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Suppose that the arrival rate and the jump distribution of a compound Poisson process change suddenly at an
unknown and unobservable time. We want to detect the change as quickly as possible to take counteractions,
e.g., to assure top quality of products in a production system, or to stop credit card fraud in a banking system.
If we have no prior information about future disorder time, then we typically assume that the disorder is equally
likely to happen any time–or has uniform distribution–over a long but finite time horizon. We solve this so-called
compound Poisson disorder problem for the practically important case of unknown, unobserved, but uniformly
distributed disorder time. The solution hinges on the complete separation of information flow from the hard time
horizon constraint, by describing the former with an autonomous time-homogeneous one-dimensional Markov
process in terms of which the detection problem translates into a finite horizon optimal stopping problem. For any
given finite horizon, the solution is two-dimensional. For cases where the horizon is large and one is unwilling to
set a fixed value for it, we give a one-dimensional approximation. Also, we discuss an extension where the disorder
may not happen on the given interval with a positive probability. In this extended model, if no detection decision
is made by the end of the horizon, then a second level hypothesis testing problem is solved to determine the local
parameters of the observed process.

Keywords: Compound Poisson process; optimal stopping; Poisson disorder problem; quickest detection

1. Introduction

A sudden change in the statistical behavior of a system can be catastrophic. A quickest detection rule
may help decision makers alleviate some of the detrimental effects of the change by allowing them to
react and take the necessary countermeasures in a timely manner. Monitoring the arrival process of
seismic shocks and declaring an emergency when there is a change in their behavior may help with the
efforts to foresee an emerging earthquake, and could potentially save lives and minimize the damage.
Likewise, observing the arrival process of patients to medical centers can contribute to the disease
outbreak investigations greatly. Therefore, detecting the change point as soon as it occurs can be a
crucial task in certain applications.

Change detection problems have been widely studied in the literature. Basseville and Nikiforov
(1993), Poor and Hadjiliadis (2008), and Tartakovsky, Nikiforov and Basseville (2014) show us a wide-
range of applications and methods. Bayesian formulations of these problems date back to the works of
Kolmogorov and Shiryaev in the early 1960s. Assuming some prior knowledge on the probability law
governing the change point, the aim in these formulations is to minimize a cost function, known as the
Bayes risk, consisting of the probability of falsely detecting a change and the average detection delay
cost. The change point is assumed to have a geometric and exponential prior distribution in discrete
time and continuous time models, respectively. The primary objects of study are the sequences of
random variables and their continuous time analogs. The solution methods to those problems depend
on the reformulation to an optimal stopping problem and reduction to a free-boundary problem. When
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solving the reformulated optimal stopping problem, both martingale and Markovian approaches are
studied; see Shiryaev (2008), and Peskir and Shiryaev (2006) for a comprehensive review of the optimal
stopping time problems. We invite the reader to Shiryaev (2019) for an extensive discussion on disorder
problems, related results, and also for a comprehensive list of references from the literature.

For a Poisson process, the first formulation was given by Gal’chuk and Rozovskii (1971). Davis
(1976) extended their results to a more general case. Three decades after its first formulation, the
disorder problem for a simple Poisson process was completely solved by Peskir and Shiryaev (2002).
Bayraktar, Dayanik and Karatzas (2005, 2006) considered the problem for different Bayes risks and
with a random post-disorder rate, respectively. Taking jump observations into formulation, Gapeev
(2005) gave a partial solution to the compound Poisson disorder problem. Dayanik and Sezer (2006a)
solved the problem with general jump distributions by adapting a method of Gugerli (1986) and Davis
(1993) for solving control problems of general piecewise-deterministic Markov processes. The results
and the algorithm developed in Dayanik and Sezer (2006a) are employed in Buonaguidi et al. (2021)
for a credit card fraud detection problem. Buonaguidi et al. (2021) can be consulted for practice related
remarks and discussions. The formulations with observations at discrete points in time are studied
by Brown (2008, 2016) and under different observation schemes by Herberts and Jensen (2004). In
the above-mentioned literature, the disorder times have often a zero-modified exponential distribution.
One exception, as a natural generalization of the exponential prior choice, is the phase-type distribution,
which is studied by Bayraktar and Sezer (2009).

For related work on non-Bayesian minimax formulations with continuous-time jump processes,
we refer the reader to El Karoui, Loisel and Salhi (2017) and Figueroa-López and Ólafsson (2019);
El Karoui, Loisel and Salhi (2017) studies a problem where the stochastic intensity of a Poisson process
undergoes a proportional change, and Figueroa-López and Ólafsson (2019) considers the detection
problem for a Lévy process. These two papers can also be consulted for further references on other
discrete and continuous time change detection problems in the non-Bayesian framework.

On the Bayesian side, the exponential distribution is useful to model machine part lifetimes in
reliability theory. The end of life of a component in a sophisticated black-box system could be a
potential change point in the behavior of the system. Thus, exponentially distributed change point
makes sense when modeling a quickest detection problem due to the earliest failure of independent
components in a large system with many components. More importantly, having an exponential
prior proves useful when obtaining explicit results with several solution methods. For instance,
the sufficient statistics are finite-dimensional (mostly one-dimensional) when the change point is
exponentially distributed; see, for example, Peskir and Shiryaev (2002). Due to those analytical
advantages, exponential distribution remained as the common assumption for the change point’s prior
in the literature.

Exponential prior is unfortunately inappropriate when the disorder is equally likely to happen within
every infinitesimally small time epoch over a finite time interval. Although phase-type priors can be
used to approximate a uniform or another prior distribution, it suffers from the high-dimensionality
problem as the state space of the hidden Markov process gets larger. Also, in practice, if the system
analyst does not have any prior information about time of the disorder other than the range of possible
values, then she may choose to use a relatively uninformative prior for the disorder time. In that respect,
one of the most straightforward candidates for a prior distribution is the uniform distribution. It is
simple, puts equal weight to every small interval of the same length in a given larger interval, and it
gives us on that larger interval the density with the maximum entropy. Thus, it can successfully express
the notion of having little information and would be a good fit for the change point’s prior. Unlike an
exponential or phase-type distribution, however, the uniform distribution does not have forgetfulness
property, and the likelihood of a disorder gradually increases as time without disorder progresses.

The uniform prior distribution has been recently introduced and used in Zhitlukhin and Shiryaev
(2013, 2014) and Sokko (2015) in settings where the observations come from a Wiener process whose
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drift changes at the disorder time. Zhitlukhin and Shiryaev (2014) discusses an asset selling problem
with a financial focus; see also Shiryaev, Zhitlukhin and Ziemba (2014, 2015) for some applications.
Zhitlukhin and Shiryaev (2013) and Sokko (2015), on the other hand, study the statistical problem of
detecting the change time. To our best knowledge, such a detection formulation with compound Poisson
observations has not been studied yet. This is the contribution of the current paper.

In the paper, we denote by

𝑋𝑡 = 𝑋0 +
𝑁𝑡∑︁
𝑘=1

𝑌𝑘 , 𝑡 ≥ 0, (1)

a compound Poisson process with arrivals following a simple Poisson process 𝑁 = {𝑁𝑡 ; 𝑡 ≥ 0} at a rate
𝜆0 > 0 and i.i.d. R𝑑-valued random jumps 𝑌1,𝑌2, . . . with common distribution 𝜈0 (·) independent of
𝑁 . At some unknown and unobserved disorder time Θ, we assume that the arrival rate 𝜆0 and jump
distribution 𝜈0 shift to 𝜆1 and 𝜈1, respectively. We assume that the disorder time Θ has a zero-modified
uniform prior

P{Θ = 0} = 𝜋 and P{Θ > 𝑡} = (1 − 𝜋)
(
𝑇 − 𝑡

𝑇

)
, 𝑡 ∈ [0,𝑇], (2)

for known 𝑇 ∈ R+ and 𝜋 ∈ [0,1). We want to detect Θ with some [0,𝑇]-valued stopping time 𝜏 adapted
to the history F of the compound Poisson process 𝑋 so as to minimize Bayes risk

𝐵𝜏 (𝑇, 𝜋) := P{𝜏 < Θ} + 𝑐E(𝜏 −Θ)+, 𝜋 ∈ [0,1), 𝜏 ∈ F , (3)

which is the sum of the false alarm probability P{𝜏 < Θ} and the expected delay cost 𝑐E(𝜏 − Θ)+.
The parameter 𝑐 > 0 is the unit delay cost relative to a false alarm. An F -stopping time 𝜏 is called a
Bayes-optimal alarm time if it attains the minimum Bayes risk

𝑉 (𝑇, 𝜋) := inf
𝜏∈S[0,𝑇 ]

𝐵𝜏 (𝑇, 𝜋), (4)

where S[0,𝑇 ] is the collection of all F -adapted [0,𝑇]-valued stopping times.
Our analysis in the paper shows that the minimum Bayes risk problem in (4) is equivalent to a finite

horizon optimal stopping of a one-dimensional piecewise-deterministic Markov sufficient statistic. We
study properties of the value function of this stopping problem. We prove that the continuation and
stopping regions are separated by a monotone boundary, and the optimal stopping time is the first
crossing time of this boundary. We also show that the value function of the finite horizon problem can
be approximated by that of the infinite horizon when 𝑇 is large. This allows the decision maker to use
the solution of the latter problem and thereby reduce the computations for large values of 𝑇 to one
dimension only. This infinite horizon approximation is also useful if 𝑇 is known to be large but its exact
value is difficult to specify.

The prior distribution in (2) above assumes that a disorder happens on the given range with
probability one. When 𝑇 is large, this can be a reasonable assumption. However, when 𝑇 is moderate or
small, it might be preferable from a practical point of view to consider the possibility that no disorder
happens at all on [0,𝑇] with some non-zero probability. In Section 5, we discuss this extension, and
we consider a model in which, if no detection decision is made by time 𝑇 , a second level hypothesis
testing problem is solved to determine the current (and future) arrival rate and jump distribution of
the observed process. For this second level problem, we consider two formulations; in the first one,
a decision must be made at time 𝑇 , and in the second, this decision can be delayed and further
observations can be collected after 𝑇 at some additional cost per unit time of delay. We show that
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both formulations essentially give us similar auxiliary optimal stopping problems for the same Markov
sufficient statistic, and in the second formulation, we apply the well-known sequential probability ratio
test if we continue after 𝑇 . One major difference of this extended setup compared to the case with the
prior in (2) is that, in the auxiliary optimal stopping problems, the stopping boundaries may not be
monotone anymore.

The remainder of the paper is organized as follows. In Section 2, we present the model containing
the random elements of our problem, describe the quickest detection problem, and reformulate it to an
optimal stopping problem for a suitable Markovian sufficient statistic. In Section 3, we investigate the
properties of the value function of this stopping problem and show that the continuation and stopping
regions are separated by a non-decreasing boundary. We also show that the infinite horizon problem
can approximate the finite horizon one when 𝑇 is large. In Section 4, we introduce the successive
approximations of the value function and derive some useful results. In Section 5, we discuss the
extension where the change may not happen at all on the given interval with a positive probability.
Section 6 concludes the paper with final remarks. Lengthy derivations and auxiliary proofs are given
in the appendices at the end.

2. Model and problem formulation

Let (Ω,F ,P0) be a probability space hosting the following independent stochastic elements:

(i) a standard Poisson process 𝑁 = {𝑁𝑡 ; 𝑡 ≥ 0} with the arrival rate 𝜆0,
(ii) i.i.d. R𝑑-valued random variables 𝑌1,𝑌2, . . . with a common distribution 𝜈0 (𝐴) := P0{𝑌1 ∈ 𝐴}

for every Borel set 𝐴 in the Borel 𝜎-algebra B(R𝑑) and 𝜈0 ({0}) = 0,
(iii) a random variable Θ with the distribution

P0{Θ = 0} = 𝜋 and P0{Θ > 𝑡 |Θ > 0} = 1 − 𝑡

𝑇
for 0 ≤ 𝑡 ≤ 𝑇, 𝜋 ∈ [0,1), 𝑇 ∈ R+. (5)

Let 𝑋 = {𝑋𝑡 ; 𝑡 ≥ 0} defined by (1) be a compound Poisson process with the arrival rate 𝜆0, jump
distribution 𝜈0 (·), and the jump times

𝜎𝑛 := inf{𝑡 > 𝜎𝑛−1 : 𝑋𝑡 ≠ 𝑋𝑡−}, 𝑛 ≥ 1 (𝜎0 ≡ 0). (6)

Let us denote the augmentation of its natural filtration 𝜎(𝑋𝑠 , 𝑠 ≤ 𝑡), 𝑡 ≥ 0, with P0-null sets by
F = {F𝑡 ; 𝑡 ≥ 0}. We will describe the enlargement of this filtration F with the sigma-algebra 𝜎(Θ)
generated by Θ with G = {G𝑡 ; 𝑡 ≥ 0}. That is, G𝑡 := F𝑡 ∨ 𝜎(Θ) for every 𝑡 ≥ 0.

Let 𝜆1 > 0 be a constant, and 𝜈1 (·) be a probability measure on the measurable space (R𝑑 ,B(R𝑑))
absolutely continuous with respect to the distribution 𝜈0 (·). Radon-Nikodym derivative

𝑓 (𝑦) :=
𝑑𝜈1

𝑑𝜈0

���
B(R𝑑 )

(𝑦), 𝑦 ∈ R𝑑 , (7)

of 𝜈1 (·) with respect to 𝜈0 (·) exists and is a 𝜈0 − 𝑎.𝑒. non-negative Borel function.
We describe a new probability measure P on the measurable space (Ω,∨𝑠≥0G𝑠) by a change of

measure with Radon-Nikodym derivative 𝑍𝑡 of P with respect to P0

𝑑P

𝑑P0

���
G𝑡

= 𝑍𝑡 := 1{𝑡<Θ} + 1{𝑡≥Θ}
𝑅𝑡

𝑅Θ

, 𝑡 ≥ 0, (8)
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in terms of the likelihood ratio process 𝑅 = {𝑅𝑡 ; 𝑡 ≥ 0} given by

𝑅𝑡 := 𝑒−(𝜆1−𝜆0 )𝑡
𝑁𝑡∏
𝑘=1

[
𝜆1

𝜆0
𝑓 (𝑌𝑘)

]
, 𝑡 ≥ 0. (9)

Probability measures P0 and P are called the reference and physical probability measures, res-
pectively. Observe that since 𝑍0 = 1 P0-a.s. and the probability measures P and P0 agree on G0 = 𝜎(Θ),
the disorder time Θ has the same distribution under both probability measures. Calculations which are
difficult under P become easier under P0 due to the independence of the previously defined stochastic
elements.

Our problem is to find an F -stopping time 𝜏 ≤ 𝑇 that minimizes the Bayes risk in (3) and detect
the disorder time Θ as soon as possible while observing the process 𝑋 . As shown in Appendix A, the
Bayes risk can be rewritten as

𝐵𝜏 (𝑇, 𝜋) = 1 − 𝜋 + 𝑐(1 − 𝜋)
𝑇

E0

[∫ 𝜏

0

(
Φ𝑡

𝐷𝑡

− 1
𝑐

)
𝑑𝑡

]
, (10)

for 𝜋 ∈ [0,1) and 𝜏 ≤ 𝑇 , in terms of the odds-ratio process Φ defined by

Φ𝑡 :=
Π𝑡

1 −Π𝑡

=
P{Θ ≤ 𝑡 |F𝑡 }
P{Θ > 𝑡 |F𝑡 }

, 𝑡 ≥ 0, (11)

where Π𝑡 := P{Θ ≤ 𝑡 |F𝑡 }, 𝑡 ≥ 0, is the posterior probability process. The deterministic process 𝐷 =

{𝐷𝑡 ; 𝑡 ∈ [0,𝑇)} is given by

𝐷𝑡 :=
1

𝑇 − 𝑡
. (12)

Let us define

𝑄𝑡 := 𝑅𝑡

[
𝑞 +

∫ 𝑡

0

1
𝑅𝑠

𝑑𝑠

]
, 𝑡 ≥ 0. (13)

In Appendix A.2, starting with 𝑄0 = 𝑞 = 𝑇 𝜋
1−𝜋

, we show that 𝑄𝑡 =
Φ𝑡

𝐷𝑡
, for 𝑡 < 𝑇 . In the appendices (see

Appendix B), we also present the dynamics of the process 𝑄. As it turns out, the process 𝑄 belongs to
the family of piecewise-deterministic Markov processes. If we define

𝑥(𝑞, 𝑡) :=


1
𝜆1 − 𝜆0

+
(
𝑞 − 1

𝜆1 − 𝜆0

)
𝑒−(𝜆1−𝜆0 )𝑡 , 𝜆1 ≠ 𝜆0,

𝑞 + 𝑡, 𝜆1 = 𝜆0,

(14)

for 𝑡 ∈ R+ and 𝑞 ∈ R+, then for 𝑛 ≥ 0

𝑄𝑡 =


𝑥(𝑄𝜎𝑛

, 𝑡 − 𝜎𝑛), 𝜎𝑛 ≤ 𝑡 < 𝜎𝑛+1,

𝑥(𝑄𝜎𝑛
, 𝜎𝑛+1 − 𝜎𝑛)

𝜆1

𝜆0
𝑓 (𝑌𝑛+1), 𝑡 = 𝜎𝑛+1.

(15)

This means that the process 𝑄 follows the deterministic curves 𝑡 ↦→ 𝑥(𝑞, 𝑡) in (14) between two
consecutive jumps of the process 𝑋 and jumps instantly at the jump times of the process 𝑋 as described
in (15). Using (13) and the martingale property under P0 of the non-negative process 𝑅, it is easy
to verify that 𝑄 is a non-negative supermartingale, again under P0. We also have E0,𝑞 [𝑄𝑡 ] = 𝑞 + 𝑡,
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for 𝑡 ≥ 0. Throughout, E0,𝑞 denotes the expectation operator under the probability measure P0 with
𝑄0 = 𝑞 ∈ R+ with probability one.

The result below shows that the exit time of the process 𝑄 from an interval of the form [0, 𝑟), for
𝑟 < ∞, has a uniformly bounded first moment. The proof is deferred to Appendix C. As the proof
illustrates, it is possible to find explicit upper bounds on the moment depending on the boundedness of
the random variables 𝑓 (𝑌𝑘)s and/or the ordering of 𝜆1 and 𝜆0. These expressions are omitted here for
conciseness and clarity of the presentation.

Lemma 2.1. Define 𝜏𝑟 := inf{𝑡 ≥ 0 : 𝑄𝑡 ≥ 𝑟} for 𝑟 < +∞. Then, we have E0,𝑞 [𝜏𝑟 ] ≤ E0,0 [𝜏𝑟 ] < ∞ for
every 𝑞 ∈ R+.

Substituting the process 𝑄 in the Bayes risk yields

𝐵𝜏 (𝑇, 𝜋) = 1 − 𝜋 + 𝑐(1 − 𝜋)
𝑇

E0

[∫ 𝜏

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡

]
, with 𝑄0 = 𝑇

𝜋

1 − 𝜋
. (16)

Hence, the minimum Bayes risk in (4) is given by

𝑉 (𝑇, 𝜋) = 1 − 𝜋 + 𝑐(1 − 𝜋)
𝑇

𝑈

(
𝑇,𝑇

𝜋

1 − 𝜋

)
(17)

in terms of the value function

𝑈 (𝑇, 𝑞) := inf
𝜏∈S[0,𝑇 ]

E0,𝑞

[∫ 𝜏

0
𝑔(𝑄𝑡 )𝑑𝑡

]
, 𝑞 =𝑄0 ∈ R+, (18)

with the running cost 𝑔(𝑞) := 𝑞 − 1
𝑐

, 𝑞 ∈ R+. The quickest detection problem for a compound Poisson
process can thus be reformulated equivalently as a finite horizon optimal stopping problem for the
process 𝑄.

3. Properties of the value function

The following remark is useful in establishing the concavity and Lipschitz continuity of the function 𝑈

in (18) in the 𝑞 variable. For a discussion on the concavity of the value functions of detection and testing
problems for Wiener processes, we refer the reader to the recent paper Ekström and Wang (2022).

Remark 3.1. For every bounded stopping time 𝜏, we have

E0,𝑞

∫ 𝜏

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡 = E0,𝑞

[
𝜏

(
𝑄𝜏 −

1
𝑐

)
− 𝜏2

2

]
= 𝑞 E0 [𝜏𝑅𝜏] + E0

[
𝜏𝑅𝜏

∫ 𝜏

0

1
𝑅𝑠

𝑑𝑠 − 𝜏

𝑐
− 𝜏2

2

]
. (19)

Proof. Applying the chain rule for the process 𝑡 ↦→ 𝑡 (𝑄𝑡 − 1/𝑐) and using the dynamics of the process
𝑄 in (62), we obtain

𝑡

(
𝑄𝑡 −

1
𝑐

)
− 0 =

∫ 𝑡

0

(
𝑄𝑢 −

1
𝑐

)
𝑑𝑢 +

∫ 𝑡

0
𝑢𝑑𝑄𝑢 =

∫ 𝑡

0

(
𝑄𝑢 −

1
𝑐

)
𝑑𝑢 +

∫ 𝑡

0
𝑢𝑑𝑢 +

∫ 𝑡

0
𝑢𝑑𝑀𝑢,

where the last integral term is a (P0,F )-martingale; see (59) and (62) in Appendix B for the process
𝑀 . Evaluating all expressions for a bounded stopping time 𝜏 and taking the expectations, we obtain the
first identity in (19) thanks to optional sampling theorem. The second now follows from (13).
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Lemma 3.2. The mapping 𝑞 ↦→ 𝑈 (𝑇, 𝑞) is non-decreasing and concave for every fixed 𝑇 , and 𝑇 ↦→
𝑈 (𝑇, 𝑞) is non-increasing for every fixed 𝑞. Moreover,

−𝑇
𝑐
≤𝑈 (𝑇, 𝑞) ≤ 𝑈̄ (𝑇, 𝑞) ≤ 0, (20)

where

𝑈̄ (𝑇, 𝑞) := inf
𝑡≤𝑇
E0,𝑞

∫ 𝑡

0

(
𝑄𝑢 −

1
𝑐

)
𝑑𝑢 = −

∫ ∞

𝑞

min
{(1

𝑐
− 𝑦

)+
,𝑇

}
𝑑𝑦. (21)

Proof. Concavity and monotonicity in 𝑞 are direct consequences of the second equality in (19) (recall
that 𝑅 is a non-negative process). It is also clear from the definition in (18) that 𝑇 ↦→𝑈 (𝑇, 𝑞) is non-
increasing for every fixed 𝑞, and 𝑈 (𝑇, 𝑞) ≥ inf𝜏≤𝑇 E0,𝑞

∫ 𝜏

0

(
− 1

𝑐

)
𝑑𝑢 = −𝑇

𝑐
. Since every deterministic

time is also a stopping time, we have

𝑈 (𝑇, 𝑞) ≤ 𝑈̄ (𝑇, 𝑞) = inf
𝑡≤𝑇
E0,𝑞

∫ 𝑡

0

(
𝑄𝑢 −

1
𝑐

)
𝑑𝑢 = inf

𝑡≤𝑇
E0,𝑞

[
𝑡

(
𝑄𝑡 −

1
𝑐

)
− 𝑡2

2

]
,

where the last equality is due to the first equality in (19). Using E0𝑄𝑡 = 𝑞 + 𝑡, the deterministic
minimization problem can be solved easily, and this gives the explicit expressions in (21). The bound
𝑈̄ (𝑇, 𝑞) ≤ 0 follows by taking 𝑡 = 0.

Lemma 3.3. The function 𝑈 is locally (jointly) Lipschitz continuous. We have

0 ≤𝑈 (𝑇1, 𝑞) −𝑈 (𝑇2, 𝑞) ≤
1
𝑐
(𝑇2 −𝑇1), for 𝑇1 < 𝑇2, (22)

0 ≤𝑈 (𝑇, 𝑞2) −𝑈 (𝑇, 𝑞1) ≤ (𝑞2 − 𝑞1)𝑇, for 𝑞1 < 𝑞2. (23)

Proof. Non-negativity of the differences are immediate consequences of the monotonicity properties
discussed in Lemma 3.2. To show the upper bound in (22), fix𝑇1 < 𝑇2 and 𝑞, and for 𝜖 > 0 let 𝜏𝜖 ≤ 𝑇2 be
an 𝜖-optimal stopping time starting from the point (𝑇2, 𝑞). That is, E0,𝑞

∫ 𝜏𝜖

0

(
𝑄𝑢− 1

𝑐

)
𝑑𝑢 ≤𝑈 (𝑇2, 𝑞) + 𝜖 .

Since 𝜏𝜖 ∧𝑇1 is a feasible solution (stopping time) starting from (𝑇1, 𝑞), we obtain

𝑈 (𝑇1, 𝑞) −𝑈 (𝑇2, 𝑞) ≤ −E0,𝑞1{𝜏𝜖 >𝑇1 }

∫ 𝜏𝜖

𝑇1

(
𝑄𝑢 −

1
𝑐

)
𝑑𝑢 + 𝜖 ≤ E0,𝑞

∫ 𝑇2

𝑇1

1
𝑐
𝑑𝑢 + 𝜖 =

𝑇2 −𝑇1

𝑐
+ 𝜖

from which (22) follows since 𝜖 > 0 is arbitrary.
To establish the upper bound in (23), for 𝑞1 < 𝑞2 and 𝑇 fixed, let 𝜏𝜖 denote an 𝜖-optimal rule starting

from the point (𝑇, 𝑞1), which is also a feasible rule starting from (𝑇, 𝑞2). Using Remark 3.1, we have

𝑈 (𝑇, 𝑞2) −𝑈 (𝑇, 𝑞1) ≤ (𝑞2 − 𝑞1)E0, · [𝜏𝜖 𝑅 𝜏̃𝜖 ] + 𝜖 . (24)

Since 𝜏𝜖 ≤ 𝑇 and 𝑅 is a non-negative martingale, it follows by the optional sampling theorem that
E0 [𝜏𝜖 𝑅 𝜏̃𝜖 ] ≤ 𝑇E0 [𝑅 𝜏̃𝜖 ] = 𝑇𝑅0 = 𝑇 . This shows (23) by the arbitrariness of 𝜖 again.

We can extend the definition of 𝑈 (𝑇, 𝑞) for 𝑇 = ∞ to obtain the infinite horizon version of the
problem in (18) without the constraint 𝜏 ≤ 𝑇 . This gives us a one-dimensional problem, and it can be
solved as in Dayanik and Sezer (2006a). Alternatively, the arguments of Section 4 can be modified
(with the time dimension removed) to account for this infinite horizon problem. Here, we omit the
details for conciseness. Instead, we summarize the useful results in the remark below.
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Remark 3.4. The function 𝑞 ↦→𝑈 (∞, 𝑞) is a continuous, non-decreasing, and concave function with
𝑈 (∞,0) > −∞. There exists a point 𝑞∞ ≥ 1

𝑐
such that 𝑈 (∞, 𝑞) < 0 for 𝑞 < 𝑞∞ and 𝑈 (∞, 𝑞) = 0 for

𝑞 ≥ 𝑞∞. The first entrance time 𝜏𝑞∞ of the process 𝑄 into the region [𝑞∞,∞) is an optimal stopping
time for the infinite horizon problem.

The following lemma is non-trivial. Its proof is left to Appendix C. The result implies that when 𝑇

is large, one could use the solution of the infinite horizon problem. Its optimal stopping time 𝜏𝑞∞ has
finite expectation by Lemma 2.1.

Lemma 3.5. As 𝑇 ↗∞, 𝑈 (𝑇, 𝑞) converges to 𝑈 (∞, 𝑞) uniformly (over 𝑞) with convergence bounds

0 ≤𝑈 (𝑇, 𝑞) −𝑈 (∞, 𝑞) ≤ −𝑈 (∞,0)
E0,0 [𝜏𝑞∞ ]

𝑇
. (25)

We conclude this section with the following corollary, which shows the stopping region is separated
from the continuation region by a monotone boundary. The result follows directly from Lemmas 3.2
and 3.3 and Remark 3.4. No proof is needed.

Corollary 3.6. Since

(i) 𝑈 is (jointly) continuous
(ii) 𝑞 ↦→𝑈 (𝑇, 𝑞) is non-decreasing and concave for all 𝑇 ≥ 0
(iii) 𝑇 ↦→𝑈 (𝑇, 𝑞) is non-increasing for all 𝑞 ≥ 0
(iv) 𝑈 (∞, 𝑞) ≤𝑈 (𝑇, 𝑞) for all 𝑇 ≥ 0 and 𝑞 ≥ 0

it follows that

Γ := {(𝑇, 𝑞) :𝑈 (𝑇, 𝑞) = 0} (26)

is a closed region with a non-decreasing lower boundary

𝑏(𝑇) := min{𝑞 :𝑈 (𝑇, 𝑞) = 0} (27)

uniformly bounded from above by 𝑞∞. The upper bound function 𝑈̄ (𝑇, 𝑞) with its explicit form in (21)
implies that 𝑏(0+) ≥ 1

𝑐
.

4. Successive approximations

In this section, we show how the function𝑈 in (18) can be constructed sequentially. Such a construction
follows naturally from the observation that the problem regenerates at every jump time. This is indeed
a well-known approach for problems with jump processes; see Dayanik, Poor and Sezer (2008),
Ludkovski and Sezer (2012), Dayanik and Parlar (2013), Arslan, Frenk and Sezer (2015), Kilic,
Saygi and Sezer (2017) for some other examples. We repeat some of the related arguments here for
completeness, and we omit others for conciseness. In particular, we omit the proofs Lemmas 4.4 and
4.10, and that of Proposition 4.9. The reader may refer to Ludkovski and Sezer (2012) for the proofs of
similar results.

Let us define the family of optimal stopping problems

𝑈𝑛 (𝑇, 𝑞) := inf
𝜏∈S[0,𝑇 ]

E0,𝑞

[∫ 𝜏∧𝜎𝑛

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡

]
, 𝑇 ∈ R+, 𝑞 ∈ R+, 𝑛 ∈ N, (28)
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obtained from stopping the process 𝑄 at the 𝑛th jump time 𝜎𝑛 of the observation process 𝑋 . With 𝑛 = 0,
we obviously have 𝜎0 = 0 and 𝑈0 (𝑇, 𝑞) = 0. Since the integrand in (28) is bounded from below by − 1

𝑐
,

the expectation in (28) is well defined for every 𝜏 ∈ S[0,𝑇 ] .
For any 𝑛, stopping the process 𝑄 at time 0, i.e., taking 𝜏 = 0, results in 𝑈𝑛 (𝑇, 𝑞) = 0. Hence, 0 is an

upper bound for the (𝑈𝑛 (𝑇, 𝑞))𝑛∈N sequence. Since 𝑄𝑡 ≥ 0 for all 𝑡 ∈ R+ and 𝜏 ≤ 𝑇 almost surely,∫ 𝜏∧𝜎𝑛

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡 ≥ −

∫ 𝜏∧𝜎𝑛

0

1
𝑐
𝑑𝑡 ≥ −

∫ 𝜏

0

1
𝑐
𝑑𝑡 ≥ −

∫ 𝑇

0

1
𝑐
𝑑𝑡 = −𝑇

𝑐
.

Taking the expectation and infimum on both sides over 𝜏 ∈ S[0,𝑇 ] shows −𝑇
𝑐

is a lower bound for the
(𝑈𝑛 (𝑇, 𝑞))𝑛∈N sequence. Hence, −𝑇

𝑐
≤𝑈𝑛 (𝑇, 𝑞) ≤ 0 for all 𝑛 ∈ N.

The sequence (𝑈𝑛 (𝑇, 𝑞))𝑛∈N is decreasing because the sequence (𝜎𝑛)𝑛∈N of jump times of the
process X is increasing almost surely. Therefore, lim𝑛→∞𝑈𝑛 (𝑇, 𝑞) exists everywhere. Clearly, we also
have 𝑈𝑛 (𝑇, 𝑞) ≥𝑈 (𝑇, 𝑞) for all 𝑛 ∈ N.

Proposition 4.1. For every 𝑇max ∈ R+, as 𝑛 →∞, the sequence (𝑈𝑛 (𝑇, 𝑞))𝑛∈N converges to 𝑈 (𝑇, 𝑞)
uniformly in 𝑇 ∈ [0,𝑇max], 𝑞 ∈ R+. In fact, for every 𝑛 ∈ N, 𝑇 ∈ [0,𝑇max], and 𝑞 ∈ R+, we have

−𝑇
𝑐

(
1 − 𝑒−𝜆0𝑇

)𝑛
≤𝑈 (𝑇, 𝑞) −𝑈𝑛 (𝑇, 𝑞) ≤ 0. (29)

Before proceeding with the proof let us define ∥ 𝑓 ∥𝑇max ,∞ := sup(𝑇,𝑞) ∈ [0,𝑇max ]×R+ | 𝑓 (𝑇, 𝑞) |, ∀𝑇max ∈
R+, for a function 𝑓 : R+ ×R+ ↦→ R− .

Proof. The second inequality in (29) is already established, and the first inequality is immediate for
𝑛 = 0. To show the first inequality for 𝑛 ≥ 1, we note that, because 𝑄𝑡 ≥ 0 for all 𝑡 ∈ R+ and 𝜏 ≤ 𝑇

almost surely, we have

E0,𝑞

[∫ 𝜏

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡

]
= E0,𝑞

[∫ 𝜏∧𝜎𝑛

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡 + 1{𝜏>𝜎𝑛 }

∫ 𝜏

𝜎𝑛

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡

]
≥𝑈𝑛 (𝑇, 𝑞) + E0,𝑞

[
1{𝜏>𝜎𝑛 }

∫ 𝜏

𝜎𝑛

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡

]
≥𝑈𝑛 (𝑇, 𝑞) −

1
𝑐
E0

[
1{𝜏>𝜎𝑛 } (𝜏 − 𝜎𝑛)

]
≥𝑈𝑛 (𝑇, 𝑞) −

1
𝑐
E0

[
1{𝑇>𝜎𝑛 } (𝑇 − 𝜎𝑛)

]
≥𝑈𝑛 (𝑇, 𝑞) −

𝑇

𝑐
P0{𝜎𝑛 ≤ 𝑇}.

Since the 𝑛th jump time 𝜎𝑛 of the process 𝑋 is the sum of 𝑛 i.i.d. interarrival times, denoted by the
sequence (𝜎𝑛)𝑛≥1, having exponential distribution with common parameter 𝜆0 under P0, we obtain
P0{𝜎𝑛 ≤ 𝑇} = P0{𝜎1 + . . . + 𝜎𝑛 ≤ 𝑇} ≤ P0{𝜎1 ≤ 𝑇, . . . , 𝜎𝑛 ≤ 𝑇} = (P0{𝜎1 ≤ 𝑇})𝑛 =

(
1 − 𝑒−𝜆0𝑇

)𝑛
.

Hence,

E0,𝑞

[ ∫ 𝜏

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡

]
≥𝑈𝑛 (𝑇, 𝑞) −

𝑇

𝑐

(
1 − 𝑒−𝜆0𝑇

)𝑛
.

Taking the infimum of both sides over 𝜏 ∈ S[0,𝑇 ] gives the first inequality in (29) for 𝑛 ≥ 1.
It now follows from (29) that we have lim

𝑛→∞
∥𝑈𝑛 (𝑇, 𝑞) − 𝑈 (𝑇, 𝑞)∥𝑇max ,∞ = 0, and the sequence

(𝑈𝑛 (𝑇, 𝑞))𝑛∈N converges to 𝑈 (𝑇, 𝑞) uniformly in 𝑇 ∈ [0,𝑇max], 𝑞 ∈ R+.
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Acting on bounded Borel functions 𝑤 : [0,𝑇max] ×R+ ↦→ R− , let us define the operators

(𝐽𝑡𝑤) (𝑇, 𝑞) := E0,𝑞

[∫ 𝑡∧𝜎1

0

(
𝑄𝑠 −

1
𝑐

)
𝑑𝑠 + 1{𝑡≥𝜎1 }𝑤(𝑇 − 𝜎1,𝑄𝜎1 )

]
, 𝑡 ∈ [0,𝑇], (30)

(𝐽𝑤) (𝑇, 𝑞) := inf
𝑡∈[0,𝑇 ]

(𝐽𝑡𝑤) (𝑇, 𝑞). (31)

Note that 𝜎1 is exponentially distributed with parameter 𝜆0 under P0. Hence, using the Fubini
theorem, for 𝑡 ∈ [0,𝑇] we can write

(𝐽𝑡𝑤) (𝑇, 𝑞) =
∫ 𝑡

0
P0{𝑠 < 𝜎1}

(
𝑥(𝑞, 𝑠) − 1

𝑐

)
𝑑𝑠 + E0,𝑞

[
1{𝑡≥𝜎1 }𝑤

(
𝑇 − 𝜎1, 𝑥(𝑞, 𝜎1)

𝜆1

𝜆0
𝑓 (𝑌1)

)]
=

∫ 𝑡

0
𝑒−𝜆0𝑠

(
𝑥(𝑞, 𝑠) − 1

𝑐

)
𝑑𝑠 +

∫ 𝑡

0
𝜆0𝑒

−𝜆0𝑠

[∫
𝑦∈R𝑑

𝑤

(
𝑇 − 𝑠, 𝑥(𝑞, 𝑠)𝜆1

𝜆0
𝑓 (𝑦)

)
𝜈0 (𝑑𝑦)

]
𝑑𝑠

=

∫ 𝑡

0
𝑒−𝜆0𝑠

(
𝑔(𝑥(𝑞, 𝑠)) + 𝜆0 · (𝑆𝑤) (𝑇 − 𝑠, 𝑥(𝑞, 𝑠))

)
𝑑𝑠,

(32)

where 𝑆 is the linear operator

(𝑆𝑤) (𝑡, 𝑥) :=
∫
𝑦∈R𝑑

𝑤

(
𝑡, 𝑥

𝜆1

𝜆0
𝑓 (𝑦)

)
𝜈0 (𝑑𝑦), 𝑡 ∈ [0,𝑇], 𝑥 ∈ R+, (33)

defined on the collection of bounded Borel functions 𝑤 : [0,𝑇max] ×R+ ↦→ R− .

Remark 4.2. For every 𝑇 ≤ 𝑇max < ∞ and bounded Borel function 𝑤 : [0,𝑇max] × R+ ↦→ R− , the last
integrand of (32) is also bounded. Therefore, the mapping 𝑡 ↦→ (𝐽𝑡𝑤) (𝑇, 𝑞) : [0,𝑇] ↦→ R− is continuous
and bounded. Hence, the infimum (𝐽𝑤) (𝑇, 𝑞) in (31) is attained.

Next two lemmas show that the operator 𝐽 preserves useful properties of the function 𝑤. Lemma 4.3
is for the joint behavior of 𝐽𝑤 on [0,𝑇max] ×R+ and Lemma 4.4 is for the variables 𝑇 and 𝑞 isolated.

Lemma 4.3. For every bounded continuous Borel function 𝑤 on [0,𝑇max] × R+ satisfying −𝑇
𝑐
≤

𝑤(𝑇, ·) ≤ 0 for 𝑇 ≤ 𝑇max, it follows that 𝐽𝑤 is also a bounded continuous function on [0,𝑇max] × R+
with the same bounds

−𝑇
𝑐
≤ (𝐽𝑤) (𝑇, ·) ≤ 0, 𝑇 ≤ 𝑇max, (34)

and we have (𝐽𝑤) (·, 𝑞) = 0 for all 𝑞 ≥ 𝑞 for

𝑞 :=
(1 + 𝜆0𝑇max) 𝑒 |𝜆1−𝜆0 |𝑇max

𝑐
+ 1{𝜆1≠𝜆0 }

(𝑒 |𝜆1−𝜆0 |𝑇max + 1)
|𝜆1 − 𝜆0 |

. (35)

Also, if 𝑤1 (·, ·) ≤ 𝑤2 (·, ·) are two bounded Borel functions defined on [0,𝑇max] ×R+, then (𝐽𝑤1) (·, ·) ≤
(𝐽𝑤2) (·, ·).

Proof. The lower bound 𝑤(𝑇, ·) ≥ −𝑇
𝑐

implies that (𝑆𝑤) (𝑇 − 𝑠, 𝑥(𝑞, 𝑠)) ≥ −𝑇−𝑠
𝑐

holds for 𝑠 ∈ [0,𝑇] ⊆
[0,𝑇max], and 𝑞 ∈ R+. Then, as 𝑥(·, ·) is positive and 𝑡 < 𝑇 ,
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(𝐽𝑡𝑤) (𝑇, 𝑞) ≥
∫ 𝑡

0
𝑒−𝜆0𝑠

(
𝑥(𝑞, 𝑠) − 1

𝑐

)
𝑑𝑠 −

∫ 𝑡

0
𝜆0𝑒

−𝜆0𝑠

(
𝑇 − 𝑠

𝑐

)
𝑑𝑠

≥ − 1
𝑐𝜆0

∫ 𝑡

0
𝜆0𝑒

−𝜆0𝑠𝑑𝑠 − 𝑇

𝑐

∫ 𝑡

0
𝜆0𝑒

−𝜆0𝑠𝑑𝑠 + 1
𝑐

∫ 𝑡

0
𝑠𝜆0𝑒

−𝜆0𝑠𝑑𝑠 ≥ −𝑇
𝑐
.

Taking the infimum over 𝑡 ∈ [0,𝑇] gives the lower bound in (34). The upper bound follows since 𝑡 = 0
gives (𝐽0𝑤) (𝑇, 𝑞) = 0. Also, it is easy to verify that 𝑔(𝑥(𝑞, 𝑠)) +𝜆0 · (𝑆𝑤) (𝑇 − 𝑠, 𝑥(𝑞, 𝑠)) ≥ 0 for 𝑞 ≥ 𝑞,
𝑠 ≤ 𝑡 ≤ 𝑇 , and therefore (𝐽𝑡𝑤) (𝑇, 𝑞) ≥ 0 for all 𝑡 ≤ 𝑇 . This gives (𝐽𝑤) (𝑇, 𝑞) = (𝐽0𝑤) (𝑇, 𝑞) = 0 for all
𝑞 ≥ 𝑞.

On [0,𝑇max] × [𝑞,+∞), 𝐽𝑤 = 0, and the continuity is immediate. For (𝑇, 𝑞) ∈ [0,𝑇max] × [0, 𝑞],
the continuity follows from the continuity of 𝑆𝑤 (thanks to bounded convergence theorem) and the
regularity of the paths 𝑡 ↦→ 𝑥(𝑞, 𝑡).

Finally, to show the monotonicity of 𝐽𝑤 in 𝑤, for two functions 𝑤1 ≤ 𝑤2, we have (𝑆𝑤1) (𝑡, 𝑞) ≤
(𝑆𝑤2) (𝑡, 𝑞) for 𝑡 ∈ [0,𝑇] and 𝑞 ∈ R+ due to the monotonicity of the 𝑆 operator. As the constant 𝜆0 is
positive, (𝐽𝑡𝑤1) (𝑇, 𝑞) ≤ (𝐽𝑡𝑤2) (𝑇, 𝑞) for all 𝑡 ∈ [0,𝑇]. Taking the infimum over 𝑡 ∈ [0,𝑇], we have
(𝐽𝑤1) (𝑇, 𝑞) ≤ (𝐽𝑤2) (𝑇, 𝑞).

Lemma 4.4. For every fixed 𝑇 ∈ [0,𝑇max], if the mapping 𝑞 ↦→ 𝑤(𝑇, 𝑞) is non-decreasing and concave,
then so is 𝑞 ↦→ (𝐽𝑤) (𝑇, 𝑞). For every fixed 𝑞 ∈ R+, if 𝑇 ↦→ 𝑤(𝑇, 𝑞) is non-increasing, then so is 𝑇 ↦→
(𝐽𝑤) (𝑇, 𝑞).

The following result is a direct consequence of Lemmas 4.3 and 4.4. No proof is needed. It is
analogous to Corollary 3.6.

Corollary 4.5. Let 𝑤 be a bounded continuous function on [0,𝑇max] ×R+ with the following properties:
i) −𝑇

𝑐
≤ 𝑤(𝑇, ·) ≤ 0 for 𝑇 ≤ 𝑇max, ii) 𝑇 ↦→ 𝑤(𝑇, 𝑞) is non-increasing for every 𝑞 ∈ R+, and iii)

𝑞 ↦→ 𝑤(𝑇, 𝑞) is non-decreasing and concave for every 𝑇 ≤ 𝑇max. Then, 𝑇 ↦→ 𝑏 [𝑤 ] (𝑇) := min{𝑞 ≥ 0 :
(𝐽𝑤) (𝑇, 𝑞) = 0} is a non-decreasing function on [0,𝑇max].

Let us next define the successive approximations 𝑢𝑛 : [0,𝑇] ×R+ ↦→ R− and 𝑢𝑛 : [0,𝑇] ×R+ ↦→ R− ,
𝑛 ∈ N, by

𝑢0 ≡ 0, 𝑢𝑛 := 𝐽𝑢𝑛−1, 𝑛 ≥ 1, and 𝑢0 ≡ −𝑇
𝑐
, 𝑢𝑛 := 𝐽𝑢𝑛−1, 𝑛 ≥ 1. (36)

Proposition 4.6. The functions defined in (36) are ordered as

−𝑇
𝑐
≡ 𝑢0 ≤ 𝑢1 ≤ 𝑢2 ≤ . . . ≤ . . . ≤ 𝑢2 ≤ 𝑢1 ≤ 𝑢0 ≡ 0.

Proof. Observe that as 𝑢0 ≡ 0 ∈ [−𝑇
𝑐
,0], we have −𝑇

𝑐
≤ 𝑢1 ≡ 𝐽𝑢0 ≤ 𝑢0 = 0 as the operator 𝐽 preserves

boundedness by Lemma 4.3. Hence, 𝑢1 ≤ 𝑢0 holds. Applying the operator 𝐽 to 𝑢1 and 𝑢0, we have
−𝑇

𝑐
≤ 𝑢2 ≡ 𝐽𝑢1 ≤ 𝐽𝑢0 ≡ 𝑢1 ≤ 0 as the operator 𝐽 preserves monotonicity and boundedness by Lemma

4.3. Successively applying the operator 𝐽 to 𝑢𝑛’s leads us to the decreasing sequence −𝑇
𝑐
≤ . . . ≤ 𝑢2 ≤

𝑢1 ≤ 𝑢0 ≡ 0.
Similarly, as the operator 𝐽 preserves monotonicity and boundedness by Lemma 4.3, continuously

applying the operator 𝐽 to 𝑢𝑛’s gives the increasing sequence −𝑇
𝑐
≡ 𝑢0 ≤ 𝑢1 ≤ 𝑢2 ≤ . . . ≤ 0.

Let us show 𝑢𝑛 ≤ 𝑢𝑛 for 𝑛 ∈ N by an induction argument. Note that −𝑇
𝑐
≡ 𝑢0 ≤ 𝑢0 ≡ 0 by

construction. Next, let us assume 𝑢𝑘 ≤ 𝑢𝑘 holds for some 𝑘 ∈ N. Since the operator 𝐽 preserves
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monotonicity by Lemma 4.3, when we apply the operator 𝐽 to 𝑢𝑘 and 𝑢𝑘 we have 𝑢𝑘+1 ≡ 𝐽𝑢𝑘 ≤ 𝐽𝑢𝑘 ≡
𝑢𝑘+1 which implies 𝑢𝑘+1 ≤ 𝑢𝑘+1. This shows 𝑢𝑛 ≤ 𝑢𝑛 for 𝑛 ∈ N and completes the proof.

With the next proposition we will show that the limit of the bounded increasing sequence (𝑢𝑛)𝑛≥0
and that of the bounded decreasing sequence (𝑢𝑛)𝑛≥0 coincide.

Proposition 4.7. For every 𝑇max ∈ R+, as 𝑛→∞, the sequences of successive approximations (𝑢𝑛)𝑛≥0
and (𝑢𝑛)𝑛≥0 defined in (36) converge to the same limit

𝑢 := lim
𝑛→∞

𝑢𝑛 = lim
𝑛→∞

𝑢𝑛 (37)

uniformly in 𝑇 ∈ [0,𝑇max], 𝑞 ∈ R+. In fact, for every 𝑛 ∈ N, 𝑇 ∈ [0,𝑇max] and 𝑞 ∈ R+, we have

0 ≤ 𝑢𝑛 (𝑇, 𝑞) − 𝑢𝑛 (𝑇, 𝑞) ≤
𝑇

𝑐
(1 − 𝑒−𝜆0𝑇 )𝑛. (38)

Limit function 𝑢 is a fixed point of the operator 𝐽, and it satisfies the properties listed in Corollary 4.5.

Proof. In Proposition 4.6, we have shown that the first inequality in (38) holds for all 𝑛 ∈ N. Now, let
us prove the second inequality. By Remark 4.2, we know that

𝑢𝑛 (𝑇, 𝑞) = 𝐽𝑢𝑛−1 (𝑇, 𝑞) = 𝐽𝑡𝑛𝑢𝑛−1 (𝑇, 𝑞), and 𝑢𝑛 (𝑇, 𝑞) = 𝐽𝑢𝑛−1 (𝑇, 𝑞) = 𝐽𝑡𝑛𝑢𝑛−1 (𝑇, 𝑞)

for some 𝑡𝑛 and 𝑡𝑛 in the interval [0,𝑇]. Then by the linearity of the operator 𝑆

𝑢𝑛 − 𝑢𝑛 ≤
∫ 𝑡𝑛

0
𝑒−𝜆0𝑠𝜆0 (𝑆(𝑢𝑛−1 − 𝑢𝑛−1)) (𝑇 − 𝑠, 𝑥(𝑞, 𝑠))𝑑𝑠

≤ ∥𝑢𝑛−1 − 𝑢𝑛−1∥𝑇max ,∞

∫ 𝑡𝑛

0
𝑒−𝜆0𝑠𝜆0𝑑𝑠 ≤ ∥𝑢𝑛−1 − 𝑢𝑛−1∥𝑇max ,∞ (1 − 𝑒−𝜆0𝑇max )

holds for all 𝑛 ∈ 𝑁0. Taking the supremum of 𝑢𝑛 − 𝑢𝑛 over (𝑇, 𝑞) ∈ [0,𝑇max] ×R+ gives

∥𝑢𝑛 − 𝑢𝑛∥𝑇max ,∞ ≤ ∥𝑢𝑛−1 − 𝑢𝑛−1∥𝑇max ,∞ (1 − 𝑒−𝜆0𝑇max ).

This shows that the gap between the terms of the sequences (𝑢𝑛)𝑛≥0 and (𝑢𝑛)𝑛≥0 contracts by the
factor (1 − 𝑒−𝜆0𝑇max ) with each new term. Hence,

∥𝑢𝑛 − 𝑢𝑛∥𝑇max ,∞ ≤ ∥𝑢𝑛−1 − 𝑢𝑛−1∥𝑇max ,∞ (1 − 𝑒−𝜆0𝑇max ) ≤ 𝑇

𝑐
(1 − 𝑒−𝜆0𝑇max )𝑛.

Thus, (38) holds for ∀𝑛 ∈ N, and as 𝑛→∞, (𝑢𝑛)𝑛≥0 and (𝑢𝑛)𝑛≥0 converge to common limit 𝑢 in (37).
The proof of 𝑢 being a fixed point of 𝐽 is similar to the proof of Proposition 3.6 in Dayanik and Sezer

(2006a), hence omitted. Since 𝑢0 = 0, properties listed in Corollary 4.5 hold inductively for every 𝑢𝑛
and therefore for 𝑢 as well (for continuity we use the uniform convergence).

This means that whether we start with 𝑢0 (𝑇, ·) ≡ −𝑇
𝑐

or 𝑢0 ≡ 0, we will end up eventually at the
fixed limit 𝑢 as 𝑛 → ∞. In fact, we can reach to this limit 𝑢 starting with any bounded function 𝑓

on [0,𝑇max] × R+ with bounds −𝑇
𝑐
≤ 𝑓 (𝑇, ·) ≤ 0 for every 𝑇 ∈ [0,𝑇max]. We state this claim in the

next proposition. The proof follows immediately from repeated applications of operator 𝐽, Lemma 4.3,
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and Proposition 4.7. For such a function 𝑓 , let us introduce the 𝑓 -successive approximation sequence
𝑢𝑛 ( 𝑓 ), 𝑛 ∈ N, as

𝑢0 ( 𝑓 ) (𝑇, 𝑞) := 𝑓 (𝑇, 𝑞), and 𝑢𝑛 ( 𝑓 ) (𝑇, 𝑞) := 𝐽 (𝑢𝑛−1 ( 𝑓 )) (𝑇, 𝑞), 𝑇 ∈ [0,𝑇max], 𝑞 ∈ R+.

Proposition 4.8. For any 𝑓 : [0,𝑇max]×R+ ↦→ R− bounded as 𝑓 (𝑇, ·) ∈ [−𝑇
𝑐
,0] and bounded functions

𝑢𝑛 and 𝑢𝑛, 𝑛 ∈ N, we have

𝑢𝑛 ≡ 𝑢𝑛

(
− 𝑇

𝑐

)
≤ 𝑢𝑛 ( 𝑓 ) ≤ 𝑢𝑛 (0) ≡ 𝑢𝑛, 𝑛 ∈ N.

Moreover, 0 ≤ 𝑢𝑛 ( 𝑓 ) − 𝑢𝑛 ≤ 𝑢𝑛 − 𝑢𝑛 ≤ 𝑇
𝑐
(1 − 𝑒−𝜆0𝑇 )𝑛, 𝑛 ∈ N, and lim𝑛→∞ 𝑢𝑛 ( 𝑓 ) = 𝑢 of (37).

Proposition 4.9. We have 𝑢𝑛 =𝑈𝑛 for every 𝑛 ∈ N, and 𝑢 =𝑈.

The following lemma gives us 𝜖-optimal stopping times for 𝜖 ≥ 0. For 𝜖 = 0, we obtain an optimal
rule.

Lemma 4.10. For every 𝜖 ≥ 0, define 𝜏𝜖 (𝑇, 𝑞) := inf{𝑡 ∈ [0,𝑇] :𝑈 (𝑇 − 𝑡,𝑄𝑡 ) ≥ −𝜖}. Then, we have

E0,𝑞

[ ∫ 𝜏𝜖 (𝑇,𝑞)

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡

]
≤𝑈 (𝑇, 𝑞) + 𝜖 . (39)

Since 𝑈 (0, 𝑞) = 0 for all 𝑞 ≥ 0, the stopping time 𝜏𝜖 (𝑇, 𝑞) is less than or equal to 𝑇 . Observe that for
𝜖 = 0, we obtain the optimal stopping rule as the first entrance time of the sample paths 𝑡 ↦→ (𝑇 − 𝑡,𝑄𝑡 )
into the closed set in (26).

The results in Propositions 4.1 and 4.9 yield a natural numerical algorithm to compute/approximate
the function 𝑈. We simply start with 𝑢0 = 0 and successively iterate the operator 𝐽 numerically. We
set the number of iterations so that the error bound in (29) is negligible. Detailed discussions on how
to select a grid on [0, 𝑞max] × [0,𝑇max], conveniently evaluate function values at the grid points, and
make interpolations at other points are available in Çağın Ürü (2019). The same reference also gives
numerical examples and additional observations on the effects of different problem parameters (on
the optimal stopping time). In Figure 1, we present one example in which jumps before and after the
change are normally distributed. Prior to the change-point, they have the standard normally distribution,
and after the change, the mean shifts to 𝜇 = 1 while the standard deviation remains the same. Other
parameters are 𝑇 = 1.5351, 𝜆0 = 3, 𝜆1 = 1.5, and 𝑐 = 1. The left panel in the figure shows the value
function, and the right panel illustrates the stopping boundary and a sample path of the process 𝑄

starting from 𝑞 = 0.
An alternative numerical method would be obtained by discretizing the time horizon [0,𝑇𝑚𝑎𝑥].

That is, for a small step size 𝛿 = 𝑇max/𝑁𝛿 for some large integer 𝑁𝛿 , we can introduce the finite
set D = {0, 𝛿,2𝛿, . . . ,𝑇max}, and for every fixed 𝑇 ∈ D, we can search for the infimum in (18) over
all stopping times taking values in D ∈ [0,𝑇]. Naturally, for 𝑇 ∈ D, the corresponding discrete-
step dynamic programming operator can be used to carry out function evaluations, and for 𝑇 ∉ D
an interpolation method can be considered (if 𝛿 is very small, we may even take the function values on
the left or right neighbor point in D). In the numerical examples in Figure 2 in the next section, we use
this discretization idea.
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Figure 1: A numerical illustration of the value function 𝑈 (on the left) and the stopping rule (on the
right).

5. An extended model where the change fails to happen on the given
interval with a positive probability

Suppose there is a positive probability that the change does not happen at all on the interval [0,𝑇],
in which case we say that the random variable Θ takes the value +∞. We let 𝜓 ∈ (0,1) denote the
probability of the event {Θ = +∞}, and we rewrite our prior distribution as

P(Θ = 0) = 𝜋, P(Θ = +∞) = 𝜓, and P(Θ ∈ (𝑡,𝑇]) = (1 − 𝜋 − 𝜓)𝑇 − 𝑡

𝑇
, 𝑡 ∈ (0,𝑇] . (40)

In this extended setup, the interval [0,𝑇] can be monitored for a potential disorder as before; that is, one
can stop at any time before 𝑇 and announce the onset of the new regime. If, however, such a detection
decision is not made by time 𝑇 , further actions/decisions can be considered as a second level hypothesis
testing problem for which two formulations are given in the subsections below.

5.1. Making a one-time decision at 𝑻

In this first formulation, a terminal decision is made at 𝑇 regarding whether the change has never
happened or it has already happened but missed. In other words, we test whether the local parameters of
the observed compound Poisson process after 𝑇 are given by the pair (𝜆0, 𝜈0) or (𝜆1, 𝜈1). We represent
this terminal decision with a {0,1}-valued F𝑇 -measurable random variable

𝑑 =

{
1, when it is decided that the change has happened on [0,𝑇],

0, when Θ is estimated to be +∞.

On the event {Θ ≤ 𝑇}, if we stop before 𝑇 (with a detection decision), we incur the false alarm cost
1{𝜏<Θ} and the relative delay cost 𝑐(𝜏 − Θ)+ as in (3). If we do not stop before 𝑇 but select 𝑑 = 1 at
𝑇 , then our choice of 𝑑 is correct and we incur only the delay cost 𝑐 (𝑇 −Θ)+. Otherwise (with 𝑑 = 0
at 𝑇), the cost is given by 𝑎0 + 𝑐 (𝑇 − Θ)+ in which 𝑎0 represents the relative cost of misdiagnosis
associated with 𝑑 = 0 when this is in fact a wrong decision. On the event {Θ = +∞}, on the other hand,
the decision to stop before 𝑇 or selecting 𝑑 = 1 at 𝑇 has a relative misdiagnosis cost of 𝑎1. Choosing
𝑑 = 0 at 𝑇 is a correct decision, and therefore there is no penalty associated with it.
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Collecting all these cost terms together, for a stopping time 𝜏 ≤ 𝑇 and decision 𝑑 ∈ {0,1}, our new
objective function is given by

E1{Θ≤𝑇 }
{
1{𝜏<𝑇 }

[
1{𝜏<Θ} + 𝑐 (𝜏 −Θ)+

]
+ 1{𝜏=𝑇 }1{𝑑=1}𝑐 (𝑇 −Θ)+

+ 1{𝜏=𝑇 }1{𝑑=0} [𝑎0 + 𝑐 (𝑇 −Θ)+]
}
+ 𝑎1E1{Θ=+∞}

{
1{𝜏<𝑇 } + 1{𝜏=𝑇 }1{𝑑=1}

}
.

In this new setup, we have the Radon-Nikodym derivative in (8) between the auxiliary and physical
measures as

𝑍𝑡 = 1{Θ≤𝑇 }
(
1{𝑡<Θ} + 1{Θ≤𝑡 }

𝑅𝑡

𝑅Θ

)
+ 1{Θ=+∞} = 1{𝑡<Θ} + 1{Θ≤𝑡 }

𝑅𝑡

𝑅Θ

, 𝑡 ≥ 0,

and using similar arguments as in Appendix A.1, we can rewrite the objective function as

𝑎1𝜓 + (1 − 𝜋 − 𝜓)
𝑇

𝑐E0

[ ∫ 𝜏

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡 + 1{𝜏=𝑇 }1{𝑑=0}

1
𝑐

(
𝑎0𝑄𝑇 − 𝑇𝑎1𝜓

(1 − 𝜋 − 𝜓)

)]
(41)

for the process 𝑄 in (13) with 𝑄0 = 𝑇 𝜋
1−𝜋−𝜓 . From the expectation in (41), it is easy to see that, for any

given stopping time 𝜏 ≤ 𝑇 , the best decision on the event {𝜏 = 𝑇} is simply 𝑑∗ (𝑄𝑇 ) ∈ F𝑇 , where

𝑑∗ (𝑞) :=


1 if 𝑞 ≥ 𝑇𝑎1𝜓

𝑎0 (1 − 𝜋 − 𝜓) ,

0 otherwise.
(42)

Then, to obtain the best stopping time, we need to study and solve the optimal stopping problem

inf
𝜏≤𝑇
E0

[ ∫ 𝜏

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡 − 1{𝜏=𝑇 }

(
𝛼1𝑄𝑇 − 𝛼2

)−] (43)

defined for positive constants 𝛼1, 𝛼2, and we need to apply its solution with the particular choices

𝛼1 =
𝑎0

𝑐
and 𝛼2 =

𝑇𝑎1𝜓

𝑐(1 − 𝜋 − 𝜓) starting from the point 𝑄0 = 𝑇
𝜋

1 − 𝜋 − 𝜓
.

5.2. Collecting further observations after 𝑻

Next, we consider a second formulation in which the terminal diagnosis 𝑑 can be delayed and additional
observations can be collected after 𝑇 prior to such a decision. It is natural to assume that such an option
comes with a relative delay cost of 𝑎𝑑 per unit time. Therefore, in addition to the penalties considered
above in Section 5.1, we have the cost 𝑎𝑑 (𝜏 −𝑇) of collecting more observations on the event {𝜏 ≥ 𝑇}.
As a result, the new Bayes risk for an almost surely stopping time 𝜏 (not necessarily less than or equal
to 𝑇) is

E1{Θ≤𝑇 }
{
1{𝜏<𝑇 }

[
1{𝜏<Θ} + 𝑐 (𝜏 −Θ)+

]
+ 1{𝜏≥𝑇 }

[
𝑐 (𝑇 −Θ) + 𝑎𝑑 (𝜏 −𝑇) + 1{𝑑=0}𝑎0

]}
+ E1{Θ=+∞}

{
1{𝜏<𝑇 }𝑎1 + 1{𝜏≥𝑇 }

[
𝑎𝑑 (𝜏 −𝑇) + 𝑎11{𝑑=1}

]}
,
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where the diagnosis decision 𝑑 is now an F𝜏-measurable variable. Once again, using similar arguments
as in Appendix A.1, we can rewrite this Bayes risk in terms of the process 𝑄 with 𝑄0 = 𝑇 𝜋

1−𝜋−𝜓 as

𝑎1𝜓 + (1 − 𝜋 − 𝜓) + (1 − 𝜋 − 𝜓)
𝑇

𝑐E0

[ ∫ 𝜏∧𝑇

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡

+ 1{𝜏≥𝑇 }
𝑎𝑑

𝑐

{ ∫ 𝜏

𝑇

(
𝑄𝑇

𝑅𝑡

𝑅𝑇

+ 𝑇

1 − 𝜋 − 𝜓
𝜓
)
𝑑𝑡 + 1{𝑑=0}

𝑎0

𝑎𝑑

[
𝑄𝑇

𝑅𝜏

𝑅𝑇

− 𝑎1

𝑎0

𝑇𝜓

1 − 𝜋 − 𝜓

]}]
. (44)

It is easy to verify that the expectations in (41) and (44) agree for stopping times less than or equal to 𝑇

almost surely. Also, from the last term in (44), the optimal diagnosis 𝑑 on the event {𝜏 ≥ 𝑇} can easily
be identified as 𝑑∗

(
𝑄𝑇

𝑅𝜏

𝑅𝑇

)
∈ F𝜏 with 𝑑∗ defined in (42). Therefore, our problem reduces to finding the

stopping rule attaining the infimum

inf
𝜏
E0

[ ∫ 𝜏∧𝑇

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡

+ 1{𝜏≥𝑇 }
𝑎𝑑

𝑐

{ ∫ 𝜏

𝑇

(
𝑄𝑇

𝑅𝑡

𝑅𝑇

+ 𝑇

1 − 𝜋 − 𝜓
𝜓
)
𝑑𝑡 − 𝑎0

𝑎𝑑

[
𝑄𝑇

𝑅𝜏

𝑅𝑇

− 𝑎1

𝑎0

𝑇𝜓

1 − 𝜋 − 𝜓

]−}]
. (45)

To address the problem in (45), we introduce a new stochastic process 𝑃𝑡 = 𝑞𝑅𝑡 , 𝑡 ≥ 0, which is a
(P0,F )-Markov process with piecewise-deterministic sample paths; see (57-58) in Appendix B. For
this process, we define the optimal stopping problem

𝑊(𝛽1 ,𝛽2 ,𝛽3 ) (𝑞) := inf
𝜏
E0

[ ∫ 𝜏

0

(
𝑃𝑡 + 𝛽1

)
𝑑𝑡 − (𝛽2𝑃𝜏 − 𝛽3)−

]
, 𝑞 ≥ 0, (46)

for given positive constants 𝛽1, 𝛽2, 𝛽3. The problem in (46) is very similar to the one studied Dayanik
and Sezer (2006b); compare with the problem defined in (2.9) in the cited paper. The paper analyzes
the case with 𝛽1 = 1 and arbitrary positive constants 𝛽2 and 𝛽3. It is relatively straightforward to verify
that the same analysis also holds when 𝛽 ≠ 1 and positive. Below, we summarize some useful results.

Remark 5.1. The function 𝑞 ↦→ 𝑊(𝛽1 ,𝛽2 ,𝛽3 ) (𝑞) is non-positive, non-decreasing, and concave. Its
continuation region C𝑊 := {𝑞 ≥ 0 : 𝑊(𝛽1 ,𝛽2 ,𝛽3 ) (𝑞) < −(𝛽2𝑞 − 𝛽3)−}, if non-empty, is a bounded
interval away from the origin, which implies that i) 𝑊(𝛽1 ,𝛽2 ,𝛽3 ) (0) > −∞, ii) the right derivative (which
exists thanks to concavity) at 𝑞 = 0 is finite, and iii) irrespective of whether the continuation region is
empty, there exists a finite point 𝑞 beyond which the function is equal to zero. Furthermore, the first
exit time 𝜏C𝑊 of the process 𝑃 from the region C𝑊 is an optimal stopping time for (46).

When 𝜆0 ≠ 𝜆1, provided that the continuation region is non-empty, the function is continuously
differentiable except at one of the boundaries (which one being dependent on the ordering of 𝜆0 and
𝜆1). When 𝜆0 = 𝜆1, on the other hand, the process 𝑃 remains constant between two jumps and the
differentiability may fail on the interior of the continuation region. The function 𝑊(𝛽1 ,𝛽2 ,𝛽3 ) is the
unique solution 𝑓 in some suitable sense (as described in Proposition 6.2 in Dayanik and Sezer (2006b))
of the equation

min{A 𝑓 (𝑞) + (𝑞 + 𝛽1) , −(𝛽2𝑞 − 𝛽3)− − 𝑓 (𝑞)} = 0, (47)

where A denotes the infinitesimal generator of the process 𝑃 (wherever A 𝑓 is well-defined).
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Using the inequalities A𝑊(𝛽1 ,𝛽2 ,𝛽3 ) (𝑞) + (𝑞 + 𝛽1) ≥ 0 and 𝑊(𝛽1 ,𝛽2 ,𝛽3 ) (𝑞) ≤ −(𝛽2𝑞− 𝛽3)− following
from (47), one can prove by chain rule (with a time truncation idea followed by an application of
monotone and bounded convergence theorems) that the inequality

1{𝜏≥𝑇 } E0

[ ∫ 𝜏

𝑇

(
𝑃𝑡 + 𝛽1

)
𝑑𝑡 −

[
𝛽2𝑃𝜏 − 𝛽3

]− ���F𝑇 ] ≥ 1{𝜏≥𝑇 }𝑊(𝛽1 ,𝛽2 ,𝛽3 ) (𝑃𝑇 ) (48)

holds for a given a.s. finite stopping time 𝜏. Moreover, similar arguments as in the proof of Proposition
3.13 in Dayanik and Sezer (2006b) and the Markov property of the process 𝑃 imply that we have

𝑊(𝛽1 ,𝛽2 ,𝛽3 ) (𝑃𝑇 ) = E0

[ ∫ 𝜏C𝑊 ◦Θ𝑇

𝑇

(
𝑃𝑡 + 𝛽1

)
𝑑𝑡 −

(
𝛽2𝑃𝜏C𝑊 ◦Θ𝑇

− 𝛽3
)− ���F𝑇 ] P0-a.s., (49)

where 𝜏C𝑊 ◦ 𝜃𝑇 denotes the first exit time of 𝑃 from the region C𝑊 after time 𝑇 . Note that 𝑃𝑡 = 𝑃𝑇
𝑅𝑡

𝑅𝑇

for 𝑡 ≥ 𝑇 . Hence, with 𝑃𝑇 replaced by 𝑄𝑇 , the results in (48-49) imply that, in the problem

inf
𝜏
E0

[ ∫ 𝜏∧𝑇

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡 + 1{𝜏≥𝑇 }

𝑎𝑑

𝑐

{ ∫ 𝜏

𝑇

(
𝑄𝑇

𝑅𝑡

𝑅𝑇

+ 𝛽1
)
𝑑𝑡 −

[
𝛽2𝑃𝜏 − 𝛽3

]−}]
,

the optimal choice on the event {𝜏 ≥ 𝑇} is to stop at the first exit time after 𝑇 of the process 𝑡 ↦→
𝑄𝑡1{𝑡≤𝑇 } + 𝑄𝑇

𝑅𝑡

𝑅𝑇
1{𝑡>𝑇 } from the region C𝑊 . This gives us the well-known sequential probability

ratio test (SPRT) applied after time 𝑇 with the starting odds-ratio given by 𝑄𝑇 . With this observation,
the problem in (45) then simplifies to finding the stopping time 𝜏 attaining

inf
𝜏
E0

[ ∫ 𝜏∧𝑇

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡 + 1{𝜏≥𝑇 }

𝑎𝑑

𝑐
𝑊(𝛽1 ,𝛽2 ,𝛽3 ) (𝑄𝑇 )

]
(50)

with the choices

𝛽1 =
𝑇𝜓

1 − 𝜋 − 𝜓
, 𝛽2 =

𝑎0

𝑎𝑑
, and 𝛽3 =

𝑎1𝑇𝜓

𝑎𝑑 (1 − 𝜋 − 𝜓) ,

and the solution is implemented starting from 𝑄0 = 𝑇 𝜋
1−𝜋−𝜓 .

5.3. A common framework

Optimal stopping problems in (43) and (50) are finite horizon problems for the process 𝑄. Compared
to the problem in (18), we have the same running cost but now there is an additional (non-positive)
terminal term given by a non-decreasing and concave function evaluated at 𝑄𝑇 . We collect this terminal
term only if we wait until 𝑇 .

We denote the common form of (43) and (50) as

𝑈 (ℎ) (𝑇, 𝑞) := inf
𝜏≤𝑇
E0

[ ∫ 𝜏

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡 + 1{𝜏=𝑇 }ℎ(𝑄𝑇 )

]
, 𝑞 ∈ R+, 𝑇 ∈ [0,𝑇max], (51)

for a non-positive, non-decreasing, and concave function ℎ which is equal to zero after some strictly
positive point 𝑞. We also have ℎ(0) > −∞ and 𝐷+ℎ(0) <∞, where 𝐷+ℎ(0) denotes the right derivative
of the concave function ℎ at the origin. Clearly, with ℎ(·) = 0, we recover the function 𝑈 in (18).

At 𝑇 = 0, we have the boundary condition𝑈 (ℎ) (0, 𝑞) = ℎ(𝑞), and for 𝑇 > 0, we have the easy bounds

−𝑇
𝑐
+ ℎ(0) ≤𝑈 (𝑇, 𝑞) + ℎ(0) ≤𝑈 (ℎ) (𝑇, 𝑞) ≤𝑈 (𝑇, 𝑞), 𝑞 ≥ 0, (52)
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Figure 2: Examples of stopping boundaries for the problem in (51) in different problem instances.

Using arguments similar to those in Remark 3.1 and Lemma 3.2, it is relatively straightforward to verify
that 𝑞 ↦→𝑈 (ℎ) (𝑇, 𝑞) is again non-decreasing and concave for every 𝑇 .

A similar analysis as in Sections 3 and 4 can be given to study the properties of the function
𝑈 (ℎ). Since the arguments and steps are similar, we omit them here. Notably, it can be shown that
𝑈 (ℎ) is a (jointly) continuous function of (𝑇, 𝑞), and the first entrance time of the process 𝑄 into the
region {(𝑇, 𝑞) : 𝑇 = 0} ∪ {(𝑇, 𝑞) : 𝑇 > 0 ,𝑈 (ℎ) (𝑇, 𝑞) = 0} is an optimal stopping time. Note that since
𝑞 ↦→ 𝑈 (ℎ) (𝑇, 𝑞) is non-decreasing and concave, it follows that the stopping region and continuation
regions are separated by a boundary for 𝑇 > 0 below which it is optimal to continue. However, a
major difference compared to Section 3 is that the boundary may be non-monotone with non-zero
terminal functions. In Figure 2, we give two numerical examples with different boundary behaviors.
In both problems, as in the example in Figure 1, marks are normally distributed before and after the
change. Before the change, they have the standard normal distribution, and at the change time, the
mean becomes 𝜇 = 1 whereas the standard deviation remains the same. We also have 𝑐 = 1 in both
panels of Figure 2. The panels differ by the choices of the rates 𝜆0, 𝜆1, and the function ℎ. On the
left panel, we have 𝜆0 = 1, 𝜆1 = 2.5, and ℎ(𝑞) = −(1.5 − 𝑞)−; and on the right, we set 𝜆0 = 2, 𝜆1 = 3,
and ℎ(𝑞) = −(4 − 𝑞)− . The solid curves show the stopping boundaries with the given ℎ functions, and
the dotted curves are the boundaries for ℎ(·) = 0. We observe that solid and dotted curves converge
to each other as 𝑇 grows, in which case the values of the functions 𝑈 (ℎ) and 𝑈 are also comparable
as expected. Any negative reward given by the terminal function is simply offset by the waiting costs
when 𝑇 is large.

6. Concluding remarks

In this paper, we revisit the compound Poisson disorder problem in which the aim is to detect a change
in the probability law of a compound Poisson process. In practice, the identification of a quickest
detection rule may help with mitigating the detrimental effects of an unfavorable regime change. Hence,
detecting the change point as soon as it occurs is an important task. The novelty of our work is that
we solve the problem when the change is equally likely to be anywhere on an interval. This prior is a
natural choice for a decision maker who is relatively uninformed about the time of disorder.
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We show that the quickest detection problem can be reformulated as a finite horizon optimal
stopping problem for a piecewise-deterministic Markov process. Since the sufficient statistic has
piecewise-deterministic sample paths, the optimal stopping problem can be solved with successive
approximations. It is interesting to see that the problem admits such a two-dimensional representation.
When the change point is not exponentially distributed, this is generally not the case. Our one-
dimensional infinite horizon approximation provides further computational advantages when the
horizon is large.

We also investigate the case where a change may not happen on the given interval. In this case, if no
detection decision is made by the end of the horizon, a second decision is needed to identify the current
probability law of the observations. This is a hypothesis testing problem with two simple hypotheses
on the local parameters. When an immediate decision is needed, a decision is made based on the value
of the sufficient statistic. If further observations are allowed, then we apply the sequential probability
ratio test with the value of the sufficient statistic as our initial odds-ratio.

As future work, one may study the compound Poisson disorder problem under other relatively
uninformative priors, such as the Jeffrey’s prior. Note that the uniform prior is not the only way to
describe the absence of a prior knowledge on the change point. In fact, there are other priors that can
be used which are invariant to reparametrization unlike the uniform prior.

Appendix A: Calculations

A.1. Reformulation of the Bayes risk

Recall that Bayes risk consists of the probability of a false alarm and the expected detection delay cost.
Below E0 is with respect to the reference probability measure P0.

False alarm frequency is given by

P{𝜏 < Θ} = E[1{𝜏<Θ}] = E0 [𝑍𝜏1{𝜏<Θ}] = P0{𝜏 < Θ} = 1 − P0{𝜏 ≥ Θ} = 1 − 𝜋 − (1 − 𝜋)
𝑇
E0 [𝜏] .

(53)

Generalized Bayes theorem (Shiryaev (1996), pp. 230-231) implies that

Φ𝑡 =
E[1{Θ≤𝑡 } |F𝑡 ]
E[1{Θ>𝑡 } |F𝑡 ]

=
E0 [𝑍𝑡1{Θ≤𝑡 } |F𝑡 ]
E0 [𝑍𝑡 |F𝑡 ]

(
E0 [𝑍𝑡1{Θ>𝑡 } |F𝑡 ]
E0 [𝑍𝑡 |F𝑡 ]

)−1

. (54)

Since 𝜏 is an F -stopping time, and Θ is G𝑡 -measurable, we have

E[(𝜏 −Θ)+] = E
[
1{𝜏≥Θ}

∫ 𝜏

Θ

𝑑𝑡

]
= E0

∫ 𝜏

0
Φ𝑡E0 [𝑍𝑡1{Θ>𝑡 }]𝑑𝑡 = (1 − 𝜋)E0

[∫ 𝜏

0

(
𝑇 − 𝑡

𝑇

)
Φ𝑡𝑑𝑡

]
,

(55)

where the last expression follows since Θ is independent of the process 𝑋 and has the uniform
distribution in (2) under P0. When we combine the two components of the Bayes risk in (53) and
(55), we obtain (3).
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A.2. Explicit form of the process 𝚽 and its relation to 𝑸

Under P0, we have E0 [𝑍𝑡1{Θ≤𝑡 } |F𝑡 ] = E0
[
𝑅𝑡

𝑅𝜏
1{Θ≤𝑡 } |F𝑡

]
= 𝑅𝑡

(
𝜋 + (1 − 𝜋)

∫ 𝑡

0
1
𝑅𝑠

𝑑𝑠
𝑇

)
, giving us the

ratio in (54) as

Φ𝑡 =
𝑅𝑡

𝑇 − 𝑡

(
𝑇

𝜋

1 − 𝜋
+
∫ 𝑡

0

1
𝑅𝑠

𝑑𝑠

)
(56)

which is equal to 𝐷𝑡 𝑄𝑡 =𝑄𝑡/(𝑇 − 𝑡) for 𝑡 < 𝑇 with 𝑄0 = 𝑇𝜋/(1 − 𝜋).

Appendix B: Dynamics of the sufficient statistic

Let us show the dynamics of the likelihood ratio process 𝑅 given in (9). Observe that, at every time 𝑡

between any two consecutive jumps 𝜎𝑛 and 𝜎𝑛+1 of the process 𝑋 , we have

𝑅𝑡

𝑅𝜎𝑛

=

𝑒−(𝜆1−𝜆0 )𝑡 ∏𝑁𝑡

𝑘=1

[
𝜆1
𝜆0

𝑓 (𝑌𝑘)
]

𝑒−(𝜆1−𝜆0 )𝜎𝑛
∏𝑁𝜎𝑛

𝑘=1

[
𝜆1
𝜆0

𝑓 (𝑌𝑘)
] =

𝑒−(𝜆1−𝜆0 )𝑡

𝑒−(𝜆1−𝜆0 )𝜎𝑛
, 𝜎𝑛 ≤ 𝑡 < 𝜎𝑛+1,

which implies

𝑅𝑡 = 𝑅𝜎𝑛
𝑒−(𝜆1−𝜆0 ) (𝑡−𝜎𝑛 ) , and thus 𝑑𝑅𝑡 = −(𝜆1 − 𝜆0)𝑅𝑡𝑑𝑡, 𝜎𝑛 ≤ 𝑡 < 𝜎𝑛+1.

At the jump time 𝜎𝑛+1, we have 𝑑𝑅𝜎𝑛+1 = 𝑅𝜎𝑛+1 − 𝑅𝜎(𝑛+1)− = 𝑅𝜎(𝑛+1)−

(
𝜆1
𝜆0

𝑓 (𝑌𝑛+1) − 1
)
. Therefore,

the dynamics of the process 𝑅 between the jumps and at the jump times are given by

𝑑𝑅𝑡 =


−(𝜆1 − 𝜆0)𝑅𝑡𝑑𝑡, 𝑡 ∈ [𝜎𝑛, 𝜎𝑛+1),

𝑅𝑡−

(
𝜆1

𝜆0
𝑓 (𝑌𝑛+1) − 1

)
, 𝑡 = 𝜎𝑛+1.

(57)

In terms of the point process 𝑝(𝑑𝑡, 𝑑𝑦) of our observations (with (P0,F )-mean measure 𝜆0𝑑𝑡𝜈0 (𝑑𝑦)),
the dynamics of the process 𝑅 above can also be written as

𝑑𝑅𝑡 = −(𝜆1 − 𝜆0)𝑅𝑡−𝑑𝑡 + 𝑅𝑡−

∫
R𝑑

(𝜆1

𝜆0
𝑓 (𝑦) − 1

)
𝑝(𝑑𝑡, 𝑑𝑦) = 𝑅𝑡−

∫
R𝑑

(𝜆1

𝜆0
𝑓 (𝑦) − 1

)
𝑚(𝑑𝑡, 𝑑𝑦) (58)

with the compansated point process

𝑚(𝑑𝑡, 𝑑𝑦) := 𝑝(𝑑𝑡, 𝑑𝑦) − 𝜆0𝑑𝑡𝜈0 (𝑑𝑦). (59)

It follows from the explicit form in (13) that

𝑑𝑄𝑡 =

[
𝑞 +

∫ 𝑡

0

1
𝑅𝑠

𝑑𝑠

]
𝑑𝑅𝑡 + 𝑑𝑡. (60)

The dynamics of 𝑅 in (58) now yields

𝑑𝑄𝑡 = [1 − (𝜆1 − 𝜆0)𝑄𝑡 ]𝑑𝑡 +𝑄𝑡−

∫
R𝑑

(𝜆1

𝜆0
𝑓 (𝑦) − 1

)
𝑝(𝑑𝑡, 𝑑𝑦). (61)
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After rearranging the terms, these dynamics can also be written more compactly as

𝑑𝑄𝑡 = 𝑑𝑡 + 𝑑𝑀𝑡 with the (P0,F )-martingale 𝑀𝑠 :=
∫
(0,𝑠]×R𝑑

𝑄𝑢−
(𝜆1

𝜆0
𝑓 (𝑦) − 1

)
𝑚(𝑑𝑢, 𝑑𝑦), (62)

for 𝑠 ≥ 0. The dynamics in (61) suggest that the process 𝑄 is an autonomous process: it is a piecewise-
deterministic Markov process driven by the point process 𝑝(𝑑𝑡, 𝑑𝑦). Between the jumps of the process
𝑋 , the process 𝑄 follows the integral curves of the continuous part of (61). At every jump of 𝑋 , the
process 𝑄 is updated instantaneously.

By (60), for 𝜎𝑛 ≤ 𝑡 < 𝜎𝑛+1 we have 𝑑𝑄𝑡

𝑑𝑡
= 1 − (𝜆1 − 𝜆0)𝑄𝑡 , which implies 𝑄′

𝑡 + (𝜆1 − 𝜆0)𝑄𝑡 = 1.

Solving this equation, we have 𝑑

(
𝑄𝑡𝑒

(𝜆1−𝜆0 )𝑡
)
= 𝑒 (𝜆1−𝜆0 )𝑡𝑑𝑡. Integrating both sides on [𝜎𝑛, 𝑡] gives

𝑄𝑡𝑒
(𝜆1−𝜆0 )𝑡 −𝑄𝜎𝑛

𝑒 (𝜆1−𝜆0 )𝜎𝑛 =


1

𝜆1 − 𝜆0

(
𝑒 (𝜆1−𝜆0 )𝑡 − 𝑒 (𝜆1−𝜆0 )𝜎𝑛

)
, 𝜆1 ≠ 𝜆0,

𝑡 − 𝜎𝑛, 𝜆1 = 𝜆0.

Then, 𝑄𝑡 is given by

𝑄𝑡 =


1

𝜆1 − 𝜆0
+
(
𝑄𝜎𝑛

− 1
𝜆1 − 𝜆0

)
𝑒−(𝜆1−𝜆0 ) (𝑡−𝜎𝑛 ) , 𝜆1 ≠ 𝜆0,

𝑄𝜎𝑛
+ 𝑡 − 𝜎𝑛, 𝜆1 = 𝜆0.

Likewise, for 𝑡 = 𝜎𝑛+1 we have 𝑄𝑡 − 𝑄𝑡− ≡ 𝑑𝑄𝑡 = 𝑄𝑡−
(
𝜆1
𝜆0

𝑓 (𝑌𝑛+1) − 1
)
, which implies 𝑄𝑡 =

𝑄𝑡−
𝜆1
𝜆0

𝑓 (𝑌𝑛+1). Hence, 𝑄𝜎𝑛+1 is given by

𝑄𝜎𝑛+1 =𝑄𝜎(𝑛+1)−
𝜆1

𝜆0
𝑓 (𝑌𝑛+1) =


𝜆1

𝜆0
𝑓 (𝑌𝑛+1)

[
1

𝜆1 − 𝜆0
+
(
𝑄𝜎𝑛

− 1
𝜆1 − 𝜆0

)
𝑒−(𝜆1−𝜆0 ) (𝜎𝑛+1−𝜎𝑛 )

]
,

𝜆1

𝜆0
𝑓 (𝑌𝑛+1)

[
𝑄𝜎𝑛

+ 𝜎𝑛+1 − 𝜎𝑛

]
,

separately for the cases 𝜆1 ≠ 𝜆0 and 𝜆1 = 𝜆0 respectively.

Appendix C: Auxiliary proofs

Proof of Lemma 2.1. The ordering E0,𝑞 [𝜏𝑟 ] ≤ E0,0 [𝜏𝑟 ] is an immediate consequence of the mono-
tonicity of 𝑄 in the initial point 𝑄0 = 𝑞; see (13).

To show the finiteness of E0,0 [𝜏𝑟 ], we first consider the easy case where the non-negative i.i.d.
random variables 𝑓 (𝑌𝑘)s are bounded. That is, there exists some 𝐿 < ∞ such that 𝑓 (𝑌1) ≤ 𝐿 with
probability one under P0. Then, using the dynamics of the process 𝑄 in (62), we have

E0,0 [𝑄𝜏𝑟∧𝑡 ] = E0,0 [𝜏𝑟 ∧ 𝑡 +𝑀𝜏𝑟∧𝑡 ] = E0,0 [𝜏𝑟 ∧ 𝑡], (63)

where the last equality is thanks to Doob’s stopping theorem. Since 𝑄𝜏𝑟∧𝑡 ≤ 𝑟 max{ 𝜆1
𝜆0
,1}𝐿, we have

E0,0 [𝜏𝑟 ∧ 𝑡] ≤ 𝑟 max{ 𝜆1
𝜆0
,1}𝐿. The result follows now by letting 𝑡 → ∞ and using the monotone

convergence theorem.
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Other easy cases are i) 𝜆1 ≤ 𝜆0, and ii) 𝜆1 > 𝜆0 and 𝑟 < 1
𝜆1−𝜆0

(see (14)). For notational convenience,
let us define

𝜁 (𝑞, 𝑟) := inf{𝑡 ≥ 0 : 𝑥(𝑞, 𝑡) ≥ 𝑟} and 𝑚(𝑞, 𝑟) := E0,𝑞 [𝜏𝑟 ], 𝑞, 𝑟 ∈ R+. (64)

It is easy to verify that 𝜁 (0, 𝑟) <∞ for these cases. Then, by strong Markov property, we write

𝑚(0, 𝑟) = E0,0
[
(𝜁 (0, 𝑟) ∧ 𝜎1) + 1{𝜎1≤𝜁 (0,𝑟 ) } 𝑚(𝑄𝜎1 , 𝑟)

]
≤ 𝜁 (0, 𝑟) +𝑚(0, 𝑟) P0{𝜎1 ≤ 𝜁 (0, 𝑟)}.

Re-arranging the terms yields 𝑚(0, 𝑟) ≤ 𝜁 (0, 𝑟)/P0{𝜎1 > 𝜁 (0, 𝑟)} = 𝜁 (0, 𝑟)𝑒𝜆0𝜁 (0,𝑟 ) <∞ showing the
claim.

Finally, the remaining case is the one where 𝑓 (𝑌1) is not almost surely bounded, 𝜆1 > 𝜆0, and 𝑟 ≥
1

𝜆1−𝜆0
. For this case, fix two points 0 < 𝑞1 < 1

𝜆1−𝜆0
≤ 𝑞2 < 𝑟. Since 𝜁 (0, 𝑞1) < ∞, it follows from our

arguments above that 𝑚(0, 𝑞1) = 𝜁 (0, 𝑞1)𝑒𝜆0𝜁 (0,𝑞1 ) <∞. Also note that

P0,𝑞1 (𝜏𝑞2 > 𝑡) =
∑︁
𝑘∈N
P0,𝑞1 (𝜏𝑞2 > 𝑡, 𝑁𝑡 = 𝑘) ≤

∑︁
𝑘∈N
P0,𝑞1

(
∩𝑘
𝑖=1 { 𝑓 (𝑌𝑖) ≤

𝜆0𝑞2

𝜆1𝑞1
} ∩ {𝑁𝑡 = 𝑘}

)
≤
∑︁
𝑘∈N

[
P0

(
𝑓 (𝑌1) ≤

𝜆0𝑞2

𝜆1𝑞1

) ] 𝑘
𝑒−𝜆0𝑡 (𝜆0𝑡)𝑘/𝑘! = 𝑒

−𝜆0𝑡
[
1−P0 ( 𝑓 (𝑌1 )≤

𝜆0𝑞2
𝜆1𝑞1

)
]
. (65)

The probability P0 ( 𝑓 (𝑌1) ≤ 𝜆0𝑞2
𝜆1𝑞1

) is strictly less than one by the lack of an upper bound on 𝑓 (𝑌1).
Using (65), we then obtain 𝑚(𝑞1, 𝑞2) =∫ ∞

0
P0,𝑞1 (𝜏𝑞2 > 𝑡)𝑑𝑡 ≤

∫ ∞

0
𝑒
−𝜆0𝑡

[
1−P0 ( 𝑓 (𝑌1 )≤

𝜆0𝑞2
𝜆1𝑞1

)
]
𝑑𝑡 =

(
𝜆0

[
1 − P0

(
𝑓 (𝑌1) ≤

𝜆0𝑞2

𝜆1𝑞1

) ] )−1
<∞.

Similar arguments also yields P0,𝑞2 (𝜏𝑟 > 𝑡) ≤ exp
(
− 𝜆0𝑡

[
1 − P0 ( 𝑓 (𝑌1) ≤ 𝜆0𝑟

𝜆1𝑞2
)
] )
, with P0

(
𝑓 (𝑌1) ≤

𝜆0𝑟
𝜆1𝑞2

)
< 1, and 𝑚(𝑞2, 𝑟) ≤

(
𝜆0

[
1−P0 ( 𝑓 (𝑌1) ≤ 𝜆0𝑟

𝜆1𝑞2
)
] )−1

<∞. Finally, it follows by the strong Markov
property and the monotonicity of 𝑞 ↦→ 𝑚(𝑞, ·) that 𝑚(0, 𝑟) ≤ 𝑚(0, 𝑞1) + 𝑚(𝑞1, 𝑞2) + 𝑚(𝑞2, 𝑟) < ∞,

establishing the result for the last case and completing the proof.

Proof of Lemma 3.5. No proof is needed for the first inequality in (25). To establish the second
inequality, we note that

𝑈 (∞, 𝑞) = E0,𝑞

∫ 𝜏𝑞∞

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡 = E0,𝑞

[ ∫ 𝜏𝑞∞∧𝑇

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡 + 1{𝜏𝑞∞>𝑇 }

∫ 𝜏𝑞∞

𝑇

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡

]
= E0,𝑞

[ ∫ 𝜏𝑞∞∧𝑇

0

(
𝑄𝑡 −

1
𝑐

)
𝑑𝑡 + 1{𝜏𝑞∞>𝑇 }𝑈 (∞,𝑄𝑇 )

]
,

where the last line is by the Markov property. Since 𝑞 ↦→ 𝑈 (∞, 𝑞) is non-decreasing and 𝑈 (𝑇, 𝑞) ≤
E0,𝑞

∫ 𝜏𝑞∞∧𝑇
0

(
𝑄𝑡 − 1

𝑐

)
𝑑𝑡, we obtain

𝑈 (∞, 𝑞) ≥𝑈 (𝑇, 𝑞) +𝑈 (∞,0) P0,𝑞 (𝜏𝑞∞ > 𝑇) ≥𝑈 (𝑇, 𝑞) +𝑈 (∞,0) E0,𝑞 [𝜏𝑞∞ ]/𝑇

thanks to Markov inequality. The second inequality in (25) now follows since E0,0 [𝜏𝑞∞ ] ≥ E0,𝑞 [𝜏𝑞∞ ]
for any 𝑞 ∈ R+.
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