reason why 
any approach incorporating equality concerns using inequality indices 
should also account for efficiency. 

The relation between the above allocation matrices is called equi
table matrix dominance [36] and is defined below. 

Definition 1. Given two alternatives fj, f j′ ∈ R(n×l) where n is the 
number of benefits and l is the number of entities, I = {1, 2, …, n} and K 
= {1, 2, …, l}: 

f j′ ≺df j
(

f j weakly matrix dominates f j′
)

⟺ f j′

ik ≤ f j
ik for all i ∈ I, 

k ∈K. 
Let πr(fj’) be a column permutation of fj’ and R = {1, 2, …, l!}: 

f j′ ≺emf j
(

f j equitably matrix weak dominates (em-dominates) f j′
)

⟺ 

πr(f j′ )≺df j for at least one r ∈ R. 

To remedy the issue of obtaining em-dominated alternatives, we 
perform post-processing and eliminate such solutions. All the results 

Table 1 
Categorization of 16 districts into poverty rate based groups.  

District Poverty Rate Group District Poverty Rate Group 

ET 0.4 1 MA 10 

3 

ÇA 2 BE 17 
YE 4 GÖ 17.1 
Sİ 5.9 2 AL 17.9 
ÇU 6.5 ŞE 25.9 
KE 6.7 KA 30 
PO 9.6 3 EL 32.9 
PU 9.7 AK 36.5  

4 The individual or household that has income and spending below a certain 
limit (a specific rate of the average welfare level of the society) is defined as 
relatively poor. The relative poverty rate, in our data, is the share of individuals 
or households living with less than half of the median disposable personal in
come in Ankara.  

5 We assume that the instructors are already recruited. Hence costs associated 
with recruiting and training teachers are not taken into account. In accordance 
with the Regulations on Non-formal Education Institutions of the Ministry of 
National Education published in the Official Gazette [6], the salaries of public 
education center (non-formal) teachers are the same as the formal education 
teachers. Every public personnel in the teacher status should have the same 
base salary. This situation reveals salary equality regardless of the course given. 

6 Let the biobjective programming problem be: max[z1(x), z2(x)] s.t. x ∈ X. 
We use augmented epsilon constraint models with an augmentation term set as: 

10− 7(
zI

1 − zN
1

zI
2 − zN

2
) where xi ∈ argmax x∈Xzi(x), zI

i = zi(xi), zN
i = argmin x∈Xzi(x) for 

i = 1,2. The stepsize used in the constraints controlling the level of the second 

objective function is set as: zI
2 − zN

2
100 . 
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reported in the following analysis correspond to the solutions obtained 
after post-processing and hence to nondominated solutions in the em- 
dominance sense. For each method, we perform a dominance check 
among the solution set returned by that specific method (i.e., we do not 
cross-check with the solutions returned by the other methods). That is, if 
a solution is em-dominated by solutions returned by an alternative 
approach we do not eliminate it since it would not be traceable in a real- 
life application. 

In our case study, we assume that the concave equality score func
tions are of the following form [16]: 

f (x) =
x(1− α) − 1

1 − α  

, where x = zN
ik. 

This is a well-known function in the income inequality literature and 
is discussed in detail in Ref. [16]. The central DM’s preferences for 
equality are incorporated through the degree of concavity in this func
tion, hence through parameter α = [0, 1). The function represents 
preference models for decision makers with less equality concerns when 
α approaches zero (less concavity). For our demonstration, we assume 
that the DM’s preference for equality is at an upper-middle level and set 
α = 0.7. 

In AEE-C the concave efficiency score function and in CW the utility 
functions u(.) are also taken in the same form, again with α = 0.7. Note 
that x corresponds to benefit proportions enjoyed by entities (zN

ik) in the 
equality score function, while it is the (scalarized) total benefit enjoyed 
(ti) in the efficiency score function. In u(.), x corresponds to the amount 
enjoyed by each entity (zik). As discussed before, we use piecewise linear 
approximation to approximate these concave functions within the 
model. 

We first investigate the Pareto solutions returned by the aggregate 
efficiency-equality approach. Recall that we have two variants of this 
approach based on the form of aggregate efficiency function: concave 
and linear. Figs. 4 and 5 show the Pareto solutions of concave (AEE-C) 
and linear (AEE-L) efficiency function variants, respectively; Fig. 6 
shows the solutions of the concave welfare approach (CW). In each 
figure, in addition to the Pareto solutions of the corresponding 
approach, we provide the images of the solutions returned by the other 

two approaches so as to enable a detailed comparative analysis. 
AEE-C, AEE-L and CW return 29, 19 and 35 solutions, with total 

solution times of 5.02, 5.53 and 1.38 s, respectively. For clarity purposes 
we excluded two of the most equal solutions of AEE-C and AEE-L from all 
of the graphs. These two solutions were also problematic as they failed 
to provide any vocational benefit to the groups, hence were removed 
from the analysis.7 Three of these problematic solutions were also ob
tained in CW (at the hobby and vocational welfare maximizing ex
tremes), hence they were also removed from the CW set. We provide the 
results of the three approaches in detail in Figs. 21–23 in Appendix B. 

When aggregate efficiency-equality approach variants are compared, 
the variant using a concave efficiency aggregation function outperforms 
the other variant in terms of the number and diversity of the solutions 
obtained. Specifically, AEE-C helps us to find more solutions on both 
edges of the Pareto frontier. Moreover, while CW provides solutions 
covering the range between the vocational benefit maximizing solution 
and the hobby benefit maximizing one, hence illustrating the trade-off 
between the two benefit types, AEE-C and AEE-L reveal the trade-off 
between (aggregated) equality and efficiency. 

It is observed that all approaches return a core set of solutions, which 
are common, as well as additional solutions which perform worse with 
respect to the objective functions of the other methods (as seen in 
Figs. 4–6.) 

One sees in Fig. 6 that AEE-C avoids extreme solutions that put too 
much emphasis on one benefit while sacrificing from other and provides 
solutions which have similar welfare scores for the two benefit types. As 
a result, the range of AEE-C solutions are narrower than that of CW. The 
proposed solutions are around the center of the CW Pareto frontier. 
Similarly, since CW does not put emphasis on balance, the resulting 
aggregated efficiency and equality scores of CW solutions are lower 
compared to AEE variants, making most of these solutions dominated in 
Figs. 4 and 5. 

To investigate the trade-off between efficiency and equality, we 
present the two extreme solutions (1 and 27) for AEE-C, which 

Table 2 
Rates used to reflect course participation preferences of districts. (We assume that as poverty rate increases in a district, the residents’ participation to vocational 
assistance courses will increase since there will be a need to gain skills for employability.)  

District Group 1 (G1) District Group 2 (G2) District Group 3 (G3) 

District VA H District VA H District VA H District VA H District VA H 

ET 0.35 0.65 Sİ 0.4 0.6 PO 0.45 0.55 GÖ 0.45 0.55 EL 0.45 0.55 
ÇA 0.35 0.65 ÇU 0.4 0.6 PU 0.45 0.55 AL 0.45 0.55 AK 0.45 0.55 
YE 0.35 0.65 KE 0.4 0.6 MA 0.45 0.55 ŞE 0.45 0.55          

BE 0.45 0.55 KA 0.45 0.55     

Table 3  
Cost and benefit (outcome) values of courses. Cost consists of salary and facility rental cost and is given in × 1000 TL; outcome is measured in terms of the number of 
participants.  

Group District Cost Outcome Group District Cost Outcome 

H VA H VA 

G1 

ET 1947 3339 1998 

G3 

PO 379 673 550 
ÇA 3740 5387 3223 PU 514 787 644 
YE 2429 4313 2323 MA 1877 3560 2913     

BE 153 266 217     
GÖ 584 739 605 

G2 

Sİ 1480 3061 2127 AL 1128 2035 1665 
ÇU 275 525 365 ŞE 106 188 154 
KE 2803 5368 3730 KA 173 294 241     

EL 140 249 204     
AK 100 190 156  

7 Recall the discussion we had on the drawback of using an equality indicator 
that only focuses on the proportions. Even an allocation in which no one re
ceives anything is considered perfectly equal. 
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Fig. 4. Pareto optimal solutions of the aggregate efficiency-equality model: AEE-C. Aggregate efficiency and equality values corresponding to the solutions found by 
the other two methods are also given for comparability purposes. 

Fig. 5. Pareto optimal solutions of the aggregate efficiency-equality Model: AEE-L. Aggregate efficiency and equality values corresponding to the solutions found by 
the other two methods are also given for comparability purposes. 

Fig. 6. Pareto optimal solutions of the concave welfare model: CW. Hobby and vocational welfare values corresponding to the solutions found by the other two 
methods are also given for comparability purposes. 

Fig. 7. Extreme and moderate solutions of AEE-C. solution 1 has the highest efficiency value, solution 27 has the highest equality value and solution 15 is a 
compromise solution in between. 
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correspond to the solutions with the best levels of efficiency and equality 
in Fig. 4, respectively, as well as a moderate solution (15) in Fig. 7. 

There are striking differences between the solutions. Solution 27 uses 
the budget to ensure a more equal distribution of the benefits across 
groups. As one approaches the maximum efficiency extreme, solution 1, 
the total number of people served increases (15,338 vs. 13,801), but this 
occurs at the expense of equality as we see that no benefit is provided to 
group 1 and no hobby courses are offered to group 3. Solution 15 is in 
between the two extremes: it offers a more balanced distribution of 
hobby course service to the population groups compared to solution 1, 
while still suffering from imbalance in vocational assistance courses. 
This solution uses a higher portion of the budget on hobby courses 
compared to solution 27, resulting in an increase in the number of 
people offered hobby courses while sacrificing from the benefit of 
vocational assistance courses. 

The extreme solutions of AEE-L are shown in Fig. 8. Similar obser
vations can be made regarding this variant. However, unlike AEE-C 
solutions, even the most equal solution (Solution 17) cannot ensure 
that all groups have at least benefited from both benefit types. 

Solutions 2 and 35, which correspond to the solutions with the best 
hobby welfare and vocational welfare in Fig. 6, are given below in Fig. 9. 
Solution 18 is an example solution lying in the middle of the Pareto 
frontier. This approach moves from a hobby welfare maximizing solu
tion towards a vocational welfare maximizing one, hence the interpre
tation of the extreme solutions is different. The Pareto frontier shows the 
trade-off between a hobby course service prioritizing approach and a 
vocational course service prioritizing one, rather than the trade-off be
tween overall equality and efficiency. As expected, in solution 2 almost 
all budget is devoted to hobby courses while in solution 35, all of it is 
used for vocational courses. Solution 18 provides a compromise between 
these two extremes, offering a more balanced distribution of benefits. 

To observe how the two benefits (H and VA) are allocated across the 
three groups, we summarize all allocations in Figs. 10 and 11, which 
show allocations of the hobby course and vocational course benefits in 
AEE-C solutions, respectively. As seen in these figures, the shares of the 
groups get closer as one moves from most efficient solution (1) to the 
most equal one (27) in both benefit types. 

Figs. 12 and 13 show the allocations of two benefits in CW solutions. 
To ensure a better display, we only show solutions with odd indices, (i. 
e., half of the solutions). This provides sufficient information to observe 
the trend. As expected, starting from the first solution, which has the 
highest hobby course welfare (resp. the lowest level of vocational course 
welfare), the level of total hobby benefit decreases (resp. total voca
tional course benefit increases) as one moves toward the other edge of 
the frontier. There are a few exceptions to this observation, (e.g., solu
tion 19). In this solution, vocational welfare decreases as a result of 
obtaining a more equal allocation of a benefit rather than a higher total. 
This is desired and is a result of using a concave welfare function: more 
equal allocations with little sacrifice from the total amount result in 
higher welfare. 

We also investigate the solutions in more detail to observe the 
district-specific recommendations of the alternative approaches. For 
each district-course pair, we calculate in how many of the Pareto 
optimal solutions the corresponding course is offered in that district. We 
then find the frequency of that decision by dividing it by the total 
number of Pareto solutions found. For example, in AEE-C, 29 Pareto 

solutions are found; in 22 of these, a vocational course is opened in 
Etimesgut (ET), resulting in a percentage value of 75.86. We report these 
percentage values in Table 4. We highlight the cases for which a district- 
course pair’s percentage is considerably high (higher than 40%) and 
considerably low (lower than 20%) across all solutions in boldface. Such 
an analysis may help decision makers determine which district-course 
pairs to prioritize when making decisions. For example, there is a ten
dency to open hobby and vocational courses to Elmadağ and Beypazarı 
in all models while no courses are offered in Sincan, Mamak and 
Altındağ in any of the solutions. Since the problem is a knapsack prob
lem, benefit/cost ratios, which are provided in Table 5, may be an in
dicator of how frequent a district-course pair will be observed in the 
Pareto set. To see this, we doubled Sincan’s hobby course demand, 
hence doubled its benefit/cost ratio. We see that all three models 
encourage opening hobby courses in the district; the percentages were 
around 80%. However, the frequencies are not directly proportional to 
the ratios since the problem is combinatorial: i) it is an integer knapsack 
problem and ii) the evaluation is group-based (i.e., we consider alloca
tions over district groups). Even when a district has the highest benefit/ 
cost ratio within its group, it is not necessarily included in the solutions: 
this is the case for Sincan, Mamak and Akyurt. Combinations of other 
districts in the group are chosen over these districts. 

Overall, we observe that one can obtain solutions, with various de
grees of efficiency and equality using the proposed methodology. 
Among the aggregate efficiency-equality variants, AEE-C (which relies 
on concave functions for aggregating the normalized efficiency and 
equality scores) and AEE-L (which relies on linear and concave functions 
for aggregating the normalized efficiency and equality scores, respec
tively) find similar solutions and both effectively distribute the total 
benefit performances across different benefit types. However, AEE-C 
finds more solutions on both the efficiency and equality edges of the 
Pareto-frontier. When aggregation based methods and the concave 
welfare method (which relies on defining a welfare function for each 
benefit are compared) we observe that the solution sets may differ in line 
with how the method is structured. Indeed, they all suggest a set of core 
solutions, which are (almost) the same. 

Recall that this problem is motivated by the observation that in the 
current system, most of the course service is offered at the city center (i. 
e., mostly to group 1 districts in our categorization). Decision makers 
would like to make improvements, especially in terms of equality in the 
service provision. We believe that our work provides a way to improve 
the current system in a structured manner. To illustrate, we provide a 
piechart showing the number of people benefiting from the services in 
each group in the current system, which is generated based on data from 
2009 in Fig. 14a. We also give the piechart of a solution that is common 
to AEE-C and CW Pareto sets in Fig. 14b. We chose 2009 as an example 
because the total number of participants was similar to our solution. In 
Fig. 14c, we provide the distribution over groups for the period 
2014–2018. As seen in Fig. 14a and c, the past levels of service are highly 
imbalanced across groups compared to what can be achieved through 
our methods. 

4.3. Sensitivity analysis 

We now discuss some aspects that may affect the performance and 
behavior of the solution approaches. We will first investigate the effect 

Fig. 8. Extreme and moderate solutions of AEE-L. Solution 1 has the highest efficiency value, solution 17 has the highest equality value and solution 9 is a 
compromise solution in between. 
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of the degree of concavity of the functions and the number of thresholds 
used in the linearization. We then provide the results of our numerical 
study to show how the computation times are affected by the size of the 
problem. Lastly, we solve a scenario with three benefit types so as to 
observe the performance of the two approaches in more detail. 

We first discuss the effect of the degree of concavity used in the 
equality and efficiency score functions in AEE methods, and the utility 
functions in CW. To demonstrate how the degree of inequity aversion 
affects the proposed solution, we performed a new set of experiments for 
two more settings. We used concave functions with α values of 0.3 and 
0.9 to represent cases in which the DM is mildly and highly averse to 
inequality, respectively. 

Recall that we use piecewise linearization so as to approximate these 
concave functions. To investigate the effect of the number of thresholds 
used on the quality of the approximation and the resulting Pareto 
frontier, we repeated the experiments for two more levels (5 and 20) in 
addition to the level we use in the main runs (10). 

Table 6 summarizes these results. As expected, for a given concave 
function with parameter α, increasing the number of thresholds im
proves the approximation of the underlying concave functions, resulting 
in the model better distinguishing different solutions from one another. 
Thus, more Pareto solutions are found. 

Moreover, as the concavity of the functions increases, the models 
tend to prioritize solutions in which the allocations are more equal. For 
example, in CW, the solutions that maximize hobby welfare have the 
following hobby benefit distributions (4313, 8429, 4103) and (4313, 
5893, 6300) for α values of 0.3 and 0.9 (both with threshold 20), 
respectively. In these solutions, vocational benefit is zero as the focus is 
on hobby. Similarly, the solutions that maximize vocational welfare 
have the following vocational benefit distributions (1998, 4095, 5859) 
and (2323, 4095, 5128) for α values of 0.3 and 0.9, respectively. One can 
see that using higher α values treats solutions that distribute the benefits 
more evenly as ones with higher welfare. 

In our case study example, the solution times required to find the set 

Fig. 9. Extreme and moderate solutions of CW. Solution 2 has the highest hobby welfare, solution 35 has the highest vocational welfare and solution 18 is a 
compromise solution in between. 

Fig. 10. Hobby course benefit distribution across groups in AEE-C solutions. Towards the most equal edge of the Pareto (to the right), the benefit levels enjoyed by 
the three groups become gradually closer. 

Fig. 11. Vocational assistance course benefit distribution across groups in AEE-C solutions. Towards the most equal edge of the Pareto (to the right), the benefit 
levels enjoyed by the three groups become gradually closer. 
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of Pareto solutions are negligible. To observe the scalability of the 
approach, we created a set of larger instances using randomly generated 
data and observed the solution times. Table 7 reports solution times with 
20, 35, 50 districts and 3, 5 groups. We first implemented the epsilon- 
constraint approach as in the previous section. We observed that the 

CW approach returns solutions in reasonable time while AEE approaches 
may run into computational difficulties. When the number of districts is 
50, AEE-C and AEE-L can not terminate in 1 h, which is our time limit. 
The epsilon constraint algorithm (augmented variant) is widely 
preferred for biobjective programming problems due to its ability to 
return the whole Pareto set (both supported and unsupported non
dominated points) in an efficient manner (i.e., by solving N+1 models 
when the number of Pareto solutions is N). However, the augmentation 
term used in the epsilon-constraint approach may cause numerical 

Fig. 12. Hobby course benefit distribution across groups in CW solutions. Total hobby benefit gradually decreases. Towards the right, the benefit levels enjoyed by 
the three groups get imbalanced. 

Fig. 13. Vocational assistance course benefit distribution across groups in CW solutions. Total vocational benefit gradually increases. Towards the left, the benefit 
levels enjoyed by the three groups get imbalanced. 

Table 4 
District-specific course recommendations in each model. Percentages show the 
frequency of the district-course pair in the Pareto solutions. High and low levels 
are indicated in boldface.  

District H (%) VA (%) 

AEE-C AEE-L CW AEE-C AEE-L CW 

YE 55.17 21.05 42.86 31.03 10.53 40.00 
ÇA 27.59 10.53 28.57 41.38 0.00 51.43 
ET 13.79 31.58 57.14 75.86 89.47 22.86 

ÇU 24.14 31.58 45.71 24.14 42.11 42.86 
KE 17.24 5.26 34.29 37.93 78.95 25.71 
Sİ 0.00 0.00 0.00 0.00 0.00 0.00 

EL 96.55 94.74 45.71 68.97 89.47 40.00 
BE 72.41 47.37 51.43 68.97 63.16 65.71 
KA 48.28 68.42 54.29 0.00 0.00 0.00 
PO 44.83 47.37 40.00 34.48 47.37 45.71 
PU 34.48 21.05 22.86 31.03 26.32 40.00 
GÖ 24.14 10.53 62.86 20.69 5.26 45.71 
AK 24.14 15.79 34.29 0.00 0.00 14.29 
ŞE 20.69 21.05 54.29 37.93 10.53 42.86 
MA 0.00 0.00 0.00 0.00 0.00 0.00 
AL 0.00 0.00 0.00 0.00 0.00 0.00  

Table 5 
Benefit/Cost ratios of districts.  

Group District Benefit/Cost Group District Benefit/Cost 

H VA H VA 

G1 

ET 1.71 1.03 

G3 

PO 1.78 1.45 
ÇA 1.44 0.86 PU 1.53 1.25 
YE 1.78 0.96 MA 1.90 1.55    

BE 1.74 1.00    
GÖ 1.27 1.04 

G2 

Sİ 2.07 1.44 AL 1.80 1.48 
ÇU 1.91 1.33 ŞE 1.78 1.45 
KE 1.92 1.33 KA 1.70 1.39    

EL 1.78 1.46    
AK 1.90 1.56  
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issues. Therefore, we also solved the same problems with an algorithm 
using weighted sum scalarization.8 We determined weights by dis
cretizing the feasible weight space. We used a stepsize of 0.01 and solved 
the corresponding 100 scalarization problems so as to have a similar 
number of iterations to the epsilon constraint approach. Note that 
multiple weight vectors may provide the same solution, hence the 
number of solutions is less than 100. Moreover, the weighted sum 
approach only returns the supported nondominated points; hence, the 
number of solutions returned are less compared to epsilon constraint. 
Nevertheless, one can obtain a representative set of solutions from the 
Pareto frontier in reasonable time with this approach, as seen in Table 7. 

One technical difference between the aggregated approach and the 

CW approach is that the former always solves biobjective models while 
in the latter the number of objectives is equal to the number of benefit 
types. To see how these approaches would work in a setting with more 
benefits, we created problem instances using randomly generated data 
for a setting with three benefits. We solved the resulting bi/triobjective 
programming problems with an algorithm using weighted sum scalari
zation, where weights are set by discretizing the feasible weight space.9 

We obtained 10 Pareto solutions with AEE-C and AEE-L in 2.34 and 
1.73 s, respectively. We obtained 15 Pareto solutions for the triobjective 
model of CW in 51.32 s. We provide these solutions in Figs. 15–20. 

Figs. 15–17 show the 10 solutions obtained with AEE-C (the ones 
obtained with AEE-L were similar, hence we omit them for brevity.) This 
approach obtains Pareto solutions in a spectrum lying between the most 
equal and the most efficient solutions, and this is mirrored in the results: 
solution 1 has the highest total benefit while solution 10 allocates the 
three benefits to the groups in a more equal manner (see the piecharts of 
Solution 10 in Figs. 15–17). 

Figs. 18–20 show the 15 solutions obtained with CW. In the weighted 
sum approach, we first solve the scalarization problem with weights 
(0,0,1); hence, the first solution maximizes the welfare in the third 
benefit, as expected (see solution 1 in Figs. 18–20). Then, keeping w1 the 
same, the weight of the second benefit, w2, is gradually increased, 
leading to solutions 2–5, providing more (resp. less) welfare in benefit 2 
(resp. 3). Afterwards, the welfare of benefit 1 has an increasing trend as a 
result of the increase in w1. By structure, this approach demonstrates the 
trade-off between multiple benefits by showing the three extremes 
focusing on only one benefit (solutions 1, 5 and 15) and other Pareto 
solutions in between. 

5. Conclusion 

We consider optimization problems in which the decisions made 
result in allocations of multiple benefits to multiple entities in various 
degrees. Such problems are highly relevant in many public sector deci
sion making problems, and they are generalizations of equitable opti
mization problems in which only a single good is allocated. Ensuring 
equity is important for obtaining implementable solutions that will be 
accepted for all stakeholders (these may be population groups) in many 
real life resource allocation settings. We solve these problems under the 
assumption that entities are indistinguishable, hence no group is prior
itized over another. 

We suggest two modeling approaches to be used in any such 

Fig. 14. Distribution of the number of people benefiting from the courses across groups (a) in an example year, 2009 (b) in one of the Pareto solutions common to 
both AEE-C and CW (c) in period 2014–2018. 

Table 6 
Effect of α and the number of thresholds on the number of solutions and solution 
time.  

Method α # Thresholds # of Solutions Solution Time 

AEE-C 

0.9 5 8 2.24 
10 29 5.49 
20 71 8.5 

0.7 5 15 3.45 
10 29 5.02 
20 82 25.02 

0.3 5 52 35.01 
10 66 50.32 
20 78 58.34 

AEE-L 

0.9 5 6 0.8 
10 14 2.51 
20 55 12.74 

0.7 5 10 1.37 
10 19 5.53 
20 50 15.22 

0.3 5 35 21.18 
10 43 23.88 
20 72 38.88 

CW 

0.9 5 19 0.97 
10 37 2.07 
20 82 6.71 

0.7 5 25 1.2 
10 35 1.38 
20 74 5.77 

0.3 5 33 1.39 
10 66 3.78 
20 87 5.08  

8 Let the multiobjective programming problem be: max[z1(x), …, zp(x)] s.t. 
x ∈ X. In the weighted sum algorithm we repetitively solve problems with the 
following aggregated objective function: max

∑p
i=1wizi(x), where w :

∑p
i=1wi =

1 is a weight vector. 

9 We used a stepsize of 0.1 for the biobjective models of AEE-C and AEE-L and 
solved the corresponding 10 scalarization problems. For the triobjective prob
lems we discretized each weight value with a stepsize of 0.25, which led to 
solving 15 scalarization problems. 
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optimization problem. The first of these approaches tackles the effi
ciency and equality concerns separately, hence provides a tool to 
observe the trade-off between these. The second approach aggregates 
efficiency and equality concerns for each benefit using a concave (hence 
Schur-concave) function; therefore, it defines a welfare function that 
demonstrates how good a decision is with respect to the allocation of the 

corresponding benefit. The trade-off is observed between welfares of 
different benefit types. 

We demonstrate the usability of the approaches on a real-life based 
application example, in which the decision makers seek to allocate 
various public education services as equally and efficiently as possible. 
The results exhibit the computational feasibility of the suggested 

Table 7 
Numerical results for larger instances.  

Method # of Districts # of Groups Epsilon Constraint Weighted Sum 

# of Solutions Solution Time # of Solutions Solution Time 

AEE-C 

20 3 7 2981.00 5 30.55 
5 9 1200.00 8 6.31 

35 3 16 2700.00 11 22.78 
5 49 1980.00 45 382.55 

50 3 7 3600.00 34 834.42 
5 9 3600.00 63 389.67 

AEE-L 

20 3 11 168.90 4 10.93 
5 7 27.90 5 7.26 

35 3 14 759.41 9 26.44 
5 43 418.33 41 27.67 

50 3 8 3600.00 24 21.29 
5 35 3600.00 51 139.86 

CW 

20 3 7 0.49 7 4.1 
5 15 0.81 13 4.09 

35 3 17 2.03 6 4.57 
5 46 15.91 44 6.66 

50 3 29 3.00 26 11.74 
5 67 360.62 59 170.45  

Fig. 15. Benefit 1 distribution across groups in AEE-C solutions.  

Fig. 16. Benefit 2 distribution across groups in AEE-C solutions.  
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methods on the case study problem considered. Note that our generic 
frameworks to capture equality concerns in multiple dimensions could 
be adapted to various application problems. Hence, if the application- 
specific optimization problems are difficult to solve, the required 
computation effort can be compounded. However, this could be tackled 
by, as an example finding a set of representative points in the Pareto set 
rather than the whole set and/or using heuristic or metaheuristic ap
proaches to find approximate Pareto solutions. 

The case study also demonstrates that considering both equality and 
efficiency in the resulting benefit distributions can have a significant 

impact on how the resources are allocated. Ignoring equality can lead to 
some district groups suffering from a lack of educational services. Since 
the problem setting is relevant for most real-life public sector decision 
making settings, the suggested models would provide useful insights and 
hence contribute to the relevant literature. Future research could focus 
on developing exact and/or heuristic solution algorithms to be able to 
solve the resulting multiobjective optimization models of larger-scale 
problems. Moreover, how to ensure balance in the asymmetric case in 
which the groups are not anonymous is an interesting yet challenging 
question from both research and application aspects. Specifically, 

Fig. 17. Benefit 3 distribution across groups in AEE-C solutions.  

Fig. 18. Benefit 1 distribution across groups in CW solutions.  

Fig. 19. Benefit 2 distribution across groups in CW solutions.  
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instead of aiming for equality (equitability) when distributing benefits in 
the case study, one can aim for ensuring a balance in which more 
impoverished communities receive more support than wealthy districts. 
There are methods in the literature designed to address such balance 
concerns in which the most fair allocation is not necessarily on the 
equality line [32,33]. These methods are designed for the case where a 
single benefit is allocated. Extending these to the multibenefit case and 
designing solution methods that are not just computationally feasible 
but also easy-to-grasp for decision makers is an open direction for 
research. Future research can also be conducted on distinguishing 

benefits with respect to their relevance in the aggregated 
efficiency-equality approach, for example by incorporating weights in 
the scalarization. 
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A. Models used in the case study 

Problem Parameters 

K: the set of district groups, index k 
I: the set of course types, index i 
J: the set of districts, index j 
M: number of thresholds used for piecewise linearization 
Li: a lower bound on the total amount of enrollment in course i 
Hi: an upper bound on the total amount of enrollment in course i 
ΔTf

m: difference between two consecutive normalized benefit thresholds defining interval m in equality aggregation function, m = 1, …, (M − 1) 
ΔTe

m: difference between two consecutive normalized benefit thresholds defining interval m in efficiency aggregation function, m = 1, …, (M − 1) 
ΔUf

m: difference between equality scores of benefit thresholds defining interval m, in equality aggregation function, m = 1, …, (M − 1) 
ΔUe

m: difference between efficiency scores of benefit thresholds defining interval m in efficiency aggregation function, m = 1, …, (M − 1) 
Wf

m: ΔUf
m/ΔTf

m, m = 1, …, (M − 1). 

We
m: ΔUe

m/ΔTf
m, m = 1, …, (M − 1). 

pijk: Number of participants from district group k to course type i in district j 
cij: cost of opening course type i in district j 
C: total available budget 

Decision Variables 

zik: total number of people in district group k that are enrolled in course type i 
zN

ik: normalized zik ( zik∑
k∈K

zik
)

fik: equality score contribution of zN
ik 

ti: scalarized value of total amount of benefit in course type i 
ei: efficiency score contribution of ti 
Xf

ikm: amount of normalized benefit obtained within interval m = 1, …, (M − 1) for district group k from course type i in equality aggregation 
function 
Xe

im: amount of normalized total benefit obtained within interval m = 1, …, (M − 1) from course type i in efficiency aggregation function 

yij =

{
1, if course typeiis offered at district j
0, otherwise.

Fig. 20. Benefit 3 distribution across groups in CW solutions.  
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aikj : auxiliary variable(yij × zN
ik)

Aggregate efficiency-equality model (AEE-C); 

max
∑

i∈I
ei, max

∑

k∈K

∑

i∈I
fik

Subject to :

(8) − (15)
∑

j∈J

∑

i∈I
cijyij ≤ C

(22)  

zik =
∑

j∈J
pijkyij ∀i ∈ I , ∀k ∈ K (23)  

∑

j∈J

∑

k′ ∈K

pijk′ aikj = zik ∀i ∈ I , ∀k ∈ K (24)  

aikj ≤ yij ∀i ∈ I , ∀k ∈ K, ∀j ∈ J (25)  

aikj ≤ zN
ik ∀i ∈ I , ∀k ∈ K, ∀j ∈ J (26)  

aikj ≥ zN
ik − (1 − yij) ∀i ∈ I , ∀k ∈ K, ∀j ∈ J (27)  

zik, fik, ei ≥ 0 ∀i ∈ I , ∀k ∈ K, ∀j ∈ J (28)  

yij ∈ {0, 1} ∀i ∈ I , ∀j ∈ J (29) 

Constraint (22) ensures that the budget is not exceeded. The set of constraints (23) is used to calculate the total number of district group members 
benefiting from a specific course type, for each course type-district group pair. Constraint sets (24)–(27) are for linearization. We set ΔTf

m = ΔTe
m =

0.1 ∀ m = 1,…, (M − 1) in constraint sets (14) and (15). Finally, constraints (29) define the binary variables. 
Parameters and decision variables are the same as in the concave efficiency model for variant (AEE-L). We delete constraints (11), (12), (13), (15) 

and replace the first objective function with 
∑

i ∈ I ti. 
Additional parameters for concave welfare model 

ΔTm: difference between two consecutive benefit thresholds defining interval m, m = 1, …, (M − 1). 
ΔUm: difference between welfare scores of benefit thresholds defining interval m, m = 1, …, (M − 1). 
Wm: ΔUm/ΔTm, m = 1, …, (M − 1). 

Additional decision variables for concave welfare model 

uik: contribution to social welfare from the share of district group k in service related to course type i, i.e., ui(zik)

Yikm: amount of benefit from course type i obtained by district group k within interval m 

Concave welfare model (CW); 

max “
∑

k∈K
u1k,

∑

k∈K
u2k”

Subject to :

(19), (20), (21), (23)∑

j∈J

∑

i∈I
cijyij ≤ C

(30)  

uik ≥ 0 ∀i ∈ I , ∀k ∈ K (31)  

yij ∈ {0, 1} ∀i ∈ I , ∀j ∈ J (32) 

Constraint (30) ensures that the budget is not exceeded. Constraint set (32) defines the binary variables. 

B. Results of the case study 
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Fig. 21. Pareto optimal solutions of the aggregate efficiency-equality model: AEE-C.  

Fig. 22. Pareto optimal solutions of the aggregate efficiency-equality Model: AEE-L.  

Fig. 23. Pareto optimal solutions of the concave welfare model: CW.  
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Özlem Karsu is an Assistant Professor of Industrial Engineering at Bilkent University. She 
received her Ph.D. degree in Operational Research from the London School of Economics. 
Her research interests include inequity-averse decisions, multi-criteria decision making 
approaches and various applications of multi-objective optimization. 

Damla Akoluk is a Ph.D. candidate in Multi-Actor Systems Department at Delft University 
of Technology. She received her M.Sc degree from the Industrial Engineering Department 
of Bilkent University and B.S. degree from Sabancı University, Industrial Engineering 
Department. Her research interests center around multi-objective optimization and 
advance multi-objective decision support. 
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