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Abstract
We propose an algorithm to generate inner and outer polyhedral approximations to the
upper image of a bounded convex vector optimization problem. It is an outer approx-
imation algorithm and is based on solving norm-minimizing scalarizations. Unlike
Pascoletti–Serafini scalarization used in the literature for similar purposes, it does not
involve a direction parameter. Therefore, the algorithm is free of direction-biasedness.
We also propose a modification of the algorithm by introducing a suitable compact
subset of the upper image, which helps in proving for the first time the finiteness of
an algorithm for convex vector optimization. The computational performance of the
algorithms is illustrated using some of the benchmark test problems, which shows
promising results in comparison to a similar algorithm that is based on Pascoletti–
Serafini scalarization.
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1 Introduction

In multiobjective optimization, the decision-maker is supposed to consider multiple
objective functions simultaneously. In general, these functions conflict in the sense
that improving one objective leads to deteriorating some of the others. Consequently,
there does not exist a feasible solution which can generate optimal values for all the
objectives. Rather, there exists a subset of feasible solutions, called efficient solutions,
which map to the so-called nondominated points in the objective space. The image of
a feasible solution is said to be nondominated if none of the objective functions can
be improved in value without degrading some of the other objective values.

In vector optimization, the objective function takes values again in a vector space,
namely, the objective space. However, rather than comparing the objective function
values componentwise as in the multiobjective case, a more general order relation,
which is induced by an ordering cone, is used for this purpose. Clearly, multiobjective
optimization can be seen as a special case where the ordering cone is the positive
orthant. Assuming that the vector optimization problem (VOP) is a minimization
problem with respect to an ordering cone C , the concept of nondominated point for
a multiobjective optimization problem (MOP) is generalized to minimal point with
respect to C in the vector optimization case.

A special class of vector optimization problems is the linear VOPs, where the
objective function is linear and the feasible region is a polyhedron. There is rich
literature available discussing variousmethods and algorithms for solving linearVOPs.
Theydealwith the problembygenerating either efficient solutions in the decision space
[16, 41] or nondominated points in the objective space [4, 28, 32]. The reader is referred
to the books by Ehrgott [14] and by Jahn [23] for the details of these approaches.

In 1998, Benson proposed an outer approximation algorithm for linearMOPswhich
generates the set of all nondominated points in the objective space rather than the set
of all efficient points in the decision space [4]. Later, this algorithm is extended to
solve linear VOPs, see [28]. The main principle of the algorithm is that if one adds the
ordering cone to the image of the feasible set, then the resulting set, called the upper
image, contains all nondominated points in its boundary. The algorithm starts with a
set containing the upper image and iterates by updating the outer approximating set
until it is equal to the upper image.

For nonlinear MOPs/VOPs, there is a further subdivision, namely convex and non-
convex problems. Note that the methods described for linear MOPs/VOPs may not be
directly applicable to these classes as, in general, it is not possible to generate the set
of all nondominated/minimal points in the objective space. Therefore, approximation
algorithms, which approximate the set of all minimal points in the objective space,
are widely explored in the literature, refer for example to the survey paper by Ruzika
and Wiecek [42] for the multiobjective case.

For bounded convex vector optimization problems (CVOPs), see Sect. 3 for precise
definitions, there are several outer approximation algorithms in the literature that work
on the objective space. In [13], the algorithm in [4] is extended for the case of convex
MOPs. Another extension of Benson’s algorithm for the vector optimization case is
proposed in [29], which is a simplification and generalization of the algorithm in [13].
This algorithm has already been used for solving mixed-integer convex multiobjective
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optimization problems [10], as well as problems in stochastic optimization [2] and
finance [18, 40]. Recently, in [11], a modification of the algorithm in [29] is proposed.
The main idea of these algorithms is to generate a sequence of better approximating
polyhedral supersets of the upper image until the approximation is sufficiently fine.
This is done by sequentially solving some scalarization models in which the original
CVOP is converted into an optimization problem with a single objective. There are
many scalarizationmethods available in the literature forMOPs/VOPs, see for instance
the book by Eichfelder [15] as well as the recent papers [7, 24, 27].

In particular, in each iteration of the CVOP algorithms proposed in [11, 13, 29],
a Pascoletti–Serafini scalarization [38], which requires a reference point v and a
direction vector d in the objective space as its parameters, is solved. For the algorithms
in [13] and [29], the reference point v is selected to be an arbitrary vertex of the current
outer approximation of the upper image. Moreover, in [13], the direction parameter
d is computed depending on the reference point v together with a fixed point in the
objective space, whereas it is fixed throughout the algorithm proposed in [29]. In [11],
a procedure to select a vertex v as well as a direction parameter d, which depends on
v and the current approximation, is proposed.

In this study, we propose an outer approximation algorithm (Algorithm 1) for
CVOPs, which solves a norm-minimizing scalarization in each iteration. Different
from Pascoletti–Serafini scalarization, it does not require a direction parameter; hence,
one does not need to fix a direction parameter as in [29], or a point in the objective
space in order to compute the direction parameter as in [13]. Moreover, when termi-
nates, the algorithm provides the Hausdorff distance between the upper image and its
outer approximation, directly.

The scalarizationmethods based on a norm have been frequently used in the context
of MOPs, see for instance [15]. These methods generally depend on the ideal point
at which all objectives of the MOP attain its optimal value, simultaneously. Since the
ideal point is not feasible in general, the idea is to find the minimum distance from the
ideal point to the image of the feasible region. One of the well-known methods is the
weighted compromise programming problem, which utilizes the �p norm with p ≥ 1,
see for instance [26, 43]. The most commonly used special case is also known as
the weighted Chebyshev scalarization, where the underlying norm is taken as the �∞
norm, see for instance [12, 34, 42]. The weight vector in these scalarization problems
are taken such that each component is positive. If the weight vector is taken as the
vector of ones, then they are simply called compromise programming (p ≥ 1) and
Chebyshev scalarization (p = +∞), respectively.

The scalarization method that is solved in the proposed algorithm works with any
norm defined on the objective space. It simply computes the distance, with respect to a
fixed norm, from a given reference point in the objective space to the upper image. This
is similar to compromise programming, however it has further advantages compared
to it:

• The reference point used in the norm-minimizing scalarization is not necessarily
the ideal point, which is not well-defined for a VOP. Indeed, within the proposed
algorithm, we solve it for the vertices of the outer approximation of the upper
image. In weighted compromise programming, finding various nondominated
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points is done by varying the (nonnegative) weight parameters. It is not straightfor-
ward to generalize weighted compromise programming for a vector optimization
setting, whereas this can be done directly with the proposed norm-minimizing
scalarization.

We discuss some properties of the proposed scalarization under mild assumptions.
In particular, we prove that if the feasible region of the VOP is solid and compact,
then there exist an optimal solution to it as well as an optimal solution to its Lagrange
dual. Moreover, strong duality holds between these solutions. We further prove that
using a dual optimal solution, one can generate a supporting halfspace to the upper
image. Note that for these results, the ordering cone is assumed to be a closed convex
cone that is solid, pointed and nontrivial. However, different from the similar results
regarding Pascoletti–Serafini scalarization, see for instance [29], the ordering cone is
not necessarily polyhedral.

The main idea of Algorithm 1 is similar to the Benson-type outer approximation
algorithms; iteratively, it finds better outer approximations to the upper image and
stops when the approximation is sufficiently fine. As already mentioned, it solves
the proposed norm-minimizing scalarization model instead of Pascoletti–Serafini
scalarization. Hence, it is free of direction-biasedness. Using the properties of the
norm-minimizing scalarization, we prove that the algorithm works correctly, that is,
given an approximation error ε > 0, when terminates, the algorithm returns an outer
approximation to the upper image such that the Hausdorff distance between the two
is less than ε.

We also propose a modification of Algorithm 1, namely, Algorithm 2. In addition
to its correctness, we prove that if the feasible region is compact, then for a given
approximation error ε > 0, Algorithm 2 stops after finitely many iterations. Note that
the finiteness of outer approximation algorithms for linear VOPs are known, see for
instance [28]. Also, under compact feasible region assumption, the finiteness of an
outer approximation for nonlinear (even for nonconvex) MOPs, proposed in [37], is
known.However, to the best of our knowledge,Algorithm2 is the firstCVOPalgorithm
with a guarantee for finiteness. Compared to the cases of linear VOPs and nonconvex
MOPs, proving the finiteness of Algorithm 2 has the following new challenges which
we address by our technical analysis:

• Since the upper image is polyhedral for a linear VOP, the algorithms find exact
solutions, and finiteness follows by the polyhedrality of the upper image. On the
other hand, for a CVOP, we look for approximate solutions of a convex and gener-
ally nonpolyhedral upper image. Hence, the proof of finiteness requires completely
different arguments.

• The algorithm for nonconvex MOPs in [37] constructs an outer approximation
for the upper image by discarding sets of the form {v} − intRq

+, where v is a
point on the upper image (see Sect. 2 for precise definitions). In this case, the
proof of finiteness relies on a hypervolume argument for certain small hypercubes
generated by the outer approximation. In the current work, we deal with CVOPs
with general ordering cones and our algorithms construct an outer approximation
by intersecting certain supporting halfspaces of the upper image (instead of dis-
carding “point minus cone” type sets). To prove the finiteness of Algorithm 2, we
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propose a novel hypervolume argument which exploits the relationship between
these halfspaces and certain subsets of small norm balls (see Lemma 7.1). Another
important challenge in using supporting halfspaces is to guarantee that the vertices
of the outer approximations, which are the reference points for the scalarization
models, as well as the minimal points of the upper image found by solving these
scalarizations throughout the algorithm are within a compact set. Note that this is
naturally the case in [37] by the structure of their outer approximations. For our
proposed algorithm,we construct sufficiently large compact sets S and S2 such that
the vertices and the corresponding minimal points of the upper image are within
S and S2, respectively (see Lemmas 6.3, 7.2 and Remark 6.4).

The rest of the paper is organized as follows. In Sect. 2, we introduce the notation
of the paper and recall some well-known concepts and results in convex analysis.
In Sect. 3, we present the setting for CVOP, discuss an approximate solution con-
cept from the literature. This is followed by a detailed treatment of norm-minimizing
scalarizations in Sect. 4, including some duality results as well as geometric properties
of optimal solutions. Sections 5 and 6 are devoted to Algorithms 1 and 2, respectively,
where we prove their correctness. The theoretical analysis of Algorithm 2 continues
in Sect. 7, which concludes with the proof of finiteness for this algorithm. We pro-
vide several examples and discuss the computational performance of the proposed
algorithms on these examples in Sect. 8. We conclude the paper in Sect. 9.

2 Preliminaries

In this section, we describe the notations and definitions whichwill be used throughout
the paper. Let q ∈ N := {1, 2, . . .}. We denote by R

q the q-dimensional Euclidean
space. When q = 1, we have the real line R := R

1, and the extended real line
R := R∪{+∞}∪{−∞}. On R

q , we fix an arbitrary norm ‖·‖, and we denote its dual
norm by ‖·‖∗. Wewill sometimes assume that ‖·‖ = ‖·‖p is the �p-norm onR

q , where

p ∈ [1,+∞]. For y ∈ R
q , the �p-norm of y is defined by ‖y‖p := (

∑q
i=1|yi |p)

1
p

when p ∈ [1,+∞), and by ‖y‖p := maxi∈{1,...,q}|yi |when p = +∞. In this case, the
dual norm is ‖·‖∗ = ‖·‖p′ , where p′ ∈ [1,+∞] is the conjugate exponent of p via the
relation 1

p + 1
p′ = 1. For ε > 0, we define the closed ball Bε := {z ∈ R

q | ‖z‖ ≤ ε}
centered at the origin.

Let f : R
q → R be a convex function and y0 ∈ R

q with f (y0) ∈ R. The set
∂ f (y0) := {z ∈ R

q | ∀y ∈ R
q : f (y) ≥ f (y0) + zT(y − y0)} is called the subdiffer-

ential of f at y0.
If A, B ⊆ R

q are nonempty sets and λ ∈ R, then we define the Minkowski
operations A + B := {y1 + y2 | y1 ∈ A, y2 ∈ B}, λA := {λy | y ∈ A}, A − B :=
A + (−1)B. For a set A ⊆ R

q , we denote by int A, cl A, bd A, conv A, cone A, the
interior, closure, boundary, convex hull, conic hull of A, respectively. A recession
direction of A is a vector k ∈ R

q\{0} satisfying A + cone{k} ⊆ A. The set of all
recession directions of A, recc A = {k ∈ R

q | ∀a ∈ A,∀λ ≥ 0 : a + λk ∈ A}, is the
recession cone of A.
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Let C ⊆ R
q be a convex cone. The set C+ := {z ∈ R

q | ∀y ∈ C : zTy ≥ 0}
is a closed convex cone, and it is called the dual cone of C . The cone C is said
to be solid if intC = ∅, pointed if it does not contain any lines, and nontrivial if
{0} � C � R

q . If C is a solid pointed nontrivial cone, then the relation ≤C on R
q

defined by y1 ≤C y2 ⇐⇒ y2 − y1 ∈ C for every y1, y2 ∈ R
q is a partial order. Let

X ⊆ R
n be a convex set, where n ∈ N. A function � : X → R

q is said to be C-convex
if �(λx1 + (1−λ)x2) ≤C λ�(x1)+ (1−λ)�(x2) for every x1, x2 ∈ X , λ ∈ [0, 1]. In
this case, the function x �→ wT�(x) on X is convex for every w ∈ C+. Let X ⊆ X .
Then, the set �(X ) := {�(x) | x ∈ X } is the image of X under �. The function
IX : R

q → [0,+∞] defined by IX (x) = 0 whenever x ∈ X and by IX (x) = +∞
whenever x ∈ R

q\X is called the indicator function of X .
Let A ⊆ R

q be a nonempty set. A point y ∈ A is called a C-minimal element
of A if ({y} − C\{0}) ∩ A = ∅. If the cone C is solid, then y is called a weakly
C-minimal element of A if ({y} − intC) ∩ A = ∅. We denote by MinC (A) the set
of all C-minimal elements of A, and by wMinC (A) the set of all weakly C-minimal
elements of A whenever C is solid.

For each z ∈ R
q , we define d(z, A) := inf y∈A‖z− y‖. Let B ⊆ R

q be a nonempty
set. We denote by δH (A, B) the Hausdorff distance between A, B. It is well-known
that [9, Proposition 3.2]

δH (A, B)=max

{

sup
y∈A

d(y, B), sup
z∈B

d(z, A)

}

= inf {ε > 0 | A ⊆ B + Bε, B ⊆ A + Bε} .

(2.1)

Suppose that A is a convex set and let y ∈ A, w ∈ R
q\{0}. If wTy = inf z∈A wTz,

then the set {z ∈ R
q | wTz = wTy} is called a supporting hyperplane of A at y and

the set {z ∈ R
q | wTz ≥ wTy} ⊇ A is called a supporting halfspace of A at y.

Suppose that A is a polyhedral closed convex set. The representation of A as the
intersection of finitely many halfspaces, that is, as A = ⋂r

i=1{y ∈ R
q | (wi )Ty ≥ ai }

for some r ∈ N,wi ∈ R
q\{0} andai ∈ R, i ∈ {1, . . . , r}, is called an H -representation

of A. Alternatively, A is uniquely determined by a finite set {y1, . . . , ys} ⊆ R
q of

vertices and a finite set {d1, . . . , dt } ⊆ R
q of directions via A = conv{y1, . . . , ys} +

conv cone{d1, . . . , dt }, which is called a V -representation of A.

3 Convex Vector Optimization

We consider a convex vector optimization problem (CVOP) of the form

minimize �(x) with respect to ≤C subject to x ∈ X , (P)

where C ⊆ R
q is the ordering cone of the problem, � : X → R

q is the vector-valued
objective function defined on a convex set X ⊆ R

n , and X ⊆ X is the feasible region.
The conditions we impose on C, �,X are stated in the next assumption.
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Assumption 3.1 The following statements hold.

(a) C is a closed convex cone that is also solid, pointed, and nontrivial.
(b) � is a C-convex and continuous function.
(c) X is a compact convex set with intX = ∅.

The set P := cl(�(X ) +C) is called the upper image of (P). Clearly, P is a closed
convex set with P = P + C .

Remark 3.2 Note that, under Assumption 3.1, �(X ) is a compact set as the image of
a compact set under a continuous function. Then, �(X ) + C is a closed set as the
algebraic sum of a compact set and a closed set [1, Lemma 5.2]. Hence, we have
P = �(X ) + C .

We recall the notion of boundedness for CVOP next.

Definition 3.3 [29, Definition 3.1] (P) is called bounded if P ⊆ {y} + C for some
y ∈ R

q .

In view of Remark 3.2, it follows that (P) is bounded under Assumption 3.1.
The next definition recalls the relevant solution concepts for CVOP.

Definition 3.4 [21, Definition 7.1] A point x̄ ∈ X is said to be a (weak) minimizer
for (P) if �(x̄) is a (weakly) C-minimal element of �(X ). A nonempty set X̄ ⊆ X is
called an infimizer of (P) if cl conv(�(X̄ ) + C) = P . An infimizer X̄ of (P) is called
a (weak) solution of (P) if it consists of only (weak) minimizers.

In CVOP, it may be difficult or impossible to compute a solution in the sense of
Definition 3.4, in general. Hence, we consider the following notion of approximate
solution.

Definition 3.5 [11, Definition 3.3] Suppose that (P) is bounded and let ε > 0. Let
X̄ ⊆ X be a nonempty finite set and define P̄ := conv�(X̄ ) +C . The set X̄ is called
a finite ε-infimizer of (P) if P̄ +Bε ⊇ P . The set X̄ is called a finite (weak) ε-solution
of (P) if it is an ε-infimizer that consists of only (weak) minimizers.

For a finite (weak) ε-solution X̄ , it is immediate from Definition 3.5 that

P̄ + Bε ⊇ P ⊇ P̄. (3.1)

Hence, X̄ provides an inner and an outer approximation for the upper image P .

Remark 3.6 In [11, Definition 3.3] the statement of the definition is slightly different.
Instead of P̄ + Bε ⊇ P , the requirement is given as δH (P, P̄) ≤ ε. However, both
yield equivalent definitions. Indeed, by (3.1), we have P ⊆ P̄ + Bε as well as P̄ ⊆
P ⊆ P + Bε . Then, δH (P, P̄) ≤ ε follows by (2.1). The converse holds similarly by
(2.1).
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Givenw ∈ C+\{0}, the following convex program is the well-knownweighted sum
scalarization of (P):

minimize wT�(x) subject to x ∈ X . (WS(w))

The following proposition is a standard result in vector optimization, it formulates
the connection between weighted sum scalarizations and weak minimizers.

Proposition 3.7 [22, Corollary 2.3] Let w ∈ C+\{0}. Then, every optimal solution of
(WS(w)) is a weak minimizer of (P).

For the notion of approximate solution in Definition 3.5, we prove an existence
result.

Proposition 3.8 Suppose that Assumption 3.1 holds. Then, there exists a solution of
(P). Moreover, for every ε > 0, there exists a finite ε-solution of (P).

Proof The existence of a solution X̄ of (P) follows by [29, Proposition 4.2]. By
[29, Proposition 4.3], for every ε > 0, there exists a finite ε-solution of (P) in the
sense of [29, Definition 3.3]. By [11, Remark 3.4], an ε-solution in the sense of
[29, Definition 3.3] is also an ε-solution in the sense of Definition 3.5. Hence, the
result follows. ��

4 Norm-Minimizing Scalarization

In this section,we describe the norm-minimizing scalarizationmodel thatwe use in our
proposed algorithm and provide some analytical results regarding this scalarization.

Let us fix an arbitrary norm ‖·‖ on R
q and a point v ∈ R

q . We consider the
norm-minimizing scalarization of (P) given by

minimize ‖z‖ subject to �(x) − z − v ≤C 0, x ∈ X , z ∈ R
q . (P(v))

Note that this is a convex program.

Remark 4.1 The optimal value of (P(v)) is equal to d(v,P), the distance of v to the
upper image P . Indeed, by Remark 3.2, we have

d(v,P) = inf
y∈P

‖v − y‖ = inf{‖z‖ | v + z ∈ P, z ∈ R
q}

= inf
{‖z‖ | v + z ∈ {�(x)} + C, x ∈ X , z ∈ R

q} (4.1)

= inf
{‖z‖ | �(x) − v − z ≤C 0, x ∈ X , z ∈ R

q} . (4.2)

In order to derive the Lagrangian dual of (P(v)), we first pass to an equivalent
formulation of (P(v)). To that end, let us define a scalar function f : X × R

q → R

and a set-valued function G : X × R
q ⇒ R

q by

f (x, z) := ‖z‖ + IX (x), G(x, z) := {�(x) − z − v}, x ∈ X , z ∈ R
q .
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Note that (P(v)) is equivalent to the following problem:

minimize f (x, z) subject to G(x, z) ∩ −C = ∅, (x, z) ∈ X × R
q . (P′(v))

To use the results from [28, Section 3.3.1] and [25, Section 8.3.2] for convex
programming with set-valued constraints, we define the Lagrangian L : X × R

q ×
R
q → R for (P′(v)) by

L(x, z, w) := f (x, z) + inf
u∈G(x,z)+C

wTu, (x, z, w) ∈ X × R
q × R

q . (4.3)

Then, the dual objective function φ : R
q → R is defined by

φ(w) := inf
x∈X ,z∈Rq

L(x, z, w), w ∈ R
q .

By the definitions of f ,G and using the fact that infc∈C wTc = −IC+(w) for every
w ∈ R

q , we obtain

φ(w) =
{
inf x∈X ,z∈Rq

(‖z‖ + wT(�(x) − z − v)
)

if w ∈ C+,

−∞ otherwise.

Finally, the dual problem of (P′(v)) is formulated as

maximize φ(w) subject to w ∈ R
q . (D(v))

Then, the optimal value of (D(v)) is given by

sup
w∈Rq

φ(w) = sup
w∈C+

(

inf
x∈X

wT�(x) − sup
z∈Rq

(
wTz − ‖z‖

)
− wTv

)

= sup

{

inf
x∈X

wT�(x) − wTv | ‖w‖∗ ≤ 1, w ∈ C+
}

(4.4)

since the conjugate function of ‖·‖ is the indicator function of the unit ball of the dual
norm ‖·‖∗; see, for instance, [6, Example 3.26].

The next proposition shows the strong duality between (P(v)) and (D(v)).

Proposition 4.2 Under Assumption 3.1, for every v ∈ R
q , there exist optimal solutions

(xv, zv) and wv of problems (P(v)) and (D(v)), respectively, and the optimal values
coincide.

Proof Let us fix some x̃ ∈ X and define z̃ := �(x̃) − v. Clearly, (x̃, z̃) is feasible for
(P(v)). We consider the following problem with compact feasible region in R

n+q :

minimize ‖z‖ subject to �(x) − z − v ≤C 0, ‖z‖ ≤ ‖z̃‖, x ∈ X , z ∈ R
q . (4.5)

An optimal solution (x∗, z∗) for the problem in (4.5) exists by Weierstrass Theorem
and (x∗, z∗) is also optimal for (P(v)). To show the existence of an optimal solution
of (D(v)), we show that the following constraint qualification in [25, 28] holds for
(P(v)):
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G(dom f ) ∩ − intC = ∅, (4.6)

where dom f := {(x, z) ∈ X ×R
q | f (x, z) < +∞}. Since intX = ∅ and intC = ∅

by Assumption 3.1, we may fix x0 ∈ intX , y0 ∈ �(x0) + intC and define z0 :=
y0 − v. We have v + z0 − �(x0) ∈ intC , equivalently, G(x0, z0) ⊆ − intC . As
(x0, z0) ∈ dom f = X × R

q , it follows that (4.6) holds.
Moreover, the set-valued map G : X × R

q ⇒ R
q is C-convex [25, Section 8.3.2],

that is,

λG(x1, z) + (1 − λ)G(x2, z) ⊆ G(λ(x1, z) + (1 − λ)(x2, z)) + C (4.7)

for every x1, x2 ∈ X , z ∈ R
q , λ ∈ [0, 1]. Indeed, by the C-convexity of � : X → R

q ,
we have

λ(�(x1) − z − v) + (1 − λ)(�(x2) − z − v) ∈ {�(λx1 + (1 − λ)x2) − z − v} + C

for every x1, x2 ∈ X , z ∈ R
q , and λ ∈ [0, 1], from which (4.7) follows. Finally, since

f : X × R
q → R is also convex, by [28, Theorem 3.19], we have strong duality and

dual attainment. ��
Notation 4.3 From now on, we fix an arbitrary optimal solution (xv, zv) of (P(v))
and an arbitrary optimal solution wv of (D(v)). Their existence is guaranteed by
Proposition 4.2.

Remark 4.4 Note that (xv, zv, wv) is a saddle point of the Lagrangian for (P(v)) given
by (4.3); see [6, Section 5.4.2]. Hence, we have

sup
w∈Rq

L(xv, zv, w) = L(xv, zv, wv) = inf
x∈X ,z∈Rq

L(x, z, wv).

The second equality yields that (wv)T�(xv) = inf x∈X (wv)T�(x). Hence, xv is an
optimal solution of (WS(w)) for w = wv .

In the next lemma, we characterize the cases where zv = 0.

Lemma 4.5 Suppose that Assumption 3.1 holds. The following statements hold. (a) If
v /∈ P , then zv = 0 and wv = 0. (b) If v ∈ bdP , then zv = 0. (c) If v ∈ intP , then
zv = 0 and wv = 0. In particular, v ∈ P if and only if zv = 0.

Proof To prove (a), suppose that v /∈ P . To get a contradiction, we assume that
zv = 0. Since (xv, zv) is feasible for (P(v)), we have v = v + zv ∈ {�(xv)}+C ⊆ P ,
contradicting the supposition. Hence, zv = 0. Moreover, if we had wv = 0, then the
optimal value of (D(v)) would be zero and strong duality would imply that ‖zv‖ = 0,
that is, zv = 0. Therefore, we must have wv = 0.

To prove (b) and (c), suppose that v ∈ P . By Remark 3.2, there exists x ∈ X
such that �(x) ≤C v. Then, (x, 0) is feasible for (P(v)). Hence, the optimal value
of (P(v)) is zero so that ‖zv‖ = 0, that is, zv = 0. Suppose that we further have
v ∈ intP . Let δ ∈ intC be such that v − δ ∈ P . By Remark 3.2, there exists
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xδ ∈ X such that �(xδ) ≤C v − δ, which implies (wv)T�(xδ) ≤ (wv)Tv − (wv)Tδ.
Moreover, by strong duality, infx∈X (wv)T(�(x) − v) = 0 holds. Combining these
gives 0 = infx∈X (wv)T(�(x) − v) ≤ (wv)T(�(xδ) − v) ≤ −(wv)Tδ ≤ 0 so that
(wv)Tδ = 0. As δ ∈ intC and wv ∈ C+, we must have wv = 0. ��

The next proposition shows that solving (P(v)) when v /∈ intP yields a weak
minimizer for problem (P).

Proposition 4.6 Suppose that Assumption 3.1 holds. If v /∈ intP , then xv is a weak
minimizer of (P), and yv := v + zv ∈ wMinC (P).

Proof As X is nonempty and compact, we have P = ∅ and P = R
q . By [28, Defi-

nition 1.45 and Corollary 1.48 (iv)], we have wMinC (P) = bdP . First, suppose that
v ∈ bdP . Then, zv = 0 by Lemma 4.5. Together with primal feasibility, this implies
�(xv) ≤C v. As v ∈ wMinC (P), by the definition of weakly C-minimal element, we
have �(xv) ∈ wMinC (P). Hence, xv is a weak minimizer of (P) in this case. Next,
suppose that v /∈ P . Then, wv = 0 by Lemma 4.5. By Remark 4.4, xv is an optimal
solution of (WS(w)) for w = wv ∈ C+\{0}. Hence, by Proposition 3.7, xv is a weak
minimizer of (P).

Since (xv, zv) is feasible for (P(v)), yv ∈ P holds. To get a contradiction, assume
that yv /∈ wMinC (P); hence, yv = v + zv ∈ intP . Then, there exists ε > 0 such that
v + zv − ε zv

‖zv‖ ∈ P , which implies the existence of x̄ ∈ X with v + zv − ε zv
‖zv‖ ∈

{�(x̄)} + C . Let z̄ := (‖zv‖ − ε) zv
‖zv‖ . Then, (x̄, z̄) is feasible for (P(v)). This is a

contradiction as ‖z̄‖ < ‖zv‖. ��
The following result shows that a supporting hyperplane of P at yv = v + zv can

be found by using a dual optimal solution wv .

Proposition 4.7 Suppose that Assumption 3.1 holds and wv = 0. Then, the halfspace

H = {y ∈ R
q | (wv)Ty ≥ (wv)T�(xv)}

contains the upper image P . Moreover, bdH is a supporting hyperplane of P both at
�(xv) and yv = v + zv . In particular, (wv)T�(xv) = (wv)Tyv .

Proof We clearly have �(xv) ∈ bdP ∩ H and yv ∈ P ∩ H. Let y ∈ P be arbitrary
and x̄ ∈ X be such that �(x̄) ≤C y. Consider the problems (P(y)) and (D(y)).
Clearly, (x̄, 0) is feasible for (P(y)). Moreover, the optimal solution wv of (D(v))
is feasible for (D(y)). Using weak duality for (P(y)) and (D(y)), we obtain 0 ≥
infx∈X (wv)T�(x)− (wv)Ty. Moreover, from strong duality for (P(v)) and (D(v)), we
have ‖zv‖ = infx∈X (wv)T�(x) − (wv)Tv. Hence,

(wv)Ty ≥ inf
x∈X

(wv)T�(x) = ‖zv‖ + (wv)Tv.

Note that ‖zv‖ ≥ (wv)Tzv holds as ‖wv‖∗ ≤ 1 by dual feasibility. Then, we obtain
(wv)Ty ≥ (wv)Tyv . In particular, we have (wv)T�(xv) ≥ (wv)Tyv as �(xv) ∈ P .
On the other hand, since �(xv) ≤C yv and wv ∈ C+, we also have (wv)T�(xv) ≤
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(wv)Tyv . The equality (wv)Tyv = (wv)T�(xv) completes the proof as it implies y ∈ H
(hence P ⊆ H) as well as yv ∈ bdH. ��

Proposition 4.7 provides a method to generate a supporting halfspace ofP at �(xv)

in which one uses an arbitrary dual optimal solution wv . The next result shows that if
the norm in (P(v)) is taken as the �p-norm for some p ∈ [1,+∞), e.g., the Euclidean
norm, then it is possible to generate a supporting halfspace to P at �(xv) using zv

instead of wv .

Corollary 4.8 Suppose that Assumption 3.1 holds and ‖·‖ = ‖·‖p for some p ∈
[1,+∞). Assume that v /∈ P . Then, the halfspace

H =
{
y ∈ R

q |
q∑

i=1

sgn(zvi )|zvi |p−1yi ≥
q∑

i=1

sgn(zvi )|zvi |p−1�i (x
v)

}

contains the upper image P , where sgn is the usual sign function. Moreover, bdH is
a supporting hyperplane of P both at �(xv) and yv = v + zv .

Proof Consider (P(v)) and its Lagrange dual (D(v)). Let us define g(z) := ‖z‖p −
(wv)Tz, z ∈ R

q . The arbitrarily fixed dual optimal solution wv satisfies the first-order
condition with respect to z, that is, 0 ∈ ∂g(zv). By the chain rule for subdifferentials,
this is equivalent to

wv ∈
( q∑

i=1

|zvi |p
) 1−p

p (|zv1|p−1S1 × · · · × |zvq |p−1Sq
)
, (4.8)

where, for each i ∈ {1, . . . , q}, Si denotes the subdifferential of the absolute value
function at zvi . Let i ∈ {1, . . . , q}. Note that if zvi = 0, then we have Si = {sgn(zvi )}.
On the other hand, if zvi = 0, then for each si ∈ Si , we have |zvi |p−1si = 0. Hence, by

(4.8),wv
i =

( ∑q
i=1|zvi |p

) 1−p
p |zvi |p−1 sgn(zvi ). The assertion follows fromProposition

4.7. ��

5 The Algorithm

We propose an outer approximation algorithm for finding a finite weak ε-solution to
CVOP as in Definition 3.5. The algorithm is based on solving norm minimization
scalarizations iteratively. The design of the algorithm is similar to the “Benson-
type algorithms” in the literature; see, for instance, [4, 13, 29]. It starts by finding
a polyhedral outer approximation Pout

0 of P and iterates in order to form a sequence
Pout
0 ⊇ Pout

1 ⊇ . . . ⊇ P of finer approximating sets.
Before providing the details of the algorithm, we impose a further assumption on

C .

Assumption 5.1 The ordering cone C is polyhedral.
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Assumption 5.1 implies that the dual cone C+ is polyhedral. We denote the
set of generating vectors of C+ by {w1, . . . , w J }, where J ∈ N, i.e., C+ =
conv cone{w1, . . . , w J }. Moreover, under Assumption 3.1, C+ is solid since C is
pointed. Hence, J ≥ q.

The algorithm starts by solving the weighted sum scalarizations (WS(w1)), . . .,
(WS(w J )). For each j ∈ {1, . . . , J }, the existence of an optimal solution x j ∈ X of
(WS(w j )) is guaranteed by Assumption 3.1 (b, c). The initial set of weak minimizers
is set asX0 := {x1, . . . , x J }, see Proposition 3.7.1 The set Vknown, which keeps the set
of all points v ∈ R

q for which (P(v)) and (D(v)) are solved throughout the algorithm,
is initialized as the empty set. Moreover, similar to the primal algorithm in [29], the
initial outer approximation is set as

Pout
0 :=

J⋂

j=1

{y ∈ R
q | (w j )Ty ≥ (w j )T�(x j )} (5.1)

(see lines 1–3 of Algorithm 1). It is not difficult to see that Pout
0 ⊇ P . Indeed, for each

ȳ ∈ P , there exists x̄ ∈ X such that �(x̄) ≤C ȳ. Then, for each j ∈ {1, . . . , J },
we have (w j )T�(x̄) ≤ (w j )T ȳ which implies (w j )T ȳ ≥ infx∈X (w j )T�(x) =
(w j )T�(x j ) so that ȳ ∈ Pout

0 . Moreover, as C is pointed and (P) is bounded, Pout
0

has at least one vertex, see [39, Corollary 18.5.3] (as well as [29, Section 4.1]).
At an arbitrary iteration k ≥ 0 of the algorithm, the set Vk of vertices of the current

outer approximation Pout
k is computed first (line 6).2 Then, for each v ∈ Vk , if not

done before, the norm-minimizing scalarization (P(v)) and its dual (D(v)) are solved
in order to find optimal solutions (xv ,zv) and wv , respectively (see Proposition 4.2).3

Moreover, v is added toVknown (lines 7–10). If the distance d(v,P) = ‖zv‖ is less than
or equal to the predetermined approximation error ε > 0, then xv is added to the set of
weak minimizers (see Proposition 4.6)4 and the algorithm continues by considering
the remaining vertices of Pk (line 18). Otherwise, the supporting halfspace

Hk := {y ∈ R
q | (wv)Ty ≥ (wv)T�(xv)} (5.2)

ofP at �(xv) is found (see Proposition 4.7); and the current approximation is updated
as Pout

k+1 = Pout
k ∩ Hk (line 12). The algorithm terminates if all the vertices in Vk are

within ε distance to the upper image (lines 5, 15, 16, 22).
By the design of the algorithm, for each iteration k ≥ 0, the set Pout

k ⊇ P is an
outer approximation of the upper image; similarly, we define an inner approximation
of P by

1 Alternatively, one may start with X0 = ∅ in line 2 of Algorithm 1. This would decrease |X | by J , the
number of generating vectors of C .
2 This is done by solving a vertex enumeration problem for Pout

k , that is, from the H -representation of

Pout
k , its V -representation is computed. For the computational tests of Sect. 8, we use bensolve tools for

this purpose [32].
3 Note that many solvers yield both primal and dual optimal solutions when called only for one of the
problems.
4 Since the solution xv found in line 9 of Algorithm 1 is a weak minimizer, it is also possible to update
the set of weak minimizers right after line 9 (without checking the value of ‖zv‖) and subsequently ignore
lines 17 and 18. This would yield a finite weak ε-solution with an increased cardinality.
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Algorithm 1 Outer Approximation Algorithm for (P)

1. Compute an optimal solution x j of (WS(w j )) for each j ∈ {1, . . . , J };
2. Set k = 0,X0 = {x1, . . . , x J },Vknown = ∅;
3. Store an H -representation of Pout

0 according to (5.1);
4. repeat
5. Stop ← true;
6. Compute the set Vk of vertices of Pout

k from its H -representation;
7. for v ∈ Vk do
8. if v /∈ Vknown then
9. Solve (P(v)) and (D(v)) to compute (xv, zv) and wv ;
10. Vknown ← Vknown ∪ {v};
11. if ‖zv‖ > ε then
12. Pout

k+1 = Pout
k ∩ Hk ;

13. Xk+1 = Xk ;
14. k ← k + 1;
15. Stop ← false;
16. break;
17. else
18. Xk ← Xk ∪ {xv};
19. end if
20. end if
21. end for
22. until Stop

23. return

{
Xk : A finite weak ε-solution to (P);
Pout
k : An outer approximation of P .

P in
k := conv�(Xk) + C ⊆ P. (5.3)

Now, we present two lemmas regarding these inner and outer approximations. The
first one shows that, for each k ≥ 0, the sets Pout

k and P in
k have the same recession

cone, which is the ordering cone C . With the second lemma, we see that, in order
to compute the Hausdorff distance between Pout

k and P (or P in
k ), it is sufficient to

consider the vertices Vk of Pout
k .

Lemma 5.2 Suppose that Assumptions 3.1 and 5.1 hold. Let k ≥ 0. Then,

reccPout
k = reccP in

k = reccP = C .

Proof As conv�(Xk) is a compact set, we have reccP in
k = C directly from (5.3).

Similarly, since �(X ) is compact by Assumption 3.1 and P = �(X ) +C by Remark
3.2, we have reccP = C . Since Pout

k ⊇ P , we have reccPout
k ⊇ reccP = C ; see

[33, Proposition 2.5]. In order to conclude that reccPout
k = C , it is enough to show

that reccPout
0 ⊆ C . Indeed, we have Pout

k ⊆ Pout
0 , which implies that reccPout

k ⊆
reccPout

0 . To prove reccPout
0 ⊆ C , let ȳ ∈ reccPout

0 . Then, for each y ∈ Pout
0 , we

have y + ȳ ∈ Pout
0 . By the definition of Pout

0 in (5.1), we have (w j )T(y + ȳ) ≥
(w j )T�(x j ) for each j ∈ {1, . . . , J }. In particular, as �(x j ) ∈ P ⊆ Pout

0 , we have
(w j )T(�(x j )+ ȳ) ≥ (w j )T�(x j ), hence (w j )T ȳ ≥ 0 for each j ∈ {1, . . . , J }. By the
definition of dual cone and using (C+)+ = C , we have ȳ ∈ C . The assertion holds as
ȳ ∈ reccPout

0 is arbitrary. ��
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Lemma 5.3 Suppose that Assumptions 3.1 and 5.1 hold. Let k ≥ 0. Then,

δH (Pout
k ,P in

k ) = max
v∈Vk

d(v,P in
k ) and δH (Pout

k ,P) = max
v∈Vk

d(v,P),

where Vk is the set of vertices of Pout
k .

Proof To see the first equality, note that

δH (Pout
k ,P in

k ) = max

{

sup
y∈Pout

k

d(y,P in
k ), sup

y∈P in
k

d(y,Pout
k )

}

= sup
y∈Pout

k

d(y,P in
k )

asP in
k ⊆ Pout

k . Moreover, since reccP in
k = reccPout

k by Lemma 5.2, δH (Pout
k ,P in

k ) <

∞ holds correct; see [17, Lemma 6.3.15]. Since Pout
k is a polyhedron with at least one

vertex, d(·,P in
k ) is a convex function (see, for instance, [36, Proposition 1.77]) and

δH (Pout
k ,P in

k ) < +∞, we have

sup
y∈Pout

k

d(y,P in
k ) = max

v∈Vk

d(v,P in
k )

from [30, Propositions 7, 8]. The second equality can be shown similarly by noting
that δH (Pout

k ,P) ≤ δH (Pout
k ,P in

k ) < ∞ thanks to P in
k ⊆ P ⊆ Pout

k . ��
Theorem 5.4 Under Assumptions 3.1 and 5.1, Algorithm 1 works correctly: if the
algorithm terminates, then it returns a finite weak ε-solution to (P).

Proof For every j ∈ {1, . . . , J }, an optimal solution x j of (WS(w j )) exists since
X is compact and x �→ (w j )T�(x) is continuous by the continuity of � : X → R

q

provided by Assumption 3.1. Moreover, x j is a weak minimizer of (P) by Proposition
3.7. Thus, X0 consists of weak minimizers.

Since (P) is a bounded problem and C is a pointed cone, the set Pout
0 contains

no lines. Hence, Pout
0 has at least one vertex [39, Corollary 18.5.3], that is, V0 = ∅.

Moreover, as detailed after (5.1), Pout
0 ⊇ P , hence we have v /∈ intP for any v ∈ V0.

As it will be discussed below, for k ≥ 1, Pout
k is constructed by intersecting Pout

0 with
supporting halfspaces of P . This implies Vk = ∅ and Vk ⊆ R

q\ intP hold for any
k ≥ 0.

By Proposition 4.2, optimal solutions (xv ,zv) and wv to (P(v)) and (D(v)), respec-
tively, exist. Moreover, by Proposition 4.6, xv is a weak minimizer of (P). If ‖zv‖ > 0,
then v /∈ P , hence wv = 0 by Lemma 4.5. By Proposition 4.7,Hk given by (5.2) is a
supporting halfspace of P at �(xv). Then, since Pout

0 ⊇ P and Pout
k+1 = Pout

k ∩ Hk ,
we have Pout

k ⊇ P for all k ≥ 0.

Assume that the algorithm stops after k̂ iterations. Since Xk̂ is finite and consists
of weak minimizers, to prove that Xk̂ is a finite weak ε-solution of (P) as in Definition
3.5, it is sufficient to show that P in

k̂
+ Bε ⊇ P , where P in

k̂
= conv�(Xk̂) + C .

Note that by the stopping condition, we have ‖zv‖ ≤ ε, hence xv ∈ Xk̂ for all
v ∈ Vk̂ . Moreover, since (xv, zv) is feasible for (P(v)), v + zv ∈ {�(xv)} + C ⊆
conv�(Xk̂) + C = P in

k̂
. Then, by Lemma 5.3,
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δH (Pout
k̂

,P in
k̂

) = max
v∈Vk̂

d(v,P in
k̂

) = max
v∈Vk̂

inf
u∈P in

k̂

‖u − v‖ ≤ max
v∈Vk̂

‖zv‖ ≤ ε.

Consequently, P in
k̂

+ Bε ⊇ P follows since P in
k̂

+ Bε ⊇ Pout
k̂

⊇ P . ��

6 TheModified Algorithm

In this section, we propose a modification of Algorithm 1 and prove its correctness.
Recall that, in Theorem 5.4, we show that Algorithm 1 returns a finite weak ε-solution,
provided that it terminates. The purpose of this section is to propose an algorithm
for which we can prove finiteness as well; the proof of finiteness will be presented
separately in Sect. 7.

Themain feature of the modified algorithm, Algorithm 2, is that, in each iteration, it
intersects the current outer approximation of P with a fixed halspace S and considers
only the vertices of the intersection. As we describe next, the halfspace S is formed in
such a way that P ∩ S is compact and �(X ) ⊆ P ∩ S.

Algorithm 2Modified Outer Approximation Algorithm for (P)

1. Compute an optimal solution x j of (WS(w j )) for each j ∈ {1, . . . , J };
2. Set k = 0, X̄0 = {x1, . . . , x J },Vknown = ∅;
3. Store an H -representation of Pout

0 according to (5.1);
4. Compute the set V0 of vertices of Pout

0 from its H -representation;
5. P̄out

0 = Pout
0 ;

6. for v ∈ V0 do
7. Solve (P(v)) and (D(v)) to compute (xv, zv), wv , and d(v,P);
8. Vknown ← Vknown ∪ {v};
9. if ‖zv‖ > ε then
10. P̄out

0 ← P̄out
0 ∩ {y ∈ R

q | (wv)Ty ≥ (wv)T�(xv)};
11. else
12. X̄0 ← X̄0 ∪ {xv};
13. end if
14. end for
15. Compute β by Remark 6.1 and α by (6.3);
16. Store an H -representation of S according to (6.4);
17. repeat
18. Stop ← true;
19. Compute the set V̄k of vertices of P̄out

k ∩ S from its H -representation;

20. for v ∈ V̄k do
21. Follow lines 8–20 of Algorithm 1 using P̄out

k , P̄out
k+1, X̄k , X̄k+1;

5

22. end for
23. until Stop

24. return

{
X̄k : A finite weak ε-solution to (P);
P̄out
k : An outer approximation of P .

5 More precisely, in Algorithm 1, we apply P̄out
k+1 = P̄out

k ∩ Hk in line 12, X̄k+1 = X̄k in line 13,

X̄k ← X̄ ∪ {xv} in line 18.
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For the construction of S, let us define

w̄ :=
∑J

j=1 w j

‖∑J
j=1 w j‖∗

∈ intC+, (6.1)

and fix β ∈ R such that

β ≥ sup
x∈X

w̄T�(x). (6.2)

The existence of such β is guaranteed by Assumption 3.1 since X ⊆ R
n is a compact

set and x �→ w̄T�(x) is a continuous function on X under this assumption. Note that
β is an upper bound on the optimal value of an optimization problem that may fail to
be convex, in general. We address some possible ways of computing β in Remark 6.1
below.

Remark 6.1 Note that w̄T�(x) is convex as � : X → R
q isC-convex and w̄ ∈ intC+.

Hence, supx∈X w̄T�(x) is a convex maximization problem over a compact convex
set X . Convex maximization (equivalently, concave minimization) is a well-known
problem type in optimization for which numerous algorithms are available in the
literature to find a global optimal solution, see for instance [3, 5]. In our case, it is
enough to run a single iteration of one such algorithm to find β.

In addition to w̄ and β, we fix α ∈ R such that

α > max
v∈V0

(w̄Tv − β)+ + δH (Pout
0 ,P), (6.3)

where Pout
0 is the initial outer approximation used in Algorithm 1, V0 is the set

of vertices of Pout
0 , and a+ := max{a, 0} for a ∈ R. By Lemma 5.3, we

have δH (Pout
0 ,P) = maxv∈V0 d(v,P). Moreover, for each v ∈ V0, we have

d(v,P) = ‖zv‖, where (xv, zv) is an optimal solution to (P(v)). Hence, α can be
computed once (P(v)) is solved for each v ∈ V0. Finally, using w̄, α, β, we define

S := {y ∈ R
q | w̄Ty ≤ β + α}. (6.4)

Algorithm 2 starts with an initialization phase followed by a main loop that is
similar to Algorithm 1. The initialization phase starts by constructing Pout

0 according
to (5.1) (lines 1–4 of Algorithm 2) and computing the set V0 of its vertices. For each
v ∈ V0, the problems (P(v)) and (D(v)) are solved (line 7). The common optimal
value ‖zv‖ = d(v,P) is used in the calculation of δH (Pout

0 ,P) as described above.
Moreover, these problems yield a supporting halfspace of P which is used to refine
the outer approximation (line 10) if ‖zv‖ exceeds the predetermined error ε > 0.
Otherwise, the solution of (P(v)) is added to the set of weak minimizers (line 12).
We denote by P̄out

0 the refined outer approximation that is obtained at the end of the
initialization phase.
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Themain loop ofAlgorithm2 (lines 17–23) follows the same structure asAlgorithm
1 except that it computes the set V̄k of all vertices of P̄out

k ∩ S (as opposed to that of
Pout
k ) at each iteration k ≥ 0 (line 19). The algorithm terminates if all the vertices

in V̄k are within ε distance to P . As opposed to Algorithm 1, in Algorithm 2, the
norm-minimizing scalarization (P(v)) is not solved for a vertex v of P̄out

k if it is not in
S. In Theorem 6.6, we will prove that the modified algorithm works correctly even if
it ignores such vertices. The next proposition, even though it is not directly used in the
proof of Theorem 6.6, provides a geometric motivation for this result. In particular,
it shows that if (P(v)) is solved for some v /∈ int S, then the supporting halfspace
obtained as in Proposition 4.7 supports the upper image at a weakly C-minimal but
not C-minimal element of the upper image.

Proposition 6.2 Let v be a vertex of P̄out
k for some k ≥ 1. If v /∈ int S, then yv =

v + zv ∈ wMinC (P)\MinC (P).

Proof Suppose that v /∈ int S. As v is a vertex of P̄out
k , we have v /∈ intP . By

Proposition 4.6, yv ∈ wMinC (P); in particular, yv ∈ P . Using Remark 3.2, there
exist x̃ ∈ X , c̃ ∈ C such that yv = �(x̃) + c̃. Next, we show that c̃ = 0, which
implies yv /∈ MinC (P). From Hölder’s inequality and (6.1), we have w̄T(v − yv) ≤
‖yv − v‖‖w̄‖∗ = ‖yv − v‖ = ‖zv‖. Moreover, using P̄out

k ⊆ Pout
0 , we obtain

‖zv‖ = d(v,P) ≤ sup
v′∈P̄out

k

d(v′,P) ≤ sup
v′∈Pout

0

d(v′,P) = δH (P,Pout
0 ) < α,

where the last inequality follows from (6.3). Together, these imply w̄Tyv > w̄Tv − α.
Using (6.4), (6.2) and v /∈ int S, we also have w̄Tv−α ≥ supx∈X w̄T�(x). Now, since
w̄Tyv > supx∈X w̄T�(x), it must be true that yv /∈ �(X ), which implies c̃ = 0. ��

It may happen that a vertex of P̄out
k , k ≥ 1, falls outside S. We will illustrate this

case in Remark 8.4 of Sect. 8.
With the following lemma and remark, we show that S satisfies the required prop-

erties mentioned at the beginning of this section. Note that Lemma 6.3 implies the
compactness of P ∩ S since P ⊆ Pout

0 .

Lemma 6.3 Suppose that Assumptions 3.1 and 5.1 hold. Let Pout
0 and S be as in (5.1)

and (6.4), respectively. Then, Pout
0 ∩ S is a compact set.

Proof Since Pout
0 and S are closed sets, Pout

0 ∩ S is closed. Let r ∈ recc(Pout
0 ∩ S)

and a ∈ Pout
0 ∩ S be arbitrary. For every λ ≥ 0, we have a + λr ∈ Pout

0 ∩ S. By the
definition of Pout

0 , this implies

(w j )T(a + λr) ≥ (w j )T�(x j ) = inf
x∈X

(w j )T�(x) (6.5)

for each j ∈ {1, . . . , J }. On the other hand, by the definition of S in (6.4), we have

w̄T(a + λr) ≤ β + α. (6.6)

123



Journal of Optimization Theory and Applications (2022) 194:681–712 699

Since (6.5) and (6.6) hold for everyλ ≥ 0,we have (w j )Tr ≥ 0 for each j ∈ {1, . . . , J }
and w̄Tr = ∑J

j=1(w
j )Tr/‖∑J

j=1 w j‖∗ ≤ 0, respectively. Together, these imply that

(w j )Tr = 0 (6.7)

for each j ∈ {1, . . . , J }.
Recall that J ≥ q is implied by Assumptions 3.1 and 5.1. Consider the q × J

matrix, say W , whose columns are the generating vectors of C+. Since C+ is solid,
which follows from C being pointed, rankW = q, see for instance [8, Theorem 3.1].
Consider a q × q invertible submatrix W̃ of W . From (6.7), we have W̃ Tr = 0 ∈ R

q ,
which implies r = 0. As r ∈ recc(Pout

0 ∩ S) is chosen arbitrarily,Pout
0 ∩ S is bounded,

hence compact. ��
Remark 6.4 It is clear by the definition of S that�(X ) ⊆ S. Let k ≥ 0. SinceP ⊆ P̄out

k ,
we also have �(X ) ⊆ P̄out

k ∩ S. Then, using Remark 3.2, we obtainP = �(X )+C ⊆
(P̄out

k ∩ S) + C . Also note that if the algorithm terminates, then all the vertices in V̄k

are within ε distance to P .

Remark 6.5 In line 19 of Algorithm 2, if we compute Vk ∩ S instead of V̄k , that is,
if we just ignore the vertices of P̄out

k which are outside S, then we cannot guarantee
returning a finite weak ε-solution. This is because there may exist some vertices of
P̄out
k that are out of S with distance to the upper image being larger than ε. Moreover,

conv(Vk ∩ S)+C may not containP . This will be illustrated in Remark 8.4 of Sect. 8.

Theorem 6.6 Under Assumptions 3.1 and 5.1, Algorithm 2 works correctly: if the
algorithm terminates, then it returns a finite weak ε-solution to (P).

Proof Similar to the proof of Theorem 5.4, the set X̄0 is initialized byweakminimizers
of (P), and V0 is nonempty. Moreover, for each v ∈ V0, optimal solutions (xv, zv) and
wv exist (Proposition 4.2); xv is a weak minimizer (Proposition 4.6) and {y ∈ R

q |
(wv)Ty ≥ (wv)T�(xv)} is a supporting halfspace of P at �(xv) (Proposition 4.7).
Hence, P̄out

0 ⊇ P is an outer approximation and X̄0 consists of weak minimizers. By
the definition of S, we have V0 ⊆ S. Hence, the set V̄0 is nonempty.

Considering the main loop of the algorithm, we know by Proposition 4.2 that
optimal solutions (xv ,zv) and wv to (P(v)) and (D(v)), respectively, exist. Moreover,
if ‖zv‖ ≥ ε, then wv = 0 by Lemma 4.5. Hence, by Proposition 4.7, Hk given by
(5.2) is a supporting halfspace of P . This implies P̄out

k ⊇ P for all k ≥ 0. Since
P̄out
k ⊇ P ⊇ �(X ) and S ⊇ �(X ), see Remark 6.4, the set P̄out

k ∩ S is nonempty.
Moreover, as P̄out

k ⊆ Pout
0 , it is true that P̄out

k ∩ S is compact by Lemma 6.3. Then, V̄k

is nonempty for all k ≥ 0. Note that every vertex v ∈ V̄k satisfies v /∈ intP . Indeed,
since v is a vertex of P̄out

k ∩ S, it must be true that v ∈ bdHk̄ for some k̄ ≤ k. The
assertion follows since bdHk̄ is a supporting hyperplane of P . Then, by Proposition
4.6, xv is a weak minimizer of (P).

Assume that the algorithm stops after k̂ iterations. Clearly, X̄k̂ is finite and consists
of weak minimizers. By Definition 3.5, it remains to show that P̄ in

k̂
+ Bε ⊇ P holds,
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where P̄ in
k̂

:= conv�(X̄k̂) +C . By the stopping condition, for every v ∈ V̄k̂ , we have

‖zv‖ ≤ ε, hence xv ∈ X̄k̂ . Moreover, since (xv, zv) is feasible for (P(v)),

v + zv ∈ {�(xv)} + C ⊆ conv�(X̄k̂) + C = P̄ in
k̂

. (6.8)

By Remark 6.4, it is true that P̄ in
k̂

⊆ P ⊆ (P̄out
k̂

∩ S) + C . Moreover, as conv�(X̄k̂)

and P̄out
k̂

∩ S are compact sets, recc P̄ in
k̂

= recc((P̄out
k̂

∩ S) + C) = C . By repeating
the arguments in the proof of Lemma 5.3, it is easy to check that

δH (P̄ in
k̂

, (P̄out
k̂

∩ S) + C) = max
v∈V̄C

k̂

d(v, P̄ in
k̂

),

where V̄C
k̂
denotes the set of all vertices of (P̄out

k̂
∩ S) +C . Observe that every vertex

v of (P̄out
k̂

∩ S) + C is also a vertex of P̄out
k̂

∩ S, that is, V̄C
k̂

⊆ V̄k̂ . Then, we obtain

δH (P̄ in
k̂

, (P̄out
k̂

∩ S) + C) ≤ max
v∈V̄k̂

d(v, P̄ in
k̂

) = max
v∈V̄k̂

inf
u∈P̄ in

k̂

‖u − v‖ ≤ max
v∈V̄k̂

‖zv‖ ≤ ε,

where the penultimate inequality follows by (6.8). Since

P̄ in
k̂

+ Bε ⊇ (P̄out
k̂

∩ S) + C ⊇ P, (6.9)

P̄ in
k̂

+ Bε ⊇ P follows. ��

7 Finiteness of theModified Algorithm

The correctness ofAlgorithms1 and2 are proven inTheorems5.4 and6.6, respectively.
In this section, we prove the finiteness ofAlgorithm2.We provide two technical results
before proceeding to the main theorem.

Lemma 7.1 Suppose that Assumptions 3.1 and 5.1 hold. Let v /∈ P and H be the
halfspace defined by Proposition 4.7. If ‖zv‖ ≥ ε, then B ∩ H = ∅, where

B:=
{
y ∈ {v} + C | ‖y − v‖ ≤ ε

2

}
.

Proof Consider (P(v)) and its Lagrange dual (D(v)). The arbitrarily fixed dual opti-
mal solution wv satisfies the first-order condition with respect to z, which can be
expressed as wv ∈ ∂‖zv‖. Note that the subdifferential of ‖·‖ at zv has the variational
characterization

∂‖zv‖ =
{
w ∈ R

q | sup{(w′)Tzv | ‖w′‖∗ ≤ 1} = wTzv, ‖w‖∗ ≤ 1
}

,
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which follows by applying [39, Theorem 23.5]. Since the dual norm of ‖·‖∗ is
‖·‖,

wv ∈ ∂‖zv‖ = {w ∈ R
q | ‖zv‖ = wTzv, ‖w‖∗ ≤ 1}. (7.1)

Let ȳ ∈ H be arbitrary. From the definition of H and (7.1), we have (wv)T ȳ ≥
(wv)T(v + zv) = (wv)Tv + ‖zv‖. Equivalently, (wv)T(ȳ − v) ≥ ‖zv‖. On the other
hand, from Hölder’s inequality and (7.1), we have |(wv)T(ȳ − v)| ≤ ‖wv‖∗‖ȳ −
v‖ ≤ ‖ȳ − v‖. If ‖zv‖ ≥ ε, then from the last two inequalities, we obtain ‖ȳ −
v‖ ≥ |(wv)T(ȳ − v)| ≥ ‖zv‖ ≥ ε. Therefore, ȳ /∈ B, which implies B ∩ H = ∅.

��
Lemma 7.2 Suppose that Assumptions 3.1 and 5.1 hold. Let k ≥ 0, v be a vertex of
P̄out
k , S be as in (6.4); and define

S2 := {y ∈ R
q | w̄Ty ≤ β + 2α},

where w̄, β, α are defined by (6.1), (6.2), (6.3), respectively. If v ∈ S, then v + zv ∈
int S2.

Proof Let Ṽk denote the set of all vertices of P̄out
k . It is given that v ∈ Ṽk . Using

Remark 4.1 and the arguments in the proof of Lemma 5.3, we obtain δH (P, P̄out
k ) =

max
ṽ∈Ṽk

d(ṽ,P) ≥ d(v,P) = ‖zv‖. From (6.3) and the inclusion Pout
0 ⊇ P̄out

k , we
have

δH (P, P̄out
k ) ≤ δH (P,Pout

0 ) < α,

which implies ‖zv‖ < α. Then, using Hölder’s inequality together with ‖w̄‖∗ = 1,
we obtain w̄Tzv ≤ ‖zv‖‖w̄‖∗ = ‖zv‖ < α. On the other hand, v ∈ S implies that
w̄Tv ≤ β + α. Then, v + zv ∈ int S2 follows since w̄T(v + zv) < β + 2α. ��
Theorem 7.3 Suppose that Assumptions 3.1 and 5.1 hold. Algorithm 2 terminates after
a finite number of iterations.

Proof By the construction of the algorithm, the number of vertices of P̄out
k is finite

for every k ≥ 0. It is sufficient to prove that there exists K ≥ 0 such that for every
vertex v ∈ V̄K of P̄out

K ∩ S, we have ‖zv‖ ≤ ε. To get a contradiction, assume that

for every k ≥ 0, there exists a vertex vk ∈ V̄k such that ‖zvk‖ > ε. For conve-
nience, an optimal solution (xvk , zv

k
) of (P(vk)) is denoted by (xk, zk) throughout

the rest of the proof. Let S2 be as in Lemma 7.2. Then, following similar argu-
ments as presented in the proof of Lemma 6.3, one can show that Pout

0 ∩ S2 is
compact.

Let k ≥ 0 be arbitrary. We define Bk := {
y ∈ {vk} + C | ‖y − vk‖ ≤ ε

2

}
. Note

that Bk is a compact set in R
q and, as C is solid by Assumption 3.1, Bk has nonzero

volume, which is free of the choice of k. Next, we show that Bk ⊆ Pout
0 ∩S2. Repeating
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the arguments in the proof of Lemma 5.2, it can be shown that recc P̄out
k = C . Then,

since vk ∈ P̄out
k , it holds

{vk} + C ⊆ P̄out
k ⊆ Pout

0 . (7.2)

Hence, Bk ⊆ Pout
0 . To see Bk ⊆ S2, let y ∈ Bk . From Hölder’s inequality and

(6.1),

w̄T(y − vk) ≤ ‖y − vk‖‖w̄‖∗ = ‖y − vk‖ ≤ ε

2
. (7.3)

As there exists v0 ∈ V̄0 with ‖z0‖ > ε, it holds true that δH (P,Pout
0 ) > ε.

From (6.3), it follows that α > ε. Then, from (7.3), we obtain w̄T(y − vk) ≤
ε
2 < α. Since vk ∈ S, this implies w̄Ty < w̄Tvk + α ≤ β + 2α, hence
y ∈ S2.

Next, we prove that Bi ∩ B j = ∅ for every i, j ≥ 0 with i = j . Assume
without loss of generality that i < j . Thus, P̄out

j ⊆ P̄out
i+1. From Lemma 7.1, we

have Bi ∩ Hi = ∅, where Hi is the supporting halfspace at �(xi ) as obtained in
Proposition 4.7. This implies Bi ∩ P̄out

j = ∅ as P̄out
j ⊆ P̄out

i+1 = P̄out
i ∩ Hi ⊆

Hi . On the other hand, we have B j ⊆ P̄out
j from (7.2). Thus, Bi ∩ B j = ∅.

These imply that there is an infinite number of non-overlapping sets, having strictly
positive fixed volume, contained in a compact set Pout

0 ∩ S2, a contradiction.
��

Weconclude this sectionwith a convergence result regarding theHausdorff distance
between the upper image and its polyhedral approximations.

Corollary 7.4 Suppose that Assumptions 3.1 and 5.1 hold. Let ε = 0 and Algorithm 2
be modified by introducing a cutting order based on selecting a farthest away vertex
(instead of an arbitrary vertex) in line 20. Then,

lim
k→∞ δH (P̄ in

k ,P) = lim
k→∞ δH ((P̄out

k ∩ S) + C,P) = 0,

where P̄ in
k := conv�(X̄k)+C, the sets X̄k, P̄out

k are as described in Algorithm 2, and
S is given by (6.4).

Proof Note that Algorithm 2 is finite by Theorem 7.3 for an arbitrary vertex selection
rule, hence, also when a farthest away vertex is selected in line 20. Therefore, given
ε > 0, there exists K (ε) ∈ N such that the set X̄K (ε) is a finite weak ε-solution as in
Definition 3.5 and δH (P̄ in

K (ε),P) ≤ ε by Remark 3.6. Let us consider the modified

algorithm (with ε = 0). If δH (P̄ in
k ,P) = 0 for some k ∈ N, then it is clear that

limk→∞ δH (P̄ in
k ,P) = 0. Suppose that δH (P̄ in

k ,P) > 0 for every k ∈ N. With
the farthest away vertex selection rule, when we run the algorithm with ε = 0 and
ε = ε > 0, the two work in the same way until the one with ε = ε stops. Hence, they
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find the same inner approximation P̄ in
K (ε) at step K (ε). Let k0 := K (ε). By an induction

argument, for every n ∈ N, the inequality δH (P̄ in
kn

,P) ≤ ε
n will be satisfied by the

algorithm with ε = 0 for some kn > kn−1. Hence, limn→∞ δH (P̄ in
kn

,P) = 0, which

implies that limk→∞ δH (P̄ in
k ,P) = 0 by the monotonicity of (δH (P̄ in

k ,P))k∈N.
Moreover, similar to the discussion in the proof of Theorem 6.6, see (6.9), it can

be shown that δH ((P̄out
k ∩ S) + C,P) ≤ δH (P̄ in

k ,P) holds for each k ∈ N. Hence,
limk→∞ δH ((P̄out

k ∩ S) + C,P) = 0. ��

Remark 7.5 In Corollary 7.4, choosing the farthest away vertex in each iteration is
critical. Indeed, without this rule, the algorithm run with ε = 0 and ε = ε > 0 may
not work in the same way due to line 11 in Algorithm 1. In such a case, we may not
use Theorem 7.3 to argue that the algorithm with ε = 0 satisfies δH (P̄ in

k ,P) ≤ ε for
some k ∈ N. Indeed, it might happen in case of non-polyhedral P that the algorithm
keeps updating the outer approximation by focusing only on one part of P . Thus, the
Hausdorff distance may not be zero in the limit.

8 Examples and Computational Results

In this section, we examine few numerical examples to evaluate the performance of
Algorithms 1 and 2 in comparison with the primal algorithm (referred to as Algorithm
3 here) in [29]. The algorithms are implemented using MATLAB R2018a along with
CVX, a package to solve convex programs [19, 20], and bensolve tools [32] to solve
the scalarization and vertex enumeration problems in each iteration, respectively. The
tests are performed using a 3.6 GHz Intel Core i7 computer with a 64 GB RAM.

We consider three examples: Example 8.1 is a standard illustrative example with
a linear objective function, see [13, 29], in which both the feasible region and its
image are the Euclidean unit ball centered at the vector e = (1, . . . , 1)T ∈ R

q . In
Example 8.2, the objective functions are nonlinear while the constraints are linear; in
Example 8.3, nonlinear terms appear both in the objective function and constraints
[13, Examples 5.8, 5.10], [35].

Example 8.1 We consider the following problem for q ∈ {2, 3, 4}, where C = R
q
+:

minimize �(x) = x with respect to ≤C

subject to ‖x − e‖2 ≤ 1, x ∈ R
q . (8.1)

Example 8.2 Let a1 = (1, 1)T, a2 = (2, 3)T, a3 = (4, 2)T. Consider

minimize �(x) = (‖x − a1‖22, ‖x − a2‖22, ‖x − a3‖22)T with respect to ≤
R
3+

subject to x1 + 2x2 ≤ 10, 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 4, x ∈ R
2. (8.2)
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Fig. 1 Outer approximations obtained from Algorithm 1 using �2 norm

Example 8.3 Let b̂1 = (0, 10, 120), b̂2 = (80,−448, 80), b̂3 = (−448, 80, 80) and
b1, b2, b3 ∈ R

n . Consider

minimize �(x) = (‖x‖22 + b1x, ‖x‖22 + b2x, ‖x‖22 + b3x)T with respect to ≤
R
3+

subject to ‖x‖22 ≤ 100, 0 ≤ xi ≤ 10 for i ∈ {1, . . . , n}, x ∈ R
n . (8.3)

(a) Let n = 3 and b1 = b̂1, b2 = b̂2, b3 = b̂3.
(b) Let n = 9 and b1 = (b̂1, b̂1, b̂1), b2 = (b̂2, b̂2, b̂2), b3 = (b̂3, b̂3, b̂3).

We solve these examples with Algorithms 1 and 2, where the norm in (P(v)) is
taken as the �p norm for p ∈ {1, 2,∞}. An outer approximation of the upper image
for each example is shown in Fig. 1. For Algorithm 3, the fixed direction vector
for the scalarization model is taken as e

‖e‖p
∈ R

q , again for p ∈ {1, 2,∞}. This
way, it is guaranteed that when Algorithm 3 returns a finite weak ε-solution in the
sense of [29, Definition 3.3], this solution is also a finite weak ε-solution in the sense
of Definition 3.5 for the corresponding norm-ball, see [11, Remark 3.4]. We solve
Examples 8.2 and 8.3 for the approximation errors as chosen by Ehrgott et al. in [13]
for the same examples.
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Table 2 Computational results for Example 8.2

ε p Alg |X̄ | Opt Topt En Ten T

0.05 1 1 188 310 107.26 87 19.30 130.34

2 157 233 79.79 70 9.88 91.94

2 1 145 225 70.22 76 11.46 84.07

2 141 206 61.72 64 7.18 70.47

0.01 1 1 –

2 772 1187 401.00 340 3197.85 4276.37

2 1 869 1421 420.01 311 2302.12 3171.41

2 655 957 285.04 279 1529.54 2162.02

The computational results are presented inTables 1, 2 and 3,which show the approx-
imation error (ε), the algorithm (Alg), the cardinality of finite weak ε-solution (|X̄ |),
the number of optimization problems (Opt), and the number of vertex enumeration
problems (En) solved through the algorithm, along with the respective times taken
to solve these problems (Topt, Ten), as well as the total runtime of the algorithm (T),
where Topt, Ten and T are in seconds.

Note thatwe could not run the algorithms in a fewsettings.Wecannot solveExample
8.1, q = 4 for ε = 0.1 by Algorithms 1 and 2 when p = 2, and by Algorithms 2
and 3 when p = ∞. Similarly, we cannot solve Example 8.2 by Algorithm 3 for any
p ∈ {1, 2,∞}. Moreover, we cannot solve this example by Algorithm 1 when p = ∞
for both ε values and when p = 1 for ε = 0.01. Since it is not possible to provide a
comparison, we do not report the results for p = ∞ in Table 2. Finally, Example 8.3
cannot be solved by Algorithms 1 and 2 when p = 1. Hence, Table 3 does not show
the results for p = 1 for any setting. The main reason that the algorithms cannot solve
these instances is the limitations of bensolve tools in vertex enumeration.

In line with the theory, Tables 1, 2 and 3 illustrate that Opt, En as well as T increase
when a smaller approximation error is used, irrespective of the algorithm considered.

According to Table 1, for p = 1 in terms of all performance measures, Algo-
rithms 1 and 2 perform better than Algorithm 3, except for q = 4, ε = 0.5 for which
Algorithms 1 and 3 have similar performance. For p ∈ {2,∞}, Algorithms 1 and 3
perform similar to each other and better than Algorithm 2 in terms of Opt, Topt and T.
When we compare Algorithms 1 and 2, we observe that Algorithm 2 solves a larger
number of optimization problems (Opt) compared to Algorithm 1 in all settings except
p = 1, ε = 0.01. The reason may be that the former algorithm deals with a higher
number of vertices, coming from the intersection of P̄out

k with bd S, k ≥ 0 (line 19 of
Algorithm 2).

Table 2 indicates that, in solving Example 8.2, Algorithm 2 performs better than
Algorithm 1 with respect to all indicators.

Finally, for Example 8.3 when we compare their performance under n = 3 with
p = 2, Algorithm 1 works better compared to the others in terms of Opt, En and T.
Under n = 3 with p = ∞, the same holds for Algorithm 3, see Table 3. However,
under n = 9, Algorithm 1 performs better than the others in all instances.

123



Journal of Optimization Theory and Applications (2022) 194:681–712 707

Ta
bl
e
3

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
E
xa
m
pl
e
8.
3

ε
p

A
lg

n
=
3

n
=
9

|X̄
|

O
pt

T o
pt

E
n

T e
n

T
|X̄

|
O
pt

T o
pt

E
n

T e
n

T

10
2

1
50

2
94

3
28

5.
43

13
2

10
0.
12

40
1.
95

15
61

27
54

11
59

.6
0

22
5

75
3.
05

20
46

.8
8

2
95

8
39

24
11

94
.3
0

13
7

12
2.
28

13
39

.0
9

17
70

42
13

18
19

.7
0

21
8

73
3.
58

26
82

.3
7

3
30

5
96

5
25

9.
85

16
4

21
1.
23

50
2.
43

27
18

45
20

17
72

.0
8

25
9

13
24

.2
4

32
95

.9
6

∞
1

19
7

59
2

17
9.
71

10
6

41
.6
1

22
7.
61

12
31

21
06

90
1.
81

15
2

15
0.
43

10
76

.1
4

2
19

9
12

06
39

0.
99

10
0

36
.6
7

43
2.
99

36
38

92
22

40
45

.4
5

16
6

21
9.
60

43
01

.6
3

3
18

0
58

6
15

7.
46

10
1

33
.6
0

19
6.
24

26
28

50
57

19
94

.3
9

16
4

20
2.
33

22
31

.0
7

5
2

1
11

78
31

27
93

2.
65

24
5

10
59

.1
0

21
75

.2
5

44
61

79
68

33
71

.9
1

39
0

80
08

.6
7

12
,7
95

.2
3

2
12

07
55

57
17

02
.7
9

25
9

14
88

.5
3

34
41

.2
8

70
52

15
,6
62

65
46

.2
9

40
9

99
08

.0
3

18
,2
68

.1
7

3
57

9
39

32
10

49
.7
9

30
9

30
46

.6
6

45
29

.3
7

70
46

11
,1
49

43
07

.2
1

47
6

16
,8
98

.7
6

23
,6
03

.2
5

∞
1

41
2

17
40

52
6.
33

18
5

32
5.
59

90
7.
19

31
53

45
38

18
89

.0
6

29
4

21
64

.4
5

43
90

.1
6

2
46

5
26

55
83

7.
24

18
8

37
4.
95

12
68

.0
1

35
70

81
55

34
82

.4
4

30
5

25
89

.9
9

64
70

.7
1

3
34

2
14

12
38

0.
10

18
5

35
2.
70

78
7.
48

31
46

47
12

18
45

.9
1

30
0

24
55

.3
9

46
63

.9
8

123



708 Journal of Optimization Theory and Applications (2022) 194:681–712

When we compare the results for Example 8.3(a) and (b), we observe that even
with the same precision level ε, the number of minimizers in Example 8.3(b) is at
least twice as and generally much higher than the number of minimizers in Example
8.3(a), which also affects the total times. The reason may be that, due to the increase
in the dimension of the feasible region and the structure of the objective functions, the
range of the objective function changes and the difficulty of the problem increases in
Example 8.3(b).

From the results of the test problems above, we observe comparable performance
for our proposed algorithms with respect to Algorithm 3.

Next, we consider Example 8.1 for q ∈ {2, 3} with different ordering cones than
the positive orthant, see Table 4 and Fig. 2. These cones are given below in terms of
their generating vectors:

C1 = conv cone{(1, 2)T, (2, 1)T},
C2 = conv cone{(2,−1)T, (−1, 2)T},
C3 = conv cone{(4, 2, 2)T, (2, 4, 2)T, (4, 0, 2)T, (1, 0, 2)T, (0, 1, 2)T, (0, 4, 2)T},
C4 = conv cone{(−1,−1, 3)T, (2, 2,−1)T, (1, 0, 0)T, (0,−1, 2)T,

(−1, 0, 2)T, (0, 1, 0)T}.

Note that we have C1 � R
2+ � C2 = C+

1 and C3
6

� R
3+ � C4 = C+

3 . We solve
these examples with Algorithms 1 and 2, where the norm in (P(v)) is the �2 norm. As
before, due to the limitations of bensolve tools, Table 4 does not show the result for
Algorithm 2 when the ordering cone is C3 and ε = 0.01. According to Table 4, for
C1 and C2, Algorithms 1 and 2 are comparable in terms of T. For C3 with ε = 0.05,
Algorithm 2 gives smaller T. However, for C4, Algorithm 1 has better runtime.

We conclude this section by a remark that illustrates the necessity of intersecting
P̄out
k with S in Algorithm 2.

Remark 8.4 As noted before in Sect. 6, it is possible that some vertices of P̄out
k fall

outside S. Consider Example 8.1 with q = 3. Note that �(X ) is the unit ball centered
at e ∈ R

3, and P0 is the positive orthant. In the initialization phase of Algorithm 2,
we obtain S = {y ∈ R

3 | w̄Ty ≤ 3.56}, where w̄ = 1√
3
e. For illustrative purposes,

consider the supporting halfspace H = {y ∈ R
q | wTy ≥ 0.68} of the upper image,

where the normal direction is w = (1, 1, 0.1)T. This would support the upper image
at the C-minimal point (0.2947, 0.2947, 0.9295)T. Note that bdH intersects with P0
to give three vertices: v1 = (0.68, 0, 0)T, v2 = (0, 0.68, 0)T, v3 = (0, 0, 6.8)T.
Clearly, v1, v2 ∈ S and v3 /∈ S. Moreover, as stated in Remark 6.5, the approximation
generated by v1, v2, namely, conv({v1, v2}) + R

3+ does not contain the upper image;
see Fig. 3.

We practically encounter vertices which fall outside S, for instance, while running
Algorithm 1 for Example 8.1 with q = 3, p = 2 and ε = 0.01. Figure 4 shows the
outer approximation, after iteration k = 37, with one of the vertices outside Pout

0 ∩ S.

6 The same cone is used as a dual cone in [31, Example 9].
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Fig. 2 Outer approximations obtained from Algorithm 1 using �2 norm for Example 8.1 with q = 3 under
different cones

Fig. 3 Projections of �(X ) (dark blue), conv({v1, v2}) + R
3+ (light blue) from Remark 8.4 on the y3 = 0

plane

9 Conclusions

In this study, we have proposed an algorithm for CVOPs which is based on a norm-
minimizing scalarization. It is different from the similar class of algorithms available
in the literature in the sense that it does not need a direction parameter as an input.
We have also proposed a modification of the algorithm and proved its finiteness under
the assumption of compact feasible region. Using benchmark test problems, the com-
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Fig. 4 Outer approximationPout
k , k = 37 (vertices and representative points on unbounded edges indicated

by black markers) for Example 8.1 obtained by using Algorithm 1 (for p = 2 and ε = 0.01) has one vertex
outside S (blue)

putational performance of the new algorithms is found to be comparable to a CVOP
algorithm in the recent literature which uses the Pascoletti–Serafini scalarization.
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