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Abstract
We prove the existence of statistical arbitrage opportunities for jump-diffusion models of
stock prices when the jump-size distribution is assumed to have finite moments. We show
that to obtain statistical arbitrage, the risky asset holding must go to zero in time. Existence
of statistical arbitrage is demonstrated via ‘buy-and-hold until barrier’ and ‘short until bar-
rier’ strategies with both single and double barrier. In order to exploit statistical arbitrage
opportunities, the investor needs to have a good approximation of the physical probability
measure and the drift of the stochastic process for a given asset.

Keywords Statistical arbitrage · Jump-diffusion model · Compound Poisson process ·
Monte Carlo simulation

JEL Classification C60 · G11 · G12

1 Introduction

Statistical arbitrage strategies are quantitative strategies that focus on investing in securi-
ties, both long and short positions, centered on a mathematical or statistical algorithm that
identifies a co-moving relationship between the two securities (Naccarato et al. 2019). These
strategies exploit systematic relationships among equity securities with similar character-
istics. Typically, univariate statistical pairs trading strategies are structured as follows: In a
formation period, two securities are identified whose prices have moved together historically.
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We say these securities have an equilibrium relationship which is identified by a statistical
model. Next the spread of their price movements are monitored in a subsequent trading
period. If the prices diverge and the spread widens between the pair, a trade is placed where
the better performing stock is sold short and theworst performing stock is purchased. Because
of this assumed equilibrium relationship between the two securities, the expectation is that
the spread will revert to its historical mean, resulting in a profit.1 More specifically, the profit
from a statistical arbitrage strategy is a riskless profit opportunity in the limit as the number
of trades, assets or time goes to infinity.

Since traders have at their disposal sophisticated statistical models to quickly identify
and eliminate regular arbitrage opportunities, more research is needed to uncover ways to
generate statistical arbitrage profits.2 The fundamental issue of identifying high alpha stocks
is still at the core of the problem. However, assuming that a trader is able to identify those
high or low performing stocks, two problems remain. The first problem faced by the trader is
establishing the conditions that guarantee the existence of statistical arbitrage opportunities
for the two candidate stocks. The trader’s second problem is to identify the type of trading
strategies that allow or do not allow for statistical arbitrage profits. In this paper, we address
these two problems in terms of the mathematical definition of statistical arbitrage proposed
in the literature, assuming that the trader can identify high or low alpha generating stocks.

To offer a solution to the two problems, in this paper we apply the mathematical definition
of statistical arbitrage provided by Hogan et al. (2004) and present a solution when such
opportunities arise under a general class of stock price models (i.e. jump-diffusion models
with compound Poisson processes). Göncü (2015) derives the statistical arbitrage condition
for the Black–Scholes model framework. In this paper, we derive the condition for the exis-
tence of statistical arbitrage opportunities for a widely used class of jump-diffusion models
with a compound Poisson process.

Our motivation for using jump-diffusion models is because of the well-known limitations
of the Black–Scholes framework in modelling stock price dynamics. The assumption of
normality is not supported by numerous empirical evidence. For example, the leptokurtic
feature of the stock return distributions is one of the stylized facts identified by Cont (2001).
Another empirical feature is the “volatility smile” observed for implied volatility obtained
from option prices. This observed behavior is inconsistent with the assumption of constant
volatility assumed in the Black–Scholes framework. Jump-diffusion models provide a better
fit to these empirical stylized facts compared to the Black–Scholes model. Therefore, it is
important to consider themore general case of jump-diffusionmodels and prove the existence
of statistical arbitrage opportunities within this class of asset pricing models.

Jump-diffusion models fall within the class of Lévy processes with finite frequency of
jumps. In his seminal paper, Merton (1976) provides one of the earliest attempts to extend
the Black–Scholes model to include jumps in the diffusion process. His formula for pricing
a European call option on a single stock includes a Poisson jump component in addition to
the usual diffusion part. However, Merton’s model has been the target of several criticisms
because of the assumption that jump risk is not systematic. Later studies documented that
jump risk is indeed systematic (e.g. see Bjork and Naslund (1998) for details). Various jump-
diffusion models within the framework proposed by Merton have been suggested in the

1 The straightforward concept of univariate pairs trading is often extended into more sophisticated strategies.
We could implement a strategy in a quasi-multivariate framework where one security is traded against a
weighted portfolio of co-moving securities. Another strategy involves trading groups of stocks against other
groups of stocks that co-move together.
2 This not only applies to the arbitrage strategies, but to more general investment problems as well. For recent
research, see Ben Saida and Prigent (2018) and Amedee-Manasme et al. (2019).
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literature in the last few decades.3 Among them, the model proposed by Kou (2002) with the
double exponential jump-size distribution deserves special attention. This is because Kou’s
model is able to generate closed-form solutions not only for standard call and put options, but
also for exotic options,4 as well as interest rate options including caps and floors.5 Moreover,
Kou’s model is flexible enough to model upward and downward jumps in asset prices with
different parameters. From an econometric viewpoint, Ramezani and Zeng (2004) show that
the double exponential jump-diffusion model is more compatible with empirical data than
Merton’s jump-diffusion model and fits the data better than the Black–Scholes model.6

In the studies by Bertram (2009, 2010), optimal statistical arbitrage trading is analyzed
via the first passage time distribution of diffusion processes. With the exception of the recent
study by Göncü (2015), the conditions that guarantee the existence of statistical arbitrage
opportunities with respect to a mathematical definition of statistical arbitrage have been
ignored in the literature. A common approach has been to consider statistical arbitrage within
the pairs trading framework (e.g. see Kestner 2003; Vidyamurthy 2004; Elliott et al. 2005).
However, in this study we provide the first analysis of the existence of statistical arbitrage
opportunities in the framework of Lévy processes.We do this by building upon the framework
of Göncü (2015).

The rest of the paper is organized as follows. In Sect. 2, we provide the definition of
statistical arbitrage that we use in this paper. In Sect. 3, we present the jump-diffusion models
in the case of buy-and-hold strategy. Our results for the first passage time of stock prices
applied to the barrier level in jump-diffusion models are reported and discussed in Sect. 4. In
Sect. 5, we prove the existence of statistical arbitrage opportunities in jump-diffusionmodels.
Section 6 summarizes our findings.

2 Mathematical definition of statistical arbitrage

In this section, we state the definition of statistical arbitrage used in this paper following
Hogan et al. (2004). Given the stochastic process for the discounted cumulative trading
profits, which we denote by {v(t) : t ≥ 0} and define on a probability space (�,F, P),
statistical arbitrage is defined as follows.

Definition 1 A statistical arbitrage is a zero initial cost, self-financing trading strategy {v(t) :
t ≥ 0} with cumulative discounted value v(t) such that

1. v(0) = 0
2. limt→∞ E[v(t)] > 0,
3. limt→∞ P(v(t) < 0) = 0, and
4. limt→∞ var(v(t))

t = 0 if P(v(t) < 0) > 0, ∀t < ∞.

A standard arbitrage opportunity can be considered as a special case of statistical arbitrage. In
a standard arbitrage opportunity, we have a positive probability of profit while the probability
of loss is zero. Hence, any profit obtained from an arbitrage opportunity can be deposited in
a riskless money market account for the rest of the infinite time horizon, which also satisfies
the definition of statistical arbitrage above.

3 For a recent application, see Perera et al. (2018).
4 See Kou and Wang (2003), Kou and Wang (2004) and Kou et al. (2005).
5 See Glasserman and Kou (2011).
6 For a further discussion of jump-diffusion processes, see Tankov and Cont (2004) and Singleton (2009).
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3 Jump-diffusionmodels for asset prices

Weconsider a general class of jump-diffusionmodels,which is aLévyprocesswith compound
Poisson jumps.Our results apply to jump-diffusionmodelswith compound Poisson processes
for any jump-size distribution with finite moments. Within this class of models, we consider
Merton (1976) and Kou (2002) jump-diffusion models as examples of special cases. Merton
assumes that the asset price jumps are independently and identically normally distributed,
whereas Kou allows possible asymmetries in positive and negative jumps and assumes a
double exponential distribution formodelling jumps. For bothmodels there exists a change of
measure that allows us to switch between the physical and risk-neutral stock price dynamics,
which reflects itself as a condition on the drift term. However, primarily we are interested in
the population parameters of the stock price process and conditions on these parameters to
analyze the existence of statistical arbitrage strategies.

We assume that the stock price dynamics is given by

St = S0 exp

⎛
⎝(α − σ 2/2)dt + σdWt +

N (t)∑
i=1

Yi

⎞
⎠ (1)

where Wt is a standard Brownian motion process, σ is the stock’s price volatility, α is the
stock’s expected growth rate, and

∑N (t)
i=1 Yi is a compound Poisson process. To obtain the

risk-free growth of the stock price process one would set α + λk equal to the risk-free
rate, where k = E[exp(Y )] − 1. By doing so, we have k = exp(μy + σ 2

y /2) − 1 and
k = p η1

η1−1 + q η2
η2+1 − 1 (η1 > 1, η2 > 0) in the Merton (1976) and Kou (2002) models,

respectively.
As a technical condition for the finite first passage time property of the jump-diffusion

model, we assume that the jumps of the compound Poisson process satisfy the finiteness
condition E[etY ] < ∞ for any t > 0.

If we let yi = exp(Yi ), we can re-write Eq. (1) as

St = S0[exp((α − σ 2/2 − r f )t + σWt )(

N (t)∏
i=1

yi ) − 1] (2)

We consider two special cases for the distribution of independent and identically distributed
(i.i.d.) jumps sizes, i.e. Y1, ..., YN (t). In the Merton jump-diffusion model, the jumps are
assumed to be normally distributed with the probability density function φ(.) given by

φY (y) = 1√
2πσy

e−(y−μy)
2/2σ 2

y , −∞ < y < ∞, (3)

where μy is the mean and σy is the standard deviation for the jump-sizes.
Kou’s jump-diffusion model is another special case of the class of jump-diffusion models

that we consider. Kou gives the jump-size distribution φ(.) as

φY (y) = pη1e
−η1 y1y≥0 + qη2e

−η2 y1y<0, −∞ < y < ∞, (4)

where p, q ≥ 0, p + q = 1, η1 > 1, and η2 > 0.

3.1 Buy-and-hold strategy

Considering the class of jump-diffusion models given by Eq. (1), we analyze the expected
trading profits from the buy-and-hold strategy in the following proposition.
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Proposition 2 Assuming that a given risky asset follows the jump-diffusion model as in Eq.
(1), expected discounted trading profits from the buy-and-hold strategy goes to infinity, i.e.
limt→∞ E[v(t)] = ∞, for α + λk > r f .

Proof We borrow S0 at the risk-free rate r f at time 0 and invest in one unit of the risky asset.
The value of the discounted cumulative trading profits at time t is given by

v(t) = S0[exp((α − σ 2/2 − r f )t + σWt +
N (t)∑
i=1

Yi ) − 1]. (5)

Since E[exp(u ∑N (t)
i=1 Yi )] = exp

(
λt(E[euYi ] − 1)

)
where E[euYi ] = exp(uμy + u2σ 2

y

2
)

and Wt ∼ N (0, t) for each t , we conclude that

E[v(t)] = S0
[
exp((α − r f )t)exp(λt(E[eY ] − 1)) − 1

]
(6)

= S0
[
exp((α − r f + λ(E[eY ] − 1))t) − 1

]
(7)

= S0
[
exp((α − r f + λk)t) − 1

]
(8)

Hence, we obtain limt→∞ E[v(t)] = ∞ iff α + λk − r f > 0. �	
Remark 3 Merton (1976) assumes that Y is normally distributed with mean μy and variance
σ 2
y . The value of k is given by E[eY ] − 1 = exp(μy + σ 2

y /2) − 1, and the result follows

as limt→∞ E[v(t)] = ∞ iff α + λ[eμy+σ 2
y /2 − 1] − r f > 0. In the jump-diffusion model

proposed by Kou (2002), we have k = E[eY ] − 1 =
(
p η1

η1−1 + q η2
η2+1

)
− 1 for η1 > 1 and

η2 > 0.

In the next proposition, we show that the condition of positive expected profits does not
yield statistical arbitrage since the variance goes to infinity under the same condition.

Proposition 4 Assuming that a given risky asset follows the jump-diffusion model as given
by Eq. (1), variance var(v(t)) and the time-averaged variance var(v(t))/t of the discounted
trading profits from the buy-and-hold strategy goes to infinity for α−r f +λk > 0. Therefore,
this strategy does not yield statistical arbitrage opportunities in the jump-diffusion models.

Proof

E[v2(t)] = S20 − 2S0exp((α − r f )t)exp(λt(E[eY ] − 1)) (9)

+S20

[
exp

(
(2α + σ 2 − 2r f )t + λt(E[e2Y ] − 1)

)]

= S20 − 2S0exp((α − r f + λk)t) (10)

+S20

[
exp

(
(2α + σ 2 − 2r f + λ(E[e2Y ] − 1))t

)]
(11)

E[v(t)]2 = S20exp(2t(α − r f + λk)) − 2S0exp(t(α − r f + λk)) + S20 (12)

var(v(t)) = S20

[
exp((2α − 2r f + σ 2 + λ(E[e2Y ] − 1))t) − exp(2(α − r f + λk)t)

]
, (13)

= S20 exp(2(α − r f + λk))
[
exp((σ 2 + λ(E[e2Y ] − E[2eY ] + 1))t) − 1

]
, (14)

= S20 exp(2(α − r f + λk))
[
exp((σ 2 + λ(E[(eY − 1)2]))t) − 1

]
≥ 0, (15)
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Fig. 1 Evolution of mean, time averaged variance and probability of loss for the buy-and-hold strategy for
α − r f + λk > 0. Investment horizons considered: 1, 2, 5, 10, 20, 50 years

where the variancediverges to infinity forα+λk−r f > 0 andwehave limt→∞ var(v(t))/t =
∞. Since the condition of positive expected trading profits in the limit is attained for α +
λk − r f > 0, we cannot have positive trading profits and decaying time averaged variance
at the same time. This strategy fails to satisfy the definition of statistical arbitrage. �	
Remark 5 InMerton’s jump-diffusion model, we have E[e2Y ] = exp(2μy +2σ 2

y )whereas in

Kou’s jump-diffusionmodel E[e2Y ] =
(
p η1

η1−2 + q η2
η2+2

)
. The variance of the buy-and-hold

strategy can be computed.

Buy-and-hold strategies that yield positive expected trading profits fail to satisfy the decay
condition of the time averaged variance. Therefore, clearly the risky asset holding should go
to zero in time; in other words, the risky asset should be sold in finite time. As we have shown
in Proposition 4, there are no statistical arbitrage opportunities for a buy-and-hold strategy.

Note that for the case of α + λk − r f < 0, the present value of the expected profits con-
verges to −S0 as t → ∞. Furthermore, we require 2(α − r f ) + λ(E(e2Y ) − 1) ≤ −σ 2 for
the time averaged variance to decay to zero. Hence, if both of these conditions are satisfied,
continuous short selling of the stock allows for positive expected profits with a decaying
time averaged variance. For this to happen, the trader should be able to identify the under-
performing stocks better than the market in general.

Numerical examples for the buy-and-hold strategy We simulate 10,000 stock price paths at
investment horizons of 1, 2, 5, 10, 20, and 50 years and assume the following set of parameters
inMerton’s andKou’s jump-diffusionmodels: r f = 0.05,α = 0.12, σ = 0.2, λ = 3, S0 = 1.
For the jump-size distribution in the Merton model, we assume that μy = 0, σy = 0.1,
whereas for the Kou model, we assume p = q = 0.5 (symmetric case), 1/η1 = 1/η2 = 2%.
In this case, the condition α − r f + λk > 0 is satisfied for both models which is consistent
with the average trading profits obtained in Fig. 1.

With our choice of parameters, the condition 2(α − r f ) + σ 2 + λ(E[e2Y ] − 1) > 0 is
satisfied for both models. Therefore, as expected the time averaged variance of the trading
profits diverges to infinity as shown in Fig. 1. Furthermore, forα−r f +λk > 0, the probability
of loss decays to zero as shown in Fig. 1.
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Fig. 2 Evolution of mean, time averaged variance and probability of loss for the buy-and-hold strategy for
α − r f + λk < 0. Investment horizons considered: 1, 2, 5, 10, 20, 50 years

As a second example for the buy-and-hold strategy, we change the parameters of the
jump-size distribution in both models. We assume that μy = −0.02, σy = 0.1 in the Merton
model and p = 0.2, q = 0.8, and η1 = η2 = 1/0.02 in the Kou model. In this case, observe
that we have α − r f +λk < 0 and 2(α − r f )+σ 2 +λE[e2Y ]−1) < 0. This implies that the
present value of the trading profits converges to −S0 while the variance decays to zero. In
Fig. 2, we observe the average trading profits, time averaged variance and the probability of
loss. As can be seen, only the continuous short selling of the risky asset would yield statistical
arbitrage.

4 First passage time

In this section, we analyze the first passage time property of the jump-diffusionmodels which
is critical to prove the existence of statistical arbitrage opportunities. For this purpose, we
are interested in the first passage time of the stock price process S to the deterministic barrier
level S0(1 + γ )er f t .7

Let Ht = ln(St e−r f t/S0)/σ , then we can rewrite Eq. (1) as

Ht = μt + Wt +
N (t)∑
i=1

Y ∗
i (16)

where μ = (α − r f −σ 2/2)/σ and Y ∗
i = Yi/σ . The first passage time of the jump-diffusion

process in Eq. (16) is given by

τx = min{t > 0 : Ht ≥ x} (17)

where x = ln(1+γ )/σ . The next two corollaries are direct results of Theorem 2.1 in Coutin
and Dorobantu (2011).

7 Actually, any barrier level greater than the initial stock price can be chosen but since we assume that the
risk-free rate is greater than zero, the barrier level should also grow with the risk-free rate. The particular
choice of the barrier level as S0(1 + γ )er f t is to simplify the mathematical notation since we are working
with the discounted stock price process.
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Corollary 6 The first passage time of the stock price process St given by Eq. (1) to the barrier
level Bt = S0(1 + γ )er f t is almost surely finite, i.e. P(τx < ∞), for μ + λE[Y ∗] > 0.

Proof From Eq. (16), we show that the first passage time of the stock price process St to the
barrier level Bt = S0(1 + γ )er f t is equivalent to the first passage time of the process Ht to
level x , i.e. τB ≡ τx and applying Theorem 2.1 in Coutin and Dorobantu (2011), the result
follows. �	
Corollary 7 The first passage time of the stock price process St given by Eq. (1) to the barrier
level Bt = S0(1+γ )−1er f t is almost surely finite, i.e. P(τx∗ < ∞), for x∗ = − ln(1+γ )/σ

and −μ + λE[−Y ∗] ≥ 0.

Proof Consider −Wt ≡ Wt and −Y ∗
i to re-define the process Ht = μ∗t + Wt + ∑N (t)

i=1 Ȳ ∗
i

where μ∗ = μ and Ȳ ∗
i = −Y ∗

i . Then let τx∗ = min{t > 0 : Ht ≤ x∗} with x∗ =
− ln(1+γ )/σ . The corollary follows for the finite first passage time after applying Theorem
2.1 in Coutin and Dorobantu (2011) for −μ + λE[−Y ∗] ≤ 0, i.e. for μ + λE[Y ∗] ≥ 0. �	
Remark 8 Corollary 6 can be applied to a wide range of jump-diffusionmodels. For example,
under Merton’s jump-diffusion model, this result implies the finite first passage time of the
stock price process for μ + λμy/σ ≥ 0, i.e. α − r f + λμy > σ 2/2. If μy = 0, we obtain
the result of Theorem 4 in Göncü (2015).

Alternatively, under Kou’s double exponential jump-diffusion model, this condition is
equivalent to α − r f +λ(

p
η1

− q
η2

) > σ 2/2, and if the jumps are symmetric, this again yields
the condition in Theorem 4 of Göncü (2015).

In Coutin and Dorobantu (2011) (see Theorem 2.1 p. 1128), the density function of τx
is derived for Lévy processes with compound Poisson process in Eq. (16) and it is given as
follows:

fτ (t, x) = λE[1{τx>t}(1 − FY )(x − Ht )] + E[1{τx>TNt }g(t − TNt , x − HTNt )] (18)

where FY is the cumulative distribution function (cdf) of the i.i.d. jump-sizes Yi , TNt =∑N (t)
i=1 Y ∗

i , and

g(u, z) = |z|√
2πu3

exp

[
− (z − μu)2

2u

]
1{u∈(0,∞)} (19)

For example, in the Merton jump-diffusion model, FY is the normal cdf, whereas for the
double exponential jump-diffusion model of Kou, FY is the cdf of the double exponential
distribution.

Next, based on the finite first passage time results above, we construct a trading strategy
that satisfies the statistical arbitrage definition (i.e.Definition 1) for the jump-diffusionmodels
with compound Poisson processes.

5 Existence of statistical arbitrage

We show that even if an investor is able to identify high alpha stocks, buy-and-hold type of
investment strategies do not yield statistical arbitrage opportunities in the sense of Definition
1. Therefore, the risky asset holding should decay to zero in time in order to bound the
variance and realize statistical arbitrage profits. Following Göncü (2015), we introduce a
stopping boundary for the risky asset and whenever the stock price hits the deterministic
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barrier level (or exceeds the barrier as a result of a jump), we sell the stock and invest the
proceeds in the money market account.

Let Bt = S0(1 + γ )er f t denote the deterministic barrier level. Our buy-and-hold until
barrier strategy is as follows: we borrow S0 at time 0 and invest in one unit of the stock.
We hold the stock until it hits the deterministic barrier level Bt . Hence, effectively we are
locking in a profit of S0γ until it is realized. The discounted cumulative trading profits of
this strategy can be written as

v(t) =
{
S0(γ + ε) if τB ∈ [0, t]
St e−r f t − S0 otherwise,

(20)

where τB = min(t ≥ 0 : St ≥ Bt ) is the first passage time to the barrier level Bt and ε ≥ 0
is the amount exceeding the barrier level as a result of a possible jump. If the stock price
process hits the barrier without a jump, then we have ε = 0. However, if there is a jump at
the first passage time, then ε > 0 and we obtain a profit level of γ + ε, where we overshoot
the barrier level.

The limit of the discounted cumulative trading profits is obtained as

lim
t→∞ E[v(t)] = (γ + ε)S0 (21)

since the stock price paths hits the barrier almost surely in finite time for μ + λE[Y ] ≥ 0.
Hence, the following condition must be satisfied for finite hitting time to the barrier level:

α − r f − σ 2/2

σ
+ λE[Y ] > 0 ⇐⇒ α − r f + σλE[Y ] > σ 2/2 (22)

Again, due to the almost surely finite first passage time property of the stock price paths, the
probability of loss decays to zero

lim
t→∞ P(v(t) < 0) = 0 (23)

almost surely if the condition in Eq. (22) is satisfied. Furthermore, for sufficiently large time
t , the risky asset holding becomes zero and thus the time averaged variance of the trading
strategy decays to zero, satisfying

lim
t→∞ var(v(t))/t = 0 (24)

Therefore, for α + σλμy − r f ≥ σ 2/2, statistical arbitrage exists in the sense of Definition
1.

5.1 Probability of loss

Probability of loss P(v(t) < 0) can be written as

P(v(t) < 0) = P(St < S0e
r f t , τx > t) = P(St < S0e

r f t |τx > t)P(τx > t) (25)

where the probability of loss converges to zero as t → ∞ for α − r f + λE[Y ] ≥ σ 2/2,
since P(τx = ∞) = 0. For α − r f + λE[Y ] < σ 2/2, we have limt→∞ P(St < S0er f t |τx >

t)P(τx > t) > 0 as t → ∞ and thus the probability of loss does not decay to zero for the
buy-and-hold until barrier strategy.
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We have P(τx > t) = 1− P(τx ≤ t) for a given time t and barrier level x and the cdf of
the first passage time τx is given by

P(τx ≤ t) = λE[
∫ t

0
1{τx>s}(1 − FY )(x − Hs)ds]+E[

∫ t

0
1{τx>TNs }g(s − TNs , x − HTNs )ds]

(26)
where FY is the cdf of the i.i.d. jump-sizes Yi , TNt = ∑N (t)

i=1 Y ∗
i , and

g(u, z) = |z|√
2πu3

exp

[
− (z − μu)2

2u

]
1{u∈(0,∞)} (27)

Next, we show that there exists statistical arbitrage opportunities in the jump-diffusion
models given in Eq. (1).

Proposition 9 Assume that there exists a trader who can identify over/under performing
stocks and the stock prices follow the class of jump-diffusion models given by Eq. (1). Then,
there always exists statistical arbitrage opportunities in the sense of Definition 1.

Proof We have to consider two cases: In the first case, we have a risky asset that is drifted
upward that satisfies the condition μ + λE[Y ] ≥ 0. Then, we consider the buy-and-hold
until barrier type of strategy, borrowing S0 at the risk-free rate and immediately taking a long
position in the risky asset at time zero. We hold the risky asset until it hits the barrier level
Bt = S0(1+ γ )er f t locking in the γ percent profit for any γ > 0. By Corollary 6, we know
that the first passage time to the barrier level Bt is almost surely finite, i.e. P(τB < ∞) = 1.
This implies that we realize the expected profit of γ percent almost surely, and probability of
loss converges to zero. Furthermore, we have limt→∞ var(v(t))/t = 0, and thus Definition
1 is satisfied.

In the second case, we consider μ + λE[Y ] < 0. Then, we short sell the risky asset
that satisfies this condition at time zero and invest the proceeds immediately into the money
market account at the risk-free rate r f . We keep the short position until the barrier is reached.
Once the risky asset hits the barrier level or exceeds Bt = S0(1 + γ )−1er f t , we close the
short position in the risky asset. �	

Numerical examples for the single barrier long and short strategies To verify our theoretical
results in Proposition 9, we consider Monte Carlo simulation of stock price processes under
the Merton and Kou jump-diffusion models. Similar to the numerical examples for the buy-
and-hold strategy in the previous section, we simulate 10,000 stock price paths at investment
horizons of 1, 2, 5, 10, 20, and 50 years. We assume that r f = 0.05, γ = 0.05, α = 0.1,
σ = 0.2, λ = 3, and S0 = 1. For the Merton jump-distribution model, we assume that
μy = 0, σy = 0.1, whereas for the Kou jump-diffusion model, we assume p = q = 0.5
(symmetric case), 1/η1 = 1/η2 = 2%. In this case, the condition α−r f +λk > 0 is satisfied
for both models which is consistent with the results shown in Fig. 3.

As a second example, we verify the existence of statistical arbitrage under the short until
barrier type of strategy. We consider an under-performing stock with α < r f . In this case,
we change the value of α to 0.01, the value of μy to -0.01, and the value of p to 0.45, while
keeping the same values for the other parameters. In Fig. 4, we observe the average trading
profits, time averaged variance and the probability of loss, which is consistent with the result
obtained in Proposition 9.
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Fig. 3 Evolution of mean, time averaged variance and probability of loss for the buy-and-hold until barrier
strategy. Investment horizons considered: 1, 2, 5, 10, 20, 50 years
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Fig. 4 Evolution of mean, time averaged variance and probability of loss for the short until barrier strategy.
Investment horizons considered: 1, 2, 5, 10, 20, 50 years

5.2 Double barrier strategies

Alternative to the case of single barrier statistical arbitrage strategies discussed above, sta-
tistical arbitrage strategies can be designed utilizing variations of similar trading strategies.
In the previous strategies, the trader enters a single trade at time zero and there are no other
trades until the position is closed. However, a more realistic case is where the trader sets
different levels to open positions at multiple times in order to reduce the overall position
costs. For example, if the stock price is expected to go up, the trader opens a long position at
time zero and if the stock price goes down reaching a lower price target level (i.e., a lower
barrier), a second position is added. Therefore, this class of strategies can be represented with
multiple barrier levels to open long or short positions to smooth the cost of position openings
with multiple target levels.

Assume that the condition given in Eq. (22) holds. Then, following the previous notation,
let us denote the upper barrier level as Bt = S0(1+ γ )er f t and denote the lower barrier level
as Bl

t = S0(1−β)er f t . The trading strategy is as follows: At time zero, the investor borrows
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S0 dollars from the bank at the risk-free rate and invests in one stock as in the previous
example. However, if the stock price hits the lower barrier level Bl

t < S0, then the investors
borrows an additional SτBl

from the bank and purchases one additional unit of the same
stock. In other words, the stock price hitting the lower barrier for the first time is considered
as a re-investment opportunity to buy one more unit of the stock. Similar to the first invested
stock, the second holding of the stock is closed if the stock price reaches the barrier level
B(u∗)
t = SτBl

(1 + γ )er f t .
The discounted cumulative profits of this strategy is given as

v∗(t) =

⎧⎪⎨
⎪⎩

S0(γ + β) , if τB ∈ [0, t] and τBl /∈ [0, t]
2St e−r f t − S0 − SτBl

e−r f τBu∗ , if τB /∈ [0, t] and τBl ∈ [0, t]
St e−r f t − S0 , if τB /∈ [0, t] and τBl /∈ [0, t].

(28)

It can be seen that investing additional amounts in the same stock does not change the
existence of the statistical arbitrage since the stock price still exhibits the finite first passage
time to the upper barrier level SτBl

(1 + γ )er f t based on the time τBl when the second unit
of the share is purchased.

The expected discounted profits from this strategy can be written as

E[v(t)] = E[v(t)|τBl /∈ [0, t]]P(τBl /∈ [0, t])+E[v(t)+v∗(t)|τBl /∈ [0, t]]P(τBl ∈ [0, t]).
(29)

The limit of the discounted cumulative trading profits of the alternative strategy can be
written in terms of the previous strategy v(t). Therefore, the limiting expected discounted
profits are guaranteed to be positive similar to the case of the previous trading strategy.

Similarly, if the drift of the stock price process satisfies the conditionμ+λE[Y ] < 0, then
the double barrier strategy can be implemented with an initial short position at time zero. In
the previous short until barrier strategy, we open a short position at time zero and close the
position whenever the stock price hits the lower barrier level Bt = S0(1−γ )er f t . We extend
this strategy by introducing a second barrier that is higher than the initial barrier. If the stock
price reaches the upper barrier level Bu

t = S0(1 + β)er f t , for β > 0, then a second short
position is opened in addition to the initial short position.

The discounted cumulative profits of the double barrier short strategy is given as

v∗(t) =

⎧⎪⎨
⎪⎩

S0(γ + β) , if τB ∈ [0, t] and τBu /∈ [0, t]
S0 − St e−r f t + SτBu − St e−r f τBu , if τB /∈ [0, t] and τBu ∈ [0, t]
S0 − St e−r f t , if τB /∈ [0, t] and τBu /∈ [0, t].

(30)

The same arguments for the long strategy follow similarly for the double barrier short
strategy, and thus, create statistical arbitrage trading strategies. Next, we present the Monte
Carlo simulation results for the validity of the statistical arbitrage definition for the double
barrier strategies.

Numerical examples for the double barrier long and short strategies In order to verify that our
double barrier strategies satisfy the statistical arbitrage definition numerically,we consider the
Monte Carlo simulation of stock price processes under the Merton and Kou jump-diffusion
models. Similar to the numerical examples for the single barrier case, we simulate 10,000
stock price paths at investment horizons of 1, 2, 5, 10, 20, and 50 years. We assume that
r f = 0.05, γ = 0.05, β = 0.05, α = 0.1, σ = 0.2, λ = 3, and S0 = 1. For the Merton
jump-distribution model, we assume that μy = 0, σy = 0.1, whereas for the Kou jump-
diffusion model, we assume p = q = 0.5 (symmetric case), 1/η1 = 1/η2 = 2%. In this
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Fig. 5 Evolution of mean, time averaged variance and probability of loss for the hold until barrier strategy.
Investment horizons considered: 1, 2, 5, 10, 20, 50 years
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Fig. 6 Evolution of mean, time averaged variance and probability of loss for the short until barrier strategy.
Investment horizons considered: 1, 2, 5, 10, 20, 50 years

case, the condition α − r f + λk > 0 is satisfied for both models which is consistent with the
results shown in Fig. 5.

As a second example for double barrier strategies, we verify the existence of statistical
arbitrage under the short until barrier type of strategy.We consider an under-performing stock
with α < r f . In this case, we change the value of α to 0.01, the value of μy to -0.01, and
the value of p to 0.45, while keeping the same values for the other parameters. In Fig. 6, we
observe the average trading profits, time averaged variance and the probability of loss.

6 Conclusion

In this paper, we prove that there exists statistical arbitrage opportunities in the sense of the
statistical arbitrage definition given in Hogan et al. (2004) for a widely used class of jump-
diffusion models with a compound Poisson process. Two well-known special cases of this
class are theMerton and Kou jump-diffusionmodels.We first consider the buy-and-hold type
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of strategies and prove that these strategies do not satisfy the statistical arbitrage conditions.
Then, we introduce a deterministic boundary to terminate the trading strategy, i.e. we lock-in
a certain level of profit to close the risky asset position in finite time. Since the jump-diffusion
models do not guarantee no-arbitrage pricing, our results can be considered intuitive.

Realization of the statistical arbitrage profits depends on the ability of a trader to identify
high-performing or under-performing stocks in the market. This implies that at least the
violation of the strong form of market efficiency is needed to exploit the statistical arbitrage
opportunities. In the general framework of Lévy processes for stock prices, the existence of
statistical arbitrage opportunities depends on the finiteness of the first passage time to the
stopping boundary that we define in our trading strategies. We show that given a deterministic
selling (buying) condition for long until barrier strategy (short until barrier), the trading
strategy we introduce terminates almost surely in finite time. Therefore, the time average of
the variance of the discounted trading profits do not diverge both under single and double
barrier strategies.

Our results uncover the simple fact that physical drift and physical measure of the stock
price process are crucial in order to exploit statistical arbitrage opportunities. In this sense, a
better understanding of the physical measure and drift of a given stock price process allows
for riskless profit opportunities in the limit.
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