
Vol.:(0123456789)

Optimization and Engineering (2021) 22:2505–2535
https://doi.org/10.1007/s11081-021-09676-2

1 3

RESEARCH ARTICLE

Provably optimal sparse solutions to overdetermined linear
systems with non‑negativity constraints in a least‑squares
sense by implicit enumeration

Fatih S. Aktaş1 · Ömer Ekmekcioglu1 · Mustafa Ç. Pinar1

Received: 15 January 2021 / Revised: 10 August 2021 / Accepted: 10 August 2021 /
Published online: 28 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Computing sparse solutions to overdetermined linear systems is a ubiquitous prob-
lem in several fields such as regression analysis, signal and image processing, infor-
mation theory and machine learning. Additional non-negativity constraints in the
solution are useful for interpretability. Most of the previous research efforts aimed at
approximating the sparsity constrained linear least squares problem, and/or finding
local solutions by means of descent algorithms. The objective of the present paper
is to report on an efficient and modular implicit enumeration algorithm to find prov-
ably optimal solutions to the NP-hard problem of sparsity-constrained non-negative
least squares. We focus on the problem where the system is assumed to be over-
determined where the matrix has full column rank. Numerical results with real test
data as well as comparisons of competing methods and an application to hyperspec-
tral imaging are reported. Finally, we present a Python library implementation of
our algorithm.

Keywords Inverse problems · Sparse approximation · Overdetermined linear
systems · Sparse solutions · Branch and bound · Implicit enumeration · Non-
negative least squares

Mathematics Subject Classification 65F20 · 65F22 · 65K05 · 90C26

Submitted to the editors DATE.

 * Mustafa Ç. Pinar
 mustafap@bilkent.edu.tr

 Fatih S. Aktaş
 selim.aktas@ug.bilkent.edu.tr

 Ömer Ekmekcioglu
 omer.ekmekcioglu@bilkent.edu.tr

1 Department of Industrial Engineering, Bilkent University, Ankara, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-021-09676-2&domain=pdf

2506 F. S. Aktaş et al.

1 3

1 Introduction

One of the main challenges in inverse problems research is finding a sparse repre-
sentation of data b in a dictionary A. The problem is therefore equivalent to finding
a solution to the system Ax = b with the smallest number of non-zero components.
In sparse approximation, due to the presence of noise and model errors, one usually
seeks a solution minimizing a data misfit measure commonly based on the Euclid-
ean norm. In the literature, the non-negatively constrained sparse approximation
problem is encountered in many applications such as best subset selection in regres-
sion analysis, signal and image processing, hyperspectral imaging, sparse recovery
and machine learning. The formulation of the problem (that we refer to as SNNLS)
is as follows

where the matrix A ∈ ℝ
m×n with m > n , b ∈ ℝ

n , ‖v‖0 is the �0-norm of vector v,
which counts the number of nonzero elements of v, and s is called the sparsity level.
SNNLS is NP-hard due to the combinatorial nature of the �0-norm Natarajan (1995).
The sparsity constraint is widely used in the compressed sensing literature Vidyasa-
gar (2019). Beck and Eldar (2013) provide a good discussion of the problem. They
review theoretical properties that enable the computation of points satisfying neces-
sary conditions for global optimality (L-Stationary points and/or Partial Coordinate-
wise optimal points). However, their algorithms do not guarantee optimal solutions.
Such methods which at best compute a local optimum without guarantee of global
optimality generally appear in the compressed sensing literature where sparsity is
induced by �1 regularization, iterative hard thresholding or basis pursuit methods
on least squares estimation problems Slawski and Hein (2013). On the other hand,
an optimal solution to the SNNLS problem could be obtained using Mixed Integer
Programming (MIP); see e.g. Bertsimas et al. (2016), Bourguignon et al. (2016).
However, off-the-shelf solvers might not always perform well with Quadratic Mixed
Integer Programs (QMIP) as opposed to their significantly better performance with
linear mixed integer programs (MIP)s. Furthermore, the MIP formulations may fail
to return an optimal sparse solution because of numerical difficulties that arise from
the utilization of a “big-M” constant in implementing the sparsity constraint Donne
et al. (2020).

The literature on solution methods for the SNLSS problem is divided into two
categories. The first category consists of the sub-optimal (local) solution methods
mentioned above, using thresholding or regularization techniques. These methods
are more commonly used in compressed sensing problems as explained in Slaw-
ski and Hein (2011), Slawski and Hein (2013) due to the properties inherent in
those problems. The second category of research, which is encountered less com-
monly in the literature, is concerned with finding optimal solutions. Here, MIP
solutions arise as the most obvious reformulation and solution method for the
problem. However, these solutions are not always scalable as we demonstrate in

(1.1)
min
x∈Rn

‖Ax − b‖2
2

s.t. x ≥ 0

‖x‖0 ≤ s

2507

1 3

Provably optimal sparse solutions to overdetermined linear…

the present paper. Related problems are also addressed by Atamturk and Gomez
(2020) using MIP formulations. Analysis of similar sparsity constrained problems
using gauge function is given in Chandrasekaran et al. (2012) which also pro-
poses a MIP-based solution. In a recent study Nadisic et al. (2020), it was also
proposed to adapt the Branch and Bound algorithm to solve this problem.

The thesis of the present paper is that one can solve to optimality a large
number of instances by using a judicious enumeration strategy. We propose a
branch and bound framework along with a novel implicit enumeration rule for
the SNNLS problems to find optimal sparse support. This allows our algorithm to
find optimal solutions to the combinatorial SNNLS problem efficiently. Further-
more, we present a Python implementation of our algorithm, which is referred to
as NNLSSPAR, that is available as a library for computing optimal sparse solu-
tions to the SNNLS problem.

The rest of the paper is organized as follows. Section 2 briefly outlines the core
ingredients used in the algorithm. Section 3 describes the proposed algorithm
and explains the NNLSSPAR library. Section 4 provides a summary of numerical
results obtained using NNLSSPAR. Section 5 reports an application of the algo-
rithm on a hyperspectral imaging application to demonstrate the effectiveness of
the algorithm even further. Section 6 describes an application of the algorithm to
a sparse deconvolution problem.

2 Background

2.1 Problem description

In a statistical context, the SNNLS problem occurs naturally when one solves an
estimation problem related to the linear model:

where Y is the variable to be predicted, and X1X2,… ,Xk are the predictors and the
residuals � have zero mean and are independently sampled from a Gaussian distribu-
tion with finite variance. Additionally, if Xi ’s are known to have non-negative val-
ues, as it may be the case in the applications of time series or pixel intensities, it
makes sense to add non-negativity constraints for the �i’s. As a result, the values of
coefficients � are calculated using problem 1.1.

In statistical applications, the non-negativity constraint is shown to be very
useful for regularization purposes since it allows the solution of a regular least
squares problem to enjoy two desirable properties: sparsity and resistance to over-
fitting Slawski and Hein (2013). This approach is further extended to applications
such as hyperspectral imaging with the addition of the sparsity constraint. These
features motivate the search for efficiently computable solutions to the SNNLS
problem.

(2.1)Y = �0 +

k∑
i=1

�iXi + �,

2508 F. S. Aktaş et al.

1 3

2.2 Branch & Bound method

The Branch and Bound (B & B) technique is a mainstay of the integer program-
ming literature. For the integer programming case, the B & B algorithm creates a
tree structure to solve the problem optimally. The linear relaxation of the optimi-
zation problem is solved at the root node of the tree, and in each branch (possibly
adding some cutting planes), a subproblem is further investigated. This investi-
gation appears e.g., in the form of fixing the value of a variable and searching
for the best integer solution under this restriction. Several elimination rules are
implemented based on the bound information gathered from branches. Integer
programming technology has indeed reached an advanced stage where several
commercial and academic solvers compete with one another, using very sophisti-
cated and fast implementations.

The situation is different in the case of SNNLS where research on B&B algo-
rithms is yet at an early stage. In SNNLS, we concentrate on the combinatorial
nature of the sparsity constraint where the focus is on the inclusion or exclusion
of variables in the solution. This allows our algorithm to find a sparse support for
the problem.

2.3 QR factorization

The following properties of QR factorization are well-known:

• The Euclidean norm of a vector is preserved under orthogonal transforms:
 ‖Qr‖2

2
= rTQTQr = rTr = ‖r‖2

2
 since QTQ = I . As a result, we have

 min
x

 ‖Ax − b‖2
2
 = min

x
 ‖‖(QTA)x − (QTb)‖‖22 and

• Minimum norm is achieved by solving the system:

• Norm of the solution is given as

���������������

⎛⎜⎜⎜⎜⎜⎜⎝

r1,1 r1,2 ⋯ r1,n
0 r2,2 ⋯ r2,n
⋮ ⋮ ⋱ ⋮

0 0 ⋯ rn,n
⋮ ⋮ ⋮ ⋮

0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎣

x1
x2
⋮

xn

⎤⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c1
c2
⋮

cn
cn+1
⋮

cm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

���������������

2

2

⎛⎜⎜⎜⎝

r1,1 r1,2 ⋯ r1,n
0 r2,2 ⋯ r2,n
⋮ ⋮ ⋱ ⋮

0 0 ⋯ rn,n

⎞
⎟⎟⎟⎠

⎡⎢⎢⎢⎣

x1
x2
⋮

xn

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

c1
c2
⋮

cn

⎤⎥⎥⎥⎦

2509

1 3

Provably optimal sparse solutions to overdetermined linear…

As an illustration, let A be the data matrix, and assume that a best fitting subset with
two elements is desired:

Let A = QR be a QR decomposition of matrix A

Let B be the matrix composed of the last two columns of A

Instead of performing a QR factorization from scratch, columns of R can be deleted:

Now the system is reduced to a 3 × 2 matrix instead of a 4 × 2 matrix

Based on this observation we use a pre-processing step on the initial system, and
thus our algorithm can solve much larger problems. This exploitation of orthogonal
transforms is especially useful when the design matrix A has many rows.

2.4 Recalls on least squares

In each node of the search tree of the algorithm, a non-negative least squares
subproblem is solved to evaluate the objective value to find a lower bound for the
current solution. Lawson & Hanson’s active set algorithm is used for that purpose

‖‖‖
(
cn+1 cn+2 ⋯ cm

)‖‖‖
2

2
.

Am,n =

⎛
⎜⎜⎜⎝

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3
a4,1 a4,2 a4,3

⎞
⎟⎟⎟⎠
.

QA =

⎛
⎜⎜⎜⎝

q1,1 q1,2 q1,3 q1,4
q2,1 q2,2 q2,3 q2,4
q3,1 q3,2 q3,3 q3,4
q4,1 q4,2 q4,3 q4,4

⎞
⎟⎟⎟⎠
RA =

⎛
⎜⎜⎜⎝

r1,1 r1,2 r1,3
0 r2,2 r2,3
0 0 r3,3
0 0 0

⎞⎟⎟⎟⎠
.

B =

⎛
⎜⎜⎜⎝

a1,2 a1,3
a2,2 a2,3
a3,2 a3,3
a4,2 a4,3

⎞
⎟⎟⎟⎠
.

RB =

⎛
⎜⎜⎜⎝

r1,2 r1,3
r2,2 r2,3
0 r3,3
0 0

⎞⎟⎟⎟⎠
.

QB ∶

⎛⎜⎜⎝

p1,1 p1,2 p1,3
p2,1 p2,2 p2,3
p3,1 p3,2 p3,3

⎞
⎟⎟⎠
RB ∶

⎛
⎜⎜⎜⎝

s1,2 s1,3
0 s2,3
0 0

0 0

⎞⎟⎟⎟⎠
.

2510 F. S. Aktaş et al.

1 3

Lawson and Hanson (1995). The KKT optimality conditions for the non-negative
least squares subproblem are as follows

Optimality conditions show that the problem is to find a non-negative x, for which
the so-called “normal equations” are satisfied. Let C denote the set of indices for
which x is allowed to have non-negative values. Hence, one has

Then, the problem is reduced to finding C that satisfies the following system

where AC denotes the sub-matrix whose columns correspond to the columns of A
corresponding to the indices in C, and xC ∈ ℝ

|C| is a vector consisting of values of x
corresponding to indices in C.

Some remarks concerning the impact of non-negativity constraints on the spar-
sity level are in order here since optimality conditions indicate that non-nega-
tivity constraints might induce some sparsity. If the true x is non-negative and
sufficiently sparse, or there are sufficiently many observations, and data matrix A
satisfies certain conditions like Gaussian Windows, then the sparsity constraint
may be removed from the problem Eftekhari et al. (2021). However, in this paper,
we develop an algorithm for arbitrary matrices and sparsity values. Furthermore,
in the branch and bound search procedure, variables that are set to zero by the
solution of the unconstrained problem will be given lower priority in the branch-
ing step because these variables will not improve the search. The children nodes
constructed by branching on variables that are already at zero will have the same
residual as the mother node, which makes it more difficult to understand the effect
of the variables, therefore slowing down the search. Moreover, for certain types
of problems such as the sparse deconvolution application discussed in Sect. 6, the
unconstrained solution at node 0 sometimes sets the true non-zero variables, vari-
ables that are in support of optimal s sparse x, to zero. This is mainly caused by
noise and the presence of correlated variables in the design matrix A. Then, the
variables in the support of optimal x are not given positive values by non-negative
least squares solution when solving a subproblem until the enumeration algorithm
progresses and some of the correlated variables, with the variables in the optimal

(2.2)ATAx − ATb ≥ 0

(2.3)�Tx = 0

(2.4)�, x ≥ 0.

(2.5)x =

{
xj ≥ 0 j ∈ C

xj = 0 j ∉ C.

(2.6)AT
C
ACxC = AT

C
b

(2.7)ATAx − ATb ≥ 0,

2511

1 3

Provably optimal sparse solutions to overdetermined linear…

support, are set to zero. Following this step, a non-negative least squares solution
assigns positive values to the variables that are in the optimal support.

2.5 Accuracy and precision

The condition number of matrix A is given by:

where �1 is the largest singular value, and �n is the smallest singular value, and the
least squares problem represented on a finite precision computer is given by

where ‖ΔA‖2
2
≈ u‖A‖2

2
 , ‖Δb‖2

2
≈ u‖b‖2

2
 represent the errors incurred in registering

matrix A and vector b to a computer, u is unit round-off and �ls = ‖‖AxLS − b‖‖2 the
norm of the residual. Then the relative error is approximately as given in Golub and
Loan (1996).

However, since we are only using a subset of columns of A, relative error for the
final solution of non-negative least squares is given instead by

which is obtained by plugging in the smaller matrix to the formula given in (2.8).

3 Description of algorithm and NNLSSPAR library

3.1 Algorithm description

The cardinality constraint is the central challenge because it lies at the heart of
the NP-Hardness result Natarajan (1995). To handle the cardinality constraint, our
algorithm uses a branch and bound framework. The original problem is reduced to
small sized subproblems in each iteration, and variables are selected according to a
particular rule to ensure efficiency. As a result, subproblems solved at each step of
the algorithm are reduced to the standard least squares problem with non-negativity
constraints. Therefore, the subproblem solved at each step is the standard non-nega-
tive least-squares problem:

K(A) =
�1

�n

min
x
‖(A + ΔA)x − (b + Δb)‖2

2

(2.8)
‖‖ ̃xLS − xLS

‖‖
‖‖xLS‖‖

≈ u(K(A) + 𝜌LSK(A)
2).

‖‖ ̃xNNLS − xNNLS
‖‖

‖‖xNNLS‖‖
≈ u(K(AC) + 𝜌NNLSK(AC)

2),

2512 F. S. Aktaş et al.

1 3

where x̂ ∈ ℝ
k, b̂ ∈ ℝ

n , Â ∈ ℝ
n×k.1 Since the number of potential subproblems grows

exponentially, subset selection is the most critical part of the algorithm. NNLSS-
PAR performs implicit enumeration to generate unique subsets and uses the solu-
tion of subproblems to evaluate the quality of a subset. The information about the
quality of a subset is instrumental for branching on high quality subsets for fast con-
vergence. The enumeration rule described in Sect. 4 utilizes the so-called “scaled
feature impact in the least squares”. NNLSSPAR can be deployed in any problem
instance without a restriction. However, as linear dependencies between independ-
ent variables and the dependent variable get more pronounced, the search may move
closer to performing an exhaustive search that will require

(
n

s

)
 trials. On the other

hand, when the solution is “simple” enough, branching only s times may be enough
to obtain it. The motivation behind this approach comes from the recent advances
in best subset selection algorithms and the mixed integer programming approaches
presented in e.g., Bertsimas et al. (2016). Furthermore, we do not rely on the off-the-
shelf solvers for the computation of the sparse NNLS problem. We also provide an
effective branching method.

In a nutshell, the algorithm of NNLSSPAR can be described as follows. Each
node is searched according to a best first search with respect to the residual of the
system. Given that the algorithm is at any node of the search tree, the first step is
to check if the current point is feasible. If the answer is affirmative, it is optimal
because of the search rule. If the current point is infeasible, then the algorithm
chooses a variable to branch on according to an enumeration rule and creates two
new nodes, one where the chosen variable is in the solution and the second where
the variable is erased from the problem. These two new nodes are added to the
search tree. Then, the algorithm goes back to the first step and explores the other
nodes.

3.2 Description of NNLSSPAR library

NNLSSPAR requires as inputs matrix A storing the values of independent variables,
vector b storing the values of the dependent variable, and sparsity level s, (the maxi-
mum number of nonzero elements allowed to be in the solution vector x).

The flow of the algorithm is presented in Fig. 1. Two disjoint sets, P and C, are
kept. Initially, P = {1, 2, .., n} where n is the number of independent variables and

(3.1)min
x̂

‖‖‖Âx̂ − b̂
‖‖‖
2

2

s.t. x̂ ≥ 0

1 As alluded to in Sect. 2, in machine learning and statistics an alternative notation is commonly used:

where � ∈ ℝ
k, y ∈ ℝ

n , X ∈ ℝ
n×k and � s are referred to as coefficients. Unless otherwise indicated, we

prefer to stick to the usual A, b-notation of linear systems of equations.

(3.2)
min
�

‖y − X�‖2
2

s.t. � ≥ 0

2513

1 3

Provably optimal sparse solutions to overdetermined linear…

C = ∅ . P holds the indices of the independent variables that are candidates to be
included in the solution. C holds the indices of the variables that are chosen to be
in the solution. In each step of the algorithm we enumerate implicitly, and remove a

Get a node
from Priority

Queue

Check if
|C| = s

Register the
Solution

True

Check if
number of

subsets found
so far = k

Go back to
Step 1

Terminate
Algorithm

False

Check if

|P U C|* s

False

True

Find index j,
remove it from

P

False

Add j to C,
create new

node with new
C and new P

Compute new
lower bound

Create new
node with new

P and C

Fig. 1 Generic flow of the algorithm; *Cardinality of nonzero elements in the solution with variables
whose indices are given by P and C is checked

2514 F. S. Aktaş et al.

1 3

variable from P and create two new nodes where in the first one the removed vari-
able is in C and in the other it is not. Implicit enumeration will always find unique
subsets so, P and C together identify a unique node in the search graph. The search
tree is constructed by priority queue for best first search. In the flow of the algo-
rithm, the fact that the sum of squared errors is monotonically decreasing with the
number of elements included in the prediction is utilized. Hence, the algorithm will
always pick at most s many variables. In other words, |C| ≤ s holds for any C in the
search tree.

Additionally, NNLSSPAR provides a routine to find optimal subsets of all sizes

up to the specified sparsity level s. That routine is considerably faster than using

2515

1 3

Provably optimal sparse solutions to overdetermined linear…

a brute force approach and solving s separate problems. The use of this option is
explained in the User’s Guide to NNLSSPAR Aktaş et al. (2020).

The user can specify the parameter C as input to the algorithm to force a variable
to be in the solution set. Then, NNLSSPAR will compute an optimal solution where
the given index/indices are in the solution although these variables are not guaran-
teed to have a positive value in the solution.

NNLSSPAR employs nnls, the non-negative least squares function of the scipy
library. The nnls algorithm is based on the active set method described by Lawson
and Hanson (1995); Virtanen et al. (2020). NNLSSPAR also uses the QR routine,
i.e., QR factorization, of the same library. This routine implements the orthogonali-
zation method for computing an accurate least squares solution. However, NNLSS-
PAR utilizes QR factorization to shrink the size of the system. Moreover, the algo-
rithm does not report the actual residual of the system but rather only the residual
of the reduced system after orthogonal transforms. Hence, the true squared residu-
als of the systems are obtained by residual squared reported plus the initial residual
incurred after the orthogonal transform.

3.3 Relation to �
2
 norm regularization (ridge)

A modified version of the problem we study 1.1 is of special interest and is given in
the following form

where parameter � controls the �2 norm penalty term. This is commonly known as
Tikhonov Regularization Tikhonov et al. (1995) in the literature. The �2 norm pen-
alty is often used to account for noise in the data matrix Ghaoui and Lebret (1997)
or when the data matrix is ill conditioned Engl et al. (2000). Although we do not
address this problem, it can still be solved easily with NNLSSPAR by changing the
formulation to transform it into the format given in 1.1. Let A,b and � be the original
problem parameters. Then we would treat the following problem with our algorithm:

where In ∈ ℝ
n×n is identity matrix, �

�
∈ ℝ

n×1 is a vector of zeros.

3.4 Novel heuristic enumeration rule

The enumeration rule of NNLSSPAR is referred to as “scaled feature impact in the
least squares”. It approximates the scaled non-negative least squares value without
actually scaling the data and solving a non-negative least squares problem. The algo-
rithm solves the following problem at each node

(3.3)
min
x∈Rn

‖Ax − b‖2
2
+ �‖x‖2

2

s.t. x ≥ 0

‖x‖0 ≤ s,

Â =

�
A√
𝜇In

�
, b̂ =

�
b

�
�

�
,

2516 F. S. Aktaş et al.

1 3

where ||x̄i|| denotes the absolute value of the mean of i’th variable, �xi denotes the
standard deviation of i’th variable and x̂i is the value of i’th variable in the non-neg-
ative least squares solution. The main novel idea behind NNLSSPAR is this clever
enumeration rule which chooses the variable that has the highest impact in the least
squares problem at each node. Furthermore, at any given node, the non-negative
least squares problem is solved to find lower bounds. Therefore, values are known
and the cost of applying our impact rule requires 2k flops and O(k) for linear search
over the list of size k. This is computationally cheap since k = |P| . As described
in section 2.2, the decision to keep the i’th variable is taken with the Branch and
Bound algorithm. This creates two sub-problems depending on whether the index
i is included in the support or not. To ensure that the problem remains tractable,
a selection rule is required. Otherwise, the problem would simply become a naive
enumeration algorithm. The selection of the i’th variable is performed in an efficient
manner with the proposed method using scaled feature impact.

Although it is a heuristic search method, it is very fast, and in general able to iden-
tify the important variables. Moreover, being able to identify variables with a high
impact on the residual leads to quick elimination of nodes due to the high residuals
at the nodes without those variables. As a result, the search algorithm quickly finds
the optimal solution, an observation that is substantiated in subsequent sections with
numerical results.

In Atamturk and Gomez (2020), a preprocessing method to eliminate some varia-
bles from the problem prior to the enumeration step is suggested. However, this method
relies on a �2 norm regularization term. The problem we have focused on does not
have an explicit �2 regularization term. Moreover, since we have a non-negativity con-
straint, the optimal solution is not given in the closed form. Hence, the screening rules
described do not apply to our problem. A small problem instance that demonstrates this
phenomenon can be given as follows;

where � corresponds to the �2 regularization term. The preprocessing method sug-
gests that variable x3 should be in the solution yet the non-negative least squares
solution to the problem returns x = [

2

3
,
2

3
, 0]T , and with regularization x = [

1

2
,
1

2
, 0]T

which is 2-sparse and therefore optimal. As seen, the framework in Atamturk and
Gomez (2020) is not directly applicable to our problem.

j = argmax i∈P
|||(||x̄i|| + 𝜎xi)x̂i

|||,

A =

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 − 1

1 1 − 1

⎞
⎟⎟⎟⎠
, b =

⎡
⎢⎢⎢⎣

1

1

1

1

⎤
⎥⎥⎥⎦
, s = 2,� = 1

2517

1 3

Provably optimal sparse solutions to overdetermined linear…

4 Tests and results

We first tested the algorithm with some randomly generated data. We solved prob-
lems of different sizes and different sparsity levels and collected different perfor-
mance measures: CPU time, memory use, and the number of nodes searched by the
algorithm. Each case is solved ten times for the reliability of the results. All experi-
ments were performed on a computer with i7 processor with clock frequency 2.6
GHz and 16 GB of RAM.

The results summarized in Fig. 2 suggest that the number of observations in the
matrix A, i.e., m, has no impact on the number of nodes examined. The number of
nodes searched is determined by dominant elements of vector x and the number of
independent variables n. Also, CPU and memory usage increase as the size of matrix
A increases because it requires more space to register matrix A and longer CPU time
to calculate the non-negative least squares solution. When the sparsity level changes,
the algorithm requires the least amount of node search and CPU time when the num-
ber of “dominant” elements of x is equal to sparsity level s. CPU usage increases not
as a result of increased difficulty in the solution of the subproblem but because of
the number of nodes searched. Similarly, since a larger number of nodes are checked
and a larger number of subproblems are solved the memory usage also increases.

We also tested the algorithm on some of the publicly available real data sets. For
all real data sets, the design matrix A is centered and scaled so that each column of A
has zero mean and unit standard deviation.

Figure 3 shows performance measures obtained using the OZONE data set in
Breiman and Friedma (1985). Since the CVXPY values dominate others we also
separately plotted the performance of methods excluding CVXPY (Fig. 4) for
clarification. This data set includes ozone concentration which is the dependent
variable, in Upland CA, east of Los Angeles and 8 independent variables, which
are meteorological measurements based on 330 observations in 1976. In addi-
tion to the 8 independent variables, we created 36 artificial variables from those

Fig. 2 Test cases

2518 F. S. Aktaş et al.

1 3

8 variables. The first 8 original variables are = X1X2..X8 . The artificially created
variables are interactions in the order = X2

1
,X1X2,X

2
2
,X1X3,X2X3,X

2
3
,… ,X2

8
 as in

Miller’s subset selection experiments Miller (2002). We compared GUROBI ver-
sion 9.0.2 MIP solver with NNLSSPAR Gurobi (2020). The table below shows
the elapsed CPU and wall clock time in seconds for different levels of sparsity.

Fig. 3 Ozone data set solver comparisons

Fig. 4 Ozone data set solver comparison, CVXPY is excluded

2519

1 3

Provably optimal sparse solutions to overdetermined linear…

GUROBI refers to the performance of the integer programming algorithm when
the full system is given. QR GUROBI refers to the performance of the integer pro-
gramming algorithm after the system is shrunk using QR decomposition. The results
show that QR decomposition improves the performance of the MIP solver GUROBI,
although QR overhead is ignored in the values given in the figure. For the other data
sets, a pure MIP algorithm was not used as MIP algorithms dramatically slow down
when data sets have many observations.

Energy data set by Candanedo et al. (2017). This data set was used for predict-
ing energy consumption in houses. There are 19,735 observations in total although
not all of the observations are from unique houses. Independent variables are tem-
perature and humidity levels in different parts of a house, some other meteorological
measurements and a random variable to detect the non-predictive variables. Results
are presented in Fig. 5.

Conduct data set in Hamidieh (2018). This data set was used to predict the criti-
cal temperature of a superconductor. Predictor variables consist of physical charac-
teristics of the material used in a superconductor (81 independent variables). The
data set includes observations from 21,263 superconductors. Results on this data set
is summarized in Fig. 6.

Online data set by Fernandes and Cortez (2015). This data set contains popular-
ity levels of online news that was published on Mashable. There are 39,644 observa-
tions and 58 independent variables which characterize the news content. However,
there are categorical features and they result in rank deficiency of matrix A. Hence,
we removed two features from the data set that identified whether a news item was
published on Saturday and Sunday. Results for this data set are reported in Fig. 7.

The MIP solver for the last data set performs slower compared to the other
two data sets because CPLEX was used as the solver for CVXPY Cplex (2009);

Fig. 5 Energy data set solver comparisons

2520 F. S. Aktaş et al.

1 3

Diamonda and Boyd (2016). For the other data sets, GUROBI was used as the solver
because in our experience it was the fastest among CVXPY solvers that support
Quadratic Integer Programming. GUROBI was not able to find the correct solution
on this data set. Therefore we reported CPLEX results. Although it should be noted
that this data set is more ill-conditioned than the others due to a large condition
number of A and large residual of the system.

Fig. 6 Conduct data set solver comparisons

Fig. 7 Online data set solver comparisons

2521

1 3

Provably optimal sparse solutions to overdetermined linear…

In the previous data sets, the non-negative sparse least squares problem was not
challenging given that the CPU times of the algorithms are in milliseconds. Hence,
to see how well the algorithms perform, in particular, to compare GUROBI and
NNLSSPAR, we created an artificial problem where A ∈ ℝ

400×40 , x has 12 dominant
values and the rest of the entries are equal to 1, and b is created as Ax + � where �
denotes Gaussian noise.

Figure 8 shows that NNLSSPAR seems to be faster especially as sparsity reaches
higher levels.

The results reported in the figures above do not include the initial QR step to
shrink the system. The next table shows the QR overhead in seconds for each data
set:

Time∖Data Ozone Energy Conduct Online

CPU 0.0000 0.0625 0.2500 0.3125
Real 0.0020 0.0160 0.0608 0.0848

Bertsimas et al. (2016) propose a warm start procedure using Iterative Hard
Thresholding. This procedure helps Mixed Integer Programming solvers find an
optimal solution faster. Hence, Iterative Hard Thresholding with projection to non-
negative orthant was used to find an initial good approximation of an optimal point
for MIP solvers. Figure 9 shows the performance figures of MIP solver Gurobi
(2020) with warm start when we use the heuristic point as warm start and optimal
point as a warm start, respectively. Here, the time measurements do not include the
time to find the (optimal or heuristic) warm start point. We also added cold start
results for comparison.

Fig. 8 Artificially difficult problem solver comparisons

2522 F. S. Aktaş et al.

1 3

MIP solvers seem to be so fast that even giving an optimal initial point does
not change the CPU time when the sparsity level is low. However, as the spar-
sity level increases, CPU usages of different options varies remarkably. Moreover,
giving the heuristic solution as the initial input, in our case, using non-negative
IHT, did not speed up the algorithm and overall results for both cases are very
similar.

Fig. 9 Online data set MIP start comparisons

Fig. 10 Online data set special and brute force method comparisons

2523

1 3

Provably optimal sparse solutions to overdetermined linear…

In addition, a comparison of the brute force approach (when the algorithm is
called once for each sparsity level up to the upper bound s) and the specialized
function to all subset problems (a routine to find optimal subsets of all sizes up to
the sparsity level s) on the Online data set is shown in Fig. 10.

Comparison with Arborescent One of the main alternatives to our algo-
rithm is another enumeration algorithm called Arborescent Nadisic et al. (2020).
That approach uses a branch and bound idea to solve the sparse NNLS problem.
However, there are significant differences between our method and Arborescent.
The first difference is that we use a forward selection approach in the branch-
ing whereas they employ a backward elimination approach. Due to the sparsity
assumption, our convergence is theoretically faster due to the reduced number
of branching our algorithm undertakes. A second major difference is that our
algorithm branches based on our decision rule which makes the algorithm search
for the strong candidate nodes first. Arborescent on the other hand uses lexico-
graphical search after sorting the variables according to their magnitude in the
initial non-negative least squares problem. The ambiguity in their application
in terms of the node generation and node priorities makes the comparison hard.
Thirdly, Arborescent uses depth-first-search and NNLSSPAR proceeds by best-
first-search. Furthermore, Arborescent’s branching scheme enumerates over all
possible variables at one node, and consequently creates redundant nodes. How-
ever, NNLSSPAR uses implicit enumeration and hence enumerates one variable
at a time and so all nodes are unique. Their implementation of the algorithm is
based on C++. In order to facilitate a meaningful and fair comparison, we have
implemented the Arborescent algorithm in Python. Comparisons and results can
be found in Figs. 11, 12, 13.

Fig. 11 Arborescent and NNLSSPAR

2524 F. S. Aktaş et al.

1 3

The Arborescent algorithm does not perform well when there are many vari-
ables, and the sparsity level is not close to the number of variables as the algo-
rithm uses a backward elimination process to induce sparsity. Figure 11 shows
the results on artificial data (with 100 observations and 14 variables) specifically
generated for comparison with Arborescent. On the other datasets that we com-
pared NNLSSPAR and MIP solvers, Arborescent fails to solve the problem in a
reasonable time. Moreover, it creates redundant nodes because of its branching
scheme, which also stalls the algorithm. Additionally, Arborescent uses a depth
first search and so examines a larger number of nodes compared to NNLSSPAR’s
best first search.

Fig. 12 Arborescent

Fig. 13 NLSSPAR

2525

1 3

Provably optimal sparse solutions to overdetermined linear…

Comparison with Nonconvex Gauge Function Approach As with the spar-
sity constraint, a constraint based on the convex Gauge function is defined as
GB(y) = inf{�Tx � y = ∑�B�

i=1
Bixi, Bi ∈ B} Rockafellar (1970) is also often used to

find sparse solutions Chandrasekaran et al. (2012). In Eftekhari and Esfahani (2021),
a new non-convex Gauges function is proposed for sparse recovery, and a numerical
algorithm is described to solve a modified version of SNNLS where a linear con-
straint is added to the problem based on the newly defined non-convex Gauges func-
tion. Hence one solves the following problem

where GB,s(y) is the Gauges function defined as

which is analogous to a sparsity constrained Gauge function (see Eftekhari and Esfa-
hani (2021)). We note that in the literature the Gauge function approach focuses on
y and its sparse decomposition on alphabet B given by x whereas we directly model
and focus on the decomposition x itself. For comparison with NNLSSPAR, we use
the same setup used in Eftekhari and Esfahani (2021) which can be described as
follows

where N(0, �e) denotes the Gaussian distribution with zero mean and standard devi-
ation �e . Values of t ∈ ℝ

40 were randomly generated to construct the dictionary A.
We solved the same problem for different noise levels �e = 0, 10−1, 10−2, 10−3 and
repeated the experiment 40 times. We implemented the Gauges subroutine using
CVXPY Diamonda and Boyd (2016). Results are summarized in Figs. 14 and 15.

NNLSSPAR successfully recovers the true solution when the noise level is suf-
ficiently low. When the noise level is high, the current problem formulation does
not allow recovery of the true x, due to the sensitivity of the squared loss to outliers
and the non-negativity constraint. We also observed that due to noise, even when
we solve the non-negative least squares problem with the true subset of columns of
A, not all variables obtain positive values. Some of them are assigned zero value,
meaning that the noise significantly corrupts the underlying system, and we are una-
ble to recover a true solution using SNNLS. We observe similar behavior in sparse
deconvolution problems, which is discussed in the section 6. Moreover, we also

(4.1)

min
x∈Rn

��A(Bi)x − b��22
s.t. x ≥ 0

�Tx ≤ GB,s(y)‖x‖0 ≤ s

GB,s(y) = inf{�Tx | y =
|B|∑
i=1

Bixi, ||x||0 ≤ s, Bi ∈ B},

Ai(t) = e
−

(t−0.05∗i)2

0.352 , i = 1, .., 20

xT =[�T
2
, �T

18
]

b =Ax + �

� ∼N(0, �e)

2526 F. S. Aktaş et al.

1 3

observed that Gauges recovers the true underlying variables in some of the experi-
ments. Therefore, the true subset of variables is in the set of solutions obtained by
Gauges . The Gauges approach merits a more comprehensive numerical investigation
in the future. Finally, both NNLSSPAR and Gauges can solve small sized problems
very quickly.

Fig. 14 Recovery comparison of NNLSSPAR and Gauges

Fig. 15 CPU time comparison of NNLSSPAR and Gauges

2527

1 3

Provably optimal sparse solutions to overdetermined linear…

In summary, NNLSSPAR performs well in general since non-negativity con-
straints naturally induce sparsity. Furthermore, when implicit enumeration zeroes
out one of the nonzero elements in a non-negative least squares solution, magni-
tudes of the residuals of the system increase so much that in general, very few nodes
need to be searched. Finally, we observe that the difficulty of the problem does not
depend on m, but on n, in particular with dominant elements of x in non-negative
least squares solutions, and s, which determine the number of possible subsets.

5 Application to hyperspectral imaging

5.1 NNLS implementation

One of the immediate applications for the sparse NNLS problem is hyperspectral
imaging which is encountered in areas such as chemistry, computer vision and aerial
imaging. The application domain of the present paper is abundance detection. The
abundance estimation framework can be described as follows. We start with the lin-
ear mixing model assumption and formulate the problem as a sparsity constrained
NNLS problem. Let X = [x1, x2, ..., xb]

T be a mixing matrix of dimension b × p , such
that xi ∈ ℝ

p where b denotes the number of existing spectra in the image and p is
the number of the end-members selected. The selection of the end-members and the
construction of the mixing matrix is performed using the end-member extraction
algorithm N-FINDR which is commonly used in the literature Heylen et al. (2011)
and Winter (1999). In our model, yi ∈ ℝ

b denote the values of the pixel i as a vector
in the dimension of the number of spectra. The mixing weights wi ∈ ℝ

p are calcu-
lated using our algorithm for each pixel:

Since the mixing weights correspond to a sparse combination of non-negative val-
ues, our algorithm is a natural candidate for the solution to this problem. The formu-
lation of the problem for pixel i is as follows;

In the literature, it is common to solve a relaxation of this problem by dropping the
cardinality constraint and using a surrogate function such as

∑
wi = 1 Menon et al.

(2016). This formulation is also meaningful when the weights are allowed to have
fractional values. Naturally, the present paper is more concerned with the precise
selection of the materials. Therefore, the cardinality constraint is more pertinent for
such problems. Furthermore, alternative approaches to obtain sparsity using regu-
larization methods have been studied in the literature Drumetz et al. (2019).

The hyperspectral images from the Salinas A dataset have been used for tests.
Parameter selection is made based on previous studies in the literature involv-
ing this dataset. There are 6 major materials scattered in the dataset where we

(5.1)yi = Xwi.

(5.2)
min ‖‖yi − Xwi

‖‖22
s.t. wi ≥ 0‖‖wi

‖‖0 ≤ s.

2528 F. S. Aktaş et al.

1 3

have the assumption that the pixels contain only sparse combinations of these six
materials. We generate the mixing matrix for the 12 most meaningful materials
and solve the NNLS problem mentioned above for each pixel in the data. The
problems are solved very efficiently with very minimal reconstruction errors. The
maximum sparsity level equal to 6 has been used as oracle information during

Fig. 16 Reconstruction of a Pixel

Fig. 17 Reconstruction comparison of our algorithm and Gurobi

2529

1 3

Provably optimal sparse solutions to overdetermined linear…

the tests. However, most of the pixels were even sparser than this level having ‖‖wi
‖‖0 ≤ 3 for most i’s (Fig. 16).
In Fig. 17, a color map of average MSE values for each pixel and reconstruction

of a randomly selected band is displayed. Color maps of the average MSE errors of
each pixel for all bands are shown in the first row, and the reconstructed images are
shown in the second row. The last column represents the ground truth values, the
first column represents the results obtained by our algorithm and the second col-
umn is obtained using the Gurobi MIP solver. The performance of our algorithm is
slightly better as the overall MSE obtained is less than Gurobi’s MIP solution and
the overall execution time is also smaller than the MIP solution. This concludes the
discussion of the performance of our algorithm for the exact sparse NNLS problem.

5.2 Extended least squares implementation

In the literature, there exist variants to the original NNLS problem. One of the most
prominent extensions is the one reported in Guo and Berman (2012) regarding
applications in spectroscopy. We also developed an addendum to our NNLS algo-
rithm to be compatible with this specific extension. This appendage addresses the
following problem

(5.3)
min

wi,vi∈R
p

‖‖Xwi + Zvi − yi
‖‖22

s.t. wi ≥ 0‖‖wi
‖‖0 ≤ s.

Fig. 18 Reconstruction of a Pixel using NNLS and extended NNLS

2530 F. S. Aktaş et al.

1 3

We re-formulate the hyperspectral imaging problem by taking the matrix Z as the
bias term, i.e., every row of Z is a row of ones, Zi = �p. This new matrix Z ∈ �b×p
allows new variables to be introduced to the NNLS problem with no non-negativity
or sparsity restriction, allowing us to effectively use it as a bias term for every vari-
able wi. We present the extended NNLS results on the same hyperspectral imaging
dataset as the spectroscopy datasets have more restricted access. The comparison of
the methods used is given in Fig. 18.

6 Sparse deconvolution problems

In the signal processing literature, an approach to formulate deconvolution problems
as mixed integer problems were discussed in Bourguignon et al. (2016). This refor-
mulation guarantees optimality of the solution whereas common heuristics such as
IHT and COSAMP do not provide this guarantee. On the other hand, a recent study
Donne et al. (2020) reports that well-known MIP formulations of sparse recovery
problems may not always yield an exact recovery, and proposes an alternative for-
mulation based on set covering. Our algorithm is applicable to the test problems of
Bourguignon et al. (2016) since we provide an efficient solution for the problems
that they have formulated for general MIP solvers.

We compared the results provided in Bourguignon et al. (2016) by solving the
test problems using our algorithm. Since the comparisons of deconvolution methods
for different cases are studied in their paper, we directly compare their results with
our algorithm.

We have generated 40 different tests for each of the three different sparsity values
and signal to noise ratios (SNR). Figure 19 presents the results obtained.

Fig. 19 Recovery Rate of NNLSSPAR in Sparse Deconvolution Problems

2531

1 3

Provably optimal sparse solutions to overdetermined linear…

Our algorithm is not as successful in exact recovery for different SNR values,
with very low SNR values in particular, when compared with the formulations in
Bourguignon et al. (2016). Solving the non-negative sparse least squares problem
on data with a low SNR value does not allow recovery of the original support.
An explanation for this result is that the least squares loss function may not be as
robust to noise as its counterpart in Bourguignon et al. (2016). Different loss func-
tions could have been used such as Huber Loss, in order to enforce robustness under
such heavy noise conditions. Moreover, without changing the loss function one can
deploy different data denoising methods that are useful under highly additive noise
such as the one proposed in Bhatia et al. (2015). This type of denoising is computa-
tionally attractive since it reduces the number of rows in the data matrix and could
be easily implemented for our algorithm. We will pursue this approach in future
work. In addition, the presence of noise contamination slowed down our algorithm
remarkably. Positive variables in the optimal solution of the sparse problem tend to
vanish in the unconstrained problem when the corruptive noise is coupled with the
non-negativity constraint. As a result, the algorithm does not prioritize enumerating
over those variables, thereby slowing down the search.

7 Conclusion

We studied the sparsity constrained non-negative least squares problem. As opposed
to local solution methods, we proposed a novel implicit enumeration idea to solve
the sparse NNLS problem optimally and efficiently. We conducted tests to compare
our method with the most common off-the-shelf solvers as well as the only competi-
tor of our algorithm in the literature. In general, our algorithm converges faster and
gives more stable results compared to the quadratic mixed integer solvers. Further-
more, we provide a Python implementation of our algorithm as a library to be easily
used to solve any sparse NNLS problems. It is the authors’ hope that NNLSSPAR
will become a new benchmark in subset selection and sparse recovery research.

Appendices

Details of parameters and variables

Both the matrix A and the vector b should be registered as numpy arrays and one
should specify the data type as float64 even if all the values are integer to avoid
potential numerical issues. While registering and working with matrices or vec-
tors using Python, shape definition is very important. Shape of the vector leads
to large changes in how linear algebra functions behave. Python has two differ-
ent definitions of vector. If the user registers a one dimensional vector of ones
of length n, Python registers it as a vector that has a shape of (n,). However, if
instead numpy.ones([1,10]) is used, then it will mathematically express the same
vector but in Python it will have the shape of (1,10). Using matrix operations

2532 F. S. Aktaş et al.

1 3

with these two different vectors will give different results. The vector b should be
registered as a column vector of shape (m,1).

NNLSSPAR calls the guppy3 package by Zhu and Nilsson for tracking the
memory usage of the algorithm Zhu and Nilsson (2019). As a result, the guppy3
package should be installed to be able to use NNLSSPAR.

A description of the parameters of NNLSSPAR library is given below.
Parameters:

 1. A (input) = m × n matrix storing the values of the independent variables where
m must be greater than n

 2. b (input) = m × 1 vector storing the values of the dependent variables
 3. s (input) = An integer value indicating sparsity level (maximum number of

nonzero elements in the solution)
 4. out (input, by default it is 1) = An integer value, that is a parameter controlling

the detail level of output:

(a) out = 0, Nothing will be printed
(b) out = 1, The results and the hardware usage of the algorithm will be printed
(c) out = 2, At every iteration, the lower bound of the current node and the

number of nodes searched so far will be printed. After the algorithm termi-
nates NNLSSPAR will report the results and the hardware usage. Although
it is good to observe the progress of the algorithm, it should be noted here
that it slows down the algorithm significantly.

 5. C (input, by default it is ∅) = Array of integers, storing the indices of chosen
variables

 6. many (input, by default it is 4) = An integer specifying number of best subsets
to be found

 7. residual_squared (output) = a list of length many (s ∗ many if all subsets func-
tion is used) containing residuals corresponding to subset found for some spar-
sity level. This only shows the residuals of the system after QR decomposition.
True residual squared of the systems are residual_squared + permanent_residual

 8. indexes (output) = a list of length many (s ∗ many if all subsets function is used)
containing indices of the independent variables that make the subsets for some
sparsity level

 9. coefficients (output) = a list of length many (s ∗ many if all subsets function is
used) containing values of the least squares solution of each subset for some
sparsity level

 10. permanent_residual (output) = a float that records the residual squared of the
system after orthogonal transform using QR decomposition of the matrix A

 11. cpu (output) = a float showing the CPU time of the algorithm in seconds. CPU
time of the algorithm is print if out is not 0

 12. memory (output) = a float showing the total memory usage of the algorithm in
bytes. Detailed table of memory usage is print if out is not 0

 13. real (output) = a float showing the wall time of the algorithm in seconds.

2533

1 3

Provably optimal sparse solutions to overdetermined linear…

 14. nodes (hidden) = a list of integers showing number of visited nodes in the graph.
It is equal to the number of branchings done due to best first search if only one
solution is found. For each sparsity level it will be reported separately.

 15. rem_qsize (hidden) = a list of integers showing the number of unvisited nodes
in the graph. This will be equal to nodes if only one solution is found. For each
sparsity level it will be reported separately.

An example

Assume we are trying to solve an instance of a problem where A, b and s are
specified for input into NNLSSPAR in Python syntax as follows:

In the output, the list of values of the variables are in the order given by
the indexes. Hence, 6.64783762 is the value of fourth independent variable,
1.62440717 is the value of third independent variable, and so on.

A special case

If the solution of multiple subsets for each sparsity level i = 1, 2,… , s − 1, s is
desired, then the following function should be called:

2534 F. S. Aktaş et al.

1 3

Supplementary Information The online version contains supplementary material available at https:// doi.
org/ 10. 1007/ s11081- 021- 09676-2.

References

Aktaş FS, Ekmekçioğlu O, Pınar M Ç (2020) User’s guide to nnlsspar, https:// github. com/ Fatih-S-
AKTAS/ LSSPAR

Atamturk A, Gomez A (2020) Safe screening rules for l0-regression from perspective relaxations. In:
Dauma H III, Singh A (eds) Proceedings of the 37th international conference on machine learn-
ing, vol 119 of Proceedings of machine learning research, PMLR, 13–18, pp. 421–430, http:// proce
edings. mlr. press/ v119/ atamt urk20a. html

Beck A, Eldar YC (2013) Sparsity constrained nonlinear optimization: optimality conditions and algo-
rithms. SIAM J Optim 23:1480–1509. https:// doi. org/ 10. 1137/ 12086 9778

Bertsimas D, King A, Mazumder R (2016) Best subset selection via a modern optimization lens. Ann
Stat 44:813–852. https:// doi. org/ 10. 1214/ 15- aos13 88

Bhatia K, Jain P, Kar P (2015) Robust regression via hard thresholding. arXiv: 1506: 02428
Bourguignon S, Ninin J, Carfantan H, Mongeau M (2016) Exact sparse approximation problems via

mixed-integer programming: formulations and computational performance. IEEE Trans Signal Proc
64:1405–1419

Breiman L, Friedma JH (1985) Estimating optimal transformations for multiple regression and correla-
tion. J Am Stat Assoc. https:// doi. org/ 10. 1186/ s13040- 017- 0154-4

Chandrasekaran V, Recht B, Parrilo PA, Willsky AS (2012) The convex geometry of linear inverse prob-
lems. Found Comput Math 12:805–849. https:// doi. org/ 10. 1007/ s10208- 012- 9135-7

Cplex II (2009) V12. 1: User’s manual for cplex. In: International business machines corporation vol 46
Diamond S, Boyd S (2016) CVXPY: a Python-embedded modeling language for convex optimization. J

Mach Learn Res 17:1–5
Donne DD, Kowalski M, Liberti L (2020) Mip and set covering approaches for sparse approximation. In:

iTWIST annual conference
Drumetz L, Meyer TR, Chanussot J, Bertozzi AL, Jutten C (2019) Hyperspectral image unmixing with

endmember bundles and group sparsity inducing mixed norms. IEEE Trans Image Process 28:3435–
3450. https:// doi. org/ 10. 1109/ tip. 2019. 28972 54

Eftekhari A, Esfahani PM (2021) The nonconvex geometry of linear inverse problems. arXiv: 2101. 02776
Eftekhari A, Tanner J, Thompson A, Toader B, Tyagi H (2021) Sparse non-negative super-resolution–

simplified and stabilised. Appl Comput Harmon Anal 50:216–280. https:// doi. org/ 10. 1016/j. acha.
2019. 08. 004, https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S1063 52031 93001 93

Engl H, Hanke M, Neubauer A (2000) Regularization of inverse problems. Mathematics and its applica-
tions, Springer, Netherlands https:// books. google. com. tr/ books? id= VuEV- Gj1GZ cC

Ghaoui LE, Lebret H (1997) Robust solutions to least-squares problems with uncertain data. SIAM J
Matrix Anal Appl 18:1035–1064. https:// doi. org/ 10. 1137/ S0895 47989 62981 30

Golub GH, Loan CFV (1996) Matrix computations, John Hopkins University, Department of Computer
Science, Stanford University; Department of Computer Science, Cornell University, 3rd. ed.,

Guo Y, Berman M (2012) A comparison between subset selection and l1 regularisation with an appli-
cation in spectroscopy. Chemometric Intell Lab Syst 118:127–138. https:// doi. org/ 10. 1016/j. chemo
lab. 2012. 08. 010, http:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0169 74391 20016 57

Gurobi L Optimization (2020) Gurobi optimizer reference manual. http:// www. gurobi. com
Hamidieh K (2018) A data-driven statistical model for predicting the critical temperature of a supercon-

ductor. Comput Mater Sci 154:346–354. https:// doi. org/ 10. 1016/j. comma tsci. 2018. 07. 052

https://doi.org/10.1007/s11081-021-09676-2
https://doi.org/10.1007/s11081-021-09676-2
https://github.com/Fatih-S-AKTAS/LSSPAR
https://github.com/Fatih-S-AKTAS/LSSPAR
http://proceedings.mlr.press/v119/atamturk20a.html
http://proceedings.mlr.press/v119/atamturk20a.html
https://doi.org/10.1137/120869778
https://doi.org/10.1214/15-aos1388
http://arxiv.org/abs/1506:02428
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1007/s10208-012-9135-7
https://doi.org/10.1109/tip.2019.2897254
http://arxiv.org/abs/2101.02776
https://doi.org/10.1016/j.acha.2019.08.004
https://doi.org/10.1016/j.acha.2019.08.004
https://www.sciencedirect.com/science/article/pii/S1063520319300193
https://books.google.com.tr/books?id=VuEV-Gj1GZcC
https://doi.org/10.1137/S0895479896298130
https://doi.org/10.1016/j.chemolab.2012.08.010
https://doi.org/10.1016/j.chemolab.2012.08.010
http://www.sciencedirect.com/science/article/pii/S0169743912001657
http://www.gurobi.com
https://doi.org/10.1016/j.commatsci.2018.07.052

2535

1 3

Provably optimal sparse solutions to overdetermined linear…

Heylen R, Burazerovic D, Scheunders P (2011) Fully constrained least squares spectral unmixing by sim-
plex projection. IEEE Trans Geosci Remote Sens 49:4112–4122. https:// doi. org/ 10. 1109/ tgrs. 2011.
21550 70

Kelwin Fernandes PV, Cortez P (2015) A proactive intelligent decision support system for predicting the
popularity of online news. In: Proceedings of the 17th EPIA, Portuguese conference on artificial
intelligence

Lawson CL, Hanson RJ (1995) Solving least squares problems, SIAM. San Clemente, California; Rice
University Houston, Texas classics in applied mathematics ed

Candanedo V. F. Luis M, Deramaix D (2017) Data driven prediction models of energy use of appliances
in a low-energy house. Energy Build 140:81–97. https:// doi. org/ 10. 1016/j. enbui ld. 2017. 01. 083

Menon V, Du Q, Fowler JE (2016) Random-projection-based nonnegative least squares for hyperspectral
image unmixing. In: 2016 8th workshop on hyperspectral image and signal processing: evolution in
remote sensing (WHISPERS), https:// doi. org/ 10. 1109/ whisp ers. 2016. 80717 96

Miller A (2002) Subset selection in regression. CRC Press, Chapman & Hall/CRC Monographs on Statis-
tics & Applied Probability

Nadisic N, Vandaele A, Gillis N, Cohen JE (2020) Exact sparse nonnegative least squares. In: ICASSP
2020–2020 IEEE international conference on acoustics, speech and signal processing (ICASSP).
https:// doi. org/ 10. 1109/ icass p40776. 2020. 90532 95

Natarajan B (1995) Sparse approximate solutions to linear systems. SIAM J Comp 24:227–234
Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton, Princeton Mathematical

Series
Slawski M, Hein M (2011) Sparse recovery by thresholded non-negative least squares. In: Shawe-Taylor

J, Zemel R, Bartlett P, Pereira F, Weinberger KQ (eds) Advances in neural information processing
systems, vol 24, Curran Associates, Inc., https:// proce edings. neuri ps. cc/ paper/ 2011/ file/ d6723 e7cd6
735df 68d1c e4c70 4c29a 04- Paper. pdf

Slawski M, Hein M (2013) Non-negative least squares for high-dimensional linear models: Consistency
and sparse recovery without regularization. Electron J Stat 7:3004–3056. https:// doi. org/ 10. 1214/
13- ejs868

Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG (1995) Numerical methods for the solution of
ill-posed problems. Mathematics and its applications, Springer, Dordrecht. https:// doi. org/ 10. 1007/
978- 94- 015- 8480-7, https:// cds. cern. ch/ record/ 16205 60

Vidyasagar M (2019) An introduction to compressed sensing. SIAM, Philadelphia
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P,

Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ,
Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perk-
told J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa
F, van Mulbregt P, SciPy 1.0 Contributors, (2020) SciPy 1.0: fundamental algorithms for scientific
computing in python. Nature Methods 17:261–272. https:// doi. org/ 10. 1038/ s41592- 019- 0686-2

Winter ME (1999) N-findr: an algorithm for fast autonomous spectral end-member determination in
hyperspectral data. Imaging Spectrometry V. https:// doi. org/ 10. 1117/ 12. 366289

Zhu Y, Nilsson S (Nov. 2019) Guppy 3: A python programming environment & heap analysis toolset,
github repository, https:// github. com/ zhuyi fei19 99/ guppy3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/tgrs.2011.2155070
https://doi.org/10.1109/tgrs.2011.2155070
https://doi.org/10.1016/j.enbuild.2017.01.083
https://doi.org/10.1109/whispers.2016.8071796
https://doi.org/10.1109/icassp40776.2020.9053295
https://proceedings.neurips.cc/paper/2011/file/d6723e7cd6735df68d1ce4c704c29a04-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/d6723e7cd6735df68d1ce4c704c29a04-Paper.pdf
https://doi.org/10.1214/13-ejs868
https://doi.org/10.1214/13-ejs868
https://doi.org/10.1007/978-94-015-8480-7
https://doi.org/10.1007/978-94-015-8480-7
https://cds.cern.ch/record/1620560
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1117/12.366289
https://github.com/zhuyifei1999/guppy3

	Provably optimal sparse solutions to overdetermined linear systems with non-negativity constraints in a least-squares sense by implicit enumeration
	Abstract
	1 Introduction
	2 Background
	2.1 Problem description
	2.2 Branch & Bound method
	2.3 QR factorization
	2.4 Recalls on least squares
	2.5 Accuracy and precision

	3 Description of algorithm and NNLSSPAR library
	3.1 Algorithm description
	3.2 Description of NNLSSPAR library
	3.3 Relation to norm regularization (ridge)
	3.4 Novel heuristic enumeration rule

	4 Tests and results
	5 Application to hyperspectral imaging
	5.1 NNLS implementation
	5.2 Extended least squares implementation

	6 Sparse deconvolution problems
	7 Conclusion
	References

