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Abstract

Micro-scale additive manufacturing has seen significant growth over the past years, where improving the

accuracy of complex micro-scale geometries is seen as an important challenge. Using grayscale images rather

than black and white images during production is an effective method to improve the fabrication quality.

This paper presents a model-based optimization method for improving the dimensional accuracy of parts

using voxel-based grayscale dynamic optimization during continuous 3D printing. A detailed solidification

model has been developed and used to estimate the curing dynamics of the resin used in 3D printing. The

irradiance of the light beam projected for each pixel influences a larger volume on the resin than the targeted

voxel. The proposed model-based method optimizes the images considering the light distribution from all

closely related pixels to maintain the accuracy of the micro part. The results of this method have been

applied to the printing of a complex 3D part to show that optimized grayscale images improve the areas

with overcuring significantly. It is shown that the number of overcured voxels was reduced by 24.7% compared

to the original images. Actual printing results from our experimental setup confirm the improvements in the

accuracy and precision of the printing method.
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1. Introduction

Vat Photopolymerization (VPP) is a popular method for obtaining polymer-based parts due to its fast

production speed, flexibility of the objects that can be produced, and high accuracy [1], [2]. VPP can be

used on its own or along with various other additive manufacturing processes to produce complex parts [3].
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Additive manufacturing systems that use the VPP approach typically consist of a vertical positioning system,5

a light source, and a container. The part is built gradually using the vertical positioning system to lower the

platform as the polymer resin is cured at the locations where the ultraviolet light is projected. To achieve

superior dimensional precision, it is essential to have precise control of the motion of the positioning system

and the intensity of the light source, along with an understanding of the material properties of polymer

resin. Utilization of a high pixel density DMD chip allows building of micro-scale parts with high accuracy10

and relatively low cost [4].

In order to prepare the desired part for production, its computer-generated solid model is sliced vertically

into layers. These layers are recorded as digital black and white images representing the dimensional features

of the part at different heights. These images are then projected on the resin surface during the VPP process

so that the part is produced layer-by-layer. In general, there are two ways to project light onto the resin:15

vector scanning and projection. When using the vector scanning approach, each non-black pixel (point) on

the layer image is scanned using a focused light source such as a laser. Once every point on a layer is scanned,

the platform is moved vertically, and the curing of the next layer starts [5]. With the projection-based light

source approach, an entire layer is cured at once with the help of a light projector or an LCD screen using

the layer images [6]. A vat photopolymerization system can be configured in two ways based on the direction20

of the light projected on the resin. In the top-down configuration, the light projector is placed above the

resin vat, and the platform starts from the surface of the resin and descends into the vat. For the bottom-up

configuration, the projector screen is set up below the vat, and the platform starts from one layer thickness

above the transparent bottom of the vat. The vertical motion of the platform may be advanced in two ways:

layer-by-layer and continuous. With layer-by-layer printing, the platform is moved when the production of25

each layer is finished. In continuous printing, the platform moves continuously, and the projected images are

changed in a timed or position-triggered fashion. Continuous printing produces a better surface finish since

no layer marks are present. However, the platform’s speed must be arranged carefully to avoid undercuring.

In this paper a continuous top-down approach has been utilized. Pan et al. developed a method that utilizes

the capillary properties of the resin to reduce the stair-step effect between layers caused by layer-by-layer30

printing and improve the surface finish [7]. However, this method requires a second round of light exposure

after the part is removed from the resin, making the process more complex.

In recent years, significant advances in vat photopolymerization have improved the dimensional accuracy

of the parts produced. One of the most significant approaches is the utilization of grayscale masks instead of

binary, i.e., black and white, masks. In earlier examples in the literature, the grayscale modifications were35

done manually, graying certain parts of the layer images. For example, in Lee et al. [8], Park et al. [9] and

Mostafa et al. [10], researchers improved the resolution of their parts by grayscaling the images they project.

These methods are primarily based on trial and error, and their application may not be feasible for improving
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parts with more complex geometries. More recently, Zhou et al. used linear programming optimization to

reduce boundary errors and achieve sub-pixel resolution [11], [12]. Their method focuses primarily on the40

boundaries of the individual layers and employs a simpler curing model for their study. While the proposed

formulation improves the horizontal (XY) resolution significantly, it disregards the errors in the z-direction

and is prone to over-curing if overhanging structures are introduced. Pritchard et al. [13] and Bonada et

al. [14] used grayscale images to reduce cure-through in continuous printing. Their correction model only

considers the overcuring in the z-direction and does not account for the horizontal irradiation distribution45

and its effect on curing. Wang et al. mapped the power density distribution of their projector and used

grayscaling to counteract the effects of uneven distribution in large objects [15]. Lichade et al. used grayscale

images with continuous printing to improve the surface quality and reduce the porosity of fabricated parts

[16]. You et al. utilized neural network based machine learning to produce grayscale masks to counteract

the effects of light scattering [17]. Dithering effect has been shown to be a viable alternative for achieving50

grayscale equivalent layer images in monochromatic systems [18, 9]

Photobleaching is the decomposition of the photoinitiator inside the resin as it cures [19]. Emami et

al. demonstrated the photobleaching effect in photocurable resins and developed a multiphysics model to

address its effects on printed parts [20, 21]. They have also modeled the propagation and attenuation of light

within the resin in an effort to increase the dimensional accuracy of Cured VPP parts [22]. Ray tracing was55

used to model the irradiation inside the resin by Limaye et al. to be used as part of a VPP layer cure model

[23]. A technique for analytically determining the Jacobs working curve [5] for a photocurable material has

been developed by Li et al. [24]. They used the solid absorbance, liquid absorbance, and gelation time of the

polymer resin to produce an analytical Jacobs working curve which agrees with the experimental results with

less time and material waste. This robust method for determining the properties of a resin has been used by60

many researchers. After the properties of the material and the light source are characterized, the results can

be utilized as a solidification model, predicting the part dimensions given production parameters. Westbeek

et al. developed a multi-physical modelling framework to predict the defects a printed part will have without

the need for a test print [25]. In [26], authors developed a workflow for fabricating micro-needles intended

for transdermal drug delivery after parameter optimization based on the design of experiments. Moreover,65

the developed solidification model can improve the process by using online or offline optimizations. Li et al.

developed a tunable pre-curing approach to improve fidelity and efficiency in [27] by keeping the resin at a

gelled state during printing. Wicker et al. designed a multiple vat VPP system for building multi-material

parts with a wide variety of materials, resulting in various part functionalities [28]. Tureyen et al. developed

an iterative learning controller for improving accuracy in micro-scale vat photopolymerization systems [29]70

with the use of a one-dimensional solidification model.

This paper presents a model-based dimensional accuracy improvement method using a voxel-based
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grayscale dynamic optimization. In VPP systems, each pixel in the layer images represents the unit volume

of the built part, called a voxel. During the production, the irradiance of the light beam projected for each

pixel is not entirely confined to the targeted voxel, and it lights up a predictable region inside the resin,75

transferring energy for curing to a larger volume than the targeted voxel. Therefore, the images sent to the

projector should be optimized considering the light distribution from all pixels to get a cured object as close

as possible to the original CAD model. Although experimental validations for our method are presented

using a top-down with continuous motion projection-based system primarily targeting micro-scale parts, our

approach is generic enough to be extended to all VPP systems.80

The outline for the remaining parts of this paper is as follows. In Section 2, a mathematical model that

predicts the solidification process is presented. Section 3 proposes our model-based projection optimization

with dynamic programming. In Sections 4 and 5, our experimental vat photopolymerization setup, process

parameters, and procedures are given. In Section 6, the optimization method is validated with a detailed

example. Lastly, Section 7 discusses our current results and possible future work.85

2. Solidification Model

Mathematical models describing the underlying physical mechanisms of a process are developed as a first

step to propose calculated improvements. For VPP systems, using mathematical equations to represent the

layer-by-layer production of a part involves combining optical and chemical principles with platform motion

dynamics. In order to relate the projected image and the platform motion to the part dimensions as the90

model output, a coordinate system is defined as shown in Figure 1. Here, the resin surface is considered as

the z = 0 level, and one of the corners of the projected image is taken as the origin with x = 0 and y = 0.
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Figure 1: Irradiance of multiple light beams on a photo-polymeric resin surface where calculation by applying superposition of
the irradience single beams is possible.

Understanding the behavior of the light beam as it penetrates the resin is crucial to estimate how the

resin will cure when exposed to a layer image from the projector. A projected image can be considered as a

collection of light beams entering the resin. For example, in Digital Light Processing (DLP) projectors, the95

layer image projected on the resin surface comprises pixel lights generated by individual micro-mirrors on

the Digital Micro Device (DMD) chip [15]. A model that explains how a single pixel of light behaves in the

resin can predict the behavior of a projected image composed of many light beams using the superposition

principle.

The absorption of light inside a liquid can be modeled using the Beer-Lambert Law :100

I(z) = I0 e
−µz (1)

where I(z) is the irradiance at z, I0 is the irradiance on the resin surface, and µ is a penetration constant.

As an alternative to the form presented in Eq.(1) a transmittance function, T (z), can be defined as

T (z) = e−µz = 10−cz (2)

where c is the absorption constant for the liquid.

The Beer-Lambert Law is presented as a one-dimensional relationship applied in the vertical (liquid

depth) direction. However, many researchers have observed that the light distribution and absorption profile105
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in the resin is not a beam shape with uniformly decreasing irradiance (such as [11], [12]), and it somewhat

resembles a distorted cone shape, as shown in Figure 1. Therefore, the distribution of light on the resin

surface and layers below should be included in the irradiance formulation for more accurate results. The

effect of light distribution can be represented in irradiance calculations using a two-dimensional distribution

function as shown in Eq.(3).110

I0(x, y) = a · e
−
(

(x−x0)2

2σ2
x

+
(y−y0)2

2σ2
y

)
(3)

The equation given in Eq.(3) is a typical Gaussian distribution function with two variables (x, y) with

centering parameters (x0, y0) and distribution parameters σX and σY . In addition, a constant, a, is also

introduced to account for the grayscale value of a particular pixel in the layer images projected from the light

source. By re-arranging Eq.(1) and Eq.(3), the irradiance from a single pixel of light entering the surface at

(x0, y0) on a point with the coordinates (x, y, z) can be calculated as shown in Eq.(4)115

Isingle(z) = a · e
−
(

(x−x0)2

2σ2 +
(y−y0)2

2σ2

)
· 10−cz (4)

The constants σ = σX = σY , and c determine the distribution of light in x and y directions respectively and

are generally found with experiments. Understanding their effect on the general form of light absorption is

necessary for identifying model constants. Analyzing Eq.(4) shows that increasing c reduces the amplitude as

it increases the absorption, whereas increasing σ widens the boundaries as it increases the standard deviation

of the Gaussian function. The light absorption distribution of multiple pixels can easily be modeled by120

superposing the single-pixel light distributions centered around each lit pixel, as shown in Figure 1. With

the calculation of irradiance of multiple pixel light, a solidification model can be formulated to predict the

production results of parts with various shapes.

Before VPP manufacturing, the part’s solid model is sliced into k layers, and an image is produced for

each layer. A layer is a digitized approximation of a part at a specific height. Assuming uniform thickness125

for each layer, as the number of layers increases (i.e., K → ∞), this approximation of the part becomes more

accurate. Each of these layer images is shown on the projector screen during manufacturing. In Figure 2,

the slicing and layer preparation process of the simple part is shown. The target shape is a hollow square

prism, which is first sliced and pixelated for production, and the voxel definitions are formed. When the

layer images, which are composed of pixels, are assumed to represent the part’s features with a specific130

thickness, this new unit volumetric area is defined as a voxel. The shape in Figure 2 is sliced in to l layers

and represented with l × f × h voxels. Each layer with f × h pixels is shown from the projector to produce

the part.
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Figure 2: Irradiance of a square layer on a photo-polymeric resin surface.

In order to define the equations of the linear programming problem, the terms source pixel and target

voxel need to be defined. Source pixels are the pixels projected onto the resin on each layer. Target voxels are135

the voxels that are meant to be cured. In Eq.(4), the effect of a single light beam generated from a source

pixel on the corresponding layer image is calculated. Then, the total irradiance accumulated at a target

voxel can be calculated as the sum of the irradiance from all the source pixels from the same or previous

layer images. This value can be calculated by applying Eq.(4) to all layers and pixels with superposition as

shown in Eq.(5).140

I(i,j,k) =

k∑
n=1

f∑
m=1

h∑
l=1

a(l,m,n) · e
−
(

(i−l)2

2σ2 +
(j−m)2

2σ2

)
· 10−c(k−n) (5)

In Eq.(5), (l,m, n) index the (x, y, z) coordinates of the source pixels, and they were introduced to

avoid confusion with the target voxel index (i, j, k). The energy absorbed by a voxel can be calculated by

multiplying the total irradiance on that voxel by the exposure time, t (see Eq.(6)).

E(i,j,k) = I(i,j,k) · t (6)

The energy required to cure the resin is called the critical energy, Ec. If the energy absorbed by a voxel

goes above the critical energy, the resin in that voxel cures. In continuous printing systems, the exposure

time t is inversely proportional to the speed at which the platform moves vertically. In this system, the

platform is lowered into the resin at a speed of 0.03mm/s. The speed of the platform has been chosen

through experimentation, by inspecting the parts printed without optimization and determining at which
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speed the parts were most accurate and with least amount of defects. Layer thickness is 0.112mm, and the

time it takes for the platform to move one layer (i.e., the exposure time) is 0.373s. The platform speed

can be reduced to increase the exposure time, which effectively increases the energy absorbed by all voxels.

Therefore, for a constant speed system, the energy distribution of any layer with size f × h can be written

in matrix form as Eq.(7).

E(k) = t ·


I(1,1,k) I(1,2,k) · · · I(1,h,k)

I(2,1,k) I(2,2,k) · · · I(2,h,k)
...

...
. . .

...

I(f,1,k) I(f,2,k) · · · I(f,h,k)


f×h

(7)

Compiling the energy matrices for all layers into a 3D matrix gives the energy distribution model for a

part. By comparing the elements of the energy matrices to the critical energy, Ec, the voxels that are cured145

can be identified, and the solidification model can be presented.

3. Model Based Process Optimization with Dynamic Programming

Once a solidification model with specific parameters and variables is developed, improvements can be

identified so that the manufacturing process can be performed better (for example, faster production with

better quality). For complex systems and processes that have many variables, formulating and solving an150

optimization problem is a typical approach for finding a set of settings with the optimal performance. For

most manufacturing processes, the objective is to minimize an accumulated error representing the deviation

from the intended production properties. The solidification model developed in the previous section repre-

sents the basis for the problem constraints. Our target is to utilize grayscaling, which reduces the irradiance

of light on a localized area, to reduce the accumulated error in manufacturing.155

Following the same notation from before, Eq.(5) can be rewritten in the form

I(i,j,k) =
∑
lmn

a(l,m,n) · w(i,j,k,l,m,n) (8)

where w are irradiance model coefficients of the source pixels. Usign Eq.(8), the energy absorbed by a voxel

at the coordinates (i, j, k) is defined in terms of a and w as Eq.(9).

E(i,j,k) = t ·
∑
lmn

a(l,m,n) · w(i,j,k,l,m,n) (9)

Each source pixel has a grayscale value g between 0 and 255, 0 representing black (no light) and 255
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representing white (i.e., full intensity). Grayscale factor a of a pixel is defined as Eq.(10).160

a = 3 ·
(

g

255

)γ

(10)

Value of γ will be determined experimentally. The pixel grayscale factor, a, is the design variable of our

optimization problem. The objective function, J(a), is the total energy absorbed by all boundary voxels as

shown in Eq.(11). Boundary voxels are voxels next to target voxels and are intended to remain uncured.

J(a) =

D∑
d=1

Ed(a) (11)

where D is the number of boundary voxels and a is the vector containing the grayscale factor values for all

source pixels. Ed is the energy absorbed by a boundary voxel.165

The formulation for the grayscale optimization problem can be written as shown in Eq.(12).

min
a

J(a) such that

A · a ≤ b

lb ≤ a ≤ ub

(12)

where lb and ub are the lower and upper bound of values elements of a can have. The goal of the optimization

is to minimize the objective function J(a) while keeping the energy values of target voxels above the critical

energy. This allows the part to be built with high accuracy, using as little energy as possible.

When the target voxel located at (i, j, k) needs to cure as part of the production, the inequality constraint170

given in Eq.(13) must be satisfied.

E(i,j,k) ≥ Ec (13)

For successful production of a part, each target voxel needs to cure when the process finishes. This collection

of constraints can be represented in our formulation by calculating a matrix A, each row of which can be

written as shown in Eq.(14).

Ar = A(i,j,k) = −t · [w(i,j,k,1,1,1) w(i,j,k,1,1,2) · · · w(i,j,k,1,3,n) · · · w(i,j,k,l,m,n) ]1×q (14)

A is a p × q matrix where p is the number of inequality constraints (i.e. the number of target voxels),175

and q is the number of variables (i.e. the number of source pixels). Each row of A has a corresponding value

in vector b with p elements (see Eq.(15)).

br = [b(i,j,k)] = −Ec (15)
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Note the minus sign in Equations Eq.(14) and Eq.(15), since the optimization formulation needs to be a

≤ inequality; both sides of Eq.(13) are multiplied by −1 to reverse the sign.

Because of the large number of linear relationships existing in the model developed in Eq.(1)-Eq.(7) and180

considering the vast availability of tools in literature, our optimization problem is formulated as a linear

programming problem. After the objective function and the constraint equations are formulated, Matlab

Optimization Toolbox is used for solving the actual optimization problem.

The formulation of the optimization problem and remapping of the results to slice image form is sum-

marized in the workflow shown in Figure 3.185

Record coordinates of target voxels into mapping matrix (p x 3)
 with each row corresponding to one target voxel

Populate matrix A (p x q) row by row with coefficients from
energy inequalities of each target voxel

Create upper bound (ub=3)  and 

lower bound (lb=0) vectors (p x 1)

Populate vector b (p x 1) with -Ecrit

Multiply matrix A with -1 to have ≤ formulation

Plug A, b, lb, ub and J(a) into Matlab linear 

optimization function

Write the objective function, J(a), as the sum of energy
absorbed by boundary voxels

Convert optimization output a vector (p x 1) values to 

grayscale values g

Map the grayscale values g back into the 3D matrix using the
mapping matrix 

Figure 3: Optimization flowchart explaining the steps followed to optimize any part to be built.

An example of optimizing a simple part is provided in Appendix A to help understand the optimization

process.

In an ideal case, all pixels on all the images would be sources, and every voxel in the CAD part would be

a target. However, typically, there are computational limitations. Choice of targets and sources along with

some basic techniques to improve the computational efficiency of the problem are explained in Appendix B.190

4. Experimental Setup

The overall schematic of the rapid prototyping machine used in this study is given in Figure 4. The layer

images are sent to the DLP projector in coordination with a precision positioning system that moves the

platform using a workstation computer.
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Figure 4: Photograph of the overall rapid prototyping system and its schematic. The Build chamber is enclosed in red glass to
avoid curing of the resin from outside light sources.

The list of equipment and materials used to build and analyze a part are given in Table 1. Optimization195

is performed on a separate computer running a Ryzen 5 3600 processor with 64 GBs of DDR4 ram.

No: Equipment / Material Brand / Model
1 Positioning System and Controller Aerotech A3200
2 Projector Texas Instruments DLP4710EVM
3 Computer Intel Xeon W3503 Workstation
4 Microscope Keyence VHX-1000
5 High speed microscope Keyence VW-9000
6 Scanning Electron Microscope FEI Quanta 200 FEG ESEM
7 Polymer Resin Uniz zSG Amber

Table 1: Equipment and material list.

Pixel pitch of the DMD chip is 5.4µm and the projected pixels are 11.2µm squares. Further information

of the light source can be found in the projector datasheet [30]. Absorption levels of various resins were

examined using a Cary 100 spectrometer. The polymer resin used in all experiments is the zSG Amber by

Uniz. After comparison with alternatives, zSG Amber has relatively high absorption near the visible blue200

light wavelength, between 400− 450nm as shown in Figure B.23.

The process for building a part begins with drawing the part in CAD software. The part is then sliced

into layer images. The optimization process modifies the layer images. The layer images are then turned

into a video using editing software. The video is projected onto the resin surface while the platform is

continuously lowered into the polymer resin vat. At the end of the video, the light from the projector is205
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switched off, and the platform is raised above the resin. The built part is retrieved from the platform and

is cleaned with isopropyl alcohol. Finally, the part is placed into a UV light bath for 5 minutes to be fully

cured. The cured part is measured and photographed using the Keyence VHX-1000 microscope. A scanning

electron microscope is used if higher accuracy measurements or better images are needed.

5. Identification of Parameters in the Solidification Model210

The formulations given in Eq.(1)-Eq.(7) have various parameters that need to be identified before the

solidification model is finalized. Controlled experiments were performed using our experimental setup shown

in Figure 4.

The model parameters were determined by performing a series of experiments. First, the image shown

in Figure 5 was projected onto the resin, and the light inside the resin was photographed from the side with215

a high-speed camera. Using a picture editing software, the pixels of this photograph with the highest light

value of 255 were isolated. The plot formed by the boundary of these pixels was then compared to light

distribution model results to fine-tune the constants, where the constants were determined as c = 0.008m−1

and σ = 13. The images from this process can be found in Figure 6.

Figure 5: Image projected for the calibration of constants. Lit areas have 100%, 75%, 50% and 25% of the maximum light
value 255, respectively.

Figure 6: (a) Experiment setup with the high-speed camera directed at the resin vat as Figure 5 is projected onto the resin.
(b) High-speed microscope image of light propagation in the polymer resin when Figure 5 is projected onto the surface. (c)
Every pixel except those with value 255 has been omitted from A to be able to clearly distinguish the boundaries of a common
energy value. Threshold value choice is arbitrary and could have been a value other than 255. (d) After examining how each
variable in the model affects the curve’s profile, the best set of variables has been chosen depending on how well they fit the
experimental curves. Red lines are the experimentally acquired curves, and black lines are the numerical model.
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Variables that are optimized for this study are the a values given in Eq.(5). Each source pixel has an220

a value for the amplitude of the Gaussian in the model, and these values depend solely on the grayscale

value of the pixel. The energy absorbed by each pixel is a function of a, the vector containing the a values

of all source pixels. Therefore the optimization is formulated around a. The grayscale values g were not

used directly in the formulation in order to lower the computational load on the optimization process. a

is a vector with elements valued between 0 and 3 and is related to the tone values of the pixels g (values225

between 0 and 255). As defined previously in Eq. (10), these values are related as in the equation in Figure

7. The value of γ was determined experimentally. From the three data points of 100%, 75% and 50% g and

their corresponding a values, and also noting the plot starts from the origin, using Eq.(10) with γ = 2.4040

produces the curve that best fits the data, as can be seen in Figure 7.

0 50 100 150 200 250

g

0

0.5

1

1.5

2

2.5

3

a

a = 3 ·
(

g

255

)γ

Figure 7: Plot of g vs a. Orange colored dots are the data points.

After selecting the constants that best fit the light penetration images, the dot test was performed: The230

platform was fixed at 1mm below the resin surface, and a 50× 50 pixel square was projected for 60 seconds.

The results obtained were compared to the numerical model prediction, and the choice of constants was

validated. The methodology used for determining and calibrating the model parameters includes the effect

of photobleaching since, cured parts are used along with the light profiles in the resin. It is important to

note that the effect of photobleaching on the resin used in this study is relatively low in the wavelength range235

of the projector (444 − 465nm). Figure 8(a) shows the resulting built 3D part from this test. The yellow

parabolic overlay is what the model calculated with the chosen constants.
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a b

Figure 8: (a)Dot test result. The dome-like structure at the top is formed by the curing of resin pooled on top because of the
capillary forces. This phenomenon occurred because the platform was stationary and would not occur in a regular process. (b)
Test piece to help determine the critical energy. The red silhouette is the original CAD of the part. The green outline is the
prediction of the model for this part.

As explained earlier in Section 2, the solidification model creates a 3D matrix containing values cor-

responding to the total energy each pixel absorbs during the print. After identifying the speed, a square

prism tapered towards the bottom was built. This part is chosen intentionally so that a possible over-curing240

in print can be observed. In Figure 8(b), the red silhouette is the original part, the green outline is what

the model predicted for the built product, and the piece in the background is the built part. The curing

threshold value (critical energy) was determined by checking which isoline fits the built part. The green

outline in Figure 8(b) was the closest to the built part. Therefore, this energy value was determined as the

critical energy.245

6. Validation of the Optimization Method

The method outlined in the previous section promises significant improvements regarding the shape

of the resulting part after model-based image layer optimization. To test these improvements, a popular

benchmark part shown in Figure 9 was manufactured using the optimization of projected images discussed

in the previous section. The same part was also built without the optimization to compare how well it250

works and to validate its feasibility for practical components. Optimization and print results for a relatively

simpler part has been provided in Appendix C.
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Figure 9: (a) CAD model of a DNA double helix part. (b) The closeup of a single nucleotide bridge section. Dimensions are in
mm.

The DNA double helix part shown in Figure 9 is selected to test the real-life challenges of additive

manufacturing as the nucleotide bridges in DNA allow for the common curing defects such as over-curing

and thickness inaccuracy in overhanging structures. Since the feature repeats itself, our validation study255

focuses on optimizing a single section with one nucleotide bridge to speed up the computations and the

manufacturing process. The results of this study can still be used for the whole part because the bridges are

far enough apart that their effect on each other is negligible. The notch in the middle of the bridge in the

CAD model adds complexity to the part to be produced, testing the capabilities of the proposed optimization

method.260

The accuracy of the model should be validated before moving on with the optimization. To compare the

print simulation and the actual print, the DNA was simulated and printed with no alterations to its layer

images. Images of the simulated part and the print are given in Figure 10. The 3D model is obtained as a

Matlab volume graph by using the voxels that are identified as cured in the solidification model. The profile

of the thinner middle section and the general dimensions of the simulation closely resemble those of the built265

part. The model accurately predicts how the final built is going to appear when the determined printing

parameters are used.
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Figure 10: (a) Numerical model of a nucleotide bridge of a DNA molecule. (b) The print result of the same part.

In order to rapidly estimate the benefit of the optimization method, the mathematical model developed

in Section 2 is used to simulate the manufacturing process with and without the optimization of the layer

images. These simulation results are presented in Figure 11 and Figure 12. Figure 11(b) and Figure 11(c)270

show how the built part is expected to come out without and with the layer optimization, respectively. The

prediction before the optimization in Figure 11(b) shows over-curing on the underside of the bridge. With

optimization, this problem has been fixed, and the top part of the notch section became more defined. Figure

12 shows the simulation results from the top, where a slight reduction in the bridge thickness observed in

Figure 12(b) is reduced after optimization as shown in Figure 12(c). The simulation results suggest an 11%275

decrease in the overall volume of the considered DNA section, going from 7.5mm3 to 6.7mm3.

Figure 11: (a) Side view of the DNA section CAD model. (b) Side view of the print simulation before optimization. (c) Side
view of the print simulation after optimization.
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Figure 12: (a) Top view of the DNA section CAD model. (b) Top view of the print simulation before optimization. (c) Top
view of the print simulation after optimization.

The predicted simulation results show promising improvements as shown in Figure 11 and Figure 12.

Therefore, actual benchmark parts are produced in the VPP machine to verify if the predicted benefit in

simulations is obtained. Figure 13 and Figure 14 show how the benchmark part is built before and after the

optimization, respectively. Without the optimization, the part is overall thicker than it is supposed to be, the280

bottom profile of the bridge is distorted with a significant increase in thickness near the notch, and the top

side of the connection between the bridge and the main strands is sharper. The thickness in the optimized

part is much closer to the original CAD model shown in Figure 9, with the thickness of the notch in this

specific example being 495 microns after optimization, 590 microns without the optimization as compared to

the 479 microns from the targeted CAD drawing. The bottom profile was straightened out, and the bridge285

to main strand connections was smoothed out.
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Figure 13: (a) Side view of print of the DNA section before optimization. (b) The E-SEM image close up of the left bridge-strand
connection. (c) The E-SEM image close up of the right bridge-strand connection. (d) The E-SEM image close up of the middle
section.

Figure 14: (a) Side view of optimized print of the DNA section. (b) The E-SEM image close up of the left bridge-strand
connection. (c) The E-SEM image close up of the right bridge-strand connection. (d) The E-SEM image close up of the middle
section.

The grayscale images of the parts were obtained using the environmental scanning electron microscope

(E-SEM) mentioned in Section 4. Figure 15 shows the built parts from the top in detail using an SEM.

When built parts are observed from the top, the improvement caused by the optimization can be clearly

seen. The overall profile was improved noticeably on both sides, and the sharp-edged sections on the top290

(middle in this image due to it being the top view) of the part were smoothed out by the optimization.

18



Figure 15: (a) Top E-SEM view of the DNA section before optimization. (b) Top E-SEM view of the optimized DNA section.

Figure 16 and Figure 17 show how two layers of the part were changed by the optimization. The layer

considered in Figure 16 is from the underside of the bridge. Optimization darkened the middle section

around the notch. This means that the energy absorbed from the upper layers’ projection is enough to

cure the middle section for this and the following layers. Notice that the section of the bridge just before295

connecting to the main strand is lit. This is important as it is a clear example of how optimization solves

issues in the part. In Figure 13, the underside profile of the bridge is thinner closer to where the bridge

connects to the strands and gets thicker towards the middle. Since the overall structure is thicker and needs

to be thinned down, these connections are at the risk of becoming too thin. To offset the excessive thinning

in these areas, the optimization left the parts of the layer image that correspond to these areas lit while300

darkening the middle section. This results in the problematic areas absorbing more energy and having more

voxels cured, in turn achieving a more uniform shape with an accurate thickness, as can be seen in Figure

14. Layer in Figure 17 is from the middle of the bridge. There is slight graying or blacking out of regions,

making the final shape thinner. Notice in both cases, the image is no longer symmetric after optimization.

The helical structure of the DNA causes the parts that end up underneath the strands to overcure. Likewise,305

the opposing sides are more prone to undercuring. Therefore, parts of the images that correspond to the

bottom sides of the strands are darker after optimization.
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Figure 16: (a) A projected layer image near the bottom of the bridge, before optimization. Image on the top right shows where
in the part this layer is located. (b) Image of the same layer after optimization.

Figure 17: (a) A projected layer image at the middle of the bridge, before optimization. Image on the top right shows where
in the part this layer is located. (b) Image of the same layer after optimization.

The simulation results show that there is a 24.7% decrease in the number of overcured voxels due to the

optimization. A more robust selection of sources can decrease the overcured voxel count further, as described

in Appendix B.310

Multiple parts were built with and without optimization, and notch thickness values were averaged. The

average notch thickness before the optimization is 587 microns with a standard deviation of 72.3. For parts
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built without optimization, measured values along with their average and the target dimension is given in

Figure 18(a). The average notch thickness after optimization is 476 microns with a standard deviation of

29.5. For optimized parts, measured values along with their average and the target dimension is given in315

Figure 18(b).
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Figure 18: (a) Notch thickness values for parts built without optimization. (b) Notch thickness values for optimized built parts.
Blue line is the targeted dimension, black dots are the measured notch thickness values and orange lines are the averages of the
measured values.

Figure 18 shows that the optimization not only improved the dimensional accuracy of the part and it

also reduced the variance in the data set.

7. Conclusions and Future Work

This paper presents a dynamic optimization scheme for improving the dimensional accuracy of parts built320

using continuous micro vat photopolymerization. Irradiation of light from layer image pixels is mathemati-

cally modeled and used to estimate which areas of a 3D part would be cured during an VPP process. Using

this model, the layer images are optimized with grayscaling to produce the closest possible print result to the

initial CAD drawing of the part. As a result of this optimization, the simulation result is that the number

of overcured voxels was reduced by 24.7%. Multiple built parts with and without optimization show that325

the average notch thickness without optimization is 587µm while with optimization, it drops to 476µm, a

value much closer to the desired 479µm. The optimization also reduced the standard deviation significantly,

resulting in a printing method that is both more accurate and more precise.
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Micro-scale parts are very prone to overcuring around and under overhanging features. The proposed

method allows precise dimensional tuning for micro-scale parts through independent grayscaling of each330

pixel. Energy absorbed by every pixel is closely regulated to prevent excess light exposure during the print.

The success of this micro vat photopolymerization based approach can also be utilized in larger-scale

objects if certain computational limitations are overcome. Future work includes improving the efficiency

of modeling and optimization calculations and the addition of more features from the VPP process to our

methodology.335

Appendix A. Simple Example

In Section 2, a mathematical solidification model for the VPP process was presented. In Section 3, this

model was used to improve the dimensional accuracy of the printing process by use of linear programming

optimization techniques. The VPP process utilizes multiple layer images represented in terms of matrices

in the formulations. Typically, these matrices and vectors are too big to present on paper, even for a simple340

part.

In order to give an outline of how the optimization problem is formulated and the energy and grayscale

values are affected during the optimization, an example of a 5-pixel diameter cylinder with a height of 5

layers will be provided here.

The object is broken into voxels as seen in Figure A.19(a). The cylinder 5 layers in height and 5 pixels345

in diameter is assumed to be contained in a volumetric box of 7 × 7 × 5 voxels. Since the cylinder has a

uniform cross-sectional area, the layer image is the same for all layers. It is important to note that although

the cylinder has a perfectly circular cross-section, the layer image shown in the projector will be imperfect

with a pixelated version. The more pixels used, the better the quality of the image. Figure A.19(b) shows

the target voxels and the boundary voxels used for a layer during optimization.350
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Figure A.19: (a) Simple cylinder example. (b) Boundary and target voxels in a layer. B are boundary voxels and T are target
voxels.

Initially, the object is sliced into layers using ”.png” images with white pixels where the part needs to

be cured and black where it should not. Every initial image of this object is the same; see the left column

of Figure A.20. Starting from the initial layer images, the A matrix is formulated as explained in section

3. The matrix A is 105 × 105, and it is too large to present fully here. Instead, one row of the matrix A,

corresponding to the voxel at (3, 3, 3) is given in Eq.(A.1). Calculation of this row can be followed from355

Eq.(5) and Eq.(14).

A(3,3,3) = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

... 0 0 0 0 0 0 − 0.985 − 0.988 − 0.985 − 0.985 − 0.994 − 0.997 − 0.994 ...

... − 0.985 − 0.988 − 0.997 − 1 − 0.997 − 0.988 − 0.985 − 0.994 − 0.997 ...

... − 0.994 − 0.985 − 0.985 − 0.988 − 0.985 − 0.967 − 0.970 − 0.967 ...

... − 0.967 − 0.976 − 0.979 − 0.976 − 0.967 − 0.970 − 0.979 − 0.981 ...

... − 0.979 − 0.970 − 0.967 − 0.976 − 0.979 − 0.976 − 0.967 − 0.967 ...

... − 0.970 − 0.967 − 0.950 − 0.952 − 0.950 − 0.950 − 0.958 − 0.961 ...

... − 0.958 − 0.950 − 0.952 − 0.961 − 0.964 − 0.961 − 0.952 − 0.950 ...

... − 0.958 − 0.961 − 0.958 − 0.950 − 0.950 − 0.952 − 0.950 ]1×105

(A.1)

The zeros in the row correspond to the source pixels in the layers below the chosen voxel. These sources
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do not affect the energy absorbed by the voxel; therefore, their values are set to zero. The only source with

the value −1 is the source pixel that is coincident with the chosen voxel. Afterwards b, ub, lb and E(a)

are calculated. b and E(a) are calculated through Eq.(15) and Eq.(11) respectively. For this example, the360

critical curing energy Ec was taken to be 170. ub and lb are the same in all versions, as values of a are

between 0 and 3.

b =



−170

−170

...

−170

−170


105×1

(A.2)

The optimization is performed, and the a vector containing the a values for all source pixels is obtained.

This vector is transformed into the g vector using Eq.(10) and new images are constructed by mapping the

values of the g vector back to the corresponding pixels. The result of this process is given on the right365

column of Figure A.20.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 255 255 255 0 0 0 0 255 255 255 0 0

0 255 255 255 255 255 0 0 255 255 255 255 255 0

0 255 255 255 255 255 0 0 255 255 255 255 255 0

0 255 255 255 255 255 0 0 255 255 255 255 255 0

0 0 255 255 255 0 0 0 0 255 255 255 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 255 255 255 0 0 0 0 193 255 193 0 0

0 255 255 255 255 255 0 0 193 255 255 255 193 0

0 255 255 255 255 255 0 0 255 255 255 255 255 0

0 255 255 255 255 255 0 0 193 255 255 255 193 0

0 0 255 255 255 0 0 0 0 193 255 193 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 255 255 255 0 0 0 0 255 255 255 0 0

0 255 255 255 255 255 0 0 255 255 255 255 255 0

0 255 255 255 255 255 0 0 255 255 255 255 255 0

0 255 255 255 255 255 0 0 255 255 255 255 255 0
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0 255 255 255 255 255 0 0 0 0 41 0 0 0
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0 0 255 255 255 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
st
 Layer 

(Top)

2
nd

 Layer

3
rd

 Layer

4
th

 Layer

5
th

 Layer

(Bottom)

Before After

Figure A.20: Light value of each projected pixel, before and after optimization.

Notice that the optimization algorithm greys parts of the 2nd Layer, but the 1st and 3rd Layers receive

full exposure. In the proposed optimization procedure, the few layers at the top of any part needs full

exposure as the light from a few layers is not enough to cure the desired voxels. This dictates how the target

voxels are selected. Voxels that need to be cured are selected as targets if they receive more energy than Ec370

in the simulation without optimization. Since the underexposed voxels are not designated as targets, the

optimization algorithm can occasionally decrease the light at top layers slightly even though ideally it should

be full exposure for the best overall result. Therefore, the topmost layers of a part may not be accurate.

This issue will be addressed in future work.

In Figure A.21, the energy absorbed by the voxels in the third layer before and after optimization is375

given. The third layer was chosen because the top layers usually cannot get enough energy to go above the

critical energy, and the lower layers produce very similar results and do not add anything of significance to

the discussion. Following the color pattern from Figure A.19, voxels marked yellow go above the critical

energy and are thus cured. White voxels absorb less energy than critical energy and remain uncured. Having
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voxels that should not be cured marked yellow means an over-curing problem in those voxels.380

174 177 178 179 178 177 174 164 166 168 168 168 166 164

177 180 181 182 181 180 177 166 169 170 170 170 169 166

178 181 183 183 183 181 178 168 170 172 172 172 170 168

179 182 183 184 183 182 179 168 170 172 173 172 170 168

178 181 183 183 183 181 178 168 170 172 172 172 170 168

177 180 181 182 181 180 177 166 169 170 170 170 169 166

174 177 178 179 178 177 174 164 166 168 168 168 166 164

3
rd

 Layer

Figure A.21: Energy absorbed by each voxel in the third layer, before and after optimization.

The simulation suggests that using the layer images produced by the optimization algorithm fixes the

overcuring issue and ensures the curing of only the intended voxels.

Appendix B. Sources, Targets and Segmentation

Ideally, all pixels would be sources, and all voxels of the CAD part would be targets. However, each

source adds an extra variable to be optimized. Increasing the number of sources or targets enlarges the385

matrices put into the optimization algorithm. If these matrices become too large, the computational power

required becomes immense.

The memory capacity of the computer performing the optimization can be a serious bottleneck in terms

of the number of variables that can be optimized at once. Depending on the size of the part, it may not

be possible to optimize all pixels and voxels at once. This makes the choice of sources and targets crucial.390

Since over-curing is a more prevalent issue than under-curing, only the lit pixels in the layer images were

chosen as sources. The coincident voxels that absorb more energy than the critical threshold with unedited

images are selected as the targets.

If there are still too many variables after the choice of targets and sources, the part is divided into small

segments to be optimizable. Steps followed in how a part is divided into segments are shown in the flowchart395

in Figure B.22.
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Can the entire part be
optimized at once? Optimize

Divide part into one voxel thick shells
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No

Can one shell be 

optimized at once?

Optimize shell by shell,
starting from the
outermost shell

Divide each shell into sections of
multiple layers

Determine maximum # of layers that
can be optimized at once through 


trial and error

Optimize each shell section by section

Figure B.22: Segmentation flowchart.

The part is first split into shells. These shells fit into each other and make up the 3D part, much like

the layers of an onion. Those shells are then split into sections of multiple layers to lower the computation

load. In the case of the DNA part example, 30 layers were used. The 30 layer sections have 50% overlap,

meaning every single layer is part of two adjacent segments. (Section1: layers 1-30, Section 2: layers 16-45400

...) Increasing the overlap of the sections result in a more uniform optimization result. This overlap decreases

the error caused by the segmentation by 18%.

It is also important to check the polymer spectroscopy during the troubleshooting of problems such as

undercuring or overcuring. Figure B.23 shows the spectroscopy results for the polymer resin used in our

experiments.405
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Figure B.23: 200-500 nm spectroscopy results for the polymer resin. The small hill around 400nm allows for the curing of the
resin in the visible light range.
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Appendix C. Simple part with overhang

A simple part with a 45◦ overhang was simulated and printed first without any alterations, and then

again after the layer images had been optimized. The CAD drawing of The part is given in Figure C.24(a).

Figure C.24(b) shows the improvement caused by the optimization by comparing the simulations with and

without the optimization. Red areas depict the areas that would have been overcured if the optimization410

had not been performed.

Figure C.24: (a) Side and isometric CAD view of a simple part with an overhang. (b) Simulated improvement on the print
accuracy. Green part is the simulated result after optimization, red area is the predicted overcuring without the optimization.

The print results are presented and compared with the simulated parts in Figure C.25.

28



Figure C.25: (a) Print simulation (left) and the print result (right) of the part without optimization. (b) Print simulation (left)
and the print result (right) of the part with optimization. The red outline is the perimeter of the cad drawing and represent
the intended profile for this print. The horizontal lines seen on the optimized simulation are a result of the segmentation. They
do not have a considerable effect on the final print, evidenced by their absence on the printed part.

Along with the model simulation being accurate in estimating how a print will turn out, the optimization

has improved the part accuracy significantly. The overcuring under the overhang and on the left side of the

part was reduced. Sizes of the overcured areas under the slope for the simulations and the printed parts are415

given in table C.2.

Overcured area under the slope (mm2) Simulation Print
Before Optimization 19.1× 10−2 23.5× 10−2

After Optimization 4.5× 10−2 5.6× 10−2

Table C.2: Area under the slope that is overcured with respect to the intended CAD of the part.
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