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MODEL MISSPECIFICATION IN DISCRETE TIME BAYESIAN ONLINE CHANGE
DETECTION

SAVAS DAYANIK1 and SEMIH ONUR SEZER2

Abstract. We revisit the classical formulation of the discrete time Bayesian online change
detection problem in which the common distribution of an observed sequence of random
variables changes at an unknown point in time. The objective is to detect the change with
a stopping time of the observations and minimize a given Bayes risk. When the change
time has a zero-modified geometric prior distribution, the first crossing time of the odds-
ratio process over a threshold is known to be an optimal solution. In the current paper,
we consider a modeler who misspecifies some of the elements of this formulation. Because
of this misspecification, the modeler computes a wrong stopping threshold and follows an
incorrect odds-ratio process in implementation. To find her actual Bayes risk, which is
different from the value function evaluated with the wrong choices, one needs to compute
the expected costs accumulated by the true odds-ratio process until modeler’s odd-ratio
process crosses this wrong boundary. In the paper, we carry out these computations in the
extended state space of both processes, and we illustrate these computations on examples.
In those examples, we construct tolerance regions for the parameters to be estimated by
the modeler. For a given choice by the modeler, the tolerance region is the set of true
values for which her relative loss is less than or equal to a predetermined level.
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1. Introduction

Detecting an unobservable change in the probability law of a random sequence is one of the funda-
mental problems in sequential analysis. Parallel to its rich and diverse application areas, there has been
a well-developed literature studying various models with both Bayesian and non-Bayesian aprooaches.
We invite the reader to refer to Shiryaev [40, 43], Lorden [25], Zacks [53], Moustakides [29], Basseville
and Nikiforov [2], Poor and Hadjiliadis [36], Tartakovsky [46, 48], Dayanik et al. [12], Tartakovsky and
Moustakides [50], Polunchenko and Tartakovsky [34], Tartakovsky et al. [47] and their references for a
comprehensive treatment of these models and their applications. For some of the latest contributions,
Moustakides [30], Fuh and Tartakovsky [19], Tartakovsky [49], Zou et al. [55], Dayanik and Kazutoshi [15],
Xu et al. [51] and the references therein can be consulted.

As noted in some of the references above, the main focus in the existing literature is either on finding
optimal solutions for relatively simpler formulations or bringing easily implementable solutions with cer-
tain desirable (asymptotic) properties for more realistic and difficult formulations. Even though model
misspecification issues are of utmost importance from an implementation point of view, they have been
discussed in only a small number of papers so far. The exceptions in the non-Bayesian framework include
Srivastava and Wu [45], Pollak and Siegmund [33], Molloy and Timothy [27], and Du et al. [16] which
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bring theoretical and numerical results for the performance of a modeler/decision maker who misspecifies
especially the post-change probability law of the observations. On the Bayesian side, Ekström and Vaice-
navicius [17, Section 3] and Blanchet-Scalliet et al. [7] (see also Blanchet-Scalliet et al. [6]) discuss certain
misspecification issues in continuous time settings with Brownian observations. Ekström and Vaicenavicius
[17, Section 3] brings certain error bounds for the detection problem under some ordering assumptions,
and Blanchet-Scalliet et al. [7] numerically compares in a utility maximization problem (with misspecified
parameters) the performance of a detection based investment strategy against those of others. The exact
computation of modeler’s Bayes risk and her error have never been investigated before in any Bayesian
model. This is the contribution of the current paper in the well-known discrete time setting studied in
Shiryaev [42, 39]. Similar analyses could also be provided for the analogous continuous time formulations
with Brownian motions and (compound) Poisson processes. These analyses require different techniques,
and they will be presented in subsequent papers.

The notion of model misspecification generally refers to setting up certain parameters or distribu-
tions incorrectly. It does not exclude the existence of parameters or distributions unknown to a mod-
eler/practitioner. Such formulations are given in the literature by means of nuisance parameters or vari-
ables; see Hadjiliadis [22], Hadjiliadis and Moustakides [23], Bayraktar et al. [4], Dayanik and Goulding [11],
Banerjee and Veeravalli [1], Muravlev and Shiryaev [31], Yang et al. [52] for some examples. In Bayesian
formulations, nuisance variables have their own prior distributions, and these distributions may be deter-
mined incorrectly. In non-Bayesian settings, on the other hand, unknown parameters may be replaced with
their (maximum likelihood) estimates, and this may be based on wrong assumptions on the distributions
or uncertainy sets. Overall, misspecifications may exist in any type of model irrespective of how simple or
complex it may be.

Studying the consequences of a misspecification in a detection problem requires more than carrying out
a sensitivity analysis. In a sensitivity analysis, we investigate how the optimal solution is affected by a
change in the parameters/distributions. This does not tell us the magnitude of a loss because of selecting
them incorrectly. Even though we still need to solve the problem with modeler’s choices to derive her
detection policy, additional work is needed to compute the resulting loss.

In the current paper, we address this issue in the classical Bayesian model studied in Shiryaev [42, 39]
(see Chapter 4.3 in the latter). As our analysis illustrates, dealing with a misspecification is non-trivial
even in this relatively simple setting. The model assumes that we observe a sequence of random variables
X1, X2, . . . having a common distribution ν0. At some unobservable random time Θ having a zero-modified
geometric prior

P{Θ = 0} = π and P{Θ = n} = (1− π)(1− p)n−1p, n ≥ 1,(1)

for some π ∈ [0, 1) and p ∈ (0, 1), the common distribution changes to some other distribution ν1. The
objective is to find a stopping time of our observations which will detect the change as accurately as possible
by minimizing a Bayes risk. When the Bayes risk is a linear combination of the expected delay in detection
and the probability of a false alarm, the analyses in Shiryaev [42, 39] show that the first crossing time of
the posterior probability process Π over some critical threshold π∗ is an optimal alarm time. This stopping
time can equivalently be expressed as the first crossing time of the odds-ratio process Φ = Π/(1−Π) over
the threshold φ∗ = π∗/(1−π∗). In our main analysis in the paper, we use the latter representation since we
work with an auxiliary probability measure under which the detection problem translates into an optimal
stopping problem for the odds-ratio process.

When it comes to implementation, a modeler has to estimate/set the parameters π, p and the distribu-
tions ν0, ν1 in the formulation above. To our best knowledge, there is no single approach that applies to
all possibly different applications, and some ad-hoc methods may be relied upon depending on the specific
situation under consideration. Estimation based on past data (if available), asking experts’ opinions, run-
ning candidate detection algorithms (for each possible parameter set) in parallel, and even some simple
trial and error are among the available options. For example, as in Shiryaev et al. [41, 44], Zhitlukhin
and Ziemba [54], and Buonaguidi et al. [8] (studying different models), if the modeler has a clear idea on
when the window for a disorder opens, then she may simply set π = 0. We also make this choice in our
numerical examples in Section 4. Buonaguidi et al. [8] studies a credit card fraud detection problem using
a continuous time model with compound Poisson arrivals. Authors set the arrival rate of the fraudulent
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attacks by expert opinion in a way to match an average for the number of attacks per year (per cardholder).
In Shiryaev et al. [41], a financial application (to close a market position) is considered using a discrete time
adaptation of a continuous time formulation. Authors consider different values for pre- and post-disorder
drift parameters and compare the performances of these choices on the available data. This approach of
trying different combinations is also used in Shiryaev et al. [44] and Zhitlukhin and Ziemba [54] for similar
applications.

All these methods above and others are naturally prone to errors, and it is important to compute the
resulting Bayes risks in order to understand how severe these mistakes can be, should the true parame-
ters/distributions be different. A modeler with incorrect parameters and/or distributions obtains a wrong

stopping threshold φ̃∗ from her model, and she evaluates a different odds-ratio process Φ̃. Therefore, she
applies a sub-optimal stopping rule in practice. Finding her Bayes risk requires computing the expected
costs incurred in the true model by the true odds-ratio process until this incorrect stopping time. In the
paper, we show how the resulting Bayes risk can be computed in the extended state space of both processes
after noting that they are jointly Markov and therefore standard arguments of dynamic programming ap-
ply. Using the observation that the true odds-ratio Φ is linearly dependent on its initial value, we reduce
these computations to a pair of one dimensional function iterations. We give the details in Sections 2 and
3, and we illustrate the computations in Section 4 on some examples.

In practice, a modeler usually does not know all parameters and distributions exactly. Our analysis here
does not provide a method for selecting them either. In fact, there can be multiple methods as indicated
above. Regardless of the method(s) she prefers, the modeler can use the results of this paper to compute her
potential error against alternative candidates. In particular, she can construct tolerance ranges/intervals
for the parameters to be estimated. Given modeler’s estimates, the α% tolerance region denotes the set of
true values for which her percentage loss

Modeler’s Bayes risk− True minimal Bayes risk

True minimal Bayes risk
· 100(2)

is less than or equal to a given value α. If this region is relatively large or includes other potential
candidates, this gives the modeler some confidence for implementation. In that respect, the computation
of the modeler’s Bayes risk and the construction of such tolerance regions are the contributions of the
current paper from a practical point of view. In Section 4, we construct such regions and intervals in some
of our numerical examples.

Clearly, some or all of the modeler’s choices may be incorrect in implementation. We do not make any
specific assumption regarding which of her parameters/distributions match the correct ones (except that at
least one of her choices is incorrect). We assume, however, that her distributions ν̃0 and ν̃1 are respectively
equivalent (as measures) to true distributions ν0 and ν1. That is, we exclude the problematic and rather
unexpected cases in practice where at each observation the modeler may realize with a positive probability
that her assumptions are wrong. Dealing with such a model requires further assumptions on the actions
taken by the modeler upon such an observation. In particular, one should specify how the distributions
ν̃0 and ν̃1 would be revised in this case. Posterior probabilities should be re-calculated accordingly, and a
penalty term may be added to the Bayes risk for changing/updating the modeling assumptions. We leave
the study of the effects of various updating rules in different models/applications as future research.

As for the true distributions ν0 and ν1, in Sections 2 and 3, we give our analysis for the case where ν1 is
absolutely continuous with respect to ν0. Many interesting applications in practice satisfy this condition;
see also our examples in Section 4. The absolute continuity of the post-change distribution allows us to re-
state the problem as an optimal stopping problem for the odds-ratio process under an auxiliary probability
measure as mentioned above. This approach of changing the measure and working with the odds-ratio
has the major advantages that i) the computations are relatively simpler since all observations have the

distribution ν0 under this measure, ii) joint Markov property of the pair (Φ, Φ̃) under the new measure and
with the observation filtration follows naturally, and iii) linear dependence of the modeler’s Bayes risk on
the initial point of the process Φ is an immediate consequence of the linear dependence of this process on
this point. Therefore, our main analysis in the paper is based on the convenient and reasonably realistic
assumption of absolute continuity of ν1 with respect to ν0. In Appendix B at the end, we complete the
picture, and we give a short analysis under the physical measure without this assumption. Under the
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physical measure, we work with the correct conditional probability process Π and the incorrect one Π̃ used
by the modeler. The process Π does not depend on its starting point linearly, and the linearity of the
Bayes risk on this point is proved inductively instead.

The rest of the paper is organized as follows. In Section 2, we remind the reader the formulation of
the detection problem, and we summarize its solution under our auxiliary probability measure. Results
in Section 2 are already known; most of them are simply analogous to the corresponding results given in
Shiryaev [42, 39] under the physical measure. We include that section for completeness and convenience of
the reader as the section sets the notation for the rest of the paper. Section 3 gives our main contribution.
In that section, we assume that the modeler selects some of the parameters and/or distributions incorrectly,
and we compute her Bayes risk. In Section 4, we illustrate the results of Sections 2 and 3 numerically in
three settings with different pre- and post-disorder distributions. In Section 5, we conclude our discussion
with final remarks and potential extensions. Appendices at the end include supplementary analyses and
proofs.

2. Detection problem with correct parameters/distributions

In the formulation below, the observations take values on some general measurable space. In Section 4,
we give examples with real-valued observations.

2.1. Formulation of the problem. Consider a probability space (Ω,H,P) hosting a sequence of observa-
tion random variables X1, X2, . . . taking values on some measurable space (E, E), and also a non-negative
integer valued random variable Θ representing our change time. The random variable Θ has the zero-
modified geometric prior distribution given in (1) above. At time Θ, common distribution of random
variables X1, X2, . . . changes from ν0 to ν1. This means that, conditioned on Θ = n, the observations
X1, . . . , Xn−1 are independent and identically distributed according to ν0, and Xn, Xn+1, . . . are indepen-
dent with distribution ν1. The post-disorder probability distribution ν1 is absolutely continuous with
respect to the pre-change distribution ν0.

Let F = (Fn)n∈N be the filtration generated by the sequence X1, X2, . . . over time. Our objective is to
find an F-stopping time (i.e., an alarm time) τ which will detect the change optimally in the sense that it
will minimize the Bayes risk

Rτ (π) := c E(τ −Θ)+ + P(τ < Θ)(3)

consisting of the expected delay cost and the probability of a false alarm. This probability has a unit
coefficient in (3) without loss of generality, and the parameter c > 0 gives the relative importance of
the terms. The Bayes risk in (3) is a common choice in the literature. It can also be considered as the
Lagrangian form of a constrained optimization problem where the delay is minimized subject to an upper
bound on the false alarm probability. As illustrated in Davis [10] and Bayraktar et al. [3], other alternative
Bayes risks can be analyzed similarly once re-written under an auxiliary probability measure in terms of
the odds-ratio introduced below. See also Poor [35] and Beibel [5] for a slightly different Bayes risk with
an exponential penalty for delay and its generalized odds-ratio.

Let us introduce the conditional probability and odds-ratio processes respectively as

Πk := P(Θ ≤ k|Fk) and Φk :=
Πk

1−Πk
, k ∈ N,(4)

with Π0 = π and Φ0 = π
1−π . In terms of the process Φ, using standard arguments (see for example

Bayraktar et al. [3]), the expected delay and early false alarm probability of an F-stopping time can be
re-written under an auxiliary probability measure P∞ as

E(τ −Θ)+ = (1− π)E∞
τ−1∑
k=0

(1− p)kΦk and P(τ < Θ) = (1− π)− (1− π)E∞
τ−1∑
k=0

p(1− p)k,(5)

where E∞ above denotes the expectation under this new measure. Our Bayes risk then becomes

Rτ (π) = (1− π) + c(1− π) E∞
[ τ−1∑
k=0

(1− p)k
(

Φk −
p

c

)]
.(6)
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The auxiliary measure P∞ and the physical measure P are related locally as

dP
dP∞

∣∣∣
Fk∨σΘ

= 1{Θ=0}Zk +
k∑
i=1

1{Θ=i}
Zk
Zi−1

+ 1{Θ>k}, k ∈ N,

with the likelihood ratio process Z given by

Z0 = 1 and Zk :=
k∏
i=1

f(Xi), for k ≥ 1, where f(x) :=
ν1(dx)

ν0(dx)
(7)

is the Radon-Nykodym derivative of ν1 with respect to ν0. P∞ has the property that no change occurs in
the distribution of our observations (or a change occurs at ∞). That is, our observations X1, X2, . . . are
independent with the distribution ν0, and furthermore they are independent of Θ. Hence, computations
can be carried out more conveniently under P∞.

Thanks to the new representation in (6), the minimal Bayes risk can be expressed as

U(π) := inf
τ
Rτ (π) = (1− π) + c(1− π)V

( π

1− π
)

(8)

in terms of the value function of the optimal stopping problem

V (φ) := inf
τ
Eφ∞
[ τ−1∑
k=0

(1− p)kg(Φk)
]

with the running cost function g(φ) := φ− p

c
,(9)

where Eφ∞ denotes the expectation under P∞ for which the underlying process Φ starts from the point
φ ∈ R+ with probability one.

As in, for example, Shiryaev [40, Chapter 2.3], it can be shown that the odds-ratio process has the
explicit form

Φk =
Zk

(1− p)k
(
φ+ p

k∑
i=1

(1− p)i−1 1

Zi−1

)
, k ≥ 1, with φ = Φ0,(10)

and it is easy to verify that Φ satisfies the recursive relation

Φk =
f(Xk)

1− p
(Φk−1 + p) , k ≥ 1,(11)

which is useful for simulating its sample path realizations. The relation (11) also shows that Φ is a
(P∞,F)-Markov process (starting from any point φ ∈ R+).

2.2. Solution of the detection problem. It follows by the linear dependence of Φ in (4) on the initial
point Φ0 = φ and the non-negativity of the coefficient of φ that the function φ 7→ V (φ) is non-decreasing
and concave. We have the bounds

0 ≥ V (φ) ≥ −p
c

∞∑
k=0

(1− p)k = −1

c
,

where the upper bound follows by taking τ = 0, and the lower bound is due to the non-negativity of Φ.
More importantly, it can be shown that there exists a point φ∗ ∈ [pc ,

1
c ] such that V (φ) < 0 for φ < φ∗ and

V (φ) = 0 for φ ≥ φ∗. Using standard arguments of optimal stopping theory (see Shiryaev [39]) one can
verify that

τ∗ = inf{k ∈ N : V (Φk) = 0} = inf{k ∈ N : Φk ≥ φ∗}

is an optimal stopping rule. Due to one-to-one relation between processes Π and Φ, the optimal stopping
time can equivalently be expressed as the first time the process Π exceeds the threshold π∗ = φ∗/(1 + φ∗).
In plain words, we stop and announce the new regime when its posterior probability or its odds-ratio is
sufficiently large. Since ν0{x : f(x) ≥ 1} > 0 and Xis are i.i.d. under P∞, the arguments in Appendix A.1.
(given for modeler’s odds-ratio process introduced in Section 3 below) can be modified easily to show that
τ∗ has (over all starting points) uniformly bounded first moment under P∞.
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From a computational point of view, the function V is the limit of a non-increasing sequence of functions
Vns defined as

Vn(φ) := inf
τ∈F

Eφ∞
[ (τ∧n)−1∑

k=0

(1− p)kg(Φk)
]
, φ ∈ R+,(12)

with the notation a ∧ b = min{a, b}. The convergence is uniform on R+ with error bounds

0 ≤ Vn(φ)− V (φ) ≤ (1− p)n/c for all φ ∈ R+ and n ∈ N,(13)

and consecutive members of the sequence are computed via the recursive relation

Vn(φ) := min
{

0 , g(φ) + (1− p) Eφ∞[Vn−1(Φ1)]
}
, n ≥ 1,(14)

starting from V0(φ) = 0. The function V and therefore the point φ∗ can be computed/approximated
iterating (14) for a large value of n. We can select n so that the convergence error in (13) is negligible.

2.3. Computing the delay and false alarm components. Using the optimal time τ∗, we define

C(φ) := Eφ∞
τ∗−1∑
k=0

(1− p)k and Cn(φ) := Eφ∞
τ∗∧n−1∑
k=0

(1− p)k, n ∈ N,

for which, we have

Cn(φ) = 1[0,φ∗)(φ)
{

1 + (1− p)Eφ∞
[
Cn−1(Φ1)

]}
, n ≥ 1.

Here, 1[0,φ∗)(φ) is the indicator function which is equal to 1 when φ < φ∗ and zero otherwise. The functions
Cns are non-decreasing and they converge to C uniformly with the error bounds

0 ≤ C(φ)− Cn(φ) ≤ (1− p)n/p, φ ∈ R+, n ∈ N,
and clearly all functions are zero for φ ≥ φ∗.

Once C is computed/approximated, the false alarm probability is obtained thanks to (5) as

P(τ∗ < Θ) = (1− π)− (1− π)p C
( π

1− π
)
,

and the expected delay associated with the optimal alarm rule is then given by

E(τ∗ −Θ)+ =
1

c
[U(π)− P(τ∗ < Θ)] = (1− π)

[
V
( π

1− π
)

+
p

c
C
( π

1− π
)]
.

3. A modeler using incorrect parameters/distributions

Consider now a modeler/decision maker who selects some of the parameters or distributions in the
formulation above incorrectly. Following the notational convention in the introduction, we use the tilde
symbol ˜ throughout the rest of the paper to denote the parameters, distributions she chooses and also the
resulting expressions she computes. For example, we let π̃ and p̃ be the parameters she selects for the prior

distribution of the change time, and we define φ̃ = π̃/(1− π̃). Similarly, we let f̃ be the Radon-Nykodym

derivative of her pre- and post-disorder distributions ν̃0 and ν̃1, and Z̃n denotes the corresponding likelihood
ratio process in (7). As noted in the introduction above, we make the natural assumption that ν̃0 and ν̃1

are respectively equivalent to ν0 and ν1.
In line with the solution given in Section 2.2 above, the modeler computes the odds-ratio process in (10)

with her parameters/distributions, and she stops at the first time τ̃∗ this process Φ̃ exceeds the incorrectly

computed threshold φ̃∗. That is, her alarm time is

τ̃∗ = inf
{
k ≥ 0 : Φ̃k ≥ φ̃∗

}
= inf

{
k ≥ 0 :

Z̃k
(1− p̃)k

(
φ̃+ p̃

k∑
i=1

(1− p̃)i−1 1

Z̃i−1

)
≥ φ̃∗

}
,(15)

and the boundary φ̃∗ is the smallest point at which her value function Ṽ is equal to zero. In Appendix

A.1., we show that the exit time of Φ̃ from an interval of the form [0, α), for α > 0, has uniformly bounded

first moment over all starting points φ̃ ∈ R+.
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Recall that the expressions in (5) hold for any choice of F-stopping time, and it is obvious that τ̃∗ ∈ F.
Therefore, the resulting Bayes risk is

Rτ̃∗(π) = (1− π) + c(1− π)E∞
[ τ̃∗−1∑
k=0

(1− p)kg(Φk)
]

(16)

computed, however, with correct parameters π, p, and true odds-ratio process Φ. In order to find modeler’s
Bayes risk and her error, we need to compute the expectation in (16) above.

Observe that the processes Φ and Φ̃ are jointly driven by our observations as[
Φk

Φ̃k

]
=

[
f(Xk)/(1− p) 0

0 f̃(Xk)/(1− p̃)

] [
Φk−1

Φ̃k−1

]
+

[
p/(1− p)
p̃/(1− p̃)

]
.(17)

Since our observations are i.i.d. under P∞, it follows easily from (17) that (Φ, Φ̃) is a Markov pair under
this measure (and with the filtration F). Hence, we can express the expectation in (16) as a function of

their initial values φ and φ̃ respectively as

W (φ, φ̃) := E(φ,φ̃)
∞

[ τ̃∗−1∑
k=0

(1− p)kg(Φk)
]
, (φ, φ̃) ∈ R2

+,(18)

where, similar to the notation Eφ∞ in the previous section, E(φ,φ̃)
∞ denotes the expectation under the measure

P∞ for which Φ0 = φ and Φ̃0 = φ̃ with probability one. In the sequel, we omit the first argument in the

superscript if the random variable whose expectation we compute depends only on the process Φ̃ and its

initial point φ̃. We also adopt the same convention for the measure P0 introduced in Lemma 1 below.

Inside the expectation in (18), τ̃∗ depends on φ̃ and it is free of φ; see (15). Clearly, Φk is a function of

φ and it is free of φ̃. Using now the explicit form of Φ in (10), it is easy to verify that we can write W as

W (φ, φ̃) = φA(φ̃) +B(φ̃)(19)

with

A(φ̃) := E(·,φ̃)
∞

[ τ̃∗−1∑
k=0

Zk

]
and B(φ̃) := E(·,φ̃)

∞

[
τ̃∗−1∑
k=0

(1− p)k
( Zk

(1− p)k
k∑
i=1

p(1− p)i−1

Zi
− p

c

)]
.(20)

Hence, the computation of the function W on R2
+ boils down to the computation of the one dimensional

functions A and B on R+.

Lemma 1. The function φ̃ 7→ A(φ̃) is non-negative and non-increasing. Let P0 denote a different proba-
bility measure under which the observations all have the distribution ν1 (as if the change happens at time

0) and E(φ,φ̃)
0 be the corresponding expectation operator with (Φ0, Φ̃0) = (φ, φ̃) with probability one. Then

we have the identity

A(φ̃) = E(·,φ̃)
0 [τ̃∗] , φ̃ ∈ R+,(21)

with uniform upper bound

E(·,φ̃)
0 [τ̃∗] ≤ k

φ̃∗
/γ

k
φ̃∗ < +∞ where k

φ̃∗
:= d− ln(1 + φ̃∗)/ ln(1− p̃)e and γ := P0(f̃(Xi) ≥ 1) > 0.(22)

The other function φ̃ 7→ B(φ̃) in (20) is uniformly bounded as −1
c ≤ B(·) ≤ A(0), and we have

B(φ̃) = E(·,φ̃)
∞

[
τ̃∗−1∑
k=0

(1− p)k
(
p[A(Φ̃k)− 1]− p

c

)]
, φ̃ ∈ R+.(23)

The measure P0 in Lemma 1 and the auxiliary measure P∞ are related locally via their Radon-Nykodym
process

dP0

dP∞

∣∣∣
Fn∨σΘ

= Zn, n ∈ N.(24)
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The identity in (21) is then a natural consequence of (24) and the explicit form of A in (20). We use this
identity to establish the uniform upper bound for the function A given in (22); see Appendix A at the end.

3.1. A recursive approach. Using a truncation idea as in (12), let us introduce

Wn(φ, φ̃) := E∞
[ (τ̃∗∧n)−1∑

k=0

(1− p)kg(Φk)
]
, (φ, φ̃) ∈ R2

+, n ∈ N.(25)

As n↗∞, we have by monotone convergence theorem

E∞
[ (τ̃∗∧n)−1∑

k=0

(1− p)kΦk

]
↗ E∞

[ τ̃∗−1∑
k=0

(1− p)kΦk

]
and

E∞
[ (τ̃∗∧n)−1∑

k=0

(1− p)k p
c

]
↗ E∞

[ τ̃∗−1∑
k=0

(1− p)k p
c

]
≤ 1

c
,

therefore Wn(φ, φ̃)→W (φ, φ̃) pointwise. Markov property of the pair (Φ, Φ̃) gives us the recursive relation

Wn(φ, φ̃) = 1
[0,φ̃∗)

(φ̃) ·
[
g(φ) + (1− p) E∞

(
Wn−1(Φ1, Φ̃1)

)]
, n ≥ 1,(26)

with W0(φ, φ̃) = 0. Similar to (19), the functions Wns also depend linearly on φ. That is, we have

Wn(φ, φ̃) = φAn(φ̃) +Bn(φ̃)(27)

where An and Bn are respectively similar to A and B in (20) with τ̃∗ is replaced by τ̃∗ ∧ n. Plugging this
linear form into (27), then using (17), and finally matching the coefficients of φ0 and φ1, we obtain

An(φ̃) = 1
[0,φ̃∗)

(φ̃)
{

1 + E0

[
An−1(Φ̃1)

]}
Bn(φ̃) = 1

[0,φ̃∗)
(φ̃)

{
− p

c
+ p[An(φ̃)− 1] + (1− p)E∞

[
Bn−1(Φ̃1)

]}
.

(28)

These recursions can be established alternatively after showing

An(φ̃) = E(·,φ̃)
0 [τ̃∗ ∧ n] and Bn(φ̃) = E(·,φ̃)

∞

[
τ̃∗∧n−1∑
k=0

(1− p)k
(
p[An−k(Φ̃k)− 1]− p

c

)]
(29)

by modifying the corresponding arguments in the proof of Lemma 1 given for the identities (21-23).

Starting with A0(φ̃) = B0(φ̃) = 0, we successively iterate (28) to compute/approximate A and B and
obtain W by (19). The true Bayes risk of the modeler is then given by

Rτ̃∗(π) = (1− π) + c(1− π)

[
π

1− π
A
( π̃

1− π̃
)

+B
( π̃

1− π̃
)]

(30)

thanks to (16). This gives us the percentage error in (2) as

Rτ̃∗(π)− U(π)

U(π)
· 100 % =

c(1− π)
[

π
1−πA

(
π̃

1−π̃
)

+B
(

π̃
1−π̃
)
− V

(
π

1−π
)]

(1− π) + c(1− π)V
(

π
1−π
) · 100 %(31)

Number of iterations can be determined using Proposition 2 below. An alternative approach would be
to stop the iterations when the supnorm of the difference of consecutive functions becomes negligible.

The representation in (30) implies that the Bayes risk is linear in π on the interval [0, 1]. We verify
this result for the general case without the absolute continuity of ν1 with respect to ν0 in Appendix B by
induction.

Proposition 2. The collection of functions Ans and Bns converge to A and B, respectively, with the
uniform error bounds

0 ≤ A(φ̃)−An(φ̃) ≤ E(·,φ̃)
0 [1{τ̃∗>n}τ̃

∗] ≤ E(·,0)
0 [1{τ̃∗>n}τ̃

∗](32)
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and

−1

c
(1− p)n ≤ B(φ̃)−Bn(φ̃) ≤ A(0)(1− p)n +

n∑
k=0

(1− p)kp‖A−An−k‖(33)

where ‖A−An−k‖ := sup
φ̃∈[0,φ̃∗]

(A(φ̃)−An−k(φ̃)). We have
∑n

k=0(1− p)kp‖A−An−k‖ → 0 as n→∞.

3.2. Modeler’s expected delay and false alarm probability. The expected delay and the false alarm
probability associated with modeler’s stopping time can be computed by replicating similar computations

as in Section 2.3, with careful modifications using Φ̃ and its hitting time τ̃∗. If we define

C̃(φ̃) := E(·,φ̃)
∞

τ̃∗−1∑
k=0

(1− p)k and C̃n(φ̃) := E(·,φ̃)
∞

τ̃∗∧n−1∑
k=0

(1− p)k, n ∈ N,

we have the iterations

C̃n(φ̃) = 1
[0,φ̃∗)

(φ̃)
{

1 + (1− p)Eφ∞
[
C̃n−1(Φ̃1)

]}
, n ≥ 1,(34)

with convergence bounds 0 ≤ C̃(·)− C̃n(·) ≤ (1− p)n/p, for n ∈ N. In terms of the function C̃, modeler’s

false alarm probability is P(τ̃∗ < Θ) = (1− π)− (1− π)p C̃
(

π̃
1−π̃
)
, and her expected delay is obtained as

E(τ̃∗ −Θ)+ =
1

c
[Rτ̃∗(π)− P(τ̃∗ < Θ)] = (1− π)

[ π

1− π
A
( π̃

1− π̃
)

+B
( π̃

1− π̃
)

+
p

c
C
( π̃

1− π̃
)]
.(35)

4. Examples

In this section, the computations and results of Section 3 are illustrated in three different settings.

4.1. Example I: Bernoulli observations with misspecified post-disorder success probability.
Consider a model where the obervations X1, X2, . . . are {0, 1}-valued Bernoulli random variables whose
common success probability changes from q0 to q1 at the disorder time. In this setup, we have

f(x) =
(q1

q0

)x(1− q1

1− q0

)1−x
for x ∈ {0, 1}, and Zk =

(q1

q0

)Sk(1− q1

1− q0

)k−Sk
with Sk :=

k∑
i=1

Xi.(36)

The odds-ratio process has the form

Φk =
1

(1− p)k
(q1

q0

)Sk(1− q1

1− q0

)k−Sk [
φ+ p

k∑
i=1

(1− p)i−1
(q0

q1

)Si−1
(1− q0

1− q1

)(i−1)−Si−1

]
,(37)

and the value function V in (9) and the approximating sequence Vns in (12) are obtained via the iterations

Vn(φ) = min

{
0 , g(φ) + (1− p)

[
q0 · Vn−1

(q1

q0
· φ+ p

1− p

)
+ (1− q0) · Vn−1

(1− q1

1− q0
· φ+ p

1− p

)]}
.(38)

Suppose that the modeler chooses a wrong value q̃1 instead of the true value q1, and all other parameters
are selected correctly. She evaluates the expressions in (37) with this wrong choice q̃1 and obtains a different

process Φ̃. Also, she computes a different value function Ṽ from (38), and this yields a different stopping

boundary φ̃∗. Note however that both Φ and Φ̃ start from φ = φ̃ = π/(1 − π) since the modeler uses the
correct value of π by assumption.

In Figure 1, we provide a numerical example in which Bernoulli experiments are fair initially; that is,
q0 = 0.5. The parameter p of the prior distribution in (1) is set as 0.2. Consistent with the choices in some
of the numerical examples in Dayanik and Sezer [14], Bayraktar et al [4], Dayanik et al. [13], Sezer [37],
Buonaguidi et al. [8], we take the delay cost as c = 0.25. We set the true post-disorder probability as
q1 = 0.3 whereas the modeler’s choice is q̃1 = 0.4. The correct value function V and the one computed by

the modeler Ṽ are shown in Panel (a) of the figure. The dashed lines represent the thresholds φ∗ and φ̃∗.

Compared to q̃1, q1 is further away from the pre-disorder probability q0. Hence, the orderings V ≤ Ṽ and

φ∗ ≥ φ̃∗ are natural.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 1. Plots for the examples where pre- and post-disorder observations are Bernoulli
random variables whose success probability changes from q0 to q1. In all plots, we have
q0 = 0.5 and c = 0.25.
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Panel (b) is an illustration of the simulated sample paths of Φ and Φ̃ when the sequential observations

are (X1, X2, . . .) = (0, 1, 1, 0, 0, . . .). Both processes start from the point φ = φ̃ = 0 corresponding to the

value π = 0. The gap between φ∗ and φ̃∗ is not large, and Φ and Φ̃ stop at the same time here (though
with different accumulated costs). Depending on the setup, this gap may be larger and these two processes
may stop at different times. For example, when modeler’s choice is q̃1 is 0.2 (instead of 0.4), same sequence

of observations causes Φ̃ to stop at time 5 whereas Φ stops at time 4; see Panel (c).
To evaluate the Bayes risk of the modeler, we need to compute the function W in (18), or equivalently

the functions A and B in (19). Once W is obtained, we compute W (φ, φ̃) with φ = φ̃ = π/(1− π), and we
use this expression in (16) to obtain the Bayes risk. Since

Φ̃1 =
( q̃1

q̃0

)X1
(1− q̃1

1− q̃0

)1−X1
( φ̃+ p̃

1− p̃

)
,

the functions A and B in (18-19) are computed iteratively using (28) as

An(φ̃) = 1 + q1 ·An−1

( q̃1

q̃0
· φ̃+ p̃

1− p̃

)
+ (1− q1) ·An−1

(1− q̃1

1− q̃0
· φ̃+ p̃

1− p̃

)
Bn(φ̃) = −p

c
+ p[An(φ̃)− 1] + (1− p)

{
q0 ·Bn−1

( q̃1

q̃0
· φ̃+ p̃

1− p̃

)
+ (1− q0) ·Bn−1

(1− q̃1

1− q̃0
· φ̃+ p̃

1− p̃

)}(39)

for φ̃ < φ̃∗. Clearly, these functions are all zero for φ̃ ≥ φ̃∗.
In the last plot of the first row of Figure 1, we show the functions A and B when q1 = 0.3 and q̃1 = 0.4

again. First plot of the second row gives the true minimal Bayes risk U , the erroneous Bayes risk computed

by the modeler Ũ , and the actual Bayes risk of the modeler Rτ̃∗ in (30) as functions of π. The irregular
structure of the function Rτ̃∗ is inherited from the functions A and B. The discontinuities of A and B
follow by the binary jump behavior of Φ̃ reflected in (39).

Observe that Rτ̃∗ is lower than Ũ . In the true model, the post-disorder probability q1 = 0.3 is further
away from the pre-disorder probability q0 = 0.5 compared to her choice q̃1 = 0.4. As a result, the
observations signal the change better compared to what her model expects. Hence, her actual Bayes risk is
lower than what she thinks she incurs. We observe the opposite ordering when q̃1 = 0.2 (and q1 = 0.3). This

is illustrated in Panel (f). This time, the post-disorder observations are less vocal and we have Rτ̃∗ ≥ Ũ .
Panel (g) gives the percentage loss in (30) with π = 0 as modeler’s choice q̃1 varies. The plot does

not show a definite uniform advantage of overestimating q1 compared to an underestimation by the same
amount on this range in terms of the percentage losses. Panel (h) and (i) looks at the losses from the
perceptive of the KL-divergence. Panel (h) shows the Kullback-Leibler (KL) divergence of the Bernoulli
distributions as q̃1 deviates from q1

DKL(q1||q̃1) = q1 ln
(q1

q̃1

)
+ (1− q1) ln

(1− q1

1− q̃1

)
as q̃1 varies. Clearly, the divergence is an increasing function of the modeler’s error |q̃1− q1| (in Panel (h)).
Panel (i) shows, as q̃1 varies on the range [0.15, 0.85], the monotone dependence of the percentage loss in
the KL divergence as expected.

In Panels (j-k), we give the expected delay and the false alarm probability components of modeler’s Bayes
risk (again as functions of her choice of q̃1 and for π = 0). Horizontal dashed lines show the values in the
true model, and the vertical dashed lines indicate the location of the true probability q1 = 0.3. Intuitively
speaking, when q̃1 is lower than q1 = 0.3, the modeler expects to observe 0s even more frequently with
the post-change regime. However, such outcomes are relatively less likely in the true post-disorder regime,
and she would therefore potentially stop later. Furthermore, as q̃1 gets lower, there is a greater mismatch
between her anticipations and what the actual post-disorder environments offers, and this should cause
higher expected delays. The plots confirm this intuition; we observe that the expected delay is decreasing,
and the false probability is increasing on this range indeed. By a similar intuition, we would expect higher
(compared to the value in the true model) and increasing expected delays on the other side of the q̃1 range;
this time, modeler anticipates more 1s after the change. This is indeed what we observe in the plot of
expected delays. Since q1 < 0.5, higher expected delays for large q̃1 values are natural. For the false alarm
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probabilities, on the other hand, we observe a symmetry around q̃1 = 0.5. It is easy to verify that, when

q̃0 = q0 = 0.5, the probability law of the process Φ̃ under P∞ remains the same if q̃1 is replaced by 1− q̃1.

We have the same value function iterations for Ṽ , we obtain the same threshold φ̃∗, and the iterations in
(34) for the false alarm probabilities are again the same. This gives us the symmetry in the plot. Note that
we don’t have such a symmetry in the computation of modeler’s expected delay. Recall that the value of q1

is fixed in both plots and the expected delay is given by the expectation (1− π)E∞[
∑τ̃∗−1

k=0 (1− p)kΦk]; see

(5). When we change q̃1 only, we change the joint law of Φ and Φ̃, and this gives us a different expected
value. We can also check that the recursions in (39) are not the same. Hence, the modeler’s Bayes risk
and her expected delay are different.

In panel (l), we fix the modeler’s choice q̃1 = 0.4, and we plot the relative loss in (31) as a function of
true value of q1 (again with π = 0). Horizontal line segments show 1% and 5% tolerance intervals. Clearly,
the error is zero when q1 = 0.4, and it increases as q1 deviates from this value. The plot indicates that
the error becomes more severe as the deviation from the true value increases. Nevertheless, 1% tolerance
interval is, relatively speaking, non-negligible, and 5% tolerance interval is considerably larger. This gives
a certain level of confidence to the modeler in implementation. In Panel (m), where the y-axis is for q1

values, we show 1% tolerance intervals at various choices of q̃1 by the modeler. We observe that the lengths
of these intervals do not vary significantly. However, this is not always the case as the last panel illustrates
where we change the value of p as 0.5. In this case, we have a greater fluctuation depending on the choice
of q̃1.

Clearly, we can always re-label the success/failure (or 0/1) outcomes in our Bernoulli experiments, in
which case the success and failure probabilities are interchanged in both true and incorrect models. This
would only change the notation in our analysis. We would obtain the same values for the true minimal
Bayes risk U(π) and the Bayes risk Rτ̃∗(π) incurred by the modeler; see (38) and (39). When q0 = q̃0 = 0.5,
this observation gives us a symmetry in the computation of these functions for the (q1, q̃1) values around
the point (0.5, 0.5). In the last two panels of Figure 1, the diagonal symmetry in the tolerance ranges is a
consequence of this symmetry.

4.2. Example II: Gaussian observations with misidentified post-disorder mean and variance.
Suppose now that observations before the change time have a normal distribution with mean µ0 and
variance σ2

0. After the change, they are again normally distributed with a different pair of parameters
µ1 and σ2

1 respectively. We assume that the modeler incorrectly sets one or both of these post-disorder
parameters as µ̃1 and σ̃2

1 respectively and her other choices are correct.
Under the correct formulation of the model, we have

f(x) =
(σ2

0

σ2
1

) 1
2 e
− (x−µ1)

2

2σ21
+

(x−µ0)
2

2σ20 , for x ∈ R, and Zk =
(σ2

0

σ2
1

) k
2 e
− 1

2σ21

∑k
i=1(Xi−µ1)2+ 1

2σ20

∑k
i=1(Xi−µ0)2

.(40)

The process Φ is as in (10) with the explicit form of the process Z above. The value function iterations in
(14) can be written as

Vn(φ) = min

{
0 , g(φ) + (1− p)

∫ ∞
−∞

Vn−1

(
f(x)

(φ+ p

1− p

)) 1√
2πσ2

0

e
− (x−µ0)

2

2σ20 dx

}
(41)

and the iterations start with V0(φ) = 0. Replacing µ1 and σ2
1 in (40-41) with µ̃1 and σ̃2

1, we obtain the
expressions computed by the modeler.

In Figure 2, we give examples where the observations before the change have the standard normal
distribution; that is, µ0 = 0, σ2

0 = 1. In the first row, true post-disorder parameters are µ1 = 1.25,
σ2

1 = 1.752 whereas the modeler incorrectly assumes µ̃1 = 1.5, σ̃2
1 = 22. Similar to the first plot in Figure

1 in the previous subsection, Panel (a) here shows functions V and Ṽ with the corresponding thresholds

φ∗ and φ̃∗ respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2. Plots for the examples where pre- and post-disorder observations are normally
distributed. Prior to the change point, they have the standard normal distribution. As in
Section 4.1, we set p = 0.2 and c = 0.25 in our calculations.
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The Bayes risk of the modeler is given by the expressions in (16) and (18-19) with π = π̃. The recursive
relations (28) in the current setup become

An(φ̃) = 1 +

∫ ∞
−∞

An−1

(
f̃(x)

( φ̃+ p

1− p
)) 1√

2πσ2
1

e
− (x−µ1)

2

2σ21 dx

Bn(φ̃) = −p
c

+ p[An(φ̃)− 1] + (1− p)
∫ ∞
−∞

Bn−1

(
f̃(x)

( φ̃+ p

1− p
)) 1√

2πσ2
0

e
− (x−µ0)

2

2σ20 dx

(42)

for φ̃ < φ̃∗, and clearly, An = Bn = A = B = 0 for φ̃ ≥ φ̃∗.
Panel (b) in Figure 2 illustrates the functions A and B (again for µ0 = 0, σ2

1 = 12, µ1 = 1.25, σ2
1 = 1.752,

µ̃1 = 1.5, σ̃2
1 = 22). In the next panel, we have the true minimal Bayes risk and the one incurred by the

modeler. Compared to Figure 1, the functions A, B, and Rτ̃∗ have a more regular structure here. Unlike
the binary jump structure of the Bernoulli case, the integrals in (42) have a smoothing effect on the
computations.

In Panels (d) and (e), we show 3d scatter plots, for π = 0 = π̃, of the percentage loss in (2) as modeler’s
choices µ̃1, σ̃2

1 vary jointly around the true values µ1, σ2
1 in two different problem instances. In both panels,

we see that the plotted surface has a steeper curvature along the µ̃1-axis. We observe a similar pattern
also in other examples in our numerical experiments. Here, we give two plots only. Recall that the mean of
the normal distribution is a location parameter and the variance is a non-negative scale parameter. Hence,
unit errors in their estimated values have naturally different consequences.

For the first problem instance (with µ1 = 1.25 and σ1 = 1.75), Panels (f-i) illustrates the KL-divergence
of a modeler selecting either the post-change mean or variance incorrectly. Plots are similar to those in
Panels (h-i) in Figure (1). The KL-divergence for the distribution of the modeler with an incorrect post-
change mean is simply DKL(µ1||µ̃1) = (µ̃1 − µ1)2/2σ2

1. In Panels (f-g), we see the KL-divergence on the
range µ̃1 ∈ [−2.5, 2.5] and the percentage loss in Bayes risk as a function of this divergence. Similarly, the
KL-divergence for a modeler with an incorrect post-disorder variance is

DKL(σ2
1 || σ̃2

1) =
1

2

[
ln
( σ̃2

1

σ2
1

)
+
σ2

1

σ̃2
1

− 1
]

Panels (h-i) illutrate this divergence and its effect on the percentage loss in the Bayes risk. Naturally,
we see in Panels (g) and (i) that as the KL divergence increases, so does the loss of the modeler with an
incorrect parameter.

The next four plots in Panels (j-m) show in the same problem instance (for π = 0 again) the expected
delay and false alarm probability when one of the parameters is misselected. Horizontal dashed lines
show the correct values under the true model, and vertical dashed lines point to the correct parameter
value in each case. When the mean is overestimated, even though the post-disorder regime makes larger
observations more likely, the modeler would expect to observe higher values. However, such observations
are relatively less likely in the true post-change environment. Hence, this potentially causes a further delay
in her detection decisions. We see this behavior in Panel (j) for values µ̃1 > µ1. For negative values of µ̃1,
since µ1 = 1.25 > 0, there is a greater mismatch between her expectations for the observations and what
the actual post-disorder regime offers. Hence, we see that expected delay increases as µ̃1 decreases, and
we observe higher values on this range.

The symmetry in Panel (k) for the false alarm probabilities is a natural consequence of the zero mean
for observations in both the true pre-change regime and the one assumed by the modeler. In this case,

reverting the sign of µ̃1 does not change the probability law of Φ̃ under P∞. Hence, we have the same

function Ṽ , same threshold φ̃∗, and the same iterations in (34) for the false alarm probability. Her expected
delay, however, is effected by this change as µ1 is fixed. As noted in the previous subsection with Bernoulli
observations for changing the value of q̃1 only (when q0 = q̃0 = 0.5), changing only the value of µ̃1 in

this setup yields a different joint law for the pair (Φ, Φ̃). Hence, the expected delay in (5) with τ = τ̃∗ is
different, and therefore there is no symmetry in the plot of expected delays.

The shape of the plots in Panels (l) and (m) could also be explained intuitively by using the mismatch
again between the likelihoods of the post-change observations in the true and incorrect models. When σ̃2

1
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is large, the incorrect model anticipates more outliers with the new regime. On the other hand, when σ̃2
1 is

very small, observations are expected to be rather concentrated around the post-disorder mean value. In
both cases, the modeler potentially stops later, and this yields higher delays and smaller probabilities for
early false alarms.

In Panels (n) and (o), we see the effect of the level of a parameter on the percentage loss. In the first
one, the x-axis is the error µ̃1−µ1 of the modeler. Clearly, the loss increases as the absolute error increases.
The curves for different values of µ1 = 1.5, 2.5, and 3.5 show that the same amount of (small) error in
the estimation yields a lower percentage loss when µ1 is higher (i.e., further away from its pre-disorder
value). Although we use a different formulation, what we observe here is analogous to similar observations
in Du et al. [16] which considers a non-Bayesian framework with Gaussian observations and presents a
case study for the effect of drift misspecification on the problem of minimizing the stationary average
detection delay (subject to a lower bound constraint on the average run length on false alarms) using the
Shiryaev-Roberts procedure. In the numerical examples in Tables 2-4 in Du et al. [16], we see that the
same error in the post-change drift gives smaller percentage changes in the stationary average detection
delay (for fixed average run length) as the true drift increases.

We observe a similar pattern in Panel (o) for the error in estimating the variance. Once again, the
percentage loss increases with higher estimation error, and as the post-disorder variance is further away
from its pre-disorder value, the same (small) error yields a lower loss.

Finally, in the last plot, we construct 1% joint tolerance regions for three different choices of (µ̃1, σ̃
2
1) by

the modeler. Consistent with our observations in the paragraph above, the regions enlarge (with different
central points) when one of the parameters gets further away from its pre-change value.

4.3. Example III: Post-disorder Erlang distribution misclassified as exponential. As a last ex-
ample, we assume that the observations X1, X2, . . . are at first exponentially distributed with rate λ0, and
after the change time, they are Erlang distributed with parameters (m,λ1), for some integer m ≥ 1. The
modeler correctly sets up her formulation except that she erroneously selects an exponential distribution

for the post-disorder regime with a possibly different rate; that is, she sets m̂ = 1 and take λ̂1 as the rate.

A possible mistake is to set λ̂1 = λ1/m so that both the correct post-disorder distribution and her choice
have the same mean 1/λ1. This means that the modeler ignores the change in the distribution and focuses
only on the change in the mean.

In the true formulation, we have

f(x) = βmx
m−1e−(λ1−λ0)x, for x ∈ R+, and Zk = βkmP

m−1
k e−(λ1−λ0)Sk

where

βm :=
λm1

λ0(m− 1)!
, Pk :=

k∏
i=1

Xi, and Sk =
k∑
i=1

Xi as in (36).

The odds-ratio process is updated as in (14), and the recursive equations (11) to compute the value function
have the form

Vn(φ) = min
{

0 , g(φ) + (1− p)
∫ ∞

0
Vn−1

(
f(x) (

φ+ p

1− p
)
)
λ0e
−λ0x dx

}
.

Replacing m and λ1 above with m̃ = 1 and λ̃1, we obtain the computations from the perspective of the

modeler. The first panel in Figure 3 illustrates the functions V and Ṽ on an example where λ0 = 1, m = 3,

λ1 = 2, λ̃1 = 2/3. Vertical lines point to the thresholds φ∗ and φ̃∗.
In the current setup, iterations in (28) become

An(φ̃) = 1 +

∫ ∞
0

An−1

(
f̃(x)

( φ̃+ p

1− p
)) λm1 x

m−1

(m− 1)!
e−λ1x dx

Bn(φ̃) = −p
c

+ p[An(φ̃)− 1] + (1− p)
∫ ∞

0
Bn−1

(
f̃(x)

( φ̃+ p

1− p
))

λ0e
−λ0xdx

(43)
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(a) (b) (c)

(d) (e)

Figure 3. Plots for the examples where pre-disorder observations are exponentially dis-
tributed with rate λ0. Post-disorder observations have the Erlang distribution with param-
eters m and λ1. In each plot, common parameters are p = 0.2, λ0 = 1, and c = 0.25.

for φ̃ < φ̃∗, and the functions are zero for φ̃ ≥ φ̃∗. With φ̃ = φ, we compute the function W (φ, φ) =
φA(φ) +B(φ) as in (19), and modeler’s Bayes risk is given by Rτ̃∗ = (1− π) + c(1− π)W ( π

1−π ,
π

1−π ) as in

(30).

Panel (b) of Figure 3 shows the functions A and B (again for the case λ0 = 1, m = 3, λ1 = 2, λ̃1 = 2/3).
As in Section 4.2, in comparison to Figure 1, the functions A and B have a more regular structure due to

the integral terms in (43). Panel (c) in the row gives the functions U , Ũ , and the actual Bayes risk Bτ̃ .
For a fixed mean level, the consequence of ignoring the correct nature of the post-disorder distribution

(and assuming an exponential distribution instead) is illustrated in the second row of the figure. Here,
we fix the ratio λ1/m as 2/3; as m gets higher, we also increase the value of λ1 by the same factor.

The modeler’s choice λ̃1 remains the same as 2/3. As shown in Panel (d), as m increases, the Erlang
distribution differs significantly from modeler’s exponential distribution. We observe in the last panel that
the percentage error (shown for π = 0) indeed increases considerably.

5. Concluding remarks

The current paper shows how to compute the actual Bayes risk when a modeler sets up pre- and
post-disorder distributions and/or other parameters incorrectly in the classical Bayesian change detection
problem studied in Shiryaev [42, 39]. To the best of our knowledge, this is the first paper which considers
the computation of a modeler’s exact Bayes risk and therefore her error in a Bayesian formulation. The
paper shows that this is a challenging task even in such a relatively simple formulation. This formulation
has the advantage that the true solution is one dimensional. Therefore, the computation of the modeler’s
Bayes risk can be carried out in the two dimensional state space of true and wrong odds-ratio processes.
Linear dependence of the true odds-ratio process on its initial value allows us to reduce the computations
to a pair of one dimensional computations as shown in Section 3.
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In implementation, a modeler can use the method of this paper to compare her choices with other
alternatives. In particular, she can construct tolerance regions for estimated parameters as illustrated
in Section 4. Each of the three examples/settings considered in this section can potentially be explored
further, especially numerically, as the subject of a separate paper. Other specific examples can also be
considered depending on the application area. Our purpose here is mainly to illustrate our method and
highlight some key observations.

In practice, as an alternative to constructing tolerance regions, the modeler could also use a robust
change detection formulation in which the pre- and post-change parameters/distributions belong to some
uncertainty sets, and the aim is to minimize the worst case Bayes risk. In such an approach, these uncer-
tainty sets could also be misidentified; that is, they may not include true values/distributions. Therefore
the misspecification issue could also arise in that approach, and we leave the investigation of this case as
a future research subject.

The analysis in this paper can be extended for other change detection problems. As already mentioned
in the introduction section, continuous time formulations with Brownian motion and compund Poisson
processes will be discussed in subsequent papers. For the classical change detection problem for a Wiener
process, Shiryaev [38, 42] can be consulted. The corresponding formulation with simple Poisson obser-
vations is given by Gal’chuk and Rozovskii [20] and later solved by Peskir and Shiryaev [32]. Dayanik
and Sezer [14] gave the solution for compound Poisson processes; see also Gapeev [21]. Clearly, more
complex change detection problems and more generally other sequential diagnosis problems can be studied
as further extensions. In diagnosis problems, we are interested in not only detecting a change but also
identifying its type; see Lai [24], Dayanik et al. [12], Ma et al. [26], and Dayanik and Kazutoshi [15] for
some examples. In such problems, the parameters and distributions are subject to misidentification as
well, and it is important to understand the consequences of these errors.

As a final remark, we would like to note that similar misspecification issues may be also be considered
in various other stochastic optimization problems in which certain parameters or distributions need to be
estimated prior to implementation. In particular, Bayesian formulations involving unobservable processes
whose probability laws depend on these parameters/distributions bring new and interesting challenges.
Problems employing hidden Markov models form a well-known class of such problems for which a short
list of citations would be insufficient to highlight all important contributions. The reader may consider
referring to the recent review paper Mor et al. [28] and the books Elliot et al. [18], Cappé et al. [9] for a
good starting point to discover a much richer literature. We believe that the current paper provides a new
perspective for researchers working on these problems as well.

Appendix A: Auxiliary results and proofs for Section 3

A.1. Uniform bounds for the first moments of the exit times of Φ̃ under P0 and P∞. We show
here that the exit time τ̃α = inf{k ∈ N : Φ̃k ≥ α}, for α > 0, has uniformly bounded first moment (over all

starting points φ̃ ∈ R+) under the measures P0 and P∞ and under the assumptions that ν1 is absolutely
continuous with respect to ν0, ν0 and ν̃0 are equivalent, and also so are ν1 and ν̃1. The arguments are
similar for both measures. We first give the proof for P0. Note that Xis are i.i.d. random variables under
both measures (with different distributions).

Since i) ν1 is absolutely continuous with respect to ν0, ii) ν0 and ν̃0 are equivalent, and iii) ν1 and ν̃1

are also equivalent, it follows that ν̃1 is absolutely continuous with respect to ν̃0. Clearly,

1 =

∫
f̃(x) ν̃0(dx) =

∫
f̃(x)1{f̃(x)>0} ν̃0(dx),

and therefore {f̃(x) ≥ 1} is a non-negligible set under the restriction of ν̃0 to the set {f̃(x) > 0}. Hence,

{f̃(x) ≥ 1} is a non-negligible subset under ν̃1 as well and also under ν1 by the equivalence of these two
measures. This gives us (see (22))

0 < P0(Di) = γ0, if we define Di :=
{
ω ∈ Ω : f̃(Xi(ω)) ≥ 1

}
, i ∈ N.
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Applying the recursion in (11) with modeler’s choices, we have for any `, k ∈ N

Φ̃`+k =

∏k
i=1 f̃(X`+i)

(1− p̃)k
Φ̃` +

k∑
i=1

p̃

(1− p̃)i
k∏

j=k−i+1

f̃(X`+j) ≥
k∑
i=1

p̃

(1− p̃)i
k∏

j=k−i+1

f̃(X`+j).(44)

The sum
∑∞

i=1
p̃

(1−p̃)i is divergent, and for k ≥ kα := d− ln(1 +α)/ ln(1− p̃)e, the finite sum
∑k

i=1
p̃

(1−p̃)i is

greater than or equal to α. Taking ` = 0 in (44), this gives

{τ̃α > kα} ⊂ (∩kαi=1Di)
c and therefore P(·,φ̃)

0 {τ̃α > kα} ≤ 1− γkα0 < 1.

Since Xis are independent and identically distributed (with distribution ν1) under P0, we obtain similarly
by taking ` = mkα in (44) for an integer m ≥ 1 that

P(·,φ̃)
0 {τ̃α > (m+ 1)kα | τ̃α > mkα } ≤ 1− γkα0 ,

from which the inequality

P(·,φ̃)
0 {τ̃α > mkα} ≤ (1− γkα0 )m, m ≥ 1,

follows inductively. The inequality is also valid trivially for m = 0. Hence, it holds for all m ∈ N. Using
this inequality, we write

E(·,φ̃)
0 [τ̃α] =

∑
k∈N

P(·,φ̃)
0 {τ̃α > k} ≤ kα

∑
m∈N

P(·,φ̃)
0 {τ̃α > mkα} ≤ kα

∑
m∈N

(1− γkα0 )m = kα/γ
kα
0 <∞,

which shows that the expectation of τ̃α under P0 is uniformly bounded over φ̃ for any fixed α > 0.
The result for P∞ can be established similarly by computing the probabilities above under this measure.

Because of ν̃0 and ν are equivalent, {f̃(x) ≥ 1} is also a non-negligible set of ν. This gives γ∞ = P∞(Di) > 0.

Hence, replicating the steps above, we obtain E(·,φ̃)
∞ [τ̃α] ≤ kα/γkα∞ <∞.

A.2. Proofs.

Proof of Lemma 1. The non-negativity and monotonicity of the function A is an immediate consequence
of the non-negativity of the likelihood process Z and the monotone dependence of the exit time τ̃∗ in (15)

on the starting point φ̃. To establish (21), we recall that the measure P0 and P∞ are related locally as in
(24). Then, we have

E(·,φ̃)
∞

[ τ̃∗−1∑
k=0

Zk

]
=
∑
k∈N

E(·,φ̃)
∞

[
1{k<τ̃∗}Zk

]
=
∑
k∈N

E(·,φ̃)
0

[
1{k<τ̃∗}

]
= E(·,φ̃)

0

[∑
k∈N

1{k<τ̃∗}

]
= E(·,φ̃)

0 [τ̃∗]

where the first and third equalities are due to monotone convergence theorem. Second equality follows by
the usual change of measure arguments since {k < τ̃∗} ∈ Fk. Last equality is self-evident. The uniform
bounds in (22) follows by the arguments in Appendix 5 above on the finiteness of the first moments of the
exit times.

The lower bound −1
c on the function B is an immediate consequence of its definition in (20). The upper

bound A(0) follows easily from (23). To prove (23), it is sufficient to verify that

E(·,φ̃)
∞

τ̃∗−1∑
k=0

Zk

k∑
i=1

(1− p)i−1

Zi−1
= E(·,φ̃)

∞

τ̃∗−1∑
k=0

(1− p)k[A(Φ̃k)− 1].(45)

To that end, we note by the Markov property that

E(·,φ̃)
∞

[ τ̃∗−1∑
k=i

Zk
Zi

∣∣Fi] = A(Φ̃i) and 1{i<τ̃∗}A(Φ̃i) = 1{i<τ̃∗}
(
1 + E(·,φ̃)

∞
[
f(Xi+1)A(Φ̃i+1)

∣∣Fi]), P(·,φ̃)-a.s.,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19

where the second equality uses the recursion A(φ̃) = 1
[0,φ̃∗]

(
1+E(·,φ̃)

∞
[
f(X1)A(Φ̃1)

∣∣Fi]), which can be shown

easily using the definition of A. Then, we write the left hand side of (45) by repeated application of the
monotone convergence theorem as

E(·,φ̃)
∞

τ̃∗−1∑
k=0

Zk

k∑
i=1

(1− p)i−1

Zi−1
=
∞∑
k=1

∞∑
i=1

E(·,φ̃)
∞ 1{i≤k<τ̃∗}(1− p)i−1 Zk

Zi−1

=

∞∑
i=1

E(·,φ̃)
∞ 1{i<τ̃∗}

τ̃∗−1∑
k=i

(1− p)i−1 Zk
Zi−1

=

∞∑
i=1

E(·,φ̃)
∞ 1{i<τ̃∗}(1− p)i−1f(Xi) E(·,φ̃)

∞

[ τ̃∗−1∑
k=i

Zk
Zi

∣∣Fi]
=

∞∑
i=1

E(·,φ̃)
∞ 1{i≤τ̃∗}(1− p)i−1f(Xi)A(Φ̃i) =

∞∑
i=0

E(·,φ̃)
∞ 1{i<τ̃∗}(1− p)if(Xi+1)A(Φ̃i+1)

=
∞∑
i=0

E(·,φ̃)
∞ 1{i<τ̃∗}(1− p)iE(·,φ̃)

∞

[
f(Xi+1)A(Φ̃i+1)

∣∣Fi] =
∞∑
i=0

E(·,φ̃)
∞ 1{i<τ̃∗}(1− p)i−1[A(Φ̃i)− 1].

The last expression is the right hand side in (45), and this completes proof. �

Proof of Proposition 2. The inequalities in (32) follow directly by the characterizations of the functions
A and An in (21) and (29) respectively. Since τ∗ has a uniformly finite first moment under P0, it follows
that the upper bound converges to zero thanks to dominated convergence theorem as n→∞.

For the bounds on the convergence of Bns, we note by (23) and (29) that

(46) B(φ̃)−Bn(φ̃) = E∞

[
τ̃∗∧n−1∑
k=0

(1− p)kp[A(Φ̃k)−An−k(Φ̃k)]

]

+ E∞1{τ>n}

[
τ̃∗−1∑
k=n

(1− p)k
(
p[A(Φ̃k)− 1]− p

c

)]
The first expectation is non-negative (since An ≤ A) and it is bounded above by

n∑
k=0

(1− p)kp‖A−An−k‖ =

∞∑
k=0

(1− p)kp1{k≤n}‖A−An−k‖.(47)

Since 1{k≤n}‖A−An−k‖ → 0 as n→∞ and 1{k≤n}‖A−An−k‖ ≤ A(0), it follows by dominated convergence

that the sum in (47) converges to zero as n→∞ again. For the second expectation in (46), sinceA(Φ̃k)−1 ≥
0 on the event {k < τ̃∗}, the expectation is bounded from below by −1

c

∑∞
k=n(1− p)kp = −1

c (1− p)
n and

above by
∑n

k=0(1 − p)kpA(0) = (1 − p)nA(0). Inequalities in (33) now follow from the bounds on the
expectations in (46). �

Appendix B. The case without the absolute continuity of ν1 with respect to ν0

In this case, the measure P∞ is not absolutely continuous with respect to the physical measure P anymore.
Therefore, we work with the physical measure. The flow of arguments below is similar to that in Sections
2 and 3. The major difference is that the linearity (in π) is established by induction.

As studied and solved in Shiryaev [42, 39], the detection problem is an optimal stopping problem under
P for the process Π, and we have

U(π) = inf
τ∈F

E
[ τ−1∑
k=0

cΠk + (1−Πτ )
]
.(48)

The process Π can be shown to be a Markov process with the one-step updating rule for k ≥ 0

Πk+1 = J(Xk+1,Πk) where J(x, π) :=
[π + (1− π)p]f1(x)

(1− π)(1− p)f0(x) + [π + (1− π)p]f1(x)
.(49)
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The densities f0 and f1 are respectively the Radon Nykodym densities of ν0 and ν1 with respect to another
measure η with the property that both ν0 and ν1 are absolutely continuous with respect to this measure;
we can, for example, take η = ν0 + ν1.

In (48), truncating the time horizon with the nth observation, we obtain as usual a sequence of functions
(Un)n∈N. These functions form a decreasing collection. They converge to U and they satisfy the iterations

Un(π) = min {1− π , cπ + E[Un−1(Π1)]} , n ≥ 1.(50)

There exists a point π∗ such that U(π) = 1−π for π ≥ π∗ and U(π) < 1−π for for π < π∗. The first time
the process Π exceeds this threshold is an optimal stopping time in (48); see Theorem 7 and its proof in
Shiryaev [39, Chapter 4.3] for rigorous justifications of these results.

A modeler with some incorrect parameters/distributions computes the iterations above with her choices

and obtains an incorrect function Ũ with a wrong threshold π̃∗. She follows an incorrect conditional

process Π̃ updated according to a wrong one-step operator J̃ . The operator J̃ is obtained by replacing the
parameters/densities in the definition of J in (49) with the ones chosen by the modeler.

For a bounded Borel function h, one can verify that

E[h(Πk+1, Π̃k+1)|Fk] = S[h](Πk, Π̃k) P-almost surely,

with the operator

S[h](π, π̃) :=

∫
E
h
(
J(x, π), J̃(x, π̃)

)[
(π + (1− π)p)f1(x) + (1− π)(1− p)f0(x)

]
η(dx).

This shows that (Π, Π̃) is a Markov pair, and we can define the Bayes risk of the modeler as a function of

their starting point (Π0, Π̃0) = (π, π̃) as

L(π, π̃) := E
[ τ̃∗−1∑
k=0

cΠk + (1−Πτ̃∗)
]
,

where τ̃∗ (as in Section 3) denotes the stopping of the modeler. Once again, truncating the time horizon,
we obtain the sequence

Ln(π, π̃) := E
[ τ̃∗∧n−1∑

k=0

cΠk + (1−Πτ̃∗∧n)
]
, n ∈ N,

converging to L pointwise thanks to monotone and bounded convergence theorems (applied respectively
to the separate terms inside the expectation above). By Markov property, we have the iterations

Ln(π, π̃) = 1{π̃<π̃∗}

{
cπ + E

[
Ln−1(Π1, Π̃1)

]}
+ 1{π̃≥π̃∗}(1− π), n ≥ 1,(51)

with the first element L0(π, π̃) = 1− π.
Clearly, L0 is linear in π. Next, assume that for an arbitrary n ≥ 1 we have Ln−1(π, π̃) = πGn−1(π̃) +

Hn−1(π̃) for some functions Gn−1 and Hn−1 on [0, 1]. Then, by using this linear form on the right hand
side in (51) (with the distribution of X1 under P), one can show after some careful computations that the
linearity in π also holds for Ln and we have Ln(π, π̃) = πGn(π̃) +Hn(π̃) where

Gn(π̃) := 1{π̃<π̃∗}

{
c+ (1− p)E0[Gn−1(Π̃1)] + (1− p)E∞[Hn−1(Π̃1)]− (1− p)E0[Hn−1(Π̃1)]

}
− 1{π̃≥π̃∗}

(52)

and

Hn(π̃) := 1{π̃<π̃∗}

{
pE0[Gn−1(Π̃1)] + pE∞[Hn−1(Π̃1)] + (1− p)E0[Hn−1(Π̃1)]

]}
+ 1{π̃≥π̃∗}

= 1{π̃<π̃∗}

{
p

1− p
[Gn(π̃)− c] + E0[Hn−1(Π̃1)]

]}
+ 1{π̃≥π̃∗}.

(53)

In the recursions above, the expectations E0 and E∞ are respectively according to the measures P0 and
P∞ introduced in Sections 2 and 3. Under P0, X1 has the distribution ν1, and under P∞ this distribution
is ν0.
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Pointwise convergence of (Ln)n∈N and the characterization Ln(π, π̃) = πGn(π̃) +Hn(π̃), for n ∈ N, give
us the convergence, again pointwise, of the sequences (Gn)n∈N and (Hn)n∈N; taking π = 0 establishes the
convergence of the former sequence, and then the result for the latter is obvious. Hence, the function L is
linear in π.

The false alarm probability of the true optimal stopping time can be found by the iterations

fn(π) = 1{π<π∗}E[fn−1(Π1)]
]

+ 1{π≥π∗}(1− π)

starting with f0(π) = 1− π. The false alarm probability of the stopping time of the modeler, on the other
hand, can be obtained by setting c = 0 in the iterations in (51) (and (52-53)). For each stopping rule, once
we have the Bayes risk and the false alarm probability, the expected delay is computed by subtracting the
false alarm probability from the Bayes risk and dividing the resulting expression by c.
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