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We compute the social cost of carbon (SCC) when decision makers want robust estimates in the face of

deep (or �Knightian�) uncertainty. We introduce the notion of full-path accumulated robust preferences from

stochastic control theory to an integrated assessment model. Robust preferences are appropriate for analyzing

climate-related problems because, given the large uncertainty in climate science, they enable decision makers

to attain solutions that are robust to a wide range of climate change scenarios. We solve the resulting model,

which includes uncertainty about climate change and about the ensuing economic damage, and show the

existence of optimal solutions and time-consistent optimal deterministic Markov policies. Additionally, we

also prove that the standard Hansen-Sargent recursive utility provides an upper bound of this full-path utility.

In our baseline model speci�cation, we �nd that the year 2020's optimal SCC is US$162 per tCO2 with an

average annual growth rate of 2.5%�setting the world on a 1.37◦C path, which requires full decarbonization

by 2068. We introduce the notion of SCC robustness premium, which we de�ne as the additional SCC price

tag for robustness. For a plausible range of preference parameters the SCC robustness premium in 2020 is

between US$1.41 and US$25.89 per tCO2, with US$2.20 per tCO2 in our baseline calibration. Over time

this premium grows signi�cantly. The forecasts of our model facilitate managerial decision-making during

the world's transition from a carbon- and emission-intensive economy to a regenerative economy. The high

estimates for the SCC predict drastic rises in emission cost for high-emission industries.

Key words : full-path robustness, integrated assessment models, model uncertainty, risk-sensitive

preferences, social cost of carbon, robustness premium.

1



Author: Full-Path SCC Robustness

2 Article submitted to Management Science; manuscript no. MS-SPI-00682.accepted (DoI : 10.1287/mnsc.2023.4736)

1. Introduction

The social cost of carbon (SCC) is an attempt to capture the cost to society of an additional ton of

carbon dioxide pollution in a single number. Estimates of the SCC are important for decision makers

in private industry and government. The SCC directly a�ects how policy makers and regulators

weigh the costs and bene�ts of any proposed regulation or public investments that in turn in�uence

the economic environment for private businesses. Numerous studies have investigated the e�ects of

economic and climatic uncertainties on the optimal SCC. In this paper, we examine the e�ects of

robust preferences on the optimal SCC within a simpli�ed integrated assessment model (IAM) of

the global economy and the climate inspired by the hallmark DICE model of Nordhaus (1993). The

objective of the analysis is to determine climate policies that are robust to a wide range of climate

change scenarios.

Speci�cally, we compute values for the SCC when decision makers want robust estimates in the

face of deep, or �Knightian,� uncertainty with regard to both climate change and the resulting

economic damage. To handle such uncertainties with a notion of �robustness,� the climate economics

literature addressing such setups has primarily followed an robustness approach using the risk-

sensitive preferences formulated by Hansen and Sargent (1995) for the derivation of the optimal SCC

(see, e.g., Li et al. (2016) and Brock and Xepapadeas (2020), among others). We call that approach

the �per-stage recursive� robustness approach. The generic form of such a recursive approach was

�rst introduced by Kreps and Porteus (1978, 1979) for the �nite horizon and later extended by

Epstein and Zin (1989) to the in�nite horizon. In this paper we do not follow this approach. Instead,

we build on and generalize the formulation of risk-sensitive preferences as studied by van der Ploeg

(1993) for an analysis of precautionary savings in �nance (see also Kihlstrom and Mirman (1974) for

the initial idea), which is the standard formulation in stochastic control theory (see, e.g., Jacobson

(1973), Di Masi and Stettner (1999), Bäuerle and Rieder (2014), and Whittle (1990), and references

therein) as initiated by the seminal work of Howard and Matheson (1972) in this very journal. We

call this formulation �full-path accumulated� robustness to distinguish it from the aforementioned

per-stage recursive robustness approach.

The full-path accumulated approach represents utility as a certainty equivalent of the time-

separable additive von Neumann�Morgenstern discounted utility on the entire time horizon, using

a concave transformation thereof. The per-stage recursive framework models utility as a sum of the

current (per-stage) utility and the one-step discounted certainty equivalent of the future (next-stage)

continuation utility wherein this certainty equivalent is computed using a concave transformation.

It is important to distinguish between these two forms of utility representations. As we explain

in Section 2.3, the risk-sensitive full-path accumulated approach allows for time-consistency and

monotonicity without compromising on the resolution between risk-aversion and the elasticity of
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intertemporal substitution (EIS). We prove that the per-stage recursive utility is always greater

than or equal to the full-path accumulated utility (see Theorem 1 in Appendix A). This result

implies that the former setup also leads to a larger optimal value function. Accordingly, by means

of a numerical example, we illustrate that the per-stage model overestimates the SCC relative to

the full-path accumulated approach.

To the best of our knowledge, the present paper presents the �rst application of full-path accumu-

lated robustness in the climate change economics literature. Our concept herein is similar to van der

Ploeg (1993),1 but is more general. Bommier et al. (2015) follows a similar approach but without

discounting in the risk-sensitive preference structure�thereby arti�cially forcing stationarity in the

system. Their paper models a catastrophic collapse using climate damage estimates from Weitzman

(2009) and risk-sensitive preferences where the risk-sensitive parameter k > 0 is interpreted as risk

aversion rather than ambiguity aversion or aversion to mis-speci�cation. Moreover, Bommier et al.

(2015) does not provide any proof of existence of the value function as a solution to the corre-

sponding Bellman equation nor any results on the existence or characterization of the corresponding

optimal policies.

As mentioned above, the notion of risk-sensitive preferences was �rst conceived in Howard and

Matheson (1972). These preferences have been studied intensively in recent years primarily in the

context of their connection to mathematical �nance, including in portfolio management: see, for ex-

ample, Bäuerle and Ja±kiewicz (2018) and Bielecki and Pliska (2003). Unlike classical problems with

von Neumann�Morgenstern (additive) discounted utilities, risk-sensitive preference maximization

problems are much more di�cult to handle as they are not technically equivalent to negative cost (or

disutility) minimization problems because of their multiplicative nature, and hence the more abun-

dantly available machinery for the latter problem type cannot be directly applied. Moreover, the

maximization problem for risk-sensitive preferences can be interpreted as the lower value function of

a zero-sum game in a setup of deep uncertainty, which corroborates the �robustness� tag associated

with such preferences�that is, guaranteeing a maximum possible payo� under the assumption of

some level of model mis-speci�cation determined by a robustness parameter. A larger degree of risk

aversion is identical to greater concern regarding robustness�that is, when the risk parameter k > 0

is large, the maximizer e�ectively tries to maximize against the worst-case minimizing strategy of

the adversary, leading to a lower-value game, whereas when k approaches zero, the minimizing ad-

versary is forced to play close to the chosen dynamics of the maximizer, thereby eventually resulting

in a standard additive discounted maximization problem. In light of this interpretation, the choice

of such a utility for our IAM makes our analysis most robust to worst-case scenarios.

1 See van der Ploeg (1984a) and van der Ploeg (1984b) for the original technical framework.
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We consider these preferences to be the best possible choice for the analysis of climate-related

problems because, given the large uncertainty inherent in climate science, they enable decision mak-

ers to search for solutions that are robust to a wide range of worst-case climate change scenarios.

We �nd that the year 2020's optimal SCC is US$162 per tCO2 and that the expected SCC in-

creases to about US$1,214 per tCO2 in 2120. Our baseline calibration implies full decarbonization

by 2068, resulting in an expected global average long-run temperature change of around 1.37◦C

above preindustrial levels, thus well in line with the Paris Accord. We also introduce the SCC ro-

bustness premium, which we de�ne as the excess SCC for di�erent levels of risk sensitivity. We �nd

that over a plausible range of preference parameters the SCC robustness premium in 2020 ranges

from US$1.41 to US$25.89 per tCO2, with US$2.20 per tCO2 in our baseline calibration. Moreover,

we �nd that the SCC robustness premium increases signi�cantly over time and goes to zero as the

risk-sensitivity parameter approaches zero. Our model's �ndings have signi�cant managerial impli-

cations: Companies will have to anticipate inevitably rising carbon taxes and rising prices of carbon

permits in emission trading systems, and plan accordingly. Similarly, forward-thinking companies

in emission-heavy industries will want to anticipate these higher costs by proactively planning with

higher internal carbon prices. Otherwise they will risk investing in assets that may become stranded,

either because regulators prohibit them or simply because carbon-intensive projects will become

outright unpro�table. The drastically rising costs of emissions pose signi�cant business risks to such

companies in such industries.

The remainder of this paper is organized as follows. Section 2 describes the motivation of our

work and explains the novelty of the full-path accumulated robustness concept in the context of

IAMs. Section 3 presents our stochastic integrated assessment model with risk-sensitive preferences.

In Section 4 we describe solutions from our model and perform comparative as well as sensitiv-

ity analyses. Section 5 concludes. The statements and proofs of the main results are provided in

Appendix A.

2. Preferences for Robustness

In this section we motivate our work in this paper and explain how the full-path accumulated ro-

bustness approach is novel to the IAM literature. We �rst contrast the notions of per-stage recursive

and full-path accumulated robustness. Next, we provide a literature overview of works employing

per-stage recursive robustness in the context of climate change economic models. Finally, we provide

details on full-path accumulated robustness for our analysis in this paper.

In the following discussion, we denote a consumption stream for some �nite time horizon, N > 0,

by {ct}Nt=0, an instantaneous (per-stage) utility function by u(·), and a per-period discount factor

by 0<β < 1. The underlying randomness in the system at time t≥ 0 is captured by the expectation

operator Et [·] on the future (random) events starting at and from t.
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2.1. Two Notions of Robustness

The standard additive expected utility framework of von Neumann�Morgenstern for maximizing

the time-0 discounted utility

E0

[
N∑
t=0

βtu(ct)

]
(1)

lacks the �exibility to explore the role of risk aversion while disentangling it from the intertemporal

elasticity of substitution (IES). However, this distinction between IES and risk aversion can be

achieved within the von Neumann�Morgenstern framework of expected utility analysis through a

concave transform of the above time-separable objective function (1), as demonstrated in Kihlstrom

and Mirman (1974); that is, by maximizing the full-path certainty equivalent functional

U−1
k

(
E0

[
Uk

(
N∑
t=0

βtu(ct)

)])
(2)

over all admissible consumption plans {ct}Nt=0, where Uk(·) is a concave increasing function depen-

dent upon some given risk aversion parameter k > 0. As pointed out by Epstein and Zin (1989),

such preferences are non-stationary and preference orderings generally depend on past consumption

values (except when Uk(·) is exponential, which we discuss later) implying both time-dependent

attitudes (tastes) with regard to future gambles and time-inconsistent consumption plans. To ad-

dress these problems, Epstein and Zin (1989), Svensson (1989), and Weil (1990, 1993) moved away

from the intertemporal expected utility framework and instead used the per-stage recursive utility

framework developed by Kreps and Porteus (1978, 1979) in order to achieve a separation between

intertemporal substitution and risk aversion. In this framework, the agent maximizes at time t an

overall continuation utility Vt given as the sum of the current utility u(ct) and the one-step β-

discounted time-t certainty equivalent βEt(Vt+1)
def
= βU−1

k (Et [Uk (Vt+1)]) of the future (next-stage

t+ 1) continuation utility Vt+1; namely,

Vt = u(ct) +βU−1
k (Et [Uk (Vt+1)]) = u(ct) +βEt(Vt+1), (3)

which proposes to resolve the problems of time inconsistency and time-varying attitudes. Note that

the time-t expectation operator Et [·] captures the underlying future (for time ≥ t+1) randomness of

the system conditional on the events that have unfolded up to and including time t. The preference

structure (3), however, generally does not satisfy the natural monotonicity property, which stipulates

that an agent will not take an action if another available action is preferable in all circumstances; this

lack of monotonicity eventually leads to conclusions that are counterintuitive in the analysis of risk

aversion. As shown in Bommier et al. (2017), the only solution to this anomaly is to use exponential

functions (or a�ne transforms thereof) for Uk(·). Bommier et al. (2017) use, for example, Uk(·)
def
=
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1−e−k(·)

k
implying EHSt (·) def= − 1

k
ln
(
Et
[
e−k(·)

])
(`HS' for Hansen�Sargent, as explained below), which

transforms Equation (3) to the following form:

Vt = u(ct) +βEHSt (Vt+1) = u(ct)−
β

k
ln
(
Et
[
e−kVt+1

])
=−β

k
ln
(
Et

[
e−

k
β (u(ct)+βVt+1)

])
. (4)

Hansen and Sargent (1995) introduced this exponential type of per-stage recursive robustness�

so, risk-sensitive preferences�for the study of optimal decision-making under deep uncertainty.

Thereafter, it was adopted both in the �nance literature (see, e.g., Anderson et al. (2012), Bommier

and Le Grand (2019), Bäuerle and Ja±kiewicz (2018), and Tallarini Jr (2000), among others) and

in the climate change literature (see, e.g., Hennlock (2009), Anderson et al. (2016), Lemoine and

Traeger (2016), Li et al. (2016), Barnett et al. (2020), Brock and Hansen (2018), Rezai and van der

Ploeg (2017), Berger and Marinacci (2020), Chari (2018), Cai (2021), Brock and Xepapadeas (2020),

Millner et al. (2013), Berger et al. (2017), and Rudik (2020), among others) because it is the

only Kreps�Porteus-type of recursive preferences that admits the separation of risk aversion from

intertemporal substitution while maintaining monotonicity, as explained above.

In the next section, we brie�y elaborate on the contributions made by the aforementioned works�

which use the per-stage recursive approach�to better illustrate the main di�erences between this

literature and our work in this paper. In particular, the discussion clearly di�erentiates this literature

from the full-path accumulated approach employed in this paper.

2.2. The Literature on Per-stage Recursive Robustness

Li et al. (2016) and Anderson et al. (2016) solve a standard additive von Neumann�Morgenstern

utility model with no tipping and arti�cially introduced model uncertainty. Lemoine and Traeger

(2016) handle 0-1 tipping (i.e., tipping or no tipping; two states) with uncertainty arti�cially intro-

duced by a hazard rate that de�nes a tipping probability, whereas we solve a multi-state model with

tipping.2 Moreover, in Lemoine and Traeger (2016) the certainty equivalent is handled as a convex

combination of tipping/no-tipping values averaged over all risk disentangling from uncertainty and

is closely related to Epstein�Zin�Weil models, whereas our model combines risk with uncertainty

in certainty equivalence as a natural consequence of our exponential framework. Hennlock (2009)

uses Epstein�Zin�Weil-type utilities with arti�cially introduced uncertainty. Berger and Marinacci

(2020) review, as opposed to our dynamic approach, certain static models of choices under uncer-

tainty, and try to provide an introductory framework for such setups; unlike our framework, however,

they do not actually solve any model or provide any existence results. Cai (2021) provides a general

nontechnical survey of Epstein�Zin�Weil-type models, but none cover our approach.

2 Because of our exponential formulation, large deviations theory implies that our model can be transformed into a
max�min game. In this game, the minimization is performed by an adversarial external opponent (�Nature�) on the
entire set of probability measures over the disaster states.
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Berger et al. (2017) solves a two-period climate model with one scalar decision variable as opposed

to our long-horizon model with a long-term policy decision, and addresses robustness across a �nite

set of models (distributions over risks), whereas our analysis leads to generic robustness across all

possible model distributions. Brock and Hansen (2018) illustrates how risk-sensitive preferences can

be applied to climate change economic models to account for three kinds of uncertainty that arise

naturally in these models�namely, risk, ambiguity aversion, and model mis-speci�cation. Millner

et al. (2013) also studies robustness across a �nite set of equally likely (uniformly distributed) models

but with power utility preferences as opposed to our generic (across all possible risk distributions)

utility maximization with exponential preferences. They model ambiguity aversion regarding climate

sensitivity and analyze the e�ect of such aversion on the stationary equivalent; they do not, however,

compute the social cost of carbon. Brock and Xepapadeas (2020) solves a deterministic robust

control problem with quadratic �per-stage� utilities, which is quite limited in scope compared to our

setup. Chari (2018) presents a nontechnical discussion on uncertainty in climate change economics

and does not propose or solve any model.

Klibano� et al. (2005) again solves a static model of ambiguity aversion wherein ambiguity is

modeled as a chosen (by the Decision Maker) �subjective� belief or probability measure over the set

of probabilities characterizing the underlying systemic risk or uncertainty3. Skiadas (2003) and Chen

and Epstein (2002) handle the continuous-time counterpart of Hansen�Sargent recursive utilities�

namely, stochastic di�erential utilities as introduced by Du�e and Epstein (1992)�where Skiadas

(2003) makes no assumption regarding the Markov structure of the underlying dynamics and Chen

and Epstein (2002) handles multiple priors in such continuous-time setup. Epstein and Schneider

(2003) addresses intertemporal utility with multiple priors and ambiguity aversion under a cru-

cial dynamic consistency assumption, unlike the present paper where dynamic consistency follows

from the structure of the optimal policies. Hansen and Miao (2018) studies generic per-stage re-

cursive representations of discrete-time intertemporal preferences that allow for ambiguity aversion

to (subjective) uncertainty and their corresponding heuristic continuous-time limiting Hamilton�

Jacobi�Bellman equations.

Rudik (2020) applies per-stage robustness and solves a model with a stochastic damage func-

tion that incorporates parameter learning and uses risk-sensitive preferences to account for mis-

speci�cation. Although there is an interesting e�ect of learning on the optimal carbon tax, the

author does not �nd a signi�cant e�ect from the risk-sensitive preferences. The lack of such an e�ect

3 It should be noted here that our approach is di�erent in the sense that we handle a dynamic model, in which
the probabilities of the underlying systemic risk are assumed to be known. It is possible to add an additional outer
maximization layer involving an ambiguity distribution on these risk measures (characterizing our model). Such a
model adjustment would not change the core analysis. We leave this extension for future work.
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stems from the narrow choice of values of the penalty parameter θ, which corresponds to the recip-

rocal of the robustness parameter k that we will use in our model with risk-sensitive preferences. In

fact, the values of the robustness parameter in Rudik (2020) vary only between 0 and 0.25. And so,

because the preferences are very close to the standard von Neumann�Morgenstern expected utility,

risk sensitivity appears to have little in�uence. The author also reports that his algorithm did not

converge for other values of k.

Barnett et al. (2020) handles robustness by using a di�erential asset-pricing approach to deal with

the model uncertainty that enters the corresponding Hamilton�Jacobi�Isaacs second-order semi-

linear elliptic PDE as a modi�ed drift with additional quadratic and Kullbach�Leibler divergence

penalty terms for model mis-speci�cation, but the authors' derivation and analysis is only heuristic.

In this light, it should be noted here that in the abovementioned papers there is neither any ex-

istence or regularity proofs of the solutions to the corresponding dynamic programming equations

nor any veri�cation proofs of these solutions as the corresponding optimal value functions. Some

of these papers only provide a heuristic derivation of one functional form of such a solution but

again provide no uniqueness results, thereby leading to some degree of vagueness in the subsequent

inferences based on such solutions.

2.3. Full-Path Accumulated Robustness

Bommier et al. (2017) demonstrates that although the use of exponentials or Hansen�Sargent-type

risk-sensitive preferences introduces the much-needed monotonicity property to such per-stage re-

cursive preferences, the condition of stationarity of the optimal policies is still not generally satis�ed

unless {Et(·)}t=0,1,...,N−1 satis�es the following condition:

Et+1(·) = βtE1

(
·
βt

)
. (5)

As can be easily checked now, enforcing such a condition when Et(·) = EHSt (·) leads to very coun-

terintuitive restrictions on the structure of this certainty equivalent�that is, stationarity in this

Hansen�Sargent setup can now only be maintained by using an arti�cial �ampli�cation mechanism�

that compensates for the decrease in risk caused by discounting; namely, Uk(·) at time t is now

implicitly t-dependent and de�ned as U (t)
k (·) def= Ukβ−t(·)

def
= 1−e−kβ

−t(·)

kβ−t . This implies that these pref-

erence functions, U (t)
k (·), decrease with time�thereby inducing a preference for early resolution of

uncertainty as expected under risk aversion. In fact, stationarity of optimal policies cannot be gener-

ically guaranteed for such preferences given the non-homogeneity of the functional EHSt (·) due to

its entropic nature.

Also, to the best of our knowledge this per-stage recursive approach does not have closed-form

solutions in general in the form of some well-de�ned value functions (of related dynamic program-

ming equations) for the stage-t continuation utility Vt or even existence results for optimal Vt given
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some generic Uk(·). Thus, studying the analytic properties of Vt under various model scenarios is

either quite di�cult or even not possible. Only recently, Bäuerle and Ja±kiewicz (2018) proved an

existence result in this direction and derived some properties of the solution for risk-sensitive expo-

nential Uk(·) utilities in a speci�c type of optimal portfolio growth model, only under strong growth

and Lyapunov-type stability assumptions. Thereby, Bäuerle and Ja±kiewicz (2018) generalizes, in

some sense, the setup of Hansen and Sargent (1995), which studies a more restricted problem with

linear state process evolution perturbed by Gaussian noise and quadratic per-stage utility (LQG).

Corresponding results for generic Uk(·) are still open problems (as far as we know).

The preceding discussion points to certain inherent weaknesses of the per-stage recursive frame-

work. However, the literature on climate economics has, to date, adopted this approach. A serious

examination of the �full-path accumulated robustness� framework for analyzing such problems along

the lines of Bommier et al. (2015) and van der Ploeg (1993) is therefore required. This alternative

approach is technically supported by the highly developed machinery of stochastic control theory

(see, e.g., Jacobson (1973), Di Masi and Stettner (1999), Bäuerle and Rieder (2014), and Whittle

(1990), and references therein). As we show in our derivation of Theorem 2 in Appendix A, this ma-

chinery can be used to arrive at concrete existence results as well as closed-form (optimal) solutions

to the recursion as value functions of the corresponding dynamic programming (Bellman) equations

as well as (weakly) non-stationary deterministic optimal policies. Thus, our approach addresses the

methodological weaknesses of the per-stage recursive framework and enables us to provide a sound

theoretical foundation for the application of full-path accumulated robustness in climate change

economic models.

The present paper is the �rst application of the full-path accumulated robustness approach in the

context of an IAM. The continuation utility Vt at time t≥ 0 corresponds to a concave exponential

transform (see Formula (2) in Section 2.1) of the von Neumann�Morgenstern utility function (1)

and is similar to, but more general than, Bommier et al. (2015) and also the work of van der Ploeg

(1993) on precautionary savings in �nance. De�ning Uk(·)
def
= − 1

k
e−k(·) and U (t)

k (·) def= Ukβt(·) , let

EFPt (·) def=
(
U (t)
k

)−1 (
Et

[
U (t)
k (·)

])
=− 1

kβt
ln
(
Et

[
e−kβ

t(·)
])
.We consider the problem of maximizing

the full-path accumulated preference Vt (again using Formula (2)) starting at time t≥ 0,

Vt
def
= − 1

kβt
lnEt

[
e−kβ

t∑N
s=t β

s−tu(cs)
]

= u(ct) + EFPt (βVt+1), (6)

over all admissible consumption plans {ct}Nt=0 where the second equality follows from Proposition

1 in Appendix A. A careful look at formulae (4) and (6) reveals that the two notions of robustness

discussed in this paper match exactly under no discounting (i.e., β = 1). In fact, we prove something

more fundamental for risk-sensitive preferences in Theorem 1 in Appendix A�namely, that the
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per-stage recursive utility is always greater than or equal to the full-path accumulated one. This

result implies that the former overestimates the optimal value function for β < 1.

An important point to note here is that whereas van der Ploeg (1993) handles a speci�c instance

of such a problem�similar to what Hansen and Sargent (1995) did for the per-stage recursive setup;

namely, the linear evolution of the state space perturbed by Gaussian noise with quadratic per-stage

utility functions (LQG)�we make no such assumptions on either our state process evolution or the

exact form of our per-stage utilities for our proof technique. For our computational results, however,

we have to use speci�c forms of the per-stage utility and the transition kernel (operator), which

we in turn use in the proof of our results in Appendix A (for the sake of continuity and direct

relevance).

Another important point to note is the crucial di�erence between the Arrow�Pratt coe�cient

of absolute risk aversion AFP (·) of our preferences and AEZ(·) of the more familiar Epstein�Zin

(EZ) preference described in Section 3.3. In particular, the functional form of the EZ preference is

U(k,ψ)(·)
def
= (·)

1−k
1− 1

ψ , where 1
ψ
is the elasticity of intertemporal substitution (EIS). Thus, AFP (·) =

−U
′′
k (·)
U ′
k

(·) = k whereas AEZ(·) =−
U ′′(k,ψ)(·)
U ′

(k,ψ)
(·) =

k− 1
ψ

1− 1
ψ

1
(·) , implying di�erent types of attitudes toward risk

aversion. In fact, the Arrow�Pratt coe�cient of relative risk aversion REZ(·) = (·)AEZ(·) =
k− 1

ψ

1− 1
ψ
is

constant whereas for our preferences the coe�cient of absolute risk aversion AFP (·) is constant. Of

course, both of these result in the corresponding Arrow�Pratt coe�cient of value 0 for the standard

additive von Neumann�Morgenstern utility, since, for this value, k= 1
ψ
for EZ and k= 0 for FP.

Some researchers may consider the existence of non-stationary (instead of stationary) optimal

policies�a result of the time-dependent preferences as in (6)�a drawback of our model (and its op-

timal solution). However, this is not a problem because our optimal policies are still time-consistent

in the sense of Johnsen and Donaldson (1985) (see also Hansen et al. (2006)) when viewed as optimal

deterministic policies on an extended state space.4 In fact, these are (weakly) stationary on that

extended state space as, by construction, they are sub-path optimal therein (see, again, Theorem

2 and also Proposition 1 in Appendix A). We note that since EFPt (·) is an entropic risk measure it

is not necessarily homogeneous as a functional of its argument and hence the optimal solution will

be time-dependent in any case. This feature is naturally realized in the structure of our optimal

policies and cannot be removed by any arti�cial �ampli�cation mechanism,� unlike in the per-stage

recursive case; that is, our full-path accumulated approach re�ects the true non-stationary nature

of such systems in a �hard-coded� way that is not amenable to arti�cial parametric perturbations

4 The optimal policy retains the same functional over time on this extended state space as explained in Theorem 2
in Appendix A. Therefore, the original optimal policy is carried through whatever the current state of the system at
any time t. Hence, the dynamic preferences of the policy maker admit time-consistency in the sense of Johnsen and
Donaldson (1985).
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to retain �false� stationarity. Also, as explained in van der Ploeg (1993), in contrast to the per-stage

recursive utility approach the customary assumption of indi�erence to the temporal resolution of

uncertainty is retained (see Kreps and Porteus (1978, 1979)). More importantly, the distinction be-

tween IES and risk aversion is maintained in our approach without compromising on monotonicity

and time-consistency.

As a �nal remark, we note that our proof can be easily adapted to any general setup by suitably

adjusting the kernels, functions, and their domains and then following our proof technique in this

paper, which uses the highly developed machinery of stochastic control theory from, for example,

Di Masi and Stettner (1999) or Bäuerle and Rieder (2014). Although Bommier et al. (2015) fol-

lowed a similar approach, the authors neither incorporate discounting in the risk-sensitive preference

structure nor provide any proof of existence of the value function as a solution to the corresponding

Bellman equation, nor any proof of existence of optimal policies.5 In the present paper, we provide

a novel proof technique for more general climate change problems involving full-path accumulated

robustness. In the process, we extend and formalize both the ideas in Bommier et al. (2015) and

the LQG setup for such systems studied by van der Ploeg (1993) in precautionary savings, just

as Bäuerle and Ja±kiewicz (2018) extended the similar LQG setup for per-stage recursive systems

studied by Hansen and Sargent (1995).

3. A Stochastic Integrated Assessment Model

Our stochastic integrated assessment model builds on the concepts of the Ramsey�Cass�Koopmanns

growth model (Ramsey (1928), Cass (1965), Koopmans et al. (1963)) for the economic aspect, and

interconnects them with a climate module in the spirit of Nordhaus (1993) but replaces the carbon

cycle with a linear relationship between temperature and cumulative emissions; see Matthews et al.

(2009) and Matthews et al. (2012). The integrated assessment model, then, incorporates both the

impact of consumption and mitigation choices on the climate and reversely that of climate damage

on production. In all these interconnections lie both risks and deep uncertainties. Climate tipping

points in stochastic integrated assessment models have been assessed, for example, in Lontzek et al.

(2015) and van der Ploeg and de Zeeuw (2017). Cai et al. (2016) models a complex system of

interacting climate tipping points and Cai and Lontzek (2019) also studies multilayered catastrophic

risks and uncertainty quanti�cation.6 In the present paper, we introduce persistent endogenous

discrete disaster states that model the risk of climate change�induced disasters that would have a

grave e�ect on the economy. For the better assessment of this risk we use risk-sensitive preferences

5 Because of the absence of discounting (i.e., β = 1), the approach in Bommier et al. (2015) is e�ectively the same as
the per-stage recursive framework.

6A methodological overview of decision-making under uncertainty and risk in economic models of climate change is
presented in Brock and Hansen (2018).
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as discussed in detail in Section 2. In our model, we view risk-sensitive preferences as a means of

making robust decisions by deliberately putting a greater emphasis on worst-case scenarios. The

risk-sensitive parameter k can then be interpreted as the robustness parameter rather than as a

risk-aversion or ambiguity-aversion parameter. This approach o�ers a sensible means of uncertainty

quanti�cation that leads to well-balanced, robust decisions, in contrast to simply comparing the

results to the worst-case scenario itself.

First, we specify our general model with risk-sensitive preferences and discuss the existence of

solutions to our model. Then, we brie�y introduce alternative preferences, which we use for the

sensitivity analysis. Subsequently, we choose functional forms and a baseline parametrization for

the model. Finally, we provide details on the calculation of the social cost of carbon in our model.

3.1. The General Model with Risk-Sensitive Preferences

We denote the world capital stock in trillions of dollars at time t by Kt ∈ [0, K̄], K̄ > 0. We write Tt ∈
[0, T̄ ], T̄ > 0 for the rise in the global average temperature compared to preindustrial levels in ◦C at

time t. The stochastic disaster state ϑt ∈ S ≡ {1,2,3,4} represents the climate disaster�induced per-

sistent damage to production at time t and follows a discrete-time temperature-dependent Markov

process. At time t, Ct ∈ [0,Kt] is world consumption in trillions of dollars, and µt ∈ [0,1] is the

abatement rate. The parameter k > 0 denotes the robustness parameter for the risk-sensitive prefer-

ences. Capital, Kt, evolves according to the capital accumulation model C1(DK,t)3 gK,t :DK,t→R

where DK,t = [0, K̄]× [0, T̄ ]×S × [0,Kt]× [0,1]. Analogously, temperature, Tt, evolves according to

the climate model C1(DT,t) 3 gT,t : DT,t→ R where DT,t = [0, K̄]× [0, T̄ ]× [0,1]. We assume that

the utility function C1([0,Kt])3Ut : [0,Kt]→R+ ≡ [0,∞) is strictly increasing and continuous with

Ut(0) = 0 for t= 0, . . . ,N − 1. We de�ne the expectation operator E· [·|·] as follows:

E(Ct,µt)
[
e−ktβVt+1(Kt+1,Tt+1,ϑt+1)|Kt, Tt, ϑt

]
=
∑
ϑ̂∈S

pϑt,ϑ̂(Tt)e
−ktβVt+1(gK,t(Kt,Tt,ϑt,Ct,µt),gT,t(Kt,Tt,µt),ϑ̂),

(7)

using the function C1([0, T̄ ]) 3 pϑt,ϑ̂ : [0, T̄ ]→ [0,1], where pϑt,ϑ̂(Tt) denotes the time-t transition

probability from ϑt ∈ S to ϑ̂ ∈ S when the rise in the global average temperature is Tt. Note, we

denote kt ≡ kβt and hence k0 = k. Now, using Equation (6) and putting Et [·] =E(Ct,µt) [·|Kt, Tt, ϑt]

therein, the social planner proposes the following Bellman optimality equation for our model:

Vt(Kt, Tt, ϑt) = max
Ct,µt

{
Ut(Ct)−

1

kt
ln
(
E(Ct,µt)

[
e−ktβVt+1(Kt+1,Tt+1,ϑt+1)|Kt, Tt, ϑt

])}
s.t. Kt+1 = gK,t(Kt, Tt, ϑt,Ct, µt),

Tt+1 = gT,t(Kt, Tt, µt),

(8)

for t= 0, . . . ,N−1 (where each period t is equal to one year) with VN(·)≡ h(·) for some C1([0, K̄])3
h : [0, K̄]→R (h(·) may be a constant; possibly 0).
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3.2. Existence of Solutions

The existence of a value function and an optimal policy as a solution to the social planner's problem

with time-separable additive utility functions is well understood. However, these results do not apply

to our risk-sensitive preference framework because of its recursive and multiplicative structure. In

order to solve the social planner's dynamic programming problem (8) with standard numerical

methods, however, we need to show the existence of a solution to the Bellman equation (8) and

the existence of a corresponding optimal (deterministic) Markov strategy (as opposed to policy

correspondences), and verify that the full-path accumulated robust utility functional EFPt (·) is indeed

optimized at this solution for each t≥ 0, attaining such optimality by this optimal Markov policy.

For completion therefore, we state and prove such an existence theorem (Theorem 2 in Appendix

A) for our model under the stated assumptions on the utility functions Ut and the constraint

functions gK,t and gT,t for all t= 0,1, . . . ,N −1, and the transition probability function pϑt,ϑ̂. Using

results from stochastic control theory, as proved in Bäuerle and Rieder (2014) (see also Di Masi and

Stettner (1999)), Theorem 2 asserts the existence of a value function solving the Bellman equation

(8) that maximizes the full-path accumulated robust utility functional (6) at each time t≥ 0 under

the corresponding optimal deterministic (weakly) non-stationary Markov policy, thereby proving

sub-path optimality, and hence time-consistency for our full-path robust preference.

3.3. Alternative Preferences

In our sensitivity analysis, we also solve the integrated assessment model with time-additive CRRA

preferences and with Epstein�Zin preferences and compare the results from these model speci�ca-

tions to those of the model using risk-sensitive preferences. For these preferences, the social planner's

problem is stated as follows:

Vt(Kt, Tt, ϑt) = max
Ct,µt

{
Ut(Ct) +βφ−1(E [φ(Vt+1(Kt+1, Tt+1, ϑt+1))])

}
s.t. Kt+1 = gK,t(Kt, Tt, ϑt,Ct, µt),

Tt+1 = gT,t(Kt, Tt, µt),

(9)

where φ(v) = v corresponds to time-additive preferences using CRRA-type utility and

φ(v) =

{
v(1−k)/(1−1/ψ) if v≥ 0

(−v)(1−k)/(1−1/ψ) if v < 0

represents Epstein�Zin preferences (Epstein and Zin 1989).7 For Epstein�Zin preferences, when the

risk-aversion parameter, k, is equal to 1/ψ, then we obtain the standard time-additive CRRA utility

function. Epstein�Zin preferences disentangle the two parameters and allow modelers to choose any

two positive values.

7 See Cai and Lontzek (2019) for the value function transformation from utility Ut to the value function Vt.
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Epstein�Zin preferences have been successfully applied in management science and economics.

The IAM of Cai and Lontzek (2019) employs a social planner with such preferences. Westermann

(2018) uses a continuous-time version of these preferences (with k= 10 and ψ= 1.5) in her analysis

of the impact of manager�shareholder agency con�icts and macroeconomic risk on corporate policies

and �rm value. Cai et al. (2018) also uses these preferences, in a continuous-time portfolio selection

model with capital gains taxes. The authors choose k= 3 and ψ= 1.43. In recent years, researchers in

decision analysis have repeatedly tried to estimate the average EIS from data. Brown and Kim (2014)

presents an experiment designed to elicit subjects' preferences regarding risk, time, intertemporal

substitution, and uncertainty resolution. Results reveal that most subjects prefer an early resolution

of uncertainty, which means that their relative risk aversion exceeds the reciprocal of the elasticity

of intertemporal substitution, k > 1/ψ. That is, the results are consistent with the properties of

recursive preferences and refute CRRA preferences. Kapoor and Ravi (2017) reports results from a

natural experiment and estimates the elasticity of intertemporal substitution to be 2.2. Burgaard

and Ste�ensen (2020) estimates the parameters of Epstein�Zin utility based on a questionnaire,

simultaneously estimating risk aversion, the subjective discount rate, and the EIS. The authors �nd

substantially larger values for the EIS than traditionally used.

Even though Epstein�Zin preferences have been very popular, some papers question whether they

have been used appropriately. Epstein et al. (2014) argues that the parameter values used in the

long-run risk literature in �nance�k= 10 and ψ= 1.5; see, for example, Bansal and Yaron (2004)�

imply that agents are willing to give up an unrealistically large portion of their future consumption

stream for an early resolution of risk. Put di�erently, the preference for an early resolution of risk is

much too strong compared to people's actual behavior. Thus, such Epstein�Zin-type utilities are not

so e�ective in preference speci�cation for early uncertainty resolution separately from �uctuations

in risk aversion and intertemporal substitution. For example, as shown in de Groot et al. (2018),

this Epstein�Zin type preference speci�cation violates an economically meaningful restriction on

the weights in its time-aggregator in the context of valuation risk. Consequently, again as shown

therein, when the corrected preference speci�cation is combined with Bansal�Yaron long-run risk

(see Bansal and Yaron (2004)), then valuation risk plays a signi�cantly smaller (compared to the

original Epstein�Zin framework) role in determining asset prices. A di�erent line of criticism, notably

brought forth in Bommier et al. (2017) and Bommier and Le Grand (2019), argues that Epstein�Zin

preferences are non-monotone and therefore could lead to counterintuitively large precautionary

savings.

3.4. Parametrization and Calibration

We assume that gross world output before climate damage is modeled by the Cobb�Douglas function

f(K,L,A) =AKαL1−α, (10)
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where α= 0.3 is the capital share of production and A is the factor productivity. We specify gross

world output according to the DICE 2016-R calibration in Nordhaus (2017) and set the present-time

value of capital, K0, to 318.85 trillion dollars,8 and the present-time total factor productivity, A0,

to 6.2529.9 The path of world population (in billions),

Lt+1 = (1 + 0.0115e−0.03t)Lt, where L0 = 7.795, (11)

is calibrated such that it matches the median pathway (Median PI) from United Nations and

Social A�airs (2019) until the year 2100 and asymptotically reaches just under 11 billion people

after 300 years. This is close to the calibration in Nordhaus (2017), which goes to 11.5 billion

asymptotically.

Climate damage to production depends on the temperature T and the disaster state ϑ, where

ϑ= 1 denotes the state with no additional disasters and higher ϑ represent higher disaster damage.

Thus, we de�ne the damage function as

Ω(T,ϑ) = (1−π2T
2)(1−wϑ(T )), (12)

where π2 = 0.00236 and wϑ(T ) = aϑT
bϑ , with parameter values shown in Table 1. The damage

function is the rate of production that remains after climate damage; that is to say, Ω(T,ϑ)f(K,L,A)

would be the GDP after climate damage.

ϑ= 1 ϑ= 2 ϑ= 3 ϑ= 4
aϑ 0 0.01 0.015 0.02
bϑ 0 0 1 2

Table 1 Disaster Damage Parameters

We assume that the world starts in state ϑ= 1, which is calibrated to match Nordhaus's DICE

2016-R model (Nordhaus 2017). Thus, we de�ne w1(T ) = 0. The remaining parameters for the

damage wϑ(T ) and the transition probabilities pij(T ), i, j ∈ S are calibrated such that the worst case
matches the upper 95% damage function in Howard and Sylvan (2020). Additionally, the transition

probabilities are chosen such that the disaster states are fairly persistent and that the probability of

evolving into a worse state rises with the temperature. More precisely, the transition probabilities

between disaster states ϑ are given by

p(Tt) =


0.96 0.02 0.02 0.00

0.03 0.93 0.02 0.00

0.00 0.03 0.95 0.02

0.01 0.03 0.03 0.93

+


−∆p(Tt) ∆p(Tt) 0 0

0 −∆p(Tt) ∆p(Tt) 0

0 0 −∆p(Tt) ∆p(Tt)

0 −0.1∆p(Tt) −0.1∆p(Tt) 0.2∆p(Tt)

 (13)

8We are denoting the present value of capital in 2020 US dollars.

9Although we are using the exact same formulation for the time path of A as Nordhaus (2017), an alternative, still
accurate description of the �rst 200 periods is At = 6.2529+0.1123+0.00047t2.
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with

∆p(Tt) = 1− exp(−pHazardTt),

and transition probability parameter pHazard = 0.015.

The long-run expected damage function (12) is calibrated to roughly match the median damage

function, even though for real pathways the damage function depends not only on the current

temperature but also on the history of temperatures because of the endogeneity in the transition

law.

We use the calibration for the ratio of mitigation cost-to-output from Nordhaus (2017):

Λt(µ) = θ1(t)µθ2 , (14)

where θ1(t) = 0.55(1− 0.025)
t+5

5
σ(t)

θ2
and θ2 = 2.6. Capital K evolves according to

Kt+1 = (1− δ)Kt−Ct + (1−Λt(µt))Ω(Tt, ϑt)f(Kt,Lt,At)≡ gK,t(Kt, Tt, ϑt,Ct, µt), (15)

where δ= 0.1 is a constant rate of depreciation of physical capital stock.

The carbon intensity,

σ(t) = (1 + gσ)t−1σ0, (16)

with parameters σ0 = 0.3255 and gσ =−0.0145, denotes the rate of emissions to output in GtCO2/$

trillion (see Nordhaus (2017)). The emissions Et in GtCO2 are then de�ned as

Et = σ(t)(1−µt)f(Kt,Lt,At). (17)

Thanks to advances in climate modeling, we can use a simple climate model that makes use

of the �nding that there is a linear relationship between temperature and cumulative emissions;

see Matthews et al. (2012) and Matthews et al. (2009).10 In fact, Dietz et al. (2021) argues that

this simple model performs even better than the much more involved carbon cycle model in DICE

2016-R (Nordhaus 2017), and the statistical analysis in Miftakhova et al. (2020) �nds signi�cant

explanatory power of the simple linear relationship. We model the temperature equation as

Tt+1 = ηEt = ησ(t)(1−µt)f(Kt,Lt,At) =: gT,t(Kt, Tt, µt), (18)

where η= 0.002× (12/44) is the transient response to cumulative CO2 emissions in ◦C/GtCO2.
11

10 This relationship has already been used in integrated modeling. See, for example, Barnett et al. (2020) and Anderson
et al. (2016).

11 Because our model does not account for exogenous emissions from land-use change and forestry, our choice for η
is roughly 1.15 times the mean estimate of Matthews et al. (2012). We adopt this linear scaling factor motivated by
the analysis in Simmons and Matthews (2016).
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The utility Ut is given by

Ut(Ct) =
(Ct/Lt)

1−1/ψ

1− 1/ψ
. (19)

The assumptions of Theorem 2 on the utility function require ψ > 1, which is in line with the

1<ψ≤ 2 range assumed in the literature on long-run risk and asset pricing (see, among many other

works, Bansal and Yaron (2004), Pohl et al. (2018), and Epstein et al. (2014)) and the values found

in the management science literature on estimating this elasticity (see Brown and Kim (2014) and

Kapoor and Ravi (2017)).

Finally, we assume that the utility discount rate is given by β = 0.985 and that the terminal value

function h is equal to some constant value.

3.5. The Social Cost of Carbon

In the language of mathematical optimization the SCC is a relative shadow price of the atmospheric

stock of carbon. Measured in units of the numeraire good (in our model, capital or consumption)

it allows us to put a price tag on the negative externality caused by an additional unit of carbon

emitted. We de�ne the social cost of carbon in units of dollars per ton of carbon as

SCCt =−1000η

(
∂Vt
∂Tt

)
/

(
∂Vt
∂Kt

)
, (20)

where η is the transient response to cumulative CO2 emissions (measured in GtCO2). Because the

SCC is expressed in US$/tCO2, we use −1,000 as a scaling factor to adjust for the fact that K is

measured in 1012 US$ and cumulative CO2 emissions are measured in GtCO2, thus, 109 tCO2. The

formulation of the SCC as a relative shadow price implies that the path of the SCC will depend

on the marginal value of capital and the marginal value of the degree of global warming. These

marginal values will re�ect the expectation of the risks associated with climate disasters.

3.6. Numerical Solution Method

We solve the social planner's problem speci�ed in (8) using value function iteration. The value

function has three arguments, a single discrete state variable, ϑ, and two continuous state variables,

K and T . First, we estimate a reasonable deterministic model so that we can build a time-varying

grid of Chebyshev nodes around the solution paths that satisfy the condition that all simulation

paths of the stochastic model stay well within these grids. We then iteratively solve the Bellman

equation on these discrete Chebyshev nodes and approximate the value function for the two con-

tinuous state variables with multivariate complete Chebyshev polynomials while imposing shape

preservation constraints, including a positive �rst derivative and a negative second derivative with

respect to capital; see Appendix B for further numerical details and an analysis of the numerical

approximation error.12

12 See Judd (1998) for an extended discussion of the mathematical and computational details. See Cai (2019) for a
discussion on approximations with complete Chebyshev polynomials.
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4. Results

We solve the 300-period stochastic dynamic programming problem and obtain the optimal decision

rules for consumption and mitigation in any time period.13 We use these optimal decision rules, the

dynamic equation for the two continuous state variables, and the Markovian transition rules for the

discrete-state disaster variable to simulate 50,000 paths of the model economy�starting in 2020.

The large number of simulations allows us to study the statistical distribution of the dynamic model

variables. We �rst report numerical solutions for the baseline version of the model and interpret

them in the context of our IAM. Subsequently, we provide some sensitivity analysis on a few key

model parameters.

4.1. The Baseline Model

The results for the benchmark model with ψ = 1.5 and k = 5 computed with 50,000 Monte Carlo

simulations together with the range from worst to best case are shown in Figure 1.14 We also

compute both the deterministic worst-case scenario by setting ϑ≡ 4 and the deterministic best-case

scenario with ϑ≡ 1 as standard robustness checks. The dashed blue lines represent the pathways

for the deterministic model where the disaster state is constantly set to ϑ= 1, which represents the

Nordhaus (2017) damage calibration.

The dashed red lines are the deterministic pathways in the worst disaster state ϑ = 4. The or-

ange pathways show the mean path out of 50,000 Monte Carlo simulations of the stochastic model

with parameters ψ = 1.5 and k = 5. The light gray area represents the range for these simulations

whereas the dark gray area represents the 75% interval range. As shown in Figure 1, the social cost

of carbon in year 2020 is US$162/tCO2 and this grows to a mean social cost of carbon of US$1,233

/tCO2 in year 2120; the SCC ranges from US$969/tCO2 to US$1,554/tCO2 by that time. If we

only had to expect little damage as in Nordhaus (2017), which corresponds to permanently being

in disaster state 1 in our model, the SCC would only amount to US$67/tCO2 in 2020 and grow to

US$520/tCO2 in 2120. Conversely, if we would assume a permanent disaster state 4�which still

corresponds to a much lower damage function than the upper 95% con�dence interval in Howard

and Sylvan (2020)�the SCC would start at US$371/tCO2, and grow to US$2,462/tCO2 in 2120.

The expected temperature, starting at 1◦C above preindustrial levels, would grow roughly linearly

until 1.28◦C in 2045 and then asymptotically reach its steady state of 1.37◦C in 2065. The temper-

ature in our model after 2065 ranges between 1.28◦C and 1.40◦C. This is rather narrow compared

13We run the model for 300 years but only report results for the �rst 100 years. The terminal value function has only
a negligible e�ect on the results in the �rst 100 years.

14Although there is a rich body of literature to draw from for calibrating the EZ parameters (see Section 3.3) there
are no microfounded analyses suggesting an appropriate choice of k, the robustness parameter. We address that issue
in Subsection 4.3 by solving our model for a broad range of k values, and validate our choice of k by checking the
endogenous discount rate of damage arising from our model.
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Figure 1 Results of the Benchmark Parameter Case

to the optimal long-run temperature of 1.07◦C if we expect the permanent high damage in disaster

state 4 and to the optimal long-run temperature of 2.11◦C if we assume only little damage as in

disaster state 1. Figure 1 shows that the optimum abatement rate in 2020 would have been 43% and
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that the world should reach zero emissions between the year 2057 and the year 2080. Analogously

to the temperature, there is also a very wide range of optimal abatement e�orts for the highest

and the lowest deterministic damage functions. If we permanently expect the worst case�that is,

the damage rate from state 4�we have already seen that the optimal temperature path would not

exceed 1.07◦C. In order to ensure this, one would have to start with a high abatement e�ort of 72%

and reach carbon neutrality in 2038. On the other hand, if damage becomes as small as assumed in

Nordhaus (2017), it would be su�cient to abate at only 25% in 2020 and reach zero emissions in

2103.

Interestingly, the variation in consumption and capital is rather low because the social planner

chooses the mitigation e�ort optimally such that climate damage is kept in a range where it does

not signi�cantly reduce consumption. In fact, the consumption paths of our stochastic model range

from US$849 trillion to US$901 trillion in 2120, whereas the two deterministic consumption paths

for the best disaster and worst disaster states are even much closer, where consumption for the

deterministic disaster state 1 is US$893 trillion and that for the deterministic disaster state 4 is

US$873 trillion. So, we see that even in the case of permanent high climate damage, as in disaster

state 4, consumption in 2120 would still be signi�cantly higher than in the worst pathway of the

stochastic damage model�as long as we have correctly anticipated the higher damage and chosen

the high abatement e�orts beforehand.

4.2. Damage

Figure 2 shows the ratio for each disaster state from the year 2020 to the year 2120 in 50,000 Monte

Carlo simulations. We observe a sharp rise in occurrences of the disaster states 2 and 3 early in this

period whereas the occurrence of disaster state 4 emerges rather slowly. In the period 2060 to 2080,

the occurrence shares of the disaster states have approximately reached the steady state. Now we

can plot the damage rate (as a share of GDP) in each disaster state and also the abovementioned

steady state and compare it to damage rates given in the literature. This plot is shown in Figure 3.

In fact, we have calibrated the damage states and the transition probabilities such that the steady-

state damage rate matches the median damage rate from Howard and Sylvan (2020) quite well. All

four damage rate functions for the four di�erent damage states lie well within the 95% con�dence

interval shown in Howard and Sylvan (2020). More precisely, the highest damage rate, in state 4, is

20% of GDP at a temperature increase of 3◦C whereas the Howard and Sylvan (2020) upper bound

of the 95% con�dence interval shows damage of 40%. Given that the occurrence of damage state 4

is 19% in the steady state, our calibration seems sensible.
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4.3. Discounting Damage

In order to verify that our choice of the range for the robustness parameter k is sensible, we compute

the endogenous discount rate of climate damage using the methodology applied in Cai and Lontzek

(2019). Although we compute the social cost of carbon as the negative marginal value of emissions

over the marginal value of capital, one can also compute the SCC by discounting the expected extra

damage from emitting an additional unit of CO2 and using a given discount rate. So, we can write
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the present SCC as

SCC0 =
∞∑
t=0

(1 + ρ∆)−t∆t, (21)

where ρ∆ denotes the social discount rate and ∆t the expected additional damage from adding one

unit of CO2 at time t= 0. So, given the social cost of carbon and the expected additional damage

computed from our model in (8), we can compute the discount rate of damage ρ∆ using (21). Table

2 shows that the discount rate for our model with risk-sensitive preferences and ψ= 1.5 ranges from

2.2% to 2.5% and decreases slightly with higher k. We observe that the implied discount rate of

Preference parameter k 0.1 5 10 20 30
Discount rate of damage (in %) 2.5 2.4 2.4 2.3 2.2

Table 2 Discount Rate of Damage for Risk-Sensitive Preferences with ψ= 1.5

damage is rather robust to values of k in a range between 0 and 30. Moreover, the value of the

discount rate �ts well to the values chosen by the Interagency Working Group on the Social Cost

of Greenhouse Gases, which uses a discount rate of 3% as a baseline for its calculations of the SCC

(and rates of 2.5% and 5% for sensitivity analyses). Put di�erently, if we view this exercise as a

calibration approach for the robustness parameter k, then our chosen values for k in the range (0,30)

appear reasonable.

4.4. The SCC Robustness Premium

We can also analyze and compare the evolution of the mean SCC over time for di�erent robustness

parameters k in the stochastic model with risk-sensitive preferences and for di�erent risk aversion

parameters k for the model with Epstein�Zin preferences. The mean SCC pathways for ψ= 1.5 for

both risk-sensitive and Epstein�Zin preferences are shown in Figure 4.15

Whereas the SCC in year 2020 approximately ranges from US$162/tCO2 to US$174/tCO2 both

for risk-sensitive preferences with robustness parameters k between 5 and 30 and for Epstein�Zin

preferences with risk aversion k between 5 and 30, the gap widens much more in the case of Epstein�

Zin preferences in later periods compared to the case of risk-sensitive preferences. In 2120, the SCC

for risk-sensitive preferences with k = 30 is only US$1,248/tCO2, compared to US$1,357/tCO2 for

Epstein�Zin preferences with k = 30. For k→ 0+ and k = 1/ψ, both preferences coincide and are

the same as simple additive time-separable CRRA preferences, so that the SCC in 2120 is the same

15 Tables 7 and 8 in Appendix C provide numerical values for the SCC in the model with risk-sensitive preferences
in the years 2020 and 2120 for four di�erent levels of the EIS, ψ ∈ {1.25,1.5,1.75,2}. Tables 9 and 10 report the
corresponding SCC values for Epstein�Zin preferences. The values in the rows for ψ= 1.5 are represented in Figure 4.
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Figure 4 Mean SCC Values (US$/tCO2) for both the Model with Risk-Sensitive Preferences and the Model with

Epstein�Zin Preferences

as well, and amounts to US$1,233/tCO2. Therefore, the range for risk-sensitive preferences in 2120

is approximately US$15/tCO2, whereas the range for Epstein�Zin preferences is US$124/tCO2.

Next we analyze how the robustness parameter k in risk-sensitive preferences and the risk aversion

parameter k in Epstein�Zin preferences�under di�erent values for the EIS ψ�in�uence the social

cost of carbon at initial time t = 1. We know that there is one case for which the risk-sensitive

and the Epstein�Zin preferences coincide�namely, for k→ 0+ and k = 1/ψ. Moreover, these two

preferences become equivalent to the time-additive CRRA preferences. In the following we study the

optimal SCC in 2020. In Figure 5, the farthest left value�that is, k→ 0+�therefore also denotes

the SCC for CRRA preferences.

In the case of Epstein�Zin preferences we observe that for a given value of ψ the 2020 SCC

increases linearly with higher levels of the risk parameter k. Moreover, higher values of ψ lead to

a parallel upward shift of the linear k�SCC mapping. By contrast, risk-sensitive preferences induce

a higher increase in the 2020 SCC for higher ψ values. For ψ = 1.5, the robustness parameter k

in the model with risk-sensitive preferences and the risk aversion parameter k in the model with

Epstein�Zin preferences seem to have a strikingly similar e�ect on the SCC. This can be explained

by the fact that the higher the EIS is, the higher the in�uence from possible future disasters is.
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      k                    k              

Figure 5 The 2020 SCC (US$/tCO2) in Relation to the Robustness Parameter k for Risk-Sensitive Preferences

(left) and to Risk Aversion k for Epstein�Zin Preferences (right)

Clearly, the socially optimal carbon tax (that is, the SCC) is increasing with the preference for

robustness. We introduce the term �SCC robustness premium� to describe the excess SCC with

risk-sensitive preferences (for any level of k) over the SCC level under CRRA. The intuition behind

the SCC robustness premium is straightforward: given the disaster risk, an aversion to uncertainty,

and thus stronger preferences for robustness, will lead to much higher emission reductions in 2020

and thus put a premium on the SCC over standard CRRA preferences. Table 3 summarizes the

SCC robustness premium in the ψ-k parameter space of our sensitivity analysis.

k= 5 k= 10 k= 15 k= 20 k= 25 k= 30
ψ= 1.25 1.41 2.86 4.37 5.86 7.31 8.78
ψ= 1.50 2.20 4.57 6.93 9.25 11.60 13.89
ψ= 1.75 3.24 6.59 9.92 13.25 16.53 19.79
ψ= 2.00 4.27 8.70 13.08 17.43 21.67 25.89

Table 3 SCC Robustness Premium in US$/tCO2 in Year 2020

Our baseline calibration implies a SCC robustness premium of US$2.20, but within our plausible

range of preference parameters the SCC robustness premium may be as high as US$25.89 in 2020

(for ψ = 2 and k = 30). This US$25.89 premium is in excess of the US$194.48 SCC in 2020 for

CRRA preferences�a relative premium of 13.31%. Moreover, as expected, this robustness premium
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goes to zero as the robustness parameter k→ 0+, as in such a situation the model reduces to the

standard CRRA setup, implying no premium for robustness (see Figure 6).
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(right, in US$/tCO2) in 2020

4.5. Sensitivity Analysis

In this section, we provide some sensitivity analysis for our stochastic integrated assessment model.

First, we compare the SCC of the per-stage recursive to the full-path accumulated approach for

di�erent values of the discount factor. Subsequently, we describe the e�ect of larger tail risks in the

model on the SCC and the robustness premium.

4.5.1. Comparison of Robust Approaches Recall the notation from Section 2: the indices

HS and FP refer to quantities from the models with per-stage recursive and with full-path accu-

mulated preferences, respectively. We now compare the SCC for the HS and FP models. Table 4

reports the SCC for di�erent values of the discount factor, β.

We observe that the SCC in the HS model exceeds the corresponding value for the FP model.

This is not an accident. Theorem 1 in Appendix A states that, at any time t≥ 0, the HS maximum

utility V ∗HSt ≥ V ∗FPt (the FP maximum utility)16. We therefore expect the corresponding SCCs to

16Note that, in our case here, it follows from Theorem 2 in Appendix A that V ∗FPt is attained by a (weakly)
non-stationary time-consistent deterministic Markov (maximizing) policy.
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β SCC(HS) SCC(FP) SCC(FP)/SCC(HS)
0.98 121.02 117.49 0.971
0.985 166.79 162.12 0.972
0.99 246.22 240.35 0.976
0.995 409.31 401.16 0.980
0.999 728.79 723.21 0.992
0.9999 853.08 852.30 0.999
1 868.18 868.18 1

Table 4 SCC Comparison for HS and FP in US$/tCO2 in Year 2020 for k= 5

satisfy a similar monotone relation. We further observe that the ratio SCC(FP )/SCC(HS) ↑ 1 as

β ↑ 1. Recall from the discussion in Section 2�see (4) and (6)�that the two robustness approaches

should indeed produce identical results in the limit β = 1. Finally, note that the SCC values increase

substantially as β ↑ 1. The larger β, the less the long-horizon per-stage utility values are discounted.

As a result, both the values of the utility and the SCC become larger as well. (We hesitate to provide

an economic discussion of these large values of the SCC, since for very large values of β close to 1

the time horizon T of the model has a strong e�ect on the results.)

4.5.2. Toward Tail-Risk Events Here we study the sensitivity of our model results with

respect to less frequent but more extreme disaster events. For this purpose we modify the Markov

transition matrix to

p(Tt) =


0.96 0.02 0.02 0.00

0.03 0.93 0.02 0.00

0.00 0.03 0.965 0.005

0.01 0.03 0.03 0.93

+


−∆p(Tt) ∆p(Tt) 0 0

0 −∆p(Tt) ∆p(Tt) 0

0 0 −0.5∆p(Tt) 0.5∆p(Tt)

0 −0.1∆p(Tt) −0.1∆p(Tt) 0.2∆p(Tt)

 (22)

where we have reduced the probability of moving from disaster state 3 to disaster state 4. At the same

time, we increase the disaster intensity in state 4: this new parameterization roughly doubles the

ϑ= 1 ϑ= 2 ϑ= 3 ϑ= 4
aϑ 0 0.01 0.015 0.025
bϑ 0 0 1 2.5

Table 5 Disaster Damage Parameters

disaster intensity of state 4 and at the same time halves its occurrence likelihood. As a result, while

the SCC levels increase only slightly, by about 3 percent for our benchmark parameterization (Tables

7 and 11 in Appendix C), the SCC robustness premium increases sharply, by about 37 percent

to 6.27 US$/tCO2 in our benchmark case and by about 30�40 percent for other ψ�k parameter
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combinations. This result hints at a high sensitivity of the SCC robustness premium with respect

to tail risk and should be explored in further research with a re�ned formulation of tail-risk events.

k= 5 k= 10 k= 20 k= 30
ψ= 1.25 1.92 3.86 7.82 11.76
ψ= 1.50 3.12 6.27 12.55 18.83
ψ= 1.75 4.37 8.86 17.72 26.39
ψ= 2.00 5.76 11.62 23.08 34.31

Table 6 SCC Robustness Premium with Risk-Sensitive Preferences and Higher Tail Risks in US$/tCO2 in Year 2020

5. Conclusion

This paper seeks to contribute to the ongoing public discussion about appropriate values of the

social cost of carbon. For this purpose, the paper analyzes an integrated assessment model in the

tradition of the seminal work of Nordhaus (1993). To account for the large uncertainty in physical

climate change processes and their e�ects on economic activity, the model includes an exogenous

shock process and risk-sensitive preferences. Unlike the entire literature on the economics of climate

change, we do not use the Hansen and Sargent (1995) robustness framework but instead apply,

for the �rst time in this context, a generalized version of the robustness notion studied in van der

Ploeg (1993), using ideas from stochastic control theory and entropic risk measures. We state and

prove an existence theorem for the value function of the social planner's problem in our model as

well as for the existence of a (sub-path) optimal time-consistent deterministic Markov policy. This

result serves as a theoretical foundation for the numerical solution of the parameterized model. In

the process, we also prove something fundamental for risk-sensitive preferences�namely, that the

per-stage recursive utility is always greater than or equal to the full-path accumulated one. This

result implies that the former overestimates the optimal value function for β < 1. This result serves

as a theoretical foundation for the sensitivity analysis of our model.

A standard speci�cation of the integrated assessment model suggests values for the social cost of

carbon that exceed standard estimates based on CRRA or Epstein�Zin preferences as well as those

SCC values used by policy makers. In addition, the SCC model estimates exceed the carbon credit

prices observed in the most liquid carbon markets and the internal carbon prices used by many

companies. We have introduced the notion of an SCC robustness premium, which we de�ne as the

excess SCC for di�erent levels of uncertainty aversion compared to standard CRRA preferences.

This SCC robustness premium is always positive, is increasing both over time and in the level of

risk sensitivity, and decreases to zero as the latter goes to zero (as expected).

In light of the tremendous uncertainty surrounding climate change and carbon emissions, our

analysis su�ers from several limitations. We model uncertainty in a rather simple manner using a
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four-state Markov state. The functional form of the dependence of the transition probabilities on

temperature changes is rather ad hoc. Furthermore, in the tradition of many IAMs we abstract from

agent heterogeneity and the local e�ects of climate change. Because of this level of aggregation,

the model is a gross simpli�cation of the interaction between climate change and economic activi-

ties across the globe. Despite these limitations, we believe our work provides a new direction and

methodology for the estimation of the social cost of carbon�an important �gure in the discussion

on climate change.

In sum, the social cost of carbon is a moving target. The global community requires ongoing

research on improving integrated assessment models to continuously update estimates for the SCC,

because the SCC will play a crucial role in guiding governments, regulators, and private industry in

their e�orts to mitigate climate change and to adapt to the irreversible damage it may cause. While

the predictions for the SCC in the IAM literature vary greatly, there appears to be widespread

agreement that the world will see steadily rising values of the SCC�just as our model predicts.

The 6th IPCC assessment report (IPCC 2021) predicts that the goals of the celebrated 2015 Paris

Agreement�to keep the rise in the global average surface temperature to 2◦C and ideally to 1.5◦C

above preindustrial temperature levels�will not be reached, which strongly suggests an increased

likelihood of severe climate disasters in the near-term future. Companies in countries with carbon

taxes must thus prepare for such taxes to rise.17 Similarly, companies using internal carbon pricing

will need to plan ahead for higher internal carbon prices.18 Both carbon taxes and internal carbon

pricing a�ect the accounting and �nance functions of companies. So, for example, in the calculation

of net present values (NPVs) or internal rates of return (IRRs) for the evaluation of new investments,

corporate �nance divisions must plan for rising carbon costs.19 Fluctuating values of the SCC will

likely result in additional risks for companies' strategic and �nancial planning.
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Appendix A: Theoretical Results

We �rst prove the Equality (6) in Section 2.3 as the following Proposition 1.

Proposition 1. Equality (6) in Section 2.3 holds; i.e.,

Vt = u(ct) + EFPt (βVt+1), t≥ 0. (23)

Proof: Note that, using the de�nition of Vt in (6), we get

Vt ≡−
1

kβt
lnEt

[
e−kβ

t ∑N
s=t β

s−tu(cs)
]

=− 1

kβt
lnEt

[
e−kβ

tu(ct)−kβtβ
∑N

s=t+1 β
s−(t+1)u(cs)

]
=− 1

kβt
lnEt

[
e−kβ

tu(ct)Et+1

[
e−kβ

t+1 ∑N
s=t+1 β

s−(t+1)u(cs)
]]

=− 1

kβt
lnEt

[
e−kβ

tu(ct)e−kβ
t+1Vt+1

]
= u(ct)−

1

kβt
lnEt

[
e−kβ

t(βVt+1)
]

= u(ct) + EFPt (βVt+1), (24)

where the third equality follows from conditioning on the event �ltration, the fourth equality follows from

the de�nition of Vt (and hence Vt+1) in Equality (6), and the last equality follows from the de�nition of

EFPt (·) in Section 2.3. 2

We now state and prove a new result in stochastic control that has important applications in our paper

(see Section 4.5.1) as well as in the generic analysis of risk-sensitive preferences in the economics literature.

For notational convenience (see also Sections 2.1 and 2.3 for details), at any time t≥ 0 we denote the HS total

utility thereof as V HS
t and the FP total utility thereof as V FP

t with V ∗HSt , V ∗FPt denoting the corresponding

maximums (optimals).

Theorem 1. Given our conditions of �nite horizon analysis, i.e., compactness of control spaces and conti-

nuity/positivity of per-stage/terminal utilities, at any time t≥ 0 and any given k > 0, V HS
t , V FP

t , V ∗HSt , V ∗FPt

exist. Moreover, V HS
t ≥ V FP

t and, in particular, V ∗HSt ≥ V ∗FPt .

Proof: A closer look at equalities (4), (6), and (24) reveals that, at any time t≥ 0, the e�ective continuation

CE can be written as Eefft (·) def= − 1

k
eff
t

ln
(
Et

[
e−k

eff
t (·)

])
with the corresponding utility iteration as Vt =

u(ct) + βEefft (Vt+1) for both HS and FP , where the time-t e�ective k-value kefft for HS is kefft (HS) = k

and that for FP is kefft (FP ) = kβt+1. Therefore, starting at a given terminal (per-stage) utility and a given

control (possibly a vector) sequence {ct}Nt=0, it follows by backward induction that both V HS
t and V FP

t exist

and hence, by Weierstrass's Theorem, so do V ∗HSt and V ∗FPt by the compactness of the control spaces and the

continuity of the per-stage/terminal utilities. Now, as before, we obtain Eefft (·)≡U−1

k
eff
t

(
Et

[
U
k
eff
t

(·)
])

with

U
k
eff
t

(·) def= − 1

k
eff
t

e−k
eff
t (·) implying

∂Eeff
t (·)
∂k

eff
t

> 0 since
∂U

k
eff
t

(·)

∂k
eff
t

=−U
k
eff
t

(·)
(

(·) + 1

k
eff
t

)
> 0. As kefft (HS)≥

kefft (FP ), this further implies that, at any time t≥ 0, V HS
t ≥ V FP

t under any given control sequence {ct}Nt=0.

Now, let {c∗HSt }Nt=0 be a maximizing selector sequence for HS and {c∗FPt }Nt=0 be correspondingly the same

for FP. Then we have, for any time t≥ 0,

V ∗HSt ≡ V HS
t |{c∗HS

t }Nt=0
≥ V HS

t |{c∗FP
t }Nt=0

≥ V FP
t |{c∗FP

t }Nt=0
≡ V ∗FPt , (25)

where the �rst inequality follows from the maximizing selector property and the second inequality is just

proved above for any given control sequence. 2
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Next we state and prove here the main theorem, Theorem 2, of this paper. Since we use bounded per-

stage utilities we can apply the results from Bäuerle and Rieder (2014) to prove the existence results for our

model.20 The choice of utility functions with ψ > 1 guarantees that the utility function is well de�ned for zero

consumption. As a consequence the optimal value function is well de�ned at K = 0. We conjecture that the

conclusion of Theorem 2 holds more generally, for example for utility functions that are unbounded below.

In addition, we also surmise that certain regularity properties hold for the value functions and policies in

our model. The proofs of such more general results, however, would require us to �rst extend the results of

Bäuerle and Rieder (2014). Therefore, such extensions need a separate body of work (beyond the current

scope of this paper) as suitable growth and Lyapunov-type stability assumptions need to be made (see, e.g.,

Bäuerle and Ja±kiewicz (2018)) and accordingly the existing stochastic control results need to be extended.

Moreover, whether such assumptions are reasonable for these climate scenarios needs to be economically

justi�ed �rst.

Theorem 2. Under the assumptions in Section 3.1, our optimization problem (8) has a bounded solu-

tion V ∗t (·),0≤ t≤N − 1, V ∗N(·)≡ h(·) to the Bellman equation (8) and a corresponding maximizing (non-

stationary) Markov policy {φ∗t (Kt, Tt, ϑt)}0≤t≤N−1 satisfying

φ∗t (Kt, Tt, ϑt) = arg max
Ct,µt

[Ut(Ct) −

1

kt
ln

(∑
j∈S

pϑtj(Tt) exp
(
−ktβV ∗t+1(gK,t(Kt, Tt, ϑt,Ct, µt), gT,t(Kt, Tt, µt), j)

))]
(26)

such that

V ∗0 (K0, T0, ϑ0) =−1

k
lnE{φ

∗
t (Kt,Tt,ϑt)}0≤t≤N−1

[
exp

(
−k

(
N−1∑
t=0

βtUt(Ct) +βNh(CN)

))
|K0, T0, ϑ0

]
,

(27)

where E{φ
∗
t (Kt,Tt,ϑt)}0≤t≤N−1 [·|K0, T0, ϑ0] denotes the expectation with respect to the probability measure in-

duced on {(Kt, Tt, ϑt)}0≤t≤N by the corresponding process dynamics as described in (7) and (8) and by the

optimal deterministic (non-stationary) Markov policy {φ∗t (Kt, Tt, ϑt)}0≤t≤N−1 starting at (K0, T0, ϑ0). More-

over, φ∗t (·) ≡ φ∗(kt, ·) for some function φ∗ : [kβN , k] × R+ × R+ × S 7→ R+ × [0,1] where, as before (8),

kt = kβt; implying φ∗t (·) is (weakly) non-stationary and hence sub-path optimal (time-consistent).

Proof: The state (of the world) process Xt can be viewed as a �controlled� Markov chain {Xt ≡

(t, kt,Kt, Tt, ϑt)}0≤t≤N ,∞ > N ≥ 1 on an �e�ective� state space X ≡ [N ] × [kβN , k] × X ′ × S 3 Xt where

X ′ ≡R+×R+ and [N ]≡ {0,1,2, . . . ,N}. Putting K≡R+× [0,1], let U(x)⊂K denote the measurable set of

allowed (admissible) actions in state x∈X . Starting at t= 0, at each time t the social planner observes the

current state Xt of the system and then chooses action at ≡ (Ct, µt)∈ U(Xt)
def
= [0,Kt]× [0,1]≡Ut ⊂K. The

20We follow the approach usual to much of the economic-growth literature and choose the utility function and the
capital accumulation function so that capital, Kt, remains in the interior of its domain. The Inada conditions of the
utility function then imply that the consumption allocations in the optimal solution are positive.
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planner gets an immediate utility Ut(Ct) and, now, the system moves randomly to the next stage, t+1, with

state Xt+1 as per the evolution described by the transition kernel

Qt (BK ×BT ×{j}|(Kt, Tt, ϑt), (Ct, µt))

≡Q ({t′}×Bk×BK ×BT ×{j}|(t, kt,Kt, Tt, ϑt), (Ct, µt))

≡ δt+1,t′ ⊗1ktβ(Bk)⊗1gK,t(Kt,Tt,ϑt,Ct,µt)(BK)⊗1gT,t(Kt,Tt,µt)(BT )⊗ pϑtj(Tt) (28)

where Bk ∈ B([kβN , k]), BK ,BT ∈ B(R+) and δt+1,t′ denotes the Kronecker delta. The whole process then

repeats up to and including t=N−1. Utility Ut(·), which accumulates throughout the course of the evolution
of the system, can now be denoted as U(t, ·) repeating notation without loss of generality. Again without loss

of generality, de�ning Vt(·)≡ Vt(t, kt, ·) by repeating notation as (t, kt) is deterministic, and the optimization

problem (8) can be reformulated, using (28), as

Vt(t, kt,Kt, Tt, ϑt) = Vt(Kt, Tt, ϑt) =

max
Ct,µt

[
Ut(Ct)−

1

kt
ln

(∑
j∈S

pϑtj(Tt) exp (−ktβVt+1(Kt+1, Tt+1, j))

)]
=

max
Ct,µt

[
Ut(Ct)−

1

kt
ln

(∑
j∈S

pϑtj(Tt) exp (−ktβVt+1(t+ 1, kt+1,Kt+1, Tt+1, j))

)]
=

max
Ct,µt

[
Ut(Ct)−

1

kt
ln

(∑
j∈S

pϑtj(Tt) exp (−ktβVt+1(t+ 1, ktβ,Kt+1, Tt+1, j))

)]
=

max
Ct,µt

[U(t,Ct)−

1

kt
ln

 ∑
t′∈[N]

∑
j∈S

δt+1,t′pϑtj(Tt) exp (−ktβVt+1(t′, ktβ, gK,t(Kt, Tt, ϑt,Ct, µt), gT,t(Kt, Tt, µt), j))

=

max
Ct,µt

[U(t,Ct)−

1

kt
ln
∑
t′∈[N]

∑
j∈S

∫
[kβN ,k]×X ′

exp (−k′Vt+1(t′, k′, x′, y′, j))Q ({t′}× d(k′, x′, y′)×{j}|(t, kt,Kt, Tt, ϑt), (Ct, µt)))

 .
(29)

Because t is in a �nite set [N ] and Ut(·), h(·) are continuous on a compact set, there exists

M ≡ max
0≤t≤N

max
Ct∈[0,Kt]

|Ut(Ct)| ∨ max
C∈[0,K̄]

|h(C)|<∞, (30)

implying U(t, ·) =Ut(·) and h(·) are bounded. Also, by de�nition Ut is compact for all 0≤ t≤N . Moreover,

the e�ective state space XN ≡ [N ] × [kβN , k] × [0,KN ] × [0, TN ] × S ⊂ X is also compact. Also, for each

t, t′ ∈ [N ], i, j ∈ S, Bk ∈ B([kβN , k]), BK ,BT ∈ B(R+), Q ({t′}×Bk×BK ×BT ×{j}|{t}, ·,{i}) is jointly

continuous (hence weakly continuous) in the other parameters�that is, ((k,K,T ), (C,µ)). Therefore, together

with our given boundary condition VN(·)≡ h(·) and the fact that ln is a monotonically increasing function,

it follows from Corollary 2 and Remark 2 of Bäuerle and Rieder (2014) and (29) that there indeed exists a

(bounded) solution V ∗t (·),0≤ t≤N to the DPE (29) (and hence to the original DPE (8)) and a corresponding

deterministic maximizing (non-stationary) Markov policy {φ∗t (Xt)}0≤t≤N−1 satisfying

φ∗t (Kt, Tt, ϑt) = arg max
Ct,µt

[U(t,Ct)−
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1

kt
ln

 ∑
t′∈[N]

∑
j∈S

δt+1,t′pϑtj(Tt) exp
(
−ktβV ∗t+1(t′, ktβ, gK,t(Kt, Tt, ϑt,Ct, µt), gT,t(Kt, Tt, µt), j)

)
= arg max

Ct,µt

[Ut(Ct)−

1

kt
ln

(∑
j∈S

pϑtj(Tt) exp
(
−ktβV ∗t+1(gK,t(Kt, Tt, ϑt,Ct, µt), gT,t(Kt, Tt, µt), j)

))]
(31)

such that

V ∗0 (K0, T0, ϑ0) = max
{(Ct,µt)}0≤t≤N−1

−1

k
lnE

{(Ct,µt)}0≤t≤N−1

Q

[
exp

(
−k

(
N−1∑
t=0

βtUt(Ct) +βNh(CN)

))
|K0, T0, ϑ0

]

=−1

k
lnE

{φ∗t (Xt)}0≤t≤N−1

Q

[
exp

(
−k

(
N−1∑
t=0

βtUt(Ct) +βNh(CN)

))
|K0, T0, ϑ0

]
, (32)

where E
{φt(Xt)≡(Ct,µt)}0≤t≤N−1

Q [·|K0, T0, ϑ0] denotes the expectation with respect to the probability mea-

sure induced on {Xt}0≤t≤N by Q (·|·)�see (28)�and a given Markov policy {φt(Xt)}0≤t≤N−1 starting at

(K0, T0, ϑ0). The boundedness of V ∗t ,0≤ t≤N is obvious from the boundedness of Ut(·) and h(·). Note that

the non-stationarity of φ∗t (·) is evident from its implicit dependence on kt = kβt (see (31)) for each t ∈ [N ];

i.e., φ∗t (·) ≡ φ∗(kt, ·) for some function φ∗ : [kβN , k]× [0,KN ]× [0, TN ]× S 7→ [0,KN ]× [0,1] implying it is

(weakly) non-stationary and sub-path optimal, hence, time-consistent in the sense of Johnsen and Donaldson

(1985). De�ning U t(Ct)≡Ut(Ct) +M ≥ 0 (see (30)), we have that

−1

k
lnE

{(Ct,µt)}0≤t≤N−1

Q

[
exp

(
−k

(
N−1∑
t=0

βtUt(Ct) +βNh(CN)

))
|K0, T0, ϑ0

]

=−1

k
lnE

{(Ct,µt)}0≤t≤N−1

Q

[
exp

(
−k

(
N−1∑
t=0

βt
(
U t(Ct)−M

)
+βNh(CN)

))
|K0, T0, ϑ0

]

=−1

k
lnE

{(Ct,µt)}0≤t≤N−1

Q

[
exp

(
−k

(
N−1∑
t=0

βtU t(Ct) +βNh(CN)

))
|K0, T0, ϑ0

]
− 1−βN

1−β
M. (33)

Hence, by (32) a policy is optimal for the above utility using U(·, ·) if and only if it is optimal for our

original problem using U(·, ·), and therefore the results of Corollary 2 and Remark 2 of Bäuerle and Rieder

(2014), which assume nonnegativity of the per-stage utility, can be used here without any problem. 2

Appendix B: Numerical Approximation Error

In order to measure the numerical approximation error that occurs at each iteration step, we need to de�ne

an error measure for the value function approximation. As there is no inherent meaning to the absolute value

of the value function, it is not sensible to simply compute the relative error. Instead, we use the notion of a

unit-free error measure,

ξt(Xt) = max
x∈Xt

∣∣∣V̂t(x)−V ∗t,x
∣∣∣

‖x‖K,T · ‖∇K,T V̂t(x)‖
, (34)

where the set X ⊂ [0, K̄]× [0, T̄ ]×S contains a discrete number of points (K(i), T (i), ϑ(i)), i∈ {1, . . . , n} in the

state space. The Chebyshev approximation of the value function Vt(·) is denoted by V̂t(·) and the numerical
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solution to the Bellman equation (8) at point x and time t computed using the optimization solver KNITRO

is denoted by V ∗t,x. The seminorm for ‖ · ‖K,T is de�ned as the Euclidean norm over capital and temperature;

that is,

‖(K,T,ϑ)‖K,T ≡ ‖(K,T )‖2. (35)

For each time period t, we choose X as a 20x20x4 grid spread evenly over the domain for the multivariate

Chebyshev polynomials. The unit-free error measure ξt(Xt) for the value function calculated with the nu-

merical algorithm with 9x9 Chebyshev nodes and 4x4 degree Chebyshev polynomials are computed on the

time-varying approximation domain and shown in Figure 7. As we can see, the errors are of a magnitude

of about 10−4 and lower. Therefore, we conclude that the numerical approximation of the value function is

su�ciently accurate.
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Figure 7 Maximum Unit-Free Error Measure of the Value Function for Each Time Period t
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Appendix C: Additional Results

Tables 7 and 8 report the SCC for the model with risk-sensitive preferences in the years 2020 and 2120,

respectively, for four di�erent levels of the EIS, ψ ∈ {1.25,1.5,1.75,2}. Subsequently, Tables 9 and 10 report

the corresponding SCC values for Epstein�Zin preferences. Table 11 reports the SCC with risk-sensitive

preferences and higher tail risks for the sensitivity analysis.

k= 0.25 k= 5 k= 10 k= 15 k= 20 k= 25 k= 30
ψ= 1.25 137.85 139.26 140.71 142.22 143.70 145.15 146.63
ψ= 1.50 159.91 162.12 164.48 166.84 169.17 171.52 173.80
ψ= 1.75 178.55 181.79 185.14 188.47 191.80 195.07 198.34
ψ= 2.00 194.62 198.89 203.32 207.71 212.06 216.29 220.51

Table 7 SCC with Risk-Sensitive Preferences in US$/tCO2 in Year 2020

k= 0.25 k= 5 k= 10 k= 15 k= 20 k= 25 k= 30
ψ= 1.25 1177.77 1192.79 1174.83 1180.93 1184.92 1194.65 1203.56
ψ= 1.50 1237.20 1214.92 1225.54 1247.83 1242.90 1249.10 1252.06
ψ= 1.75 1300.13 1266.77 1303.95 1295.07 1304.81 1298.75 1304.14
ψ= 2.00 1297.00 1293.97 1310.07 1336.85 1332.38 1345.93 1358.41

Table 8 SCC with Risk-Sensitive Preferences in US$/tCO2 in Year 2120

k= 5 k= 10 k= 15 k= 20 k= 25 k= 30
ψ= 1.25 140.48 142.90 145.28 147.64 149.97 152.27
ψ= 1.50 162.14 164.58 166.99 169.38 171.74 174.07
ψ= 1.75 180.72 183.19 185.65 188.07 190.46 192.82
ψ= 2.00 196.76 199.27 201.75 204.22 206.66 209.05

Table 9 SCC with Epstein�Zin Preferences in US$/tCO2 in Year 2020

k= 5 k= 10 k= 15 k= 20 k= 25 k= 30
ψ= 1.25 1162.57 1213.43 1251.01 1246.17 1267.98 1299.35
ψ= 1.50 1207.63 1263.98 1260.51 1311.21 1363.83 1348.33
ψ= 1.75 1300.61 1293.22 1301.19 1335.52 1388.68 1393.79
ψ= 2.00 1286.66 1355.80 1368.29 1361.55 1414.97 1419.41

Table 10 SCC with Epstein�Zin Preferences in US$/tCO2 in Year 2120



Author: Full-Path SCC Robustness

Article submitted to Management Science; manuscript no. MS-SPI-00682.accepted (DoI : 10.1287/mnsc.2023.4736) 35

k= 0.5 k= 5 k= 10 k= 20 k= 30
ψ= 1.25 143.02 144.77 146.71 150.67 154.61
ψ= 1.50 164.53 167.40 170.55 176.83 183.12
ψ= 1.75 182.99 187.00 191.50 200.35 209.02
ψ= 2.00 198.82 204.11 209.97 221.43 232.66

Table 11 SCC with Risk-Sensitive Preferences and higher tail risks in US$/tCO2 in Year 2020
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