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Abstract

Motivation: Synthesizing genes to be expressed in other organisms is an essential tool in biotechnology. While the
many-to-one mapping from codons to amino acids makes the genetic code degenerate, codon usage in a particular
organism is not random either. This bias in codon use may have a remarkable effect on the level of gene expression.
A number of measures have been developed to quantify a given codon sequence’s strength to express a gene in a
host organism. Codon optimization aims to find a codon sequence that will optimize one or more of these measures.
Efficient computational approaches are needed since the possible number of codon sequences grows exponentially
as the number of amino acids increases.

Results: We develop a unifying modeling approach for codon optimization. With our mathematical formulations
based on graph/network representations of amino acid sequences, any combination of measures can be optimized
in the same framework by finding a path satisfying additional limitations in an acyclic layered network. We tested
our approach on bi-objectives commonly used in the literature, namely, Codon Pair Bias versus Codon Adaptation
Index and Relative Codon Pair Bias versus Relative Codon Bias. However, our framework is general enough to han-
dle any number of objectives concurrently with certain restrictions or preferences on the use of specific nucleotide
sequences. We implemented our models using Python’s Gurobi interface and showed the efficacy of our approach
even for the largest proteins available. We also provided experimentation showing that highly expressed genes
have objective values close to the optimized values in the bi-objective codon design problem.

Availability and implementation: http://alpersen.bilkent.edu.tr/NetworkCodon.zip.

Contact: alpersen@bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Amino acids in the genetic code are encoded by codons. A codon is
a three-letter code in a four-letter (nucleotides Adenine, Thymine,
Guanine and Cytosine) alphabet. Because there are 61 possible
codons (43 minus three stop codons) but only 20 amino acids, the
genetic code is said to be degenerate. For example, Leucine can be
represented by six different codons: CTT, CTC, CTA, CTG, TTA or
TTG. This degeneracy in the genetic code means that the possible
number of ways to encode a protein grows exponentially as the
number of amino acids in the protein increases. For example, a rela-
tively small size 100-amino acid protein, assuming that each amino
acid appears exactly five times, can be expressed by roughly 1042

different codon sequences.
While the use of a specific codon or one of its alternatives has no

effect on the structure of the protein synthesized, the observed

frequencies of such synonymous codons are not equal in nature and
vary from one species to the other. For example, Phenylalenine is
encoded 46% of the time with TTT and 54% of the time with TTC
in Homo sapiens; these percentages in Escherichia coli are 58% and
42% for TTT and TTC, respectively (Nakamura et al., 2000). This
phenomenon is termed as codon-usage bias. Codon usage is often
considered to be the most important factor in gene expression
(Lithwick and Margalit, 2003). For example, Gustafsson et al.
(2004) report that using the ‘right’ codons in the host organism may
lead to up to 1000-fold improvements in the expression levels of
synthetic genes.

The specific mechanisms by which codon usage affects the protein
expression have been an important line of research. The core idea was
that translation elongation is rate limited by the tRNA supply and
slower rates result from marginal effects of codons that are decoded
slowly by relatively rare tRNAs (Brule and Grayhack, 2017). Later,
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(i) certain types of wobble decoding (Lareau et al., 2014; Phizicky
and Hopper, 2010), (ii) interactions of codons (Buchan et al., 2006)
and (iii) the locations of codons in a gene were linked to affect transla-
tion rates. Moreover, it was shown that codon choice regulates
mRNA levels (Presnyak et al., 2015; Radhakrishnan and Green,
2016) as well as protein folding (Sander et al., 2014) and activity (Xu
et al., 2013; Zhou et al., 2013). Reviews by Brar (2016) and Brule
and Grayhack (2017) provide more detailed discussion on the mecha-
nisms in codon bias affecting translation rates.

A major consideration in the design of synthetic genes is to adapt
the codons to tRNAs that are abundant in the cells of the target or-
ganism. In the absence of tRNA abundance information, observed
codon frequencies in the target genome are often used as a proxy
(Plotkin and Kudla, 2011). There are two main approaches in this
line of research. The first one is the CAI-maximization approach
where the most preferred codons in the target genome are used as
much as possible. The second alternative is the codon sampling ap-
proach. In this alternative, it is argued that consistently using the
same (most preferred) codon for one amino acid may often lead to
translational errors due to imbalanced use of a subset of the tRNAs
(Gustafsson et al., 2004). Therefore, the frequency of the codons
used in the gene to be expressed should be similar to the observed
frequency of the codons in the target genome.

In addition to codon bias, a similar, but an independent bias, often
called codon context bias, is observed when representing adjacent
amino acids (i.e. amino acid pairs). An amino acid pair can be repre-
sented by as many as 36 different codon pairs. But the observed fre-
quencies of the codon pairs cannot be explained by the observed
frequencies of the codons alone (Gutman and Hatfield, 1989). For ex-
ample, in Homo sapiens, the amino acid pair Phenylalenine–
Phenylalenine is expected to be represented by the codon pair TTT-
TTT with a frequency of 22%, based on the codon frequencies, where-
as the actual observed frequency is only 16% and is said to be underre-
presented. TTC-TTC pair, on the other hand, is overrepresented with
expected and observed frequencies of 28% and 43%, respectively.
Coleman et al. (2008) have shown that using underrepresented codon
pairs leads to reduced levels of gene expression.

In order to quantify how a synthetic gene design complies with
the considerations above and to predict the expression level of a gene
based on its codon sequence, researchers have developed several
measures. One of the first and most widely used measures, Codon
Adaption Index (CAI), was developed by Sharp and Li (1987). The
index is based on a fitness value (FV), which measures how frequent
a particular codon expresses an amino acid in comparison to the
most frequent codon. For example, the fitness value of codon TTC
for Phenylanine, denoted by FVTTCðPhenylanineÞ is 1, (because TTC
is the most frequent codon with a frequency %54), whereas the fit-
ness value of TTT is 0.851 (0.46/0.54). For measuring codon pair
bias, Coleman et al. (2008) developed a measure based on how much
a codon pair is under or overrepresented. Under or overrepresenta-
tion of a codon pair is measured using Codon Pair Score (CPS). The
Codon Pair Bias is equal to the arithmetic mean of the Codon Pair
Scores of each codon pair in the amino acid sequence.

Clarke IV and Clark (2008) introduce a measure called
%MinMax to quantify the relative rareness of the codons used for
an amino acid sequence in a given window. This is used to identify
whether rare (or frequent) codons are clustered in a particular win-
dow of the given transcript. Later, a variation of this method is pro-
posed (Wright et al., 2018) and a benchmark that shows the
usefulness of this approach compared to other available measures is
published (Wright et al., 2020).

In order to measure how the codon choices in a given sequence
match the observed frequency of codons in a host organism, Şen
et al. (2020) developed the Relative Codon Bias (RCB) measure.
This distance measure calculates the mean absolute deviations of
codon frequencies from observed frequencies for each amino acid
and then weighs them by the occurrence of each amino acid in the
given sequence. A similar measure, called Relative Codon Pair Bias
(RCPB) is defined for codon pairs.

Codon optimization is an approach in synthetic gene design that
employs synonymous codon changes in the native gene such that

one or more of the measures above (and various other measures) are
optimized. The ultimate objective is to improve the level of gene ex-
pression in the host organism. The approach uses the codon bias in-
formation in the host organism and often also considers various
constraints to include or exclude motifs (nucleotide sequences) that
may have an effect on expression. Various computational
approaches and software tools are suggested for codon optimiza-
tion, some of which are in use in practice (See Gould et al., 2014 for
a review). The majority of these tools consider multiple objectives;
see for example Chin et al. (2014), which consider four different
measures. These tools often use heuristic approaches and the gene
designs that they create are not necessarily ‘optimal’ (Pareto optimal
for the multi-objective problems), in the true sense of the word.
However, some recent codon optimization approaches provide
mathematical guarantees on optimality. Condon and Thachuk
(2012) and Arbib et al. (2020) study multiple objectives: CAI maxi-
mization together with a consideration of excluding or including
certain nucleotide sequences; the first study uses a dynamic pro-
gramming approach, whereas the second one uses a mathematical
(mixed integer linear) programming approach. Papamichail et al.
(2018) study the codon optimization problem when the objectives
are CAI and CPB and suggest a polynomial, but an inefficient dy-
namic programming algorithm to find a design that maximizes CPB
subject to CAI not exceeding a particular threshold. The study con-
cludes that the algorithm is not viable for regular sized proteins and
suggests a simulated annealing algorithm. Şen et al. (2020) show
that a mathematical programming approach can be used effectively
to find optimal codon designs for two problems: one with objectives
CPB and CAI and another with objectives RCB and RCPB. This ap-
proach leads to significant improvements in solution time and qual-
ity for the first problem over the simulated annealing approach in
Papamichail et al. (2018). For the first problem (CPB and CAI),
Taneda and Asai (2020) develop a very efficient dynamic program-
ming algorithm to generate all Pareto optimal solutions. Though
this approach is the fastest available in the literature for the opti-
mization with respect to CPB and CAI measures for small length
proteins, it suffers from the high memory requirements of dynamic
programming when listing all Pareto optimal (non-dominated) solu-
tions for longer proteins. The approach is also tuned for the men-
tioned measures and is not flexible enough to handle a third
objective or objectives such as RCB and RCPB that depend on the
knowledge of the whole codon sequence.

In this study, we model the multi-objective codon optimization
problems using network representations of amino acid sequences.
We then solve these network problems using mixed integer linear
programming. Our mathematical programs benefit greatly from the
computational advantages of network models and as such provide
the most effective exact solution approaches in handling the meas-
ures available in the literature. Moreover, if desired, the proposed
approach can handle all the measures jointly within the same unify-
ing framework.

2 Approach and network models

2.1 Measure formulas
Given an amino acid sequence c ¼ ðc1; c2; . . . ; cnÞ, the CAI of codon
sequence r ¼ ðr1;r2; . . . ; rnÞ is the geometric mean of the fitness val-
ues, given by the following formula.

CAIðc; rÞ ¼
Yn
i¼1

FVri
ðciÞ

 !1=n

:

CPS of a codon pair pq for amino acid pair ij is defined as follows.

CPSpqðijÞ ¼ ln
upquiuj

upuquij

� �
;

where u denotes the observed frequency of occurrence for an amino
acid, codon, amino acid pair or a codon pair. The Codon Pair Bias is
formally defined as follows.
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CPBðc;rÞ ¼

Pn�1

i¼1

CPSri ;riþ1
ðci; ciþ1Þ

ðn� 1Þ :

For a given amino acid sequence in a window that starts at ith
amino acid and finishes at kth amino acid, Actual Codon Frequency
(ACFk

i ) is the average of the frequencies of codons used for amino
acids fi; iþ 1; . . . ; kg. Similarly, Maximum Codon Frequency
(MaxCFk

i ) is the average of the frequencies of codons in the given
window when the codons with the maximum frequencies are used
and Minimum Codon Frequency (MinCFk

i ) is the average of the fre-
quencies of codons in the given window when the codons with the
minimum frequencies are used. Finally, Average Codon Frequency
(AvgCFk

i ) is the average of the average frequencies of codons avail-
able for the given window. Then, %MinMax(i, k) is calculated as
follows:

ACFk
i � AvgCFk

i

MaxCFk
i �AvgCFk

i

ACFk
i � AvgCFk

i ;

AvgCFk
i � ACFk

i

AvgCFk
i �MinCFk

i

ACFk
i < AvgCFk

i :

8>>>><
>>>>:

The RCB measure is formally defined as follows.

RCBðc; rÞ ¼
X
i2A

giðcÞ
n

X
p2Ci

1

jCij
#pðrÞ
giðcÞ

�
up

ui

����
����;

where A ¼ fA1; . . . ;A20g is the set of amino acids, Ci ¼
fCi1 ; . . . ;CijCi j

g is the set of codons that can be used to represent
amino acid i 2 A; giðcÞ is the number of times amino acid i appears
in the sequence c and #pðrÞ is the number of times codon p appears
in the codon sequence r.

The RCPB is defined as follows.

RCPBðc; rÞ ¼
X
i;j2A

gijðcÞ
n� 1

X
p2Ci ;q2Cj

1

jCijjCjj
#pqðrÞ
gijðcÞ

�
upq

uij

�����
�����;

where gijðcÞ and #pqðrÞ are defined similarly for amino acid pairs
and codon pairs.

In order to illustrate the impact of codon design on these meas-
ures, we provide an example of a small protein (peptide) whose
amino acid sequence is CCHC where C stands for Cysteine and H
stands for Histidine (see Fig. 1). Cysteine can be expressed by
codons TGC and TGT, Histidine can be expressed by codons CAC
and CAT. This means that CCHC can be expressed by 16 different
codon sequences. Frequency (up=ui) and fitness values for codons
and frequency (upq=uij) and CPS information for codon pairs in
humans are provided in Table 1 [sources: Nakamura et al. (2000)
for codons and Coleman et al. (2008) for codon pairs].

Using codon sequence TGC-TGC-CAT-TGC (represented by the
solid line in Fig. 1) leads to CAI, CPB, RCB and RCPB scores of
0.720, -0.038, 0.487 and 0.357, respectively. Using the codon se-
quence TGC-TGT-CAC-TGT (represented by the dotted line) in-
stead leads to CAI, CPB, RCB and RCPB scores of 0.704, -0.022,
0.263 and 0.369. The second sequence is worse in the use of more
frequent codons and in matching the observed codon pair frequen-
cies, but is better in terms of the use of more frequent codon pairs
and in matching the observed codon frequencies. The example

clearly shows that there is a trade-off between various measures that
may have effects on protein expression.

2.2 Preliminaries on optimization
Optimization or mathematical programming problems consist of
maximizing or minimizing real valued objective functions of decision
variables from among an allowed set of domain values. The codon op-
timization models we propose in this article are going to be mixed in-
teger linear programming (MILP) models of the form min cTx s.t.
Ax � b where c is a vector in R

mþn; b is a vector in R
p; A is a p�

ðmþ nÞ matrix and decision variables x 2 Z
m � R

n. While MILP is
an NP-Hard problem in general, scientifically developed commercial
solvers are in use for many successful real-life applications. Most of
these solvers utilize the underlying structural properties of the con-
straint matrix, A. One of the most successful applications of MILP is
when there is an inherent network structure in the models (Ahuja
et al., 1993; Olson, 2003). To this end, we revisit the existing MILP
approaches available in the literature (Arbib et al., 2020; Şen et al.,
2020) and propose novel models that incorporate a network structure.
In order to benefit from the computational tractability (in practice) of
MILP models with underlying network structures, we unify existing
codon optimization measures in the literature under the network opti-
mization framework and cast the codon optimization problem as a
path finding problem in a layered acyclic network. Though, the funda-
mental algorithm behind the state of the art MILP solvers, namely,
branch and bound, has exponential space and time complexity, we
are able to show that codon optimization problems utilizing common
measures of the literature can be solved for realistic dimensions in rea-
sonable times. For theoretical completeness, we also show that when
certain pairs of measures are utilized within a bi-objective framework,
dynamic programming algorithms can be designed to solve the result-
ing codon optimization problem in polynomial time complexity, albeit
with very large degrees of polynomial. Note that although the dynam-
ic programming algorithms are designed to handle only two measures
simultaneously, the proposed network models can be adapted to han-
dle any combination of the measures available in the literature.

The following is necessary to provide the required formalism. Let
c ¼ fc1; . . . ; cng be the given sequence of amino acids and assume p :
f1; . . . ; ng ! f1; . . . ;20g provides the many to one mapping such
that the ith amino acid in the sequence is Api

. We shall use a layered
directed network to represent our codon optimization problems.
Each layer in this network will correspond to an amino acid in our
protein and the nodes in this layer will correspond to codons that can
be used in the expression of this amino acid. Let Ci ¼ fCi1 ; . . . ;CijCi j

g
be the set of codons that can be used in expressing amino acid i 2 A.

We know that jCij � 6 for each i 2 f1; . . . ;20g and the set C ¼
[20

i¼1Ci has 61 codons. Each codon p 2 C is identified with a unique

amino acid and we let AðpÞ denote this amino acid. Our layered net-

work will have the node set V ¼ fs; tg [ [n
i¼1Vi where Vi ¼Pi�1

j¼1 jCpj
j þ 1; . . . ;

Pi�1
j¼1 jCpj

j þ jCpi
j

n o
and s and t are the source and

destination nodes, respectively. For notational convenience let V0 ¼

Fig. 1. A network representation for peptide CCHC. There are a total of 16 possible

codon sequence choices. Using codon sequence represented by the solid lines leads

to CAI, CPB, RCB and RCPB scores of 0.720, –0.038, 0.487 and 0.357, respective-

ly. Using the sequence of the dotted lines instead leads to CAI, CPB, RCB and RCPB

scores of 0.704, –0.022, 0.263 and 0.369

Table 1. Frequency information related to peptide CCHC

AA Codon Freq Fitness V. AA pair Codon pair Freq CPS

C TGC 0.544 1.000 C-C TGC-TGC 0.501 0.531

TGT 0.456 0.839 TGC-TGT 0.302 0.195

H CAC 0.581 1.000 TGT-TGT 0.102 –0.721

CAT 0.418 0.720 TGU-TGC 0.095 –0.956

C-H TGC-CAC 0.417 0.281

TGC-CAT 0.244 0.065

TGT-CAT 0.162 –0.174

TGT-CAC 0.178 –0.398

H-C CAC-TGC 0.465 0.391

CAC-TGT 0.304 0.136

CAT-TGT 0.119 –0.479

CAT-TGC 0.112 –0.710
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fsg and Vnþ1 ¼ ftg. There will be an arc between any two nodes in
consecutive layers in this network, i.e. the arc set is E ¼ fðk; lÞ : k 2
Vi; l 2 Viþ1; i ¼ 0; . . . ; ng: We represent our layered network as G ¼
ðV;EÞ: For each node k 2 V we let L(k) denote the layer or equiva-
lently the sequence of the corresponding amino acid for this node. In
particular, if k 2 Vi then L(k) ¼ i. Each node k 2 V n fs; tg corre-
sponds to a particular amino acid and a particular codon, which we
define by A(k) and C(k), respectively. In particular, AðkÞ ¼ ApLðkÞ and

CðkÞ ¼ CAðkÞq where q ¼ k�
PLðkÞ�1

i¼1 jVij: An example network is

provided in Supplementary S1.

2.3 Codon pair bias and codon adaptation index
We first present our network framework for the most commonly
adopted measures in the literature, namely, CAI and CPB. To find
the codon sequences with CAI and CPB values that are not jointly
dominated, the epsilon-constraint method widely used for solving
bi-objective problems in the literature (see Laumanns et al., 2006) is
utilized. The method is based on solving single-objective models it-
eratively, limiting the second objective value by a constraint. To find
the efficient frontier corresponding to non-dominated CAI and CPB
values, among alternative solutions with the same CAI (CPB) value,
the one that gives the highest CPB (CAI) value should be found. At
each iteration of the epsilon-constraint method, two models are
solved; one maximizing CPB among alternative solutions achieving
a particular CAI value (say minCAI) and another doing the opposite.
The problem of finding a codon sequence maximizing CPB while
imposing a restriction on CAI is called CPB versus CAI.

For each ðk; lÞ 2 E, we use binary decision variable xkl ¼ 1; if
amino acid A(k) is represented by codon C(k) and amino acid A(l) is
represented by codon C(l); 0, otherwise. The cost of this arc is the
Codon Pair Score of the corresponding codon pair, i.e. CPSCðkÞCðlÞ.
Each node k 2 V n fs; tg also has a coefficient representing the nat-
ural logarithm of the Fitness Value of the corresponding codon, i.e.
lnðFVCðkÞÞ. Our model for solving CPB versus CAI is the following.

max
X

ðk;lÞ2E:k6¼s;l 6¼t

1

n� 1
CPSCðkÞCðlÞxkl (1)

s:t:
X

fl:ðk;lÞ2Eg
xkl �

X
fl:ðl;kÞ2Eg

xlk ¼
1; k ¼ s
�1; k ¼ t
0; otherwise

k 2 V;

8<
: (2)

X
ðk;lÞ2E:k 6¼s

lnðFVCðkÞÞxkl � nlnðminCAIÞ; (3)

xkl 2 f0;1g ðk; lÞ 2 E: (4)

Objective function (1) ensures that the CPB of the codon se-
quence is maximized. Constraints (2) construct a path from s to t in
the network representation of the underlying amino sequence. The
nodes chosen on this path will simply correspond to the optimized
codons in the given sequence. Constraint (3) uses the fact that

lnðCAIðc; rÞÞ ¼ 1
n

Pn
i¼1 lnðFVri

ðciÞÞ and ensures that the CAI of the

selected codon sequence is greater than or equal to a predetermined
minimum Codon Adaptation Index value. Finally, constraints (4)
ensure that all the decision variables are binary.

It is possible to come up with a dynamic programming algorithm
of polynomial complexity to solve the above bi-objective optimiza-
tion problem. Though similar results have been established in
Papamichail et al. (2018) and Donoghue et al. (2017), we choose to
provide it here along with its proof in Supplementary S2 as it sets
the framework for our other complexity results to follow.

Theorem 1.Problem CPB versus CAI can be solved in polynomial time.

2.4 Relative codon pair bias and relative codon bias
We now turn our attention to using RCPB and RCB objectives
jointly as the gene expression level measures. We apply epsilon-
constraint method to minimize both objectives jointly. To this

end, we solve a sequence of Mixed Integer Programming (MIP)
models minimizing RCPB (RCB) by imposing a threshold value
on RCB (RCPB). By ranging the threshold values, we attain the
Pareto optimal set of solutions, i.e. the efficient frontier. The
details on the mathematical models along with complexity results
are provided in Supplementary S3.

The methodology used for optimizing CPB and CAI measures
can be easily adapted to the measures based on sliding windows
such as %MinMax introduced by Clarke IV and Clark (2008). For
details, the interested reader is referred to Supplementary S4. In add-
ition to optimizing a measure, it is often important to avoid or in-
clude certain nucleotide sequences to promote gene expression. For
example, certain nucleotide sequences may include restriction en-
zyme recognition sites of the host organisms and should be avoided
(Skiena, 2001), whereas certain nucleotide sequences are immunosti-
mulatory and should be included as much as possible in the synthe-
sized gene (Condon and Thachuk, 2012). The nucleotide sequences
that need to be avoided are called forbidden motifs, and the nucleo-
tide sequences that need to be included are called desired motifs.
Details on how to incorporate such forbidden and desired motifs in
our models can be found in Supplementary S5.

2.5 Mathematical programming versus dynamic

programming
Though all our problems can be solved in polynomial time, the
exponents in the polynomial functions (though overestimated for
simplicity of the arguments), are huge. Thus, dynamic programming
algorithms will not be viable options due to memory requirements
for realistic dimensions. We would like to stress that our models
based on network flows tackle this challenge very effectively and
provide the flexibility of using any combination of the discussed
measures even under forbidden and desired motif requirements.

3 Implementation and results

3.1 Computational efficacy of the network models
We solved CPB versus CAI and RCPB versus RCB models using
Gurobi Optimizer 9.1.1 (Gurobi Optimization, 2022) with Python
2.7.13 on an Intel Core i7-3820 3.6 GHz CPU. In our experimental
design, we used Codon Pair Scores, Fitness Values, Relative Codon
Pair Bias values and Relative Codon Bias values of Homo sapiens.
To show that our methodology can scale well to all dimensions in
the available datasets, we analyzed a random sample of 100 proteins
from the UniProt Database (The UniProt Consortium, 2019) for
both problems. For the CPB versus CAI problem, we additionally
analyzed the 10 biggest proteins to demonstrate that classical objec-
tives can be easily handled for even the largest proteins available. In
order to compare our methodology with the literature in terms of so-
lution times, we also solved both problems using the mathematical
programming approach by Şen et al. (2020) with the same proteins.

For the CPB versus CAI problem, for each protein, we ran both
the existing and proposed models for minCAI values ranging between
0.55 and 1 with 0.05 increments. Figure 2 depicts an efficient frontier
for Codon Pair Bias and Codon Adaptation Index. The analysis is
done with the largest protein, Titin, which consists of 34 350 amino
acids. In particular, the point (0.66, 0.38) indicates that 0.66 is the
greatest CAI value that satisfies a minimum CPB value of 0.38 and
0.38 is the greatest CPB value that satisfies a minimum CAI value of
0.66. To find each point in Figure 2, model (1)–(4) is ran two times
by switching the objectives. In Table 2, we present the results for pro-
teins of different sizes. The first column reports the interval for the
sizes of the proteins in the number of amino acids and the second col-
umn reports the total number of instances (each protein-minCAI pair
is an instance). For each protein, we solve the problem for nine differ-
ent minCAI values in set f0:55; 0:60; . . . ;0:95g. For each interval,
we present the average solution times, the maximum solution times
and the standard deviations in seconds based on the proposed net-
work formulation [model (1)–(4)] and the existing formulation of
Şen et al. (2020). The average time gain column represents how
much faster our proposed formulation is compared to the existing
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formulation, attained through averaging the formula TimeGain ¼
texist�tproposed

texist
� 100 for each instance within the group. The results show

that our proposed formulation is very strong and leads to drastic
time gains over the approach used in Şen et al. (2020). Most prob-
lems can be solved within a second; the largest protein requires a
maximum of only about seven minutes of solution time. A compre-
hensive computational analysis is provided in Supplementary S6.

For the RCPB versus RCB problem, we solved both the proposed
[Supplementary S3: (6)–(13)] and the existing [model of Şen et al.
(2020)] models for minRCB values ranging between 0.01 and 0.1
with 0.01 increments. Figure 3 depicts an efficient frontier for RCPB
and RCB. The analysis is done with a protein with 824 amino acids.
We present the solution times in seconds for the RCPB versus RCB
problem in Table 3. The numbers in parentheses in the second col-
umn show the number of instances that turned out to be feasible
within this group. With the proposed formulation, one instance in
800–899 and 900–999 length intervals and 8 instances in 1000–1365
length interval could not be solved in 3600 seconds time limit. With
the existing formulation, there are 2 instances in 600–699, 10 instan-
ces in 800–899, 6 instances in 900–999 and 26 instances in 1000–
1365 length intervals, respectively that could not be solved within the
given time limit. These instances are not included in the calculations.
As the last column clearly shows, the network modeling approach
drastically reduced the solution times and this improvement is more
pronounced for larger proteins. We note that this problem is more
challenging than the CPB versus CAI problem. We depict the same
data highlighting the effect of maxRCP constraint and the length of
the sequence on the solution times in Supplementary S7.

3.2 Natural designs versus proposed measures
In order to further investigate our approach and evaluate the per-
formance of the proposed measures in terms of their effect on gene
expression, we analyzed codon sequences of genes of five different
species: E.coli, Arabidopsis thaliana, Mus musculus, Caenorhabditis
elegans and Saccharomyces cerevisiae. For all codon sequences avail-
able in the dataset provided by Sterken et al. (2020), we measured
CAI, CPB, RCB and RCPB values using codon and codon pair fre-
quencies from HIVE database (Alexaki et al., 2019). We use tran-
script abundance (TA) values presented by Sterken et al. (2020) in
order to measure the level of gene expression. For each organism, we
find the 5% of the genes having the highest TA values (‘highly
expressed genes’) and the 5% of the genes having the lowest TA val-
ues (‘lowly expressed genes’). In Table 4, for each measure and for
each organism, we report the average values of the measure for the
lowly expressed genes (first row) and the highly expressed genes (se-
cond row) and the P-value for the t-test for the difference of mean
values (third row). n in this table corresponds to the number of genes
that make up the 5% of the genes for a given organism. The results
show that CAI values are significantly higher (P¼0.01) for highly
expressed genes for E.coli, S.cerevisiae and M.musculus. CPB values
are significantly higher for C.elegans, S.cerevisiae and A.thaliana, but
significantly lower for E.coli. RCB values are significantly higher for

all organisms. RCPB does not seem to be significantly different for
the highly and lowly expressed genes. We also ran permutation tests
to see the impact of different measures on TA (Table 5). For this pur-
pose, for each species, we create 100 samples, each consisting of a
random 5% of the genes. For each sample, we find the average value
of each measure. We then compare these values with the average val-
ues we get from the highly expressed genes. The average value of CAI
of the highly expressed genes is larger than the average value of CAI
for all 100 random samples for E.coli, C.elegans and S.cerevisiae.
For M.musculus and A.thaliana, this number was 34 and 98, respect-
ively. The average value of CPB for the highly expressed genes is
larger than the average value of CPB for all 100 random samples for
C.elegans, S.cerevisiae and A.thaliana. Interestingly, the average CPB
for the highly expressed genes is smaller than all 100 random samples
for E.coli and M.musculus. For all species, the average values of RCB
and RCPB of the highly expressed genes are larger than the corre-
sponding averages in all 100 samples.

Based on these analyses, one can see that CAI and CPB measures
both play a role in expression for C.elegans, S.cerevisiae and
A.thaliana and the dual objective approach presented in Section 2.3
may be needed. For these species, we analyze 5% of the highest
expressed genes and 5% of the lowest expressed genes and calculate
the efficient frontier for each gene using the model in Section 2.3.
We then calculate the distance of each gene (as defined in the origin-
al codon sequence) from its efficient frontier of CAI and CPB. In
doing this, we normalize the CAI and CPB values by calculating
their z-scores. For example, for a given organism, the z-score for a
particular gene’s CAI value is its CAI value minus the average CAI
value of all genes for that organism divided by the standard devi-
ation of the CAI values. We then find the point in the efficient fron-
tier that has the smallest Euclidean distance to the corresponding
gene’s natural transcript. For all three species, the mean value of
Euclidean distances to the efficient frontier for the highly expressed
genes are significantly smaller than those for the lowly expressed
genes (the P-values are 0.0005, 10–92 and 0.0909 for C.elegans,
S.cerevisiae and A.thaliana, respectively). For S.cerevisiae, the
Euclidean distances for the highly and lowly expressed genes are
plotted in Supplementary S8. We also checked to see whether one of
the measures (CAI or CPB) is the dominant measure in the highly
expressed genes, perhaps leading one to consider only a single meas-
ure (objective) when optimizing codon sequences. This is not the
case. For example, for A.thaliana, normalized CAI values for the
5% of the highly expressed genes range between –2.689 and 2.851
and normalized CPB values range between –3.601 and 5.092. For
highly expressed genes with CAI in range ð�2:689;�0:842Þ (first
third of the full range), the average normalized CPB value is 1.042;
for genes in range ð�0:842; 1:004Þ (second third), the average nor-
malized CPB is 0.256; for genes in range ð1:004; 2:851Þ (last third),
the average normalized CPB is 0.194. Clearly, CPB is decreasing as
CAI is increasing in highly expressed genes. In fact, there is a nega-
tive correlation between CAI and CPB values for the highly
expressed genes (Pearson correlation coefficient is -0.191 with P-
value 0.00019). These analyses show that CAI and CPB measures

Fig. 2. An efficient frontier representing the relation between CAI and CPB for a

protein containing 34 350 amino acids. The analysis is done in the range of max-

imum possible CPB of the protein and the maximum CAI value. Each point in the

figure is obtained by solving the model (1)–(4) two times by switching the objectives

between CAI and CPB

Fig. 3. An efficient frontier representing the relation between RCB and RCPB for a

protein containing 824 amino acids. Each point in the figure is obtained by solving

the model [Supplementary S3: (6)–(13)] two times by switching the objectives be-

tween RCB and RCPB
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are often in conflict and one may have to consider designs on and
around the efficient frontier when designing codon sequences. This
justifies the dual objective approach.

4 Conclusions

We present a flexible and effective methodology for codon optimiza-
tion. Our novel approach can handle any combination of objectives

measuring gene expression levels in a unifying framework and is

more effective than the existing methods. The basis is a network rep-
resentation of the given protein. Any measure, including but not
restricted to the ones available in the literature, which depends on a
codon sequence can be handled with our methodology. Moreover,
the bi-objective limitation of the existing dynamic programming
methods in the literature is not present with our approach that has
the ability to tackle any number of objectives. The software we
developed allows one to choose any objective and use any subset of
other objective limitations as constraints. For future work, we plan
to incorporate other specific measures and constraints that are

Table 3. RCPB versus RCB solution time statistics for proposed and existing formulations for the random sample of 100 proteins

Length # Proposed Existing Avg.

Avg. Time Max. Time Std. Dev. Avg. Time Max. Time Std. Dev. Time Gain

0–99 70 (22) 0.35 0.84 0.20 1.43 3.95 0.84 74.78

100–199 190 (131) 0.53 3.55 0.50 3.94 29.22 4.0 84.94

200–299 220 (189) 1.11 5.40 0.93 10.07 52.72 8.53 87.94

300–399 180 (164) 4.90 229.58 18.05 39.31 716.49 62.02 89.99

400–499 100 (95) 6.67 76.77 10.83 71.66 904.03 108.26 90.54

500–599 60 (60) 34.12 855.18 113.76 228.41 3302.33 438.39 90.33

600–699 50 (50) 51.94 501.54 92.63 405.20a 3545.63 622.59 89.18

700–799 10 (10) 74.38 423.20 123.79 634.62 2202.07 673.91 89.60

800–899 50 (50) 87.96a 350.84 74.26 1200.64a 3597.85 749.17 92.74

900–999 20 (20) 87.10a 243.98 67.27 1372.42a 2991.93 657.90 94.03

1000–1365 50 (50) 111.40a 344.31 96.56 1767.71a 3593.93 1201.45 94.29

Notes: For each protein, both models are solved for 10 different RCB values between 0.01 and 0.1 with 0.01 increments. The table represents the average and

maximum solution times together with the standard deviations in seconds for different length intervals. The numbers in parentheses in the second column repre-

sents the number of instances that turn out to be feasible. Only the feasible instances are included in the calculations.
aIn length intervals 800–899 and 900–999, one instance could not be solved within 3600 seconds and in length interval 1000–1365, 8 instances could not be solved

within the given time limit with the new formulation. With the existing formulation, there are 2 instances in 600–699 length interval, 10 instances in 800–899 length

interval, 6 instances in 900–999 length interval and 26 in 1000–1365 length interval that could not be solved within 3600 seconds. Only the instances that are solved

within the 3600 seconds time limit with both formulations are used for average time, maximum time, standard deviation and average time gain calculations.

Table 2. CPB versus CAI solution time statistics for proposed and existing formulations for the random sample of 100 proteins

Length # Proposed Existing Avg.

Avg. Time Max. Time Std. Dev. Avg. Time Max. Time Std. Dev. Time Gain

0–99 63 0.02 0.06 0.01 0.13 0.31 0.07 85.42

100–199 171 0.04 0.10 0.02 0.29 0.56 0.09 86.10

200–299 198 0.07 0.12 0.02 0.60 1.12 0.17 87.91

300–399 162 0.11 0.21 0.03 1.11 1.73 0.29 89.91

400–499 90 0.13 0.21 0.04 1.42 2.25 0.36 90.43

500–599 54 0.17 0.24 0.04 2.11 2.95 0.51 91.87

600–699 45 0.21 0.35 0.05 2.97 4.55 0.81 92.88

700–799 9 0.20 0.30 0.05 3.37 4.21 0.62 93.91

800–899 45 0.29 0.48 0.07 4.67 6.16 0.72 93.78

900–999 18 0.31 0.55 0.09 5.47 7.15 0.75 94.34

1000–1365 45 0.38 0.71 0.11 6.68 11.23 1.72 94.12

6669 9 2.41 3.52 0.82 87.31 131.96 26.0 97.21

6885 9 7.16 11.01 3.02 111.62 157.62 32.41 93.00

6907 9 8.27 11.60 2.42 108.53 157.62 32.02 92.15

7388 9 3.71 4.99 1.01 136.18 193.13 40.53 97.12

7570 9 11.17 16.01 3.96 130.61 192.46 37.60 91.30

7968 9 12.17 20.12 4.52 189.46 278.64 54.76 93.35

8384 9 50.99 78.03 13.41 399.34 612.46 161.54 84.26

8797 9 5.99 8.29 1.66 175.10 241.92 55.0 96.33

14507 9 35.34 75.47 17.30 723.53 1029.41 257.60 94.77

34350 9 159.74 426.92 114.76 1755.59 2499.73 582.28 90.87

Notes: For each protein both models are solved for 9 different CAI values between 0.55 and 0.95 with 0.05 increments. The table represents the average and

maximum solution times and the standard deviations in seconds for different length intervals and for the largest 10 proteins. The average time gain column repre-

sents how much faster our proposed formulation is compared to the existing formulation.
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shown to affect gene expression using to our model. We also plan to
study the importance of various measures on other organisms such
as mammals where gene expression is more critical for survival.
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Table 4. CAI, CPB, RCB and RCPB values for highly and lowly

expressed genes

E.coli C.elegans S.cerevisiae M.musculus A.thaliana

n 121 376 281 896 419

CAI 0.6868 0.7617 0.7247 0.7773 0.7638

0.7679 0.7657 0.8112 0.7823 0.7648

0.0000 0.1269 0.0000 0.0057 0.6957

CPB 0.0468 0.0317 0.0092 0.0642 0.0342

0.0195 0.0511 0.0421 0.0602 0.0501

0.0000 0.0000 0.0000 0.0166 0.0000

RCB 0.1235 0.1016 0.1160 0.1084 0.1034

0.1688 0.1644 0.2207 0.1216 0.1314

0.0000 0.0000 0.0000 0.0000 0.0000

RCPB 0.1614 0.1634 0.1700 0.1553 0.1699

0.1639 0.1680 0.1681 0.1658 0.1683

0.3456 0.0118 0.2957 0.0000 0.2240

Note: The analysis is done for species E.coli, A.thaliana, M.musculus,

C.elegans and S.cerevisiae. High and low gene expression levels are based on

TA values of the genes. The average CAI, CPB, RCPB and RCB values are cal-

culated for 5% of the highly expressed genes and 5% of the lowly expressed

genes for each species. Each cell is about a measure and an organism. The first

and the second numbers are the average value of the measure for lowly

expressed and highly expressed genes, respectively. The third number is the P-

value of the t-test.

Table 5. Permutation analyses for highly and lowly expressed

genes

E.coli C.elegans S.cerevisiae M.musculus A.thaliana

CAI 0.01 0.01 0.01 0.67 0.03

CPB 1.00 0.01 0.01 1.00 0.01

RCB 0.01 0.01 0.01 0.01 0.01

RCPB 0.01 0.01 0.01 0.01 0.01
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