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Abstract
We address an assortment-and-cutting problem arising in the glass industry. The objec-
tive is to provide minimum waste solutions that are robust against such raw material
imperfections as those possibly occurring with float glass production technology. The
stochastic realization of defects is modeled as a spatial Poisson point process. A mixed
integer program in the classical vein of robust optimization is presented and tested
on data taken from a real plant application. Defective final products must in any case
be discarded as waste but, if a recourse strategy is adopted, faults in glass sheets can
sometimes be recovered. Closed forms for the computation of faulty item probabilities
are provided in simple cases, and obtained via Monte Carlo simulation in more com-
plex ones. The computational results demonstrate the benefits of the robust approach
in terms of the reduction of back-orders and overproduction, thereby showing that
recourse strategies can enable nonnegligible improvements. Encouraged by this result,
the management is presently evaluating the possibility of adopting the proposed model
in plant operation.
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1 INTRODUCTION

In this paper, we deal with the problem of simultaneously (i)
finding a limited assortment of stock items and (ii) cutting
them with minimum trim loss to fulfill a known demand of
different parts. We develop a formally rigorous framework
to address the problem when stock sheets can be affected by
faults, providing and testing mathematical models for both
defect occurrence and robust optimization of the produc-
tion process. In this way, we show how one can fulfill the
requirements with virtually no overproduction, or pending
back-orders due to defective items, and with the same (or
even less) scrap as a faultless process.

1.1 Scope of the paper

Our methodology is inspired by a mathematical model,
assessed in practice, to optimize stock assortment and cut in
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a real production plant. The industrial process in the title, in
fact a standard in the production of automotive glass parts,
makes use of so-called float technology, which consists of two
main phases (see Figure 1). In the first phase, large rectangu-
lar glass sheets of various sizes and types are manufactured
by widening/narrowing and, after cooling, cutting a ribbon
of molten glass; the sheets produced are then sent to a ware-
house: We will refer to them as the large items, with heights
(lengths) roughly ranging between 2 and 3 m (4–6 m). In a
second phase, small rectangular sheets (the small items) are
cut from large ones taken from the warehouse, and sent to
downstream departments for bending and refinishing.

An example of the optimization of such a process, reported
by Arbib and Marinelli (2007, 2009), refers to a plant oper-
ated by Pilkington Italia and now owned by Nippon Sheet
Glass Co. Ltd. The purpose is the simultaneous control of
the assortment of large items produced in the first phase and
of the trim loss generated in the second. The word assort-
ment refers to the number of distinct large sizes that are
stored in the warehouse at any time: this number must be
limited to a certain amount p to reduce holding cost and
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F I G U R E 1 Scheme of an automotive glass production process [Color figure can be viewed at wileyonlinelibrary.com]

setups, and to ease handling operations. To give an idea of
the problem scale, the production data set includes about 50
distinct small sizes and over 6500 distinct large sizes varying
in the min–max height and length ranges with 1 cm pitch:
As the desired assortment level p ranges around 20, over
1057 different assortment combinations can in principle be
considered.

In Arbib and Marinelli (2009), the described stock
assortment-and-cutting problem is formulated as a 0–1 lin-
ear program and solved by column generation or by an
asymptotically exact heuristic. In this model, perfect knowl-
edge of data is assumed. However, the glass ribbon may
now and then come out from the furnace with defects (e.g.,
bubbles). The defective area of a large item cannot be recov-
ered and is instead recycled, with a resulting reduction in
yield: The quoted research, however, did not tackle this
issue.

1.2 Handling defect occurrence

Different reactions to the presence of defects (or, more gen-
erally, of forbidden areas) can be implemented depending on
available technology, production line equipment, and work
organization. In the literature, see Section 2 below, most
papers on cutting optimization assume that defects are known
in advance and given as input data. Consequently, the main
focus is on the design of defect-free cutting patterns in a
deterministic setting. In this paper, instead, we regard defect
occurrence as a random process and approach uncertainty by
using a robust optimization model. The model aims at fulfill-
ing a given small item demand with a minimum volume of
large items, and defect occurrence is modeled via a suitable
uncertainty set, which impacts the solution by reducing the
yield of the cutting phase.

Uncertainty is managed by mixing worst-case analysis
typical of adversarial models with some stochasticity assump-
tions: The total number of defects in the planning horizon is
a model parameter, and how many defects are placed in each
large item is an adversarial decision; however, the adversary
does not control where to place defects in each large item.
Yield reduction is therefore modeled, as an expected value,
via the probability that the defects present in a large item
cannot be recovered.

This setting finds its justification in both problem-specific
and practical reasons. On the one hand, uncertainty manage-
ment is required because large sizes are not given beforehand,
being part of the assortment decision: The optimal cutting
patterns are in fact defined before the production of large
items and hence before defects are detected. On the other
hand, online reaction to defects, once these are spotted in a
large item, is not practical either: In fact, although defect-
free cutting patterns can in principle be computed just before
loading large items into the cutting machines, the yield gain
achieved would be completely absorbed by the additional
costs of material handling, machine setups, and downstream
departments operation scheduling.

To date, the plant management ignores any potential and
even simple reaction, such as putting the defective large items
aside and treating them separately, or changing the cutting
patterns to reduce defect incidence: Although defects are
detected already at the end of phase 1, they are not consid-
ered before the cutting stage, and small items affected by
faults are simply discarded before the bending and refinishing
stage. However, production numbers would definitely jus-
tify a policy against defectiveness. Glass imperfections cause
in fact a loss of material, currently estimated around 8%–
9%, a considerable magnitude given that the management
deemed worth of optimization a trim loss estimated around
4%–5%. It is important to stress that discarded items have
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4156 ARBIB ET AL.Production and Operations Management

an impact not only on the efficiency with which raw material
is used but also, and more importantly, on the completion of
order batches.

A question then arises whether an optimization model
that is able to handle this type of uncertainty, perhaps
coupled with a suitable recourse strategy, can reduce back-
orders effectively while preserving efficiency in raw material
usage. The result we obtained on a set of real-world
instances provided by the plant shows that (i) by protect-
ing against defects, robust optimization substantially reduces
back-orders; and (ii) to be achieved, this result does not need
the implementation of any particular (and possibly expensive)
recourse strategy.

1.3 Justification of the approach

In this section, we briefly discuss the advantages and costs
of possible alternatives to our approach. Indeed, the problem
we address is operational and does not consider investments
in hardware. However, the specific plant operation should
not limit the set of options one can consider. Hence, an
analysis of technological and/or operational alternatives is
necessary to demonstrate our methodological contribution.
This analysis is to be carried out while recognizing that the
productivity potentially achievable via technological updates
(e.g., defect detection systems, new cutting machines) must,
on one hand, justify important strategic investments and, on
the other hand, provide a broad assessment of the impact on
the whole organization.

∙ The main technological, but also operational, specificity
of the plant considered in this work is that the produc-
tion process is organized in two phases that are physically
separate and time decoupled. In some plants, see, for exam-
ple Durak and Tüzün (2017), the float line is equipped
with defect sensors and bridges, perpendicular to the direc-
tion of the glass flow, which can perform cuts directly on
the glass ribbon. Defect-free cutting patterns can there-
fore be designed and applied on-line, avoiding in this way
assortment and overproduction issues on the large sizes.
However, being integrated with the float line, the cut-
ting system has only a few cutting wheels (≤ 5 in the
cited work) that must be positioned at fixed coordinates
during the whole production run. The result is a very lim-
ited number of feasible cutting patterns and, consequently,
potentially high waste levels. A technological update of
this type, then, would not imply a reduction of process
costs.

∙ Another specificity of the plant is the way small items are
cut from large ones. Downstream cutting machines allow
only one size per large sheet. This configuration features
a very short operation time and a single out-buffer, mean-
ing high speed, elementary management of the output, and
thereby a large plant throughput. Nevertheless, more com-
plex cutting patterns could in principle reduce trim loss.
However, complex patterns would make recourse strate-

gies very hard to be computed (and even implemented),
and the robust model would become very complex and cer-
tainly impractical to solve. Moreover, should one attempt
to address this complexity, the trim loss reduction would
most likely be negligible. In fact, we find that the solutions
obtained with the actual configuration are clearly feasible
for machines able to perform more complex cuts, and that
they represent a very good benchmark (trim loss below
1%).

∙ Checking ex post the demand not met because of defects,
and recovering the requirements with an adequate extra-
production, on-the-fly, of the necessary large items, is not
viable in float glass production plants. The float production
campaign is long, has a costly setup, and is not synchro-
nized with the cut of small sizes. In other words, the small
items cut at a given time are obtained from large sheets
of a glass type (i.e., color and other technical features),
which generally differs from the type the furnace produces
at that time, and a float switch to that glass type is materi-
ally impossible. This is why any solution approach should
take into account the uncertainty of defects realization.

∙ Finally, any operational reorganization of a plant like the
one here considered cannot neglect set-up issues both at
the furnace and in the cutting stage.

1.4 Content

The paper is organized as follows. The literature on cut-
ting problems with defects is briefly discussed in Section 2.
Then, for convenience of the reader, the assortment-and-
cutting problem described in Arbib and Marinelli (2009) is
reported in Section 3 along with the relevant integer pro-
gram. In Section 4, we introduce the uncertainty model that,
in Section 5, is implemented in terms of robust optimization.
Section 6 refines the description of the robust model, and an
extensive computational experience performed on real-world
instances is described in Section 7. The paper is completed
with Supporting Information EC.2, where we describe the
linearization of the robust model used in numerical tests, and
the closed formulas devised to compute fault probabilities for
large items with ≤ 2 defects.

2 LITERATURE REVIEW

Due to both combinatorial richness and relevance in a variety
of industrial contexts, a very large amount of theoretical and
application-oriented papers addressing cutting optimization
problems appeared in the scientific literature during the last
six decades, that is, since the seminal papers by Gilmore and
Gomory (1961), see, for example, the surveys by Wäscher
et al. (2007) and Delorme et al. (2016).

Generally speaking, raw material is always potentially
affected by imperfections: knotholes in wooden trunks and
boards; bubbles in glass; contaminated areas in steel coils;
holes, stains, or streaks in paper and leather sheets. This
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means we find the topic addressed in such industrial pro-
cesses as lumber and furniture, see Ghodsi and Sassani (2005)
and Wenshu et al. (2015); shoes and textile, see Özdamar
(2000) and Sarker (1988); and paper, see Aboudi and Barcia
(1998). However, relatively few contributions in the cutting
and packing literature focus on the problems that arise when
cutting defective items.

One of the earliest publications on cutting problems with
defects dates back to 1968 (Hahn, 1968). Several variants
concerning the presence of one (Carnieri et al., 1993; Nei-
dlein et al., 2009) or more (Afsharian et al., 2014; Wenshu
et al., 2015) defects per stock item have been studied since
then, both in one and two dimensions. Defect kinds range
from simple points to rectangular or convex areas, and from
faults causing immediate scrap of the items, to defects which
only reduce (at various grades) production quality. A related
issue, defect handling, is addressed in several ways: from
the optimal use of clear zones (i.e., areas unaffected by
faults) to cut optimization that assumes product values vary-
ing with fault content and/or placement in the stock items
(see Sarker, 1988). Those problems are almost always mod-
eled as mixed integer linear programs and solved by dynamic
programming (Durak & Tüzün, 2017; Rönnqvist & Åstrand,
1998), Lagrangean relaxation and subgradient optimization
(Rönnqvist, 1995).

In most contributions we are aware of, including those ref-
erenced above, the defect list, size, and location are given
and known in advance. In some cases, the cutting pattern
is also known, and the problem calls for finding a new lay-
out that avoids as many defects as possible. This problem is
hard even in the one-dimensional case, which is known as
the Minimum Defective Subset Sum, see Aboudi and Bar-
cia (1998). To our knowledge, only the relatively old paper
by Sculli (1981) handles defects with a stochastic approach:
Here, the size of a one-dimensional roll with fringe defects
caused by winding is treated as a normal random variable.
Expected waste is expressed as a given cumulative density
function of the unusable parts at the edges of the roll, and
then the optimal position of the knives is obtained analyti-
cally. An online optimization setting in glass manufacturing
was introduced by Durak and Tüzün (2017); here, cutting
bridges directly operate on the glass ribbon, and cuts are
performed a few seconds after defects are detected. There-
fore, at any given time, defect size and positions are known
only for a limited number of stock items, precisely those
between the sensor detectors and the cutting bridge. Never-
theless, that partial information allows the authors to address
glass defectiveness by solving a sequence of deterministic
cutting problems over a rolling horizon. In summary, Sculli
(1981) assumes random defectiveness that only affects the
edges of one-dimensional roll items, while the application
described in Durak and Tüzün (2017) is very similar to
our setting, but the authors treat defect positions as known
data.

Rather than defect handling, papers on cutting problems
deal with uncertainty especially to address the stochastic
behavior of costs and demand. For example, robust optimiza-

tion is adopted in Alem and Morabito (2012) to address a
combined lot-sizing and cutting-stock problem, and in Ide
et al. (2015) with application in the wood cutting industry.
Uncertainty in customer demand is addressed by two-stage
stochastic optimization in Alem et al. (2010) and Beraldi
et al. (2009). A cutting stock problem with random customer
demand and random cutting times is investigated in Krichag-
ina et al. (1998) and approximated by linear programming
and a dynamic control problem involving Brownian motion.
Finally, a branch-and-price method for robust optimization is
proposed in Schepler et al. (2022) to address one-dimensional
bin packing with items of uncertain sizes.

3 THE STOCK
ASSORTMENT-AND-CUTTING PROBLEM

The glass cut process described in Arbib and Marinelli (2007,
2009) involves a first phase that produces large rectangular
items, which are to be cut, during a second phase, into desired
amounts of small rectangular items of given sizes. The 0–1
linear programming model proposed in Arbib and Marinelli
(2009) to optimize the cut process can be summarized in the
following way.

Let S,L, respectively, denote the sets of small sizes
required, and of all the feasible large sizes that can in princi-
ple be produced in the first phase. Let also di, i ∈ S, indicate
the number of small items of the i-th size that are demanded,
and have therefore to be produced, in a given planning
horizon. We define an optimal assortment as

a set of no more than p large sizes that, among
all the possible choices,

allow the cut of all the demanded small items
with a minimum trim loss.

The rules adopted in the plant and the technological con-
straints of the downstream cutting machines greatly simplify
the cutting patterns, that are limited to those obtaining small
items of the same size from each single large item. In
particular,

∙ the small items of a pattern have all the same orientation
and, of the two possible orientations, we always select the
most productive one;

∙ the first guillotine cut is always performed horizontally,
that is, along the width of the large item, and trim loss is
always located on the bottom right side of the large item.

Therefore, referring to a subset P ⊆ L of large sizes, the
minimum glass area ci

P used to cut the required quantity of
items of the i-th small size from large items of sizes k ∈ P
can be computed via the following integer knapsack problem:

ci
P = min

∑
k∈P

Vkyi
k (1)
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4158 ARBIB ET AL.Production and Operations Management∑
k∈P

ai
kyi

k ≥ di

yi
k ≥ 0 and integer,

where Vk = WkHk (width × height) is the area of the k-th
large item, ai

k is the maximum (known) number of small items
of the i-th size that can be obtained by cutting one large part
of the k-th size, and yi

k is the number of large items of the
k-th size used to get the required number of items of the i-th
small size.

Once the ci
P are known for all small sizes i ∈ S and for

all sets P ⊆ L with no more than p elements, the problem of
finding an optimal assortment reads

min
∑
i∈S

∑
P⊆L

ci
Pxi

P (2)

∑
P⊆L

xi
P = 1 i ∈ S

∑
P⊆L:P∋k

xi
P ≤ uk i ∈ S, k ∈ L

∑
k∈L

uk ≤ p

xi
P ≥ 0, uk ≥ 0 and integer k ∈ L, i ∈ S,P ⊆ L.

In problem (2), variables are implicitly bound to get val-
ues in {0, 1}. xi

P = 1 means that the whole requirement of the
items of the small size i is produced by cutting large items of
sizes in the set P and uk = 1 indicates that at least one large
item of the k-th size in L is used. The goal is to minimize
the total glass area used for the whole production. The first
set of constraints ensures that the requirement of each small
size is covered by some set P of large sizes. The subsequent
inequalities require that if a set P containing the k-th large
size is used for production, then that size is part of the assort-
ment chosen. The last inequality limits this assortment to p
distinct sizes.

Since the number of xi
P variables grows rapidly, being

O(|L|p) very large, problem (2) is solved in Arbib and
Marinelli (2009) by column generation, pricing variables via
(1). In the same paper, an efficient heuristic is also proposed.
The idea is to solve integer program (2) only with the vari-
ables xi

P = xi
k that corresponds to singleton sets P = {k}. In

this way, each small item is produced by large items of the
same size (while a given large size can still be used to produce
different small sizes). The problem boils down to a p-median
(see (13) in Section 5) since it reduces to cluster the small
sizes into at most p subsets, and one can prove that its opti-
mum asymptotically approaches the true one, as the demand
of the least required small item increases.

In practice, the p-median heuristic is very effective and
permitted a reduction of the plant trim loss to one third of
the initial amount. In the sequel, we will then refer to this

simplified model, that is, to program (2) written with xi
k for

xi
P, and call it [P] for short. To limit the number of indexes

in the models described in the following sections, we define
the set of all possible production lots of items in S via items
of L:

J = {j = (i, k) : i ∈ S, k ∈ L}, (3)

therefore setting xj ≜ xi
k, aj ≜ ai

k. Then, we introduce

Jk = {j ∈ J : j = (i, k), i ∈ S}

Ji = {j ∈ J : j = (i, k), k ∈ L} (4)

to denote all the lots using large size k and all those returning
small size i, respectively. Finally, we indicate as

ȳj ≜ min{yi
k : ai

kyi
k ≥ di, yi

k integer} =

⌈
di

aj

⌉
(5)

the optimal solution of (1) for P = {k}. That is, for j = (i, k),
ȳj denotes the amount of large items of size k that are used
when fulfilling the whole demand of items of size i.

4 UNCERTAINTY MODEL AND
RECOURSE STRATEGIES

Problem (1), and indirectly problem (2), assumes parame-
ters ai

k to be known integer constants. Due to the nature
of the process, however, those parameters are in fact
uncertain.

The most widely known approaches to deal with uncertain
data are stochastic and robust optimization, see Ben-Tal et al.
(2009) and Birge and Louveaux (2011).

The former requires that the probability distributions and
possible scenarios are known in order to describe the random
variables, and can lead to very large models that are hard to
solve. For this reason, it will not be considered here. In the
latter, the range of uncertainty can be derived from histori-
cal realizations of the random variables. Robustness can be
addressed in various ways. The strict concept early proposed
by Soyster (1973), where an optimal solution is always feasi-
ble for every realization of the random parameters, was later
mitigated by Bertsimas and Brown (2009) and Bertsimas and
Sim (2004), who proposed an approach where optimal solu-
tions are protected against the change of a given number of
uncertain coefficients, generally related to each other in some
mathematical way. Compared to other proposals in the litera-
ture, and according to Bertsimas and Sim (2004), one of the
benefits of a robust approach is that the robust counterpart
remains computationally practical independently of the num-
ber of uncertainty parameters, meaning that at least it remains
in the realm of integer linear programming. This is the main
reason that led us to adopt this approach.
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Let VF be an estimate of the total float volume necessary to
produce the required small items (a simple lower bound to VF
is
∑

i divi, where vi = wihi is the area of the i-th small size).
A stricter lower bound can be computed by solving problem
(2). According to the indications provided by the plant man-
agement, defects can be considered point shaped, statistically
independent, and uniformly distributed in VF . Their location
can then be usefully modeled as a spatial point process X,
see Daley and Vere-Jones (1988). In particular, we assume
that the process is simple, that is, no two points ever coincide,
and stationary, that is, for any fixed point with coordinates x,
the distribution of the point process obtained by shifting each
point of X by x is identical to the distribution of X.

More precisely, let 𝜌 > 0 be the expected number of
defects per unit area and T(k) be a random variable giving
the number of defects within the k-th large item, whose area
is Vk = WkHk. On the basis of the above management indica-
tions, it is reasonable to assume 𝔼[T(k)] = 𝜌Vk, Prob{T(k) >
1} = o(Vk) for Vk small compared to the float volume VF ,
and that defect realizations in disjoint regions (and hence
in distinct large items) occur independently. Hence, the ran-
dom process can be described as a spatial Poisson process
with uniform intensity 𝜌, that is, a point process in IR2 such
that:

∙ for each large item of size k, T(k) has a Poisson distribution
with mean 𝜌Vk;

∙ T(1),T(2), … are statistically independent.

Due the conditional property of a Poisson point process,
the distribution of T(⋅), conditioned to a total number f of
defects in a float campaign, is binomial:

t
𝜑k ≜ Prob{T(k) = t|T(F) = f }

=
(f

t

)( Vk

VF

)t(
1 −

Vk

VF

)f−t

. (6)

Using (6) we can easily evaluate, for each large item, the
number t of defects that one can reasonably expect for a given
f . As we will see in Section 7, practical cases are essentially
covered by values of t between 0 and 6. Accordingly

𝜑k =

f∑
t=1

t
𝜑k (7)

will be used to estimate the faulty fraction of large items of
size k.

The random variable T(⋅) is, however, not sufficient to
describe yield reduction, which also depends on (i) the posi-
tion of defects in the large sheet, (ii) the small item produced
with that sheet, and (iii) what kind of response to the presence
of defects is implemented.

Concerning the third issue, depending on cut feasibility,
we consider three degrees of pattern reconfigurability (see
Figure 2):

∙ No reconfiguration, NR. Patterns remain unchanged: A
defect always causes a yield loss, unless it falls into the
scrap area. This is the policy presently adopted in the plant.

∙ Constrained reconfiguration, CR. Patterns can be recon-
figured provided that no more cuts are employed than
the minimum used in normal operation: That is, strips of
scrap can be moved from the bottom or right edge of the
large item, but cannot be split up. At present, the plant
management is evaluating this option.

∙ Unconstrained reconfiguration, UR. Patterns can be recon-
figured also by splitting scrap strips with additional cuts.
This recourse strategy is more general and effective (but
more complex).

A maximum of 187 small items (laid out on 17 strips with
11 items each) can be obtained from a large item in the
instances provided by the plant. A CR that avoids as many
faults as possible can easily be obtained by checking all the
possible positions of the horizontal and vertical scrap strips.
If the cutting pattern consists of n horizontal and m verti-
cal strips of small items, the horizontal and vertical scrap
strips can be placed in n + 1 and m + 1 places, respectively.
Consequently, there are no more than (n + 1)(m + 1) possi-
ble reconfigurations, among which one chooses that with the
least number of small items damaged by defects occurred in
the large item.

By contrast, computing the best UR requires a tailored
approach, which is beyond the scope of this work.

A defect still causing a yield loss after reconfiguration is
called critical. Let Q denote a random variable giving the
number of critical defects in a large item. For any production
lot j = (i, k) ∈ J and any integer 0 ≤ q ≤ t, let

t
𝜋jq ≜ Prob{Q = q|T(k) = t} (8)

be the probability that a single large item of size k used for the
production of small items of size i has q critical defects out of
t. We use (8) to parameterize the uncertainty set U, which the
yield parameter aj belongs to, with respect to the expected
number f of defects in a float campaign, see Section 5. In
particular, for a pair j = (i, k) with zero trim loss (i.e., Wk and
Hk integer multiples of wi and hi) under NR strategy we have

s
𝜋jq = (pj∕aj)

s
(aj

q

){s

q

}
⋅ q!, (9)

where aj = ⌊Vk

vi
⌋, pj =

ajv
i

Vk
are the largest number of small

items of type i contained in a large item of the k-th size and
the probability that one of those small items is hit by a ran-
dom fault in the large item, respectively. The third factor in
the above expression denotes the Stirling number of II type,
recursively computed as

{
s

q

}
=

{
s − 1

q − 1

}
+ q

{
s − 1

q

}
, (10)
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4160 ARBIB ET AL.Production and Operations Management

(a) (b) (c)

F I G U R E 2 (a) No reconfiguration, (b)
constrained, and (c) unconstrained reconfiguration
[Color figure can be viewed at
wileyonlinelibrary.com]

with initial conditions

{
s

1

}
=

{
s

s

}
= 1 (11)

for all s. In fact,
{s

q

}
counts the different ways of partition-

ing s defects into q nonempty subsets, which in turn can be
chosen in

(aj

q

)
different ways and associated to the defect sets

in q! distinct ways.
For positive trim loss, we use formula (9) for s = t, t −

1, … , q, introducing a factor
(t

s

)
ps

j (1 − pj)
t−s to take into

account the probability that exactly s out of the t defects hit a
small item. We obtain in this way

t
𝜋jq =

(aj

q

)
⋅ q!

t∑
s=q

(t
s

){s

q

}ps
j (1 − pj)

t−s

as
j

. (12)

For more sophisticated recourse strategies the expres-

sion of
t
𝜋jq becomes more complex. Closed formulas to

compute
t
𝜋jq for t = 1, 2 under CR and UR strategies are

provided in the Supporting Information sections EC.2.1 and
EC.2.2.

5 ROBUST MODEL

Formulation (2) with separate pricing (1) is not suitable
for modeling uncertainty in the vein of robust optimiza-
tion, because delayed column generation cannot manage the
bundle of uncertain coefficients that goes across the pric-
ing problems. However, the good features of the p-median
heuristic described in Arbib and Marinelli (2009) can help in
two ways. On one hand, we can directly modify it to try and

address the losses due to defects. On the other hand, we can
use it as a starting point to define the (more sophisticated)
robust counterpart.

Let us first focus on the first approach. According to the
notation in Section 3, for any lot j = (i, k) ∈ J, let xj ∈ {0, 1}
be a binary variable indicating that the whole demand of
items of small size i ∈ S is fulfilled by cutting large size
k ∈ L. One can then correct the objective function of the p-
median model to take into account the expected loss due to
defects. The model reads:

[P] min
∑
j∈J

cjxj (13)

∑
j∈Ji

xj = 1 i ∈ S,

uk − xj ≥ 0 k ∈ L, j ∈ Jk,∑
k∈L

uk ≤ p,

xj, uk ∈ {0, 1} j ∈ J, k ∈ L,

where cj = Vk⌈ di

aj−āj
⌉ is the total expected area used by lot j.

In particular, by overestimating (resp., underestimating) by
tk = ⌈𝜌Vk⌉ (resp., by tk = ⌊𝜌Vk⌋) the expected number of
defects in large item k, one obtains the expected number āj
of defective items:

āj =

tk∑
q=0

(q
t
𝜋jq) (14)

and then the expected number of nondefective small items
of the i-th size obtained by one large part of the k-th size,
(aj − āj), to be plugged in the definition of cj.
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Generally speaking, the extra small items required to com-
pensate those lost by defects can be produced by keeping a
pool of additional large items of a generic size. Observe how-
ever that such a simple strategy is largely dominated, in terms
of loss minimization, by the solutions of [P] that already
provide a suitable amount of large items of a specific size for
each small size. As a reference figure, the trim loss of instance
I15 obtained by [P] is 1.09% (see column VT of Table 2 in
Section 7). An alternative solution computed by the deter-
ministic p-median model, that is, with āj = 0∀j, and then
using the large items in the pool to recover the underproduc-
tion (of size 610 × 320 for instance I15, that is, the largest size
in L) has a total trim loss of 2.56%, more than twice that of
[P].

With the second, robust approach, let 𝜉j be a nonnegative
integer variable that denotes the number of extra items of size
k ∈ L that must be cut to compensate the items i ∈ S lost due

to manufacturing defects. Finally, let
t
zj be positive integer

parameters that count the number of those large items of size
k with t defects that are involved in the production of the items
of small size i (independently of the chances that the glass
imperfection has to reduce yield, i.e., that a defect hits a small
item). We can parameterize the total number f of faults that
occur in the production period and, inspired by the budgeted
uncertainty à la Bertsimas-Sim Bertsimas and Sim (2004), we
define the uncertainty sets Ui

z, i ∈ S

Ui
z = {z ∈ IN|J|×f :

∑
j∈Ji

f∑
t=1

t
t
zj ≤ f i}, (15)

where the budget controlling robustness f i, an upper bound
to the number of possible defects in the production of the

items of small size i, is set to
vidi

VF
f . That is, it is assumed

to be proportional to the area required by i (in (15) and the

following, for simplicity of notation, we assume
t
zj = 0 for

t > fi).

Let now 𝓁jq be the number of large items, out of the
∑f

t=1

t
zj

defective ones, where faults reduce yield by q units. The
relevant uncertainty set U𝓁 depends on z and reads:

U𝓁 = {𝓁 ∈ IN|J|×f : 𝓁jq ≤

f∑
t=q

t
𝜋jq

t
zj, j ∈ J, 1 ≤ q ≤ f },

(16)

where, by definition (8),
t
𝜋jq is the probability that a generic

large item in the j-th production lot outputs q faulty items
when affected by t ≥ q faults. The robust counterpart of
problem (2) then reads

min
∑
k∈L

Vk

∑
j∈Jk

(ȳjxj + 𝜉j) (17)

∑
j∈Ji

aj(ȳjxj + 𝜉j) − max
𝓁∈U𝓁

∑
j∈Ji

∑
q≤f

q𝓁jq ≥ di i ∈ S, (18)

ȳjxj + 𝜉j −

f∑
t=0

t
zj ≥ 0 j ∈ J, (19)

∑
j∈Ji

xj = 1 i ∈ S, (20)

uk − xj ≥ 0 k ∈ L, j ∈ Jk, (21)

∑
k∈L

uk ≤ p, (22)

xj, uk ∈ {0, 1}, 𝜉j ≥ 0 and integer, (23)

t
zj ∈ Uz, 𝓁jq ∈ U𝓁. (24)

The goal is to minimize the total glass volume used for pro-
duction. For any given lot j = (i, k), the terms Vk and ȳj in the
objective function (17), respectively, indicate the area of the
k-th large size and, as per (5), the number of items of large
size k required to fulfill the demand of small size i. Inequal-
ities (18) ensure fulfillment of small item requirements,
discounting the losses due to large items imperfections. In
these constraints, 𝓁jq is an uncertain coefficient varying in
U𝓁. Inequalities (19) state that the defective large items of
size k cannot be more than those actually produced. Condi-
tion (20) limits the production of each small size to a single
large size. The use of large size k is triggered by inequalities
(21). Finally, inequality (22) limits the assortment of distinct
large sizes used.

Unlike Bertsimas-Sim’s, the uncertainty sets Ui
z and U𝓁 are

not polyhedral as the parameters z and l are integer valued.
To overcome this difficulty while preserving the degree of
robustness, that is, all the integer points of Ui

z and U𝓁, we
first relax the integrality of 𝓁jq and, according to the defi-

nition of U𝓁, replace its occurrences in (18) by
∑f

t=q

t
𝜋jq

t
zj.

Furthermore, indicating by 𝜔i ≥ 0 the maximum loss due to
defects in the production of small size i, constraints (18) are
rewritten:

∑
j∈Ji

aj(ȳjxj + 𝜉j) − 𝜔i ≥ di i ∈ S. (25)

The worst-case scenario occurs when, for i ∈ S, the number
of defective small items of size i

𝜔i =
∑
j∈Ji

f∑
q=1

f∑
t=q

q ⋅
t
𝜋jq

t
zj (26)
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4162 ARBIB ET AL.Production and Operations Management

is maximized over the nonpolyhedral (discrete) uncertainty
set

Ui
z = {z ∈ IN|J|×f :

∑
j∈Ji

∑
t≤f

t
t
zj ≤ f i,

f∑
t=1

t
zj ≤ 𝜑k(ȳjxj + 𝜉j) j = (i, k) ∈ Ji},

(27)

thereby removing (19) from (17)–(23). The first inequality
limits to f i the number of defects in the production of small
parts of size i. The second limits to the portion estimated by
(7) the number of defects in a generic production lot j that
uses the k-th large item.

Maximizing (26) subject to (27) gives, for each i ∈ S,
an integer optimization problem (as defined on a discrete
uncertainty set) and, to our knowledge, general methods for
discrete uncertainty sets only work for very few scenarios.
However, an upper bound to the maximum 𝜔i can be obtained
by the continuous relaxation of (26) and (27) assuming xj and
𝜉j momentarily fixed. Since such problems are feasible and
bounded for any xj and 𝜉j, by strong duality the bounds exist
for any i ∈ S and can then be computed solving the LP dual
of (26) and (27):

min f i𝜆i +
∑

j=(i,k)∈Ji

𝜑k(ȳjxj + 𝜉j)𝜆j

t𝜆i + 𝜆j ≥
∑
q≤t

q
t
𝜋jq j ∈ Ji, t ≤ f ,

𝜆i, 𝜆j ≥ 0 j ∈ Ji. (28)

Now, any solution of (28) provides a dual bound to the loss in
the worst case. Then, the max term in (18) can be replaced
by the above dual objective function, which results in the
following conservative approximation of the robust model
(17)–(24):

[R] min
∑
k∈L

Vk

∑
j∈Jk

(ȳjxj + 𝜉j) (29)

∑
j=(i,k)∈Ji

(ȳjxj + 𝜉j)(aj − 𝜑k𝜆j) − f i𝜆i ≥ di i ∈ S, (30)

t𝜆i + 𝜆j ≥
∑
q≤t

q
t
𝜋jq j ∈ J, t ≤ f , (31)

(20)–(23) (32)

𝜆i, 𝜆j ≥ 0. (33)

The resulting model has bilinear terms xj𝜆j and 𝜉j𝜆j
that can however be linearized by standard techniques, see
Supporting Information EC.2.3.

While it is not among the purposes of this paper to under-
take a stochastic programming approach, a two-stage SP

formulation is sketched below in the interest of discussion.
This is stated as

min
∑
k∈L

Vk

∑
j∈Jk

ȳjxj + Q(𝜉) (34)

subject to the constraints of [P] and the binary nature of xk
and uk variables, where we define

Q(𝜉) = min𝔼𝓁,z[
∑
k∈L

Vk

∑
j∈Jk

𝜉j] (35)

subject to constraints (18) and (19). Here, one has to deal
with a two-stage model involving integer variables in both
stages in addition to approximating (if one is unable to com-

pute it accurately) an expected value over random variables
t
z

(the number of large items with t defects) and 𝓁q (the number
of large items where faults reduce yield by q units). Without
entering into the details of working with such a formula-
tion, it is debatable whether it would lead to a more practical
result or to superior performance in both computational and
economical terms. There are several authoritative references
on stochastic programming dealing with complexity issues
and approximation procedures, for example, Shapiro et al.
(2009). In terms of complexity, our approximate (robust)
model remains in the realm of integer linear programming. It
can be argued that a similar statement will be true for the case
of SP model. However, it is not our place to develop this point
further here. Nevertheless, we hope that the present paper
inspired others to undertake further work along these lines.

6 TECHNICAL DETAILS OF THE
ROBUST FORMULATION

The complexity of model [R] rapidly grows with the number|L| of distinct large sizes and of alternative patterns consid-
ered. To make resolution viable by commercial solvers, it is
crucial to control the size of those sets. The latter set is in
fact controlled, as model [R] adopts only one pattern per lot.
Pattern features are summarized by parameter aj, j = (i, k),
which counts the largest number of size i small items one can
obtain by a single large item of size k. In this sense, each
cutting pattern is a maximal one.

Although the probability of a faulty item decreases when a
maximal pattern is turned into a nonmaximal one by remov-
ing one or more items, the adoption of maximal patterns is
justified by the following result.

Proposition 1. If an NR or CR strategy is implemented,
see Section 4, model [R] always has an optimal solution that
consists of maximal patterns only.

Proof. Let us focus on a pair j = (i, k) ∈ J and, for the sake
of conciseness, drop the indexes of variables and parameters.
Suppose that mn small items of size w × h, arranged in n hor-
izontal strips of m items each, are obtained by a maximal
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pattern applied to a large item of size W × H. Let r = W −
mw be the width of the vertical waste, and s = (H − nh) the
height of the horizontal one. After the CR of a maximal
pattern, all the potential coordinates of each item’s bottom-
left corner are in Z = (s𝛼 + wi, r𝛽 + hi), with i = 0, … ,m −
1, j = 0, … , n − 1, and 𝛼, 𝛽 ∈ {0, 1} (see Figure 2b). Let Z̄ be
the analogous set of a nonmaximal pattern. Clearly, Z̄ ⊆ Z,
and the same trivially holds for the NR strategy. Therefore, the
space left free by the items removed from a maximal pattern
cannot be used to avoid defects on the remaining items. □

As for the set L used in the formulations, in the original
problem by Arbib and Marinelli (2007), candidate large sizes
are preprocessed, for each instance, according to the follow-
ing procedure. First, define the set L0 of ideal large sizes
for which there exists at least a small item i that can be cut
without trim loss. Formally,

L0 =
⋃
i∈I

L0
i =

⋃
i∈I

{k ∈ L : Wk = 𝛼iwi,Hk = 𝛽ihi}, (36)

where 𝛼i, 𝛽i are positive integers ranging in

⌊
Wmin

wi

⌋
≤ 𝛼i ≤

⌊
Wmax

wi

⌋
,

⌊
Hmin

hi

⌋
≤ 𝛽i ≤

⌊
Hmax

hi

⌋
,

(37)

and Wmin, Wmax, Hmin, and Hmax, respectively, denote upper
and lower bounds on the large sizes in L. A restricted set of
large sizes sufficient to guarantee minimum trim loss solu-
tions in the deterministic setting, that is, in the absence of
defects, can be computed from L0 in view of the following
property proved in Arbib and Marinelli (2007):

Proposition 2. For any h, k ∈ L0, let lhk be the smallest size
in L containing both h and k. Let L̃ = {lhk : h, k ∈ L0, h ≠ k}.
Then, there is an optimal solution that uses only large sizes
in L̃.

In our data set, L̃ contains a number of sizes between 13
and 461, much smaller than the potential 6560 large sizes
in L (see Table EC.1 in the Supporting Information Sec-
tion EC.1), thus making viable the solution of the integer
programs described in the above sections.

However, once the aleatory presence of defects is intro-
duced, it is possible that L̃ does not contain enough distinct
sizes to warrant trim loss minimization. In fact, with
more sizes available, the expected loss can be reduced at
the expense of some additional waste. This consideration
deserves a brief comment.

Consider the simple case of d = 36 items required in the
size 0.9 × 2.5, and suppose for simplicity that no more than
one defect per large item ever occurs. Suppose also that L̃
consists of the single ideal size 2.7 × 5 (hence a = 6 and ȳ =
6), and that f = 𝜌VF = 9 defects are expected (i.e., f is suffi-
ciently large to ensure 𝜑1 = 1 for each large item employed).
With these values, the probability of a critical defect under the

CR strategy is
1
𝜋1 = 1 (i.e., k is an ideal size), and an optimum

is achieved by adding

𝜉 =

⌈
d

a −
1
𝜋1

− ȳ

⌉
= 2 (38)

large items, for a total employed area of 108 square meters.
But if one adopts a large size one decimeter wider, namely,

2.8 × 5, the probability of a critical defect decreases to
1
𝜋1 =

0.857 (see Section EC.2.1 in the Supporting Information), the
additional large items needed reduces to 𝜉 = 1 and the total
area used decreases to 98 square meters (−9.26%).

Although in the example a minimum is achieved by a large
size not in L̃, a preliminary numerical test shows that only 3
out of 15 instances benefit of a super-set of L̃, and the gain is
always very marginal (≤ 0.004%).

7 COMPUTATIONAL EXPERIENCE

The models discussed above were tested on real data pro-
vided by the plant. Besides a comparison of CPU time, the
test aims to evaluate the benefits, in terms of expected reduced
loss and under/overproduction, obtained with random defects
when the solutions of the robust model are implemented with
different recourse strategies (see Section 4): NR, that is the
action currently adopted in the plant, and CR. Because UR is
quite far from the current practice and since, as noted in Sec-
tion 4, computing the best UR is not straightforward, we left
the UR strategy out from our numerical test.

The test compares four approaches:

∙ the deterministic p-median model [P0] obtained by setting
āj = 0 in (13),

∙ the p-median models [P+] and [P−] derived from (13)
by updating demand according to an over- and an under-
estimate of the expected number of defects per large
item,

∙ the linearized version (described in Section EC.2.3, see the
Supporting Information) of robust model [R].

Solutions were tested by means of (i) a Monte Carlo simu-
lation that generates defects according to a spatial Poisson
process and (ii) an adversarial deterministic model that
generates the maximum expected number of critical defects.

7.1 Setting

The test was carried out on 15 problem instances, each
one representing a production campaign: 10 instances are
those used in Arbib and Marinelli (2007); the remaining five,
namely, I2, I3, I7, I8, and I14 in Table EC.1 in the Supporting
Information, were newly provided by the plant. The details of
test instances are reported in the Supporting Information Sec-
tion EC.1. All the integer programs were solved using Gurobi
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4164 ARBIB ET AL.Production and Operations Management

9.1.1 with default setting on a QUEMU virtual CPU 1.5.3
machine (8 cores) at 2.26 MHz with 8 GB of RAM. Gurobi
precision parameter mipgap was set to 1e-9. A limit for the
running time was set at 7200 s.

Since, according to (6), seven or more defects in the same
large item are relatively rare (a priori assumptions attribute
to this event a probability of 4.14 ⋅ 10−3), the probability
that constraint (31) for t ≥ 7 must be satisfied by solutions
that already fulfill the same constraint for t < 7 is negligi-
ble. Indeed, we already obtained good results by limiting

the model to t ≤ 2. The probabilities
t
𝜋jq for the NR strategy

were computed by (12). For CR strategy,
1
𝜋j1 and

2
𝜋jq were,

respectively, obtained by (EC.1) and (EC.2) in the Supporting

Information, while for t = 3, … , 6 the
t
𝜋jq was estimated by

Monte Carlo simulation. As we observed a strong correlation
between number of items produced and area used (both in
terms of overproduction and expected defective small items),
in the following, we will comment on area results only.

7.2 Analysis of results

Let (x̄, 0) and (x̄, 𝜉̄) be the solutions computed by the three
[P] models and by [R], respectively, and let Ȳj = (ȳjx̄j + 𝜉̄j)
be the total number of large items used in lot j ∈ J. Let us
then introduce the following figures:

∙ V̄F: total float area used:

V̄F =
∑
k∈L

Vk

∑
j∈Jk

Ȳj. (39)

∙ VR, V̄P: total area of small items required and produced:

VR =
∑
i∈I

vidi and V̄P =
∑
i∈I

vi
∑
j∈Ji

ajȲj, (40)

∙ V̄D: expected area of defective small items:

V̄D =
∑

j=(i,k)∈J

viȲj

f∑
t=1

t∑
q=1

q
t
𝜎jq, (41)

where
t
𝜎jq is the probability that a large item in lot j = (i, k)

is affected by t defects, q ≤ t of which are critical. This

is given by the compound probability
t
𝜑k

t
𝜋jq, see (6) and

(8). In the evaluation of these probabilities, we used f =
𝜌V̄F and, for the sake of numerical precision, limited the
binomial in (6) to t ≤ 10.

The solution quality of (x̄, 𝜉̄) and (x̄, 0) is evaluated through
the percent area overproduced VO and the percent trim loss
VT . Namely,

VO = 100 ⋅
V̄P − VR

VR
, VT = 100 ⋅

V̄F − V̄P

V̄F
. (42)

The impact of defects on the solutions is taken into account
by evaluating, for (x̄, 𝜉̄) and (x̄, 0):

∙ the percent deviation ES of the expected area of sound
items obtained versus the total area VR required:

ES = 100 ⋅
(V̄P − V̄D) − VR

VR
; (43)

∙ the percent expected waste EW , including both trim loss
and discarded defective items:

EW = 100 ⋅
(V̄F − V̄P) + V̄D

V̄F
; (44)

∙ the percent expected number EB of back-orders, that is,
the percent of small sizes whose requirement was not
completely fulfilled.

We computed V̄D not only by the above formula, but also
via Monte Carlo simulation and by an adversarial integer
program that models the worst-case scenario.

7.2.1 Monte Carlo simulation

Computing V̄D requires to estimate the impact of defects
on the solutions (x̄, 0) and (x̄, 𝜉̄). In a Monte Carlo simu-
lation, each iteration reproduces the cut process according
to a realization of glass defects, where defect number and
positions are regarded as input random variables sampled
from the appropriate probability distributions. Since in all the
instances solved the small sizes are treated as integers, we
can as well assume integer coordinates for all defect posi-
tions. Moreover, we can also assume the large items of any
given solution sequenced in any arbitrary order. The outcome
of each iteration (i.e., the defective area) is measured compli-
antly with the reaction adopted, that is, by just counting how
many small parts are hit by a defect in case of NR strategy, by
finding a reconfigured pattern that minimizes the faulty items
(as briefly described in Section 4) in case of CR strategy.

The number of defects f̂ is sampled from a Poisson dis-
tribution with mean 𝜌V̄F and process intensity 𝜌 set to 0.1
points per square meter; then ⌊f̂ ⌋ positions, each indicating
the two coordinates of a defect, are independently sampled
from a uniform distribution in V̄F .

In particular, the large item k̂ and the coordinates (ŵ, ĥ)
within k̂ of the sampled defect are obtained by first generating
a random value p ∈ [0,

∑
j∈J WjHjȲj] and then mapping p into

k̂ and (ŵ, ĥ) in the following way. Let (ĵ, r̂) be the last index

such that
∑

j∈J

∑Ȳj

r=1 WjHj < p and let p̂ =
∑ĵ

j=1 WjHjȲj +

r̂Wr̂Hr̂. Then,

k̂ = r̂ +
ĵ∑

j=1

Ȳj, ĥ = ⌊p − p̂ − 1
Wĵ

⌋ + 1, and

ŵ = p − p̂ − Wĵ(h − 1). (45)

 19375956, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.13812 by B
ilkent U

niversity, W
iley O

nline L
ibrary on [14/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ROBUST STOCK ASSORTMENT AND CUTTING UNDER DEFECTS 4165
Production and Operations Management

Once all the defects have been generated, realizations of the
area V̂D of defective small parts are computed and the statistic
V̄D updated. The simulation is iterated N = 10 times at each
call, terminating when |V̄D − V̂D| < 10−6.

7.2.2 Worst-case simulation

Given a solution X̄ = (x̄, 𝜉̄) and being J̄ = {j ∈ J : x̄j = 1} the
set of the production lots chosen with X̄, the worst realization
of defects with respect to X̄ can be computed by the following
adversarial integer linear program:

max
∑

j=(i,k)∈J̄

vi
f∑

t=1

t∑
q=1

q
t
𝜋jq

t
zj (46)

f∑
t=1

t
t
zj ≤ f i j = (i, k) ∈ J̄, (47)

f∑
t=1

t
zj ≤ 𝜑kȲj j = (i, k) ∈ J,

t
zj ≥ 0, integer j ∈ J̄, 1 ≤ t ≤ f . (48)

As in [R],
t
zj indicates how many large items in a pro-

duced lot j are hit by t defects. The objective function
(46) equals the expected number of critical defects, to be
maximized. By inequality (47), faults are distributed among
large items respecting the maximum number f i of defects
allowed per small size. By constraint (48), the defective large
items in each lot j cannot exceed, as a whole, the expected
number 𝜑kȲj of large items with faults employed by the
solution.

7.3 Solution analysis for a small instance

Before giving the aggregate experimental results, let us com-
pare two solutions of instance I2, computed via [P0] and [R],
to illustrate the improvement obtained by the robust model.
The demand of this problem, one of the smallest of our
benchmark set, must be manufactured using no more than
p = 4 large sizes. Given the float volume necessary for this
production, we estimated f = 476 defects as a whole (see
Table EC.1 in the Supporting Information). The first four
columns of Table 1 detail request, size, and defect estimation
for each small item i ∈ S (the latter parameter being used in
[R]). Next, section [P0] reports the large sizes selected by the
p-median model to form the production lots j, with the asso-
ciated cut productivity aj and cut number ȳj. The rightmost
section reports the same information for the solution com-
puted by [R], and indicates also the extra large items 𝜉̄j used
to compensate losses due to defects.

The large sizes selected by model [R] partly differ from
those chosen by model [P0]: In detail, to produce small size
76 × 122, [P0] uses the ideal large size 304 × 610 and so there

TA B L E 1 Details of instance I2, and the solutions obtained by [P0]
and [R]. In bold are the different large sizes chosen by [R].

Instance I2 [P0] [R]

di wi hi f i Wk Hk aj ȳj Wk Hk aj ȳj 𝝃j

600 56 211 78 280 450 10 60 280 450 10 60 7

300 76 122 31 304 610 20 15 304 496 16 19 2

150 46 124 10 280 450 18 9 304 496 24 7 0

1500 52 180 155 312 540 18 84 312 540 18 84 8

1500 53 142 125 318 580 24 63 318 580 24 63 4

900 53 145 77 318 580 24 38 318 580 24 38 3

is no trim loss in this case; [R] uses instead the smaller (but
not ideal) size 304 × 496. Also, [P0] produces small size 46 ×
24 by the same large size used for the former, whereas [R]
chooses 304 × 496.

We launched a Monte Carlo simulation on both solutions,
obtaining,

∙ for [P0], an expected waste EW = 10.05%, of which 2.08%
is trim loss; the remaining 7.97% is the discarded defective
area, not compensated at all by glass area overproduction
(VO = +0.85%). In fact the solution entails high levels of
expected sound item underproduction (ES = −7.37%) and
back-orders (EB = 83.33%).

∙ For [R], +8.65% additional glass area (with VO =
+9.73%), mild expected overproduction of sound items
(ES = +0.82%) and no back-orders; the total waste EW is
reduced to 9.90%, 1.93% of which is trim loss.

In conclusion, the main result obtained with [R] is that
a high back-order level is reduced to zero with no increase
(actually, with a slight reduction) of total waste and trim loss.

7.4 Results for NR strategy

For each instance, Table 2 describes the solution, respectively,
computed by the deterministic p-median model [P0], by the
probabilistic p-median models [P+], [P−], and by the robust
model [R] when an NR strategy is adopted. In particular, the
CPU columns report the running time (s) to get (x̄, 𝜉̄): A “-”
indicates that the solver has reached the time limit; in that
case, the subsequent column reports a nonzero optimality gap
(%). The remaining columns give the overproduction VO and
the trim loss VT found.

Tables 3 and 4 describe the protection that solutions offer
against defects. This feature is evaluated by the expected val-
ues ES, EW , EB, computed by Monte Carlo simulation and
worst-case analysis. Table 5 shows the computational details
of Monte Carlo simulations. For the worst-case analysis, we
just observe that all instances of model (46)–(48) were solved
in less than 0.125 s.

The p-median models (both deterministic and probabilis-
tic) are much easier to solve than the robust counterpart of
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4166 ARBIB ET AL.Production and Operations Management

TA B L E 2 Solutions with no reconfiguration strategy. In bold are the averages over instances I1 - I11.

[P0] [P+] [P−] [R]

CPU VO VT CPU VO VT CPU VO VT CPU gap VO VT

Inst (sec) (%) (%) (sec) (%) (%) (sec) (%) (%) (sec) (%) (%) (%)

I1 0.06 0.01 0.32 0.02 10.78 0.31 0.02 5.26 0.32 0.31 0 8.07 0.32

I2 0.09 0.85 2.08 0.03 12.95 2.14 0.03 7.68 1.67 1.39 0 10.43 1.94

I3 0.08 0.02 1.57 0.02 12.78 1.64 0.02 6.21 1.60 0.79 0 9.53 1.59

I4 0.17 0.05 1.16 0.05 8.18 1.11 0.05 4.09 1.09 13.14 0 6.45 1.16

I5 0.20 0.02 0.51 0.05 12.08 0.46 0.05 5.90 0.48 51.55 0 9.09 0.51

I6 0.17 0.17 1.70 0.02 16.25 1.73 0.02 7.97 1.69 55.07 0 11.82 1.71

I7 0.53 0.03 0.35 0.06 11.96 0.34 0.06 5.85 0.33 7037.28 0 8.91 0.36

I8 0.20 0.03 2.27 0.06 11.49 2.34 0.06 5.65 2.27 755.73 0 8.64 2.31

I9 0.30 0.04 1.11 0.13 9.71 1.15 0.13 4.78 1.15 4087.64 0 7.66 1.14

I10 0.45 0.08 0.95 0.11 11.46 0.87 0.11 5.70 0.88 5115.95 0 8.35 0.97

I11 0.39 0.02 1.11 0.11 11.94 1.12 0.11 5.82 1.10 - 0.52 8.83 1.12

Avg 0.24 0.12 1.19 0.06 11.78 1.20 0.06 5.90 1.14 1711.88 0.05 8.89 1.19

I12 1.41 0.01 0.49 0.31 11.21 0.46 0.31 5.46 0.47 - 2.23 5.97 0.50

I13 1.89 0.03 0.67 0.39 12.51 0.68 0.39 6.11 0.65 - 3.16 6.88 0.69

I14 1.70 0.01 2.76 0.61 24.89 2.78 0.61 11.75 2.76 - 6.80 12.21 2.83

I15 3.39 0.03 1.05 0.72 11.15 1.09 0.72 5.45 1.08 - 5.47 8.06 1.07

TA B L E 3 Results of Monte Carlo simulation. In bold are the averages over instances I1 - I11.

[P0] [P+] [P−] [R]

ES EW EB ES EW EB ES EW EB ES EW EB

Inst (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

I1 −7.24 7.54 100.00 2.75 7.54 0.00 −2.37 7.54 100.00 0.24 7.54 25.00

I2 −7.76 10.43 83.33 3.25 10.54 0.00 −1.50 10.06 83.33 1.00 10.31 0.00

I3 −8.91 10.36 100.00 2.69 10.44 0.00 −3.28 10.39 100.00 −0.26 10.38 83.33

I4 −6.08 7.22 100.00 1.54 7.18 0.00 −2.29 7.15 100.00 −0.09 7.23 55.56

I5 −8.42 8.90 100.00 2.60 8.88 0.00 −3.05 8.88 100.00 −0.14 8.92 50.00

I6 −10.39 12.07 100.00 3.97 12.11 0.00 −3.43 12.07 92.86 0.02 12.08 35.71

I7 −8.02 8.37 100.00 2.93 8.38 0.00 −2.68 8.37 93.33 0.12 8.40 40.00

I8 −8.13 10.24 100.00 2.35 10.35 0.00 −2.98 10.26 100.00 −0.25 10.30 47.06

I9 −7.22 8.29 100.00 1.70 8.37 0.00 −2.85 8.35 94.74 −0.18 8.35 52.63

I10 −7.50 8.46 100.00 2.98 8.41 0.00 −2.33 8.40 95.24 0.11 8.50 38.10

I11 −8.09 9.13 100.00 2.82 9.17 0.00 −2.78 9.13 100.00 −0.02 9.16 42.31

Avg −7.98 9.18 98.48 2.69 9.22 0.00 −2.69 9.15 96.32 0.06 9.20 42.70

I12 −7.90 8.35 100.00 2.39 8.36 0.00 −2.89 8.35 100.00 −2.38 8.34 41.38

I13 −8.92 9.56 100.00 2.41 9.59 0.00 −3.40 9.55 97.14 −2.74 9.63 40.00

I14 −14.53 16.89 100.00 6.68 16.96 0.00 −4.52 16.91 100.00 −4.11 16.97 97.22

I15 −7.87 8.87 100.00 2.34 8.92 0.00 −2.89 8.90 96.00 −0.49 8.90 88.00

[P0]: all the [P] instances were solved in less than 4 s (0.36
on average), whereas only 10 [R] instances were solved to
optimality within the time limit. For the remaining instances,
we obtained solutions with optimality gap of 3.18% on aver-
age. In the tables, we reported the values averaged on I1–I11

only, that is, on instances for which we could find optimal or
near-optimal solutions with both models.

The probabilistic and robust solutions exhibit, as expected,
a better global behavior. Being unaware of defects occur-
rence, model [P0] provides for a quite small overproduction
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TA B L E 4 Results of worst-case scenario. In bold are the averages over instances I1 - I11.

[P0] [P+] [P−] [R]

ES EW EB ES EW EB ES EW EB ES EW EB

Inst (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

I1 −7.33 7.64 100.00 2.64 7.64 0.00 −2.47 7.64 100.00 0.13 7.64 50.00

I2 −7.93 10.60 83.33 3.05 10.72 0.00 −1.68 10.22 83.33 0.80 10.50 0.00

I3 −9.05 10.50 100.00 2.53 10.58 0.00 −3.43 10.53 100.00 −0.41 10.52 83.33

I4 −6.15 7.29 100.00 1.47 7.25 0.00 −2.36 7.22 100.00 −0.16 7.29 55.56

I5 −8.54 9.02 100.00 2.46 9.01 0.00 −3.18 9.01 100.00 −0.28 9.04 58.33

I6 −10.61 12.28 100.00 3.71 12.33 0.00 −3.66 12.28 92.86 −0.23 12.31 42.86

I7 −8.13 8.48 100.00 2.79 8.51 0.00 −2.81 8.48 93.33 −0.01 8.52 53.33

I8 −8.25 10.36 100.00 2.21 10.47 0.00 −3.11 10.38 100.00 −0.39 10.43 52.94

I9 −7.32 8.38 100.00 1.59 8.47 0.00 −2.95 8.44 94.74 −0.29 8.45 57.89

I10 −7.60 8.56 100.00 2.86 8.52 0.00 −2.44 8.51 95.24 −0.01 8.60 57.14

I11 −8.21 9.25 100.00 2.69 9.29 0.00 −2.91 9.25 100.00 −0.15 9.28 57.69

Avg −8.10 9.30 98.48 2.54 9.34 0.00 −2.82 9.27 96.32 −0.09 9.32 51.73

I12 −8.01 8.47 100.00 2.26 8.47 0.00 −3.01 8.46 100.00 −2.50 8.45 65.52

I13 −9.06 9.70 100.00 2.25 9.73 0.00 −3.55 9.70 97.14 −2.90 9.77 65.71

I14 −14.89 17.25 100.00 6.22 17.32 0.00 −4.93 17.27 100.00 −4.52 17.32 100.00

I15 −7.98 8.98 100.00 2.21 9.04 0.00 −3.01 9.02 96.00 −0.62 9.01 86.00

TA B L E 5 Performance of Monte Carlo simulation with NR strategy. In bold are the averages over instances I1 - I11.

[P0] [P+] [P−] [R]

Iter CPU Avg. f̂ Hits Iter CPU Hits Iter CPU Avg. f̂ Hits CPU Hits

Inst (s) Avg. f̂ (%) (s) Avg. f̂ (%) (s) Avg. f̂ (%) Iter (s) f̂ (%)

I1 520 3.21 15188 96.03 550 2.84 16823 96.02 1000 5.17 15979 96.02 990 6.94 16405 96.02

I2 1000 0.25 442 93.72 1000 0.19 496 93.51 920 0.18 470 93.81 1000 0.28 484 93.68

I3 610 6.25 23596 93.96 290 2.67 26629 93.87 860 7.28 25054 93.92 510 6.12 25846 93.94

I4 680 3.00 8906 95.76 590 1.92 9628 95.79 680 2.22 9259 95.77 500 2.33 9477 95.76

I5 560 6.18 15430 95.24 480 3.73 17286 95.20 1000 7.11 16326 95.22 760 9.57 16825 95.22

I6 520 1.59 3959 93.02 740 1.62 4594 92.92 520 1.08 4267 93.02 790 2.63 4417 93.00

I7 310 5.07 22166 95.58 970 10.15 24795 95.56 630 7.10 23447 95.57 390 6.85 24133 95.57

I8 1000 24.37 23124 93.69 1000 12.84 25792 93.57 730 9.84 24427 93.64 970 22.70 25125 93.64

I9 310 3.95 11933 95.26 140 1.08 13092 95.19 290 2.03 12504 95.21 800 9.85 12840 95.20

I10 130 1.23 9120 95.27 910 4.80 10140 95.20 590 2.95 9622 95.23 230 2.06 9876 95.23

I11 340 25.80 66498 94.81 520 22.31 74422 94.78 420 16.91 70346 94.80 700 50.21 72347 94.80

Avg 544 7.35 18215 94.76 654 5.83 20336 94.69 695 5.62 19246 94.75 695 10.87 19798 94.73

I12 320 47.58 102101 95.52 710 59.20 113484 95.51 620 48.92 107640 95.52 290 40.85 108191 95.53

I13 590 69.92 72443 94.82 420 27.34 81492 94.77 430 26.39 76836 94.80 1000 116.28 77405 94.76

I14 40 10.48 160569 90.01 540 91.65 200569 89.93 110 16.73 179418 89.95 40 10.96 180293 89.92

I15 290 79.87 119480 94.99 290 40.27 132800 94.93 110 14.50 125977 94.93 390 135.53 171053 74.65

(0.12% on average) essentially due to the leftovers produced
by the last large item of each lots. By contrast, models
[P+], [P−], and [R] protect the solutions against defect real-
izations by overproducing, on average, +11.78%, +5.90%,
and +8.89%, respectively.

It is interesting to observe that the models behave very
similarly in terms of trim loss (precisely, that of [P−] is on
average slightly less than [R]: 1.14% vs. 1.19%). Robustness
is however achieved, besides overproduction, by employing
different assortments of large items to locally mitigate the
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4168 ARBIB ET AL.Production and Operations Management

impact of critical defects (see Section 7.3). In detail, in [R]
solutions the assignment of small sizes to large ones differs
from [P0] solutions by 15.25% on average, with a peak of 53%
in I7.

We also observe that [R] almost fully balances the nega-
tive and positive net productions of the probabilistic p-median
models. The overproduction VO, in fact, represents a price
of robustness that is completely paid back by a null mean
percent deviation ES of the expected faultless area versus
the total area required. Indeed, the initial overproduction of
[R] solutions is fully absorbed by defects realization. Both
simulation and worst-case analysis show that, though the
expected waste EW is in practice the same (9.20% vs. 9.18%
on average), the net production obtained via [R] is just a lit-
tle above demand in the simulation (mean ES = +0.06%) and
below demand in the worst case (the mean ES = −0.09%).
Instead, [P0] solutions end up with a definitely more pro-
nounced underproduction (7.98% on average), a value that
is consistent with the company estimate of losses due to
imperfections.

A direct consequence, very detrimental for production
costs, is that in all instances but I2 model [P0] does not
allow the completion of any order batch (EB = 98.48% on
average and 7.71% mean underproduction per order). On
the other hand, the mean percent of back-orders recorded
by robust solutions is reduced to 42.7%. This value is still
large but in this case the mean per-order underproduction
is as small as 0.32%, a value that greatly helps keep the
whole plant operation smooth. In fact, the expected losses
āj used in the objective functions of the probabilistic p-
median models are mean values not able to precisely capture
the realization of defects. On average, the net production
obtained via [P+] (resp., [P−]) increased (resp., decreased)
by 2.69%.

About the Monte Carlo simulation, Table 5 shows, for each
model, the number of iterations of the simulation, the CPU
time, the average number f̂ of sampled faults per repetition,
and the average percentage of critical defects. Few seconds
CPU time were generally spent to simulate the solutions of
instances I1–I11. The largest deviation from this behavior is
the 50.21 seconds recorded to simulate the [R] solution of
instance I11. The mean CPU time ranges between 5.62 ([P−])
and 10.87 s ([R]). The average f̂ is larger for the models ([P+]
and [R]) that embed a larger estimation of faults, reaching
74, 422 defects per iteration. The hit rate is similar for all
models, about 94.7% on average.

We finally observe that the sample means are almost
always slightly lower than the corresponding analytical val-
ues (with a maximum difference of 0.012%). However, the
values of all the analytical means fall in the 95% confidence
intervals of the statistical parameters obtained by Monte
Carlo simulation. The small bias is probably due to the fact
that, for the sake of numerical precision, we approximated
t
𝜑 = 0 for t > 10, that is, a large item with more than 10
defects is regarded as an event with negligible chances.

7.5 Results for CR strategy

Tables 6, 7, and 8 give the results obtained with CR strat-
egy. Table 6 has no [P0] section since it is the same
as Table 2: in fact, [P0] solutions are not based on
probabilities and therefore are identical. The other mod-
els behave very similarly with CR and NR strategy, with
a slight general reduction, in the former case, of both
trim loss and overproduction. With model [R], trim loss
reduces to 1.18% (vs. 1.19%) and overproduction to 8.53%
(vs. 8.89%).

If one reads the outcome of the Monte Carlo simulation,
[P0] turns out to produce the same percentage of back-
orders as with NR. On the other hand, the mean percent
underproduction and the mean total waste EW decrease:
the former from 7.98% to 7.68%, the latter from 9.18% to
8.88%.

We observed similar variations in [R], [P+], and [P−] solu-
tions. In particular, the mean total waste EW of [R] solutions
decrease by 0.32%. Instead, unlike [P0] solutions, the mean
percent back-orders EB of the [R] solutions obtained with CR
decreases by some 1%.

Overall, the implementation of CR strategy keeps the per-
cent deviation ES at same level as NR strategy, but can reduce
total waste by 3.5% (from 9.20% to 8.88%), indeed a nonneg-
ligible improvement given the high production volume of the
plant, and also considering that EW is mainly lowered because
faulty area is in turn reduced by 4% on average. However, the
CR strategy may require additional cuts and/or cutter set-ups
that can considerably increase processing time, thus possi-
bly cancelling the benefits of a better response to defects. An
assessment from the plant management is therefore required
in this regard.

A final note on the performance of the simulations: Table 9
shows the details of Monte Carlo simulation for CR strat-
egy. Our considerations are similar to those done for Table 5,
but some differences appear when comparing simulation
performance of CR and NR. With the former strategy, the
CPU time required for instances I1–I11 is generally larger
than with the latter, reaching 89.19 s with model [P+] in
instance I11. On the whole, the mean simulation time with
CR strategy is 2.42 times that with NR. This growth can be
explained by a +7.83% iterations to converge, and also by
the enumeration required to find the best pattern reconfigu-
ration. The faults sampled on the whole in CR and NR are
comparable in number, with a slight reduction (−0.3%) for
CR; but the hit ratio lowered on average by 3.49%, result-
ing in a mean 4% reduction of defective area. This is due
to the benefits of this reconfiguration policy. Considering
the potential benefit of CR w.r.t. NR, the hit ratio reduction
could seem modest. It should be noted, however, that hit
ratios refer to solutions employing only maximal cutting pat-
terns. These, on one hand, ensure very small trim loss but,
on the other hand, offer little room for defect avoidance
operation.
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TA B L E 6 Solutions with constrained reconfiguration strategy. In bold are the averages over instances I1 - I11.

[P+] [P−] [R]

CPU VO VT CPU VO VT CPU gap VO VT

Inst (s) (%) (%) (s) (%) (%) (s) (%) (%) (%)

I1 0.05 10.62 0.31 0.08 5.19 0.31 0.26 0 7.94 0.31

I2 0.03 12.32 2.10 0.03 6.98 1.66 1.09 0 9.73 1.93

I3 0.05 11.88 1.57 0.14 5.73 1.56 0.90 0 9.06 1.55

I4 0.09 7.85 1.08 0.08 3.89 1.08 12.06 0 6.19 1.15

I5 0.09 11.85 0.46 0.09 5.79 0.47 49.49 0 8.96 0.50

I6 0.08 15.26 1.72 0.17 7.47 1.64 99.02 0 11.32 1.68

I7 0.20 11.79 0.34 0.17 5.75 0.33 - 0.13 8.78 0.35

I8 0.20 10.53 2.27 0.20 5.07 2.21 809.10 0 8.07 2.25

I9 0.31 9.25 1.10 0.31 4.56 1.13 - 1.06 7.35 1.13

I10 0.48 10.83 0.85 0.55 5.42 0.83 - 2.01 8.00 0.97

I11 0.27 11.36 1.10 0.36 5.52 1.09 - 0.34 8.45 1.11

Avg 0.17 11.23 1.17 0.20 5.58 1.12 97.20 0.32 8.53 1.18

I12 0.83 10.95 0.46 1.00 5.34 0.46 - 2.28 5.79 0.49

I13 1.27 12.19 0.65 1.27 5.94 0.64 - 2.52 6.68 0.68

I14 0.88 22.83 2.96 1.30 10.90 2.68 - 5.84 11.44 2.76

I15 2.39 10.61 1.07 2.44 5.17 1.08 - 11.38 7.69 5.21

TA B L E 7 Results of Monte Carlo simulation

[P0] [P+] [P−] [R]

ES EW EB ES EW EB ES EW EB ES EW EB

Inst (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

I1 −7.14 7.44 100.00 2.71 7.44 0.00 −2.34 7.44 75.00 0.22 7.45 50.00

I2 −7.37 10.05 83.33 3.14 10.10 0.00 −1.67 9.62 83.33 0.82 9.90 0.00

I3 −8.47 9.93 100.00 2.37 9.93 0.00 −3.25 9.92 100.00 −0.20 9.91 83.33

I4 −5.85 6.99 100.00 1.47 6.93 0.00 −2.25 6.93 100.00 −0.09 7.00 44.44

I5 −8.30 8.78 100.00 2.52 8.76 0.00 −3.02 8.76 100.00 −0.13 8.80 41.67

I6 −9.91 11.59 100.00 3.65 11.62 0.00 −3.33 11.53 100.00 0.10 11.58 35.71

I7 −7.91 8.26 100.00 2.89 8.27 0.00 −2.66 8.26 100.00 0.12 8.29 26.67

I8 −7.59 9.71 100.00 2.09 9.73 0.00 −2.94 9.67 100.00 −0.18 9.72 47.06

I9 −6.95 8.02 100.00 1.56 8.06 0.00 −2.77 8.06 84.21 −0.20 8.08 52.63

I10 −7.19 8.15 100.00 2.76 8.07 0.00 −2.24 8.03 90.48 0.14 8.18 28.57

I11 −7.76 8.80 100.00 2.66 8.82 0.00 −2.71 8.80 100.00 −0.02 8.83 46.15

Avg −7.68 8.88 98.48 2.53 8.89 0.00 −2.65 8.82 93.91 0.06 8.88 41.48

I12 −7.74 8.20 100.00 2.32 8.20 0.00 −2.84 8.19 100.00 −2.38 8.18 44.83

I13 −8.74 9.38 100.00 2.34 9.37 0.00 −3.35 9.35 100.00 −2.73 9.44 45.71

I14 −13.80 16.18 100.00 5.99 16.26 0.00 −4.45 16.14 100.00 −3.95 16.19 94.44

I15 −7.56 8.56 98.00 2.21 8.58 0.00 −2.80 8.58 94.00 0.35 11.67 38.00

8 CONCLUSIONS AND FUTURE
RESEARCH

We addressed a stock assortment-and-cutting problem with
the goal of constructing optimal solutions that are robust

against imperfections of raw material. The problem and
the computational results presented here refer to a real
application in the glass industry. Defect occurrence was
modeled as a Poisson point process. On that basis, we
developed approaches that protect solutions against the worst
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TA B L E 8 Results of worst-case scenario

[P0] [P+] [P−] [R]

ES EW EB ES EW EB ES EW EB ES EW EB

Inst (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

I1 −7.23 7.53 100.00 2.61 7.53 0.00 −2.43 7.53 75.00 0.13 7.53 50.00

I2 −7.51 10.20 83.33 2.96 10.25 0.00 −1.85 9.77 83.33 0.64 10.06 16.67

I3 −8.60 10.06 100.00 2.23 10.06 0.00 −3.39 10.05 100.00 −0.35 10.04 83.33

I4 −5.91 7.05 100.00 1.40 6.99 0.00 −2.31 6.99 100.00 −0.15 7.05 44.44

I5 −8.42 8.90 100.00 2.38 8.89 0.00 −3.15 8.88 100.00 −0.26 8.92 50.00

I6 −10.11 11.79 100.00 3.43 11.81 0.00 −3.54 11.72 100.00 −0.12 11.78 42.86

I7 −8.03 8.38 100.00 2.76 8.38 0.00 −2.78 8.38 100.00 −0.01 8.40 46.67

I8 −7.75 9.87 100.00 1.91 9.89 0.00 −3.11 9.82 100.00 −0.35 9.87 52.94

I9 −7.05 8.12 100.00 1.46 8.15 0.00 −2.87 8.15 84.21 −0.29 8.17 52.63

I10 −7.28 8.24 100.00 2.66 8.17 0.00 −2.34 8.13 90.48 0.03 8.27 42.86

I11 −7.86 8.91 100.00 2.55 8.93 0.00 −2.82 8.90 100.00 −0.13 8.93 69.23

Avg −7.80 9.00 98.48 2.40 9.01 0.00 −2.78 8.94 93.91 −0.07 9.00 50.15

I12 −7.85 8.31 100.00 2.20 8.31 0.00 −2.95 8.30 100.00 −2.49 8.28 58.62

I13 −8.87 9.51 100.00 2.19 9.50 0.00 −3.49 9.49 100.00 −2.87 9.57 71.43

I14 −14.15 16.53 100.00 5.57 16.59 0.00 −4.84 16.48 100.00 −4.34 16.53 100.00

I15 −7.65 8.65 100.00 2.10 8.68 2.00 −2.91 8.67 96.00 2.35 9.91 48.00

TA B L E 9 Performance of Monte Carlo simulation with CR strategy

[P0] [P+] [P−] [R]

Iter CPU Avg. f̂ Hits Iter CPU Avg. f̂ Hits Iter CPU Avg. f̂ Hits Iter CPU Avg. f̂ Hits

Inst (s) (%) (s) (%) (s) (%) (s) (%)

I1 850 18.69 15181 94.78 790 15.90 16792 94.82 930 16.82 15968 94.80 290 6.24 16395 94.80

I2 470 0.37 444 89.13 1000 0.58 493 89.20 820 0.46 467 89.09 1000 0.69 480 89.13

I3 820 23.42 23589 90.15 540 14.72 26393 90.11 450 12.11 24944 90.15 1000 30.08 25716 90.22

I4 730 9.51 8905 91.62 700 9.69 9591 91.75 520 5.62 9243 91.73 510 6.24 9454 91.70

I5 850 33.21 15423 93.69 880 18.29 17242 93.68 780 15.56 16309 93.70 480 11.72 16811 93.70

I6 1000 7.69 3956 89.24 550 2.65 4556 89.07 990 4.53 4242 89.08 810 4.86 4396 89.26

I7 860 33.67 22153 94.57 520 15.71 24765 94.53 870 24.78 23417 94.60 520 18.62 24101 94.47

I8 710 38.65 23126 88.93 680 22.62 25556 88.84 850 27.46 24274 88.94 1000 41.78 24980 88.96

I9 840 21.16 11925 91.83 390 7.39 13029 91.81 450 8.46 12475 91.70 290 7.36 12808 91.85

I10 760 13.86 9114 91.89 650 9.11 10085 91.85 1000 14.53 9586 91.91 1000 17.74 9834 91.82

I11 150 20.18 66494 91.15 870 89.19 74008 91.13 110 10.79 70130 91.16 590 78.49 72093 91.18

Avg 731 20.04 18210 91.54 688 18.71 20228 91.53 706 12.83 19187 91.53 681 20.35 19734 91.55

I12 420 103.31 102101 93.53 140 25.89 113234 93.54 520 89.22 107513 93.55 520 127.84 108002 93.51

I13 850 159.63 72425 93.02 650 85.56 81227 92.90 120 15.32 76706 92.95 290 53.65 77268 92.95

I14 410 142.69 160586 85.65 280 75.70 197625 84.90 510 125.99 177901 85.79 420 168.32 178940 85.59

I15 230 81.79 119487 91.03 470 118.84 132129 90.84 90 21.84 125621 90.82 420 200.68 167363 34.25

possible distribution of f defects over the glass sheets to
be cut.

Depending on the recourse strategy used, a defect on
a glass sheet may or may not be avoided. With the sim-
plest reaction considered in the present case, that is, NR,

the recourse simply consists in doing nothing. The small
items hit are just discarded with no attempt to reconfigure
the patterns. In more general and effective (but also com-
plex) reactions, patterns can be reconfigured by moving
the strips of scrap (CR), or even by splitting them with
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additional cuts (UR) in order to let defects fall in the trim
loss.

Within each glass sheet, we then evaluate the expected loss
of produced items via the conditioned probability of finding
a defect unrecoverable with the recourse strategy adopted.
Closed forms for the computation of such probabilities were
provided in simple cases, and obtained via Monte Carlo
simulation in more complex ones.

Starting from a deterministic p-median model that mini-
mizes the total glass area used, two alternative approaches
were presented. In the first one (models [P+] and [P−]),
the expected loss by defects is just plugged into the objec-
tive function of the p-median model, and in the second one
(model [R]), the robust counterpart of the p-median model is
constructed in the classical vein of robust optimization. Com-
putational tests were performed on real data taken from the
application. The tests show that:

∙ both approaches mitigate the pronounced net production
deficit and back-order volumes found by deterministic
solutions, while keeping trim loss pretty much at the same
(low) level.

∙ Nonetheless, [P+] and [P−] seem to not completely hit the
target. The former nullifies back-orders at the cost of a non-
negligible extra production (which is regarded as waste).
The latter substantially reduces net production deficit, but
leaves back-order percentages almost untouched.

∙ Conversely, the robust model [R] halves the amount of
back-orders with a net production that deviates from
requirements by only 0.06%. The price of robustness, con-
sisting in the initial overproduction, is then completely
absorbed.

∙ Finally, a redesigned easy-to-implement recourse strategy,
CR, achieves a nonnegligible 3.5% reduction of total waste,
mainly attributed to a mean 4% reduction of the defective
area. This is a valuable figure in case defective items are
not treated as waste but as lower value products.

In our opinion, the results open interesting perspectives
and research challenges in the field of stock cutting. In
fact, despite the recognized importance of defect handling in
industrial applications, very few studies can be found on this
subject. To the best of our knowledge, none of them address
the problem of finding robust solutions. Among the questions
left open we can list the following:

∙ How should robustness against defects be dealt with
in standard cutting stock, or in general one- and two-
dimensional knapsack/bin packing problems? Clearly, the
possibility of solving model [R] algorithmically (by,
e.g., column generation and/or branch-and-price) is both
interesting and relevant.

∙ It is not clear whether a stochastic programming for-
mulation would lead to a better performance in both
computational and economical terms. This topic is worth a
separate investigation and left as a potential future project.

∙ What is the complexity of fault recovery with UR recourse
strategy or more complex ones?

Finally, in our case study, trim loss and defective items
are not distinguished but altogether treated as waste. This is
not the case for industrial production in general. For exam-
ple, some defect types are tolerated in wood-board cutting
and the items affected are not treated as waste but as lower
value production. In such cases, it would be interesting to
understand how robust solutions would change, and in par-
ticular whether they would or would not make a larger use
of trim loss as a means to increase protection against value
loss.
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