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Abstract
In this study, we focus on the delivery of mobile healthcare services in rural areas, 
where doctors visit remote villages which do not have a healthcare facility nearby. 
The aim is to increase the accessibility of healthcare services for such population 
centers. We aim to determine the village assignments of the doctors, their monthly 
visit schedules and base hospitals where they start and end their tours. We model 
this as a periodic location routing problem and use the policies of Ministry of Health 
of Turkey as a basis for our mathematical formulation. These policies include the 
essential components of mobile healthcare services, namely, continuity of care and 
determining evenly distributed periodic visits. We determine the visit schedules, i.e. 
routes, of doctors endogenously while satisfying these policies. We also develop a 
heuristic algorithm based on a cluster first-route second approach and solve larger 
instances more effectively. The computational experiments support that this solution 
methodology can effectively find optimal or near-optimal solutions and improve the 
computational times significantly.

Keywords  Periodic location routing · Mobile healthcare services · Continuity of 
care · Scheduling · Cluster first route second

1  Introduction

Availability of healthcare facilities, which may include multi-specialty hospi-
tals or medical clinics, is one of the essential components of national health and 
welfare. The count and spatial distribution of these facilities have an impact on 
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the widespread availability of healthcare services. However, convenient access to 
healthcare facilities in rural areas and by elderly patients remain to be a growing 
challenge. Traveling significant distances to reach the nearest healthcare facility to 
seek a simple medical treatment or to get routine checkups can be a real burden for 
these group of patients. The most effective solution to this globally recognized issue 
is considered to be providing mobile/home healthcare services, where healthcare 
providers visit patients instead of patients visiting healthcare facilities.

There are many applications of mobile/home healthcare services throughout the 
world including the U.S., Canada, UK, France, Norway, Brazil, Egypt and India. It 
is observed that each country uses these services for different beneficiaries such as 
elderly, children, poor or patients living in rural areas (Sargutan 2006). In the U.S., 
12 million patients depend on some form of home care each year (NAHC 2020). 
Similarly, 2 million Canadian patients, which is over 5% of their nationwide popula-
tion, benefit from home care services annually (Statistics Canada 2020). Majority of 
the patients who are in need of these services are indicated as the elderly. The need 
for home healthcare services will continue to grow as the population projections 
show that we are moving towards an ageing world and 65+ population is expected to 
increase steadily within the next 50 years (US Census Bureau 2018).

In addition to these, recent developments show that home healthcare might have 
an increased importance during pandemics. The impairment of immune function of 
elderly people and likelihood of them to have co-morbid diseases (e.g. cardiovas-
cular, respiratory, etc.) put them under the risk group. Home healthcare is expected 
to expose far less people to infectious diseases compared to their hospitalization. 
Recent COVID-19 spread has shown that it is essential to provide these patients the 
required support while they remain safely at home so that their public exposure at 
healthcare facilities is prevented. These services also help free up hospital beds and 
equipment during the pandemic for the patients who are in critical condition or in 
need of special medical equipment, e.g. respiratory ventilators.

Besides the traditional home healthcare services, mobile practitioners/nurses vis-
ited vulnerable and high-risk group patients at home for COVID-19 testing and vac-
cination. At the beginning of the pandemic, testing via mobile units have been made 
available for those who are vulnerable and unable to get to an assessment center in 
Canada (Ontario Health 2020). In the U.S., Centers for Disease Control and Pre-
vention published guidelines for mobile practitioners to vaccinate people who are 
homebound, i.e. who cannot leave home due to an illness (CDC 2021). In Turkey, 
elderly who are above 85 have been granted the option to be vaccinated at their 
homes (CNNTurk 2021). With similar practices all around the world, it is evident 
that mobile healthcare services could be essential for reasons other than traditional 
home healthcare during pandemics.

Consequently, home healthcare operations are essential to support elderly, 
increase the access to healthcare in rural areas, and mitigate hospital bed and equip-
ment shortages under pandemics. Therefore, it is crucial to assist healthcare deci-
sion makers in providing efficient home healthcare services. Motivated by this, in 
this work we consider the applications where family practitioners periodically visit 
remote rural communities (villages) which do not have a healthcare facility nearby. 
We develop a mathematical model that determines the monthly visit schedules of 
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practitioners as well as their base hospitals while minimizing the travel time and sat-
isfying problem specific requirements. Our study focuses on an application in Tur-
key where such a home healthcare system has been in use since 2010 in remote rural 
communities. There are two main policy requirements enforced by the Ministry of 
Health of Turkey in this application. First, the time between two consecutive visits 
to a specific village should always be the same, and we refer to this requirement as 
maintaining evenly distributed periodic visits. Second, the villages should be visited 
by the same practitioner, hence continuity of care should be satisfied (Official Jour-
nal 2010).

These type of periodic routing problems are already available in the operations 
research (OR) literature and they are mainly modelled with a predefined set of alter-
native schedules. The solution methodologies provided select the best visiting com-
bination among many. However, unless all possible schedules are defined, which 
might be exponentially large, the solution of this approach might fail to find the 
global optimum. Another characteristic of these routing problems is that the servers 
are generally assigned to customers randomly, so that continuity of care is neglected. 
This is an important factor to consider in healthcare problems since it reduces frag-
mentation, thus, improves patient safety and quality of care.

In connection to these points, the main contributions of this work can be listed 
as follows. We develop a new integer programming (IP) model which generates the 
schedules via its constraints and eliminates the need to define these schedules exog-
enously. These constraints are also tailored to meet the requirements of evenly dis-
tributed periodic visits. In addition to these, continuity of care is also considered in 
our modelling approach to increase the service quality of patients. This work fills 
a gap in the literature by providing a modelling approach that generates schedules, 
evenly distributes periodic visits and ensures continuity of care. We also develop 
a cluster first-route second based heuristic algorithm in order to obtain solutions 
in shorter computational times without compromising the solution qualities. We 
exploit the p-median formulation at the clustering phase of this algorithm and solve 
the routing subproblems to optimality by our proposed IP model.

The remainder of this paper is organized as follows: in Sect.  2, we review the 
most relevant literature. In Sect. 3 we define the problem framework in detail and 
present our mathematical model. We explain the details of our heuristic algorithm in 
Sect. 4. Section 5 is dedicated to the discussion of the results of our solution meth-
odologies. The study concludes with an overview of the work done and a discussion 
of adaptability to other possible application areas in this context.

2 � Literature review

Home healthcare (HHC) is a well studied topic in the OR literature and it is intro-
duced by Begur et al. (1997) and Cheng and Rich (1998). The former study is moti-
vated by a case study in the US and it develops a spatial decision support system 
to determine the schedules and routes of nurses. The latter work models the same 
problem as a multi-depot vehicle routing problem (VRP) with time windows and 
propose a two-phase heuristic algorithm that builds and improves tours at respective 
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phases. Many other studies follow these two pioneering works and the majority of 
them focus on short-term or single period planning problems. As our study includes 
periodicity in the visits, we discuss the relevant works that consider multiple peri-
ods. For a detailed discussion on HHC routing and scheduling problems, we refer 
the readers to the review papers (Fikar and Hirsch 2017; Cissé et al. 2017).

In HHC problems, the most common issues addressed are determining the sched-
ules and routes of the nurses. Steeg and Schröder (2008) is the first study that solves 
a multi-period HHC problem. The aim is to maximize the nurse–patient loyalty and 
the authors develop a hybrid approach that integrates adaptive large neighbourhood 
search (ALNS) and constraint programming (CP). Nickel et  al. (2012) generates 
weekly schedules of the nurses with a two-stage algorithm that also benefits from 
CP. Grenouilleau et  al. (2019) develops a heuristic based on set partitioning and 
ALNS frameworks. Braekers et al. (2016) extends the multi-period HHC problem 
by a bi-objective setting, where the travel cost and patient inconvenience are mini-
mized. Cinar et al. (2019) introduces a priority parameter which increases exponen-
tially by day for the unvisited patients. The authors simultaneously maximize the 
total priority of visited patients and minimize the travel time and solve the problem 
by an ALNS algorithm.

Robust optimization is another OR tool that is used to address HHC problems. 
Cappanera et al. (2018) and Lin et al. (2018) introduce stochasticity to HHC prob-
lems by considering uncertainty in demand, e.g. last minute cancellations. Nasir and 
Dang (2018) considers patient and nursing staff selection according to the dynamic 
arrival and departure of patients. In addition to the classical HHC decisions, the 
authors also decide whether to accept a patient or hire an additional nurse. Demir-
bilek et al. (2019) also works on this dynamic acceptance and scheduling problem 
and the objective is to maximize the average number of daily visits of the nurses. 
A novel consideration of this work is to visit the patients at the same time of each 
week.

There are a few studies which consider location decisions in addition to the clas-
sical decisions of HHC problems. Fard et  al. (2018) is the first study to include 
location decision of the pharmacies that the nurses will be assigned to besides their 
routes. Fathollahi-Fard et  al. (2019) extends this by considering emissions as a 
secondary objective and solving the problem for multiple periods with simulated 
annealing.

As the routing component is the most prominent element of HHC problems, most 
of the developed models are adaptations of VRP. In almost all of the aforementioned 
studies, patients have time windows while they may report nurse preferences, and 
nurses are allocated to patients according to their qualifications. Except the last two 
studies, location decisions are not a part of the problem and continuity of care is 
overlooked.

In the problem setting of our work, we focus on a more high-level problem where 
the routes of practitioners are determined on the village-level rather than patient-
level. As the practitioners are assumed to visit a group of residents at the same time 
slot at each village visit, this high-level problem setting does not include some of the 
main characteristics of the previous studies, e.g. patient time windows, nurse prefer-
ences, and nurse qualifications. In addition to this, our study differs by its periodicity 
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of the visits (visit frequencies and rules) and continuity of care requirements. Thus, 
we believe Periodic VRP (PVRP) and Periodic Location Routing Problem (PLRP) 
are the most relevant modelling approaches to our problem setting, so we review this 
literature next.

In classical PVRP, customers are visited multiple times during the planning 
period and the visit schedules are selected from a predefined set of alternatives. The 
aim of the PVRP is to find the allocation of customers to these predefined sched-
ules such that each node is visited required number of times while minimizing the 
total cost. This problem is introduced to the literature by Beltrami and Bodin (1974). 
The authors are motivated by a periodical municipal waste collection problem in 
New York City and prove that the problem is more difficult and complex than clas-
sical VRP. Russell and Igo (1979) proposes a heuristic approach which first selects a 
schedule for each node and then routes them individually. Christofides and Beasley 
(1984) provides the first mathematical formulation name the problem as The Period 
Routing Problem. This problem could not be solved optimally due to its complexity 
at that time.

Once the problem is defined and proved to be NP-hard, heuristic algorithms dom-
inated the literature in the succeeding years. Some of the articles address the prob-
lem by utilizing LP relaxation in their formulation (Tan and Beasley 1984; Chao 
et al. 1995). IP based heuristics are also proposed, in which a part of the problem is 
solved via an IP and routes are generally constructed using Clarke and Wright algo-
rithm (Russell and Gribbin 1991; Shih and Chang 2001; Gulczynski et  al. 2011). 
Tabu search (TS) is another commonly used algorithm to find higher quality solu-
tions (Cordeau et al. 1997; Cordeau and Maischberger 2012; Liu et al. 2014). There 
are also studies which propose metaheuristics that are based on TS (Archetti et al. 
2018; Nair et al. 2018). A column generation framework is used by multiple studies 
to solve the routing problem individually after assigning customers to the schedules 
by giving priority to the ones with the highest demand (Mourgaya and Vanderbeck 
2007; Cacchiani et al. 2014). Lagrangian relaxation, variable neighbourhood search 
(VNS) and genetic algorithm are the other approaches that are utilized for PVRP 
(Francis and Smilowitz 2006; Hemmelmayr et al. 2009; Carotenuto et al. 2015). For 
a more detailed review of PVRP literature and used solution methodologies, we refer 
the readers to the surveys by Francis et al. (2007) and Campbell and Wilson (2014).

One of the common aspect of these studies is the absence of continuity of care 
and visiting rules. Rodriguez-Martin et  al. (2019) is one of the few studies that 
implicitly incorporate continuity of care in PVRP so that the customers are served 
by the same driver at all visits. Another distinguishing factor of the previous stud-
ies is that they all define a set of alternative visiting combinations and their solution 
methodology chooses the best alternative among the ones in this set. However, it 
is time consuming and inefficient to define all such combinations, especially when 
the number of them increases exponentially. Hence, it is easy to see that unless all 
of them are defined exogenously, the solutions may be suboptimal. There are a few 
studies in the literature highlighting this issue under various applications of PVRP. 
Maya et  al. (2012) works on a teaching assistant scheduling problem for disabled 
students in Netherlands. The authors take some visiting rules into account; how-
ever, do not impose continuity of care. An et al. (2012) determines the schedules of 
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the nurses that are providing HHC in Korea. It considers continuity of care, but not 
include any visit rules, e.g. evenly distributed periodic visits. Archetti et al. (2017) 
defines the problem for a generic distribution plan where the quantity of delivered 
products at each time period is a decision variable. This study neither incorporates 
continuity of care, nor any visit rules. Thus, it can be claimed that none of the stud-
ies in the PVRP literature fully overlap with the requirements of our problem setting.

The aim of the PLRP is exactly the same as PVRP, except it also finds the loca-
tions of the depots where the vehicles start and end their tours. The PLRP litera-
ture is not as broad as PVRP as it has not been studied until much recently. Since 
PLRP is even more complicated than PVRP, it is also NP-hard and the literature 
consists of heuristic approaches rather than exact solution algorithms. Note that, 
the PLRP setting is the one that is the closest to our problem framework.

PLRP is introduced by Prodhon (2007) and a metaheuristic approach is proposed 
to solve it, in which locations and routes are determined, and improved by a local 
search. Prodhon and Prins (2008) proposes a memetic algorithm with population 
management for PLRP. It is observed that this methodology outperforms the previ-
ous iterative heuristic approach both in terms of solution quality and computational 
times. Prodhon (2009) and Prodhon (2011) develop an evolutionary local search 
(ELS) algorithm. Both of these studies seek to find the optimal periodic decisions by 
improving the assignments of the customers to the visiting combinations. Prodhon 
(2011) is the first study to develop a mathematical model with predefined schedules. 
It is indicated that the IP is capable of solving small instances and heuristics are 
essential to handle the large ones.

Pirkweiser and Raidl (2010) addresses the same problem and develops a heuristic 
based on VNS. In the solution algorithm, the authors change depot locations and 
visit combinations iteratively and modify the daily routes by removing and reinsert-
ing the customers. Hemmelmayr (2015) utilizes a modified LNS algorithm which 
simply destroys a solution by removing customers and repairs it by adding them to 
another route or visit combination. It is observed that this approach improves the 
solution quality PLRP instances significantly. Koc (2016) introduces heterogeneous 
PLRP and its variant with time windows, and solves the large scale instances by 
a Unified-Adaptive LNS (U-ALNS) metaheuristic. The most recent study on this 
topic is by Hemmelmayr et al. (2017). In this study, a similar approach to Hemmel-
mayr (2015) is followed and in each iteration of ALNS, the current solution is partly 
destroyed by a destroy operator and reconstructed by a repair operator. The classifi-
cation of all PLRP studies can be found in Table 1.

This table points out that none of these studies take into account the three main 
aspects we consider in this study. Even though the characteristics of this problem are 
addressed separately in several studies in the PVRP literature, none of them consid-
ers creating the schedules with a mathematical formulation, satisfying visit rules as 
well as having continuity of care. Hence, it could be said that the dynamics of this 
problem generates a necessity for a novel solution approach. Before providing our IP 
model and solution methodology, we first discuss the problem framework and appli-
cation specific requirements in the next section.
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3 � Problem description and formulation

We consider a problem framework where a healthcare decision maker seeks to find 
cost effective monthly visit schedules of practitioners (doctors) who are delivering 
mobile healthcare services in rural areas. The decision maker would also like to 
determine the base healthcare facilities (hospitals) where the doctors start and end 
their tours for reporting. There are additional application specific requirements such 
as evenly distributed periodic visits and continuity of care which are determined by 
the Ministry of Health of Turkey Official Journal (2010).

According to the ministry guidelines, doctors are required to travel to the remote 
villages which do not have any healthcare facility nearby. Required monthly visit 
duration of a village depends on its population and for each duration, there are alter-
native visiting rules. Under our modelling framework, a working day consists of two 
half-day periods: 8am-12pm (morning) shift and 1pm-5pm (afternoon) shift. We 
then represent the monthly visit duration of each village as the number of half-days 
it has to be visited. This parameter will be referred as visit frequency hereafter. The 
relationship of population size and visit frequencies, as well as their alternative visit 
rules are shown in Table 2.

A small village with less than 100 residents has to be visited one half-day per 
month. For larger but still mid-sized villages, the visit frequency can increase to 
two, four or eight half-days in a month. The monthly frequency becomes 12 half-
days for the largest villages with more than 1,000 residents. Note that patients may 
also receive healthcare service without an appointment. Thus, doctors are required 
to be present at these villages even if there is no predetermined demand at a certain 
period.

Selecting at least one visit rule among the alternatives ensures that visits are 
evenly distributed through a month to have a balanced schedule for the patients. 
The largest villages can only be visited in three consecutive half-days each week. 

Table 1   PLRP summary

Authors Schedules Continu-
ity of 
care

Visiting rules Solved By

Prodhon (2007) Predefined × × Iterative Metaheuristic
Prodhon and Prins (2008) Predefined × × Memetic Algorithm
Prodhon (2009) Predefined × × ELS
Pirkweiser and Raidl 

(2010)
Predefined × × VNS

Prodhon (2011) Predefined × × Hybrid Evolutionary 
Algorithm

Hemmelmayr (2015) Predefined × × LNS
Koc (2016) Predefined × × U-ALNS
Hemmelmayr et al. 

(2017)
Predefined × × ALNS

Our study Decided by the model ✓ ✓ Cluster-first route-second
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A village with visit frequency of four (eight) is visited in one half-day each week 
(every 2.5 days) or in two consecutive half-days, which corresponds to a full work-
ing day, every 2 weeks (1 week). With a very similar logic, a village with visit fre-
quency of two is either visited in one half-day every 2 weeks or in a day. Naturally, 
the smallest villages can be visited at any available time in a month.

In addition to these rules, the villages have to be visited at the same slot in case 
they are visited in multiple weeks. For instance, a village with frequency of four vis-
ited on only Tuesday afternoon in the first week cannot be visited at any other time 
in the following 3 weeks. Similarly, a village with frequency of two can be visited 
on Friday morning of the fourth week if and only if it was visited on the same time 
of the second week. Besides reinforcing even distribution of the visits, this addi-
tional rule also ensures recurrent visits occur on a pattern so that the patients at a 
particular rural community can easily follow the arrival plan of the doctor.

To demonstrate the frequency and visiting rules, we provide an example schedule 
with 8 villages, denoted by letters A-H. Assuming a work week consists of 5 days 
and a month is 4 weeks, there are 40 half-days in a month. Table  3 represents a 
schedule of a doctor that complies with the visiting rules:

In this example, village A with frequency of 12 is visited in the first three con-
secutive half-days of each week. Villages B and C with frequency of 8 are scheduled 
according to the following alternative visiting rules: B is visited in every 2.5 days 
for a half-day throughout the month, and C is visited on Wednesdays every week. 
Among the villages D and E, which are the ones with frequency of 4, the former is 
scheduled to be visited on Thursday of weeks 1 and 3 whereas the latter is visited 

Table 2   Frequencies and visit rules of the villages according to the population size

Population size 
(number of resi-
dents)

Visit duration 
(hours/month)

Frequency 
(half-day/
month)

Alternative visit rules

[0, 100] 4 1 1 half-day in a month
(100, 300] 8 2 1 day in a month OR 1 half-day every 2 weeks
(300, 750] 16 4 1 day every 2 weeks OR 1 half-day every week
(750, 1000] 32 8 1 day every week OR 1 half-day every 2.5 days
(1000, ∞) 48 12 1.5 days every week

Table 3   A sample schedule with 8 villages: village → Frequency: {A} → 12, {B,C} → 8, {D,E} →

4, {F} → 2, {G,H} → 1

Monday Tuesday Wednesday Thursday Friday

A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M.

Week 1 A A A B C C D D B E
Week 2 A A A B C C F F B E
Week 3 A A A B C C D D B E
Week 4 A A A B C C G H B E
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only on the Friday afternoons. Finally F is scheduled on Thursday of week 2, and G 
and H are visited in one half-day.

Another essential requirement to satisfy is continuity of care. This ensures that 
each doctor visits the same villages during a month. Therefore, patient safety, famili-
arity and quality of care can be improved as the doctor knows the medical history 
of the patient. Consequently, symptoms and personalized treatments can be tracked 
efficiently in the following weeks. Finally, the base hospitals, where each doctor is 
going to start and end their weekly tours, have to be selected among the existing 
hospitals.

We can summarize the unique characteristics of this problem as follows: 

•	 Visit frequencies depend on the population sizes.
•	 There are alternative visit rules for each frequency level.
•	 Services must be provided at the same slot each week.
•	 Continuity of care is ensured.
•	 Base hospitals have to be selected for each doctor.

There are two assumptions we make while considering these requirements. First, 
we assume that the doctors stay at the villages they visit during the weekdays. This 
assumption is a reflection of the real-life application as the doctors receive a per 
diem by the Ministry of Health of Turkey, which is considered to be a significant 
incentive to work away from home throughout the week. Second, the start time of 
the afternoon shift is flexible. Since the doctors are staying at the villages after the 
afternoon shifts, these shifts do not have a strict end time. Therefore, if the travel 
time from a village to another is slightly longer, we assume that the afternoon shift 
can start and end later than desired. This is not expected to create significant delays 
since we will focus on a small region where the villages are not that far from each 
other.

Considering these requirements and assumptions, we develop a mathematical 
model and a heuristic methodology that aim to determine the monthly schedules of 
the doctors and their base hospitals while minimizing the total travel time, which 
will be both cost and manpower efficient.

3.1 � Mathematical formulation

In this section we introduce an IP formulation which determines the schedules of the 
doctors via its constraints. Before presenting the optimization model, we introduce 
the notation to be used hereafter:

Sets:

I	� Set of villages.
Ik	� Set of villages with demand frequency k ∈ {2, 4, 8, 12}.
H	� Set of hospitals.
N	� Set of all nodes, N = I ∪ H.
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D	� Set of doctors.
T	� Set of time periods; {1, 2,… , 41}.
TM	� Set of time periods representing Monday mornings of weeks 2, 3, 4; 

{11, 21, 31}.
TF	� Set of time periods representing Friday afternoon of weeks 1, 2, 3; {10, 20, 30}.

Parameters:

dnm	� distance between nodes n ∈ N and m ∈ N.
fi	� visiting frequency of village i ∈ I.
�	� maximum working time of doctors.
p	� number of base hospitals to be selected.

It should be noted here that the capacity of each doctor is set to 40 time periods 
(half-days) assuming a 4  week horizon with five workdays. Time period 41 is 
defined to track the travel between the village visited on the last Friday afternoon 
and the base hospital. The decisions to be made can be represented by the following 
sets of binary variables:

Decision variables:

The following IP for the PLRP can now be proposed:

The objective function (1) minimizes the total distance traveled by all doctors. In the 
first part, the distances are summed up for each trip from node n to m. In the middle 
part, distances between the villages where a doctor visits at the end of a week and at 
the beginning of the succeeding week are subtracted as doctors are routed between 

xdt
nm

=

�
1 if doctor d ∈ D travels between nodes n, m ∈ N at time period t ∈ T,

0 otherwise.

ydt
i
=

�
1 if doctor d ∈ D visits village i ∈ I at time period t ∈ T,

0 otherwise.

ud
n
=

�
1 if node n ∈ N is assigned to doctor d ∈ D,

0 otherwise.

zh =

�
1 if a hospital at h ∈ H is selected as a base hospital,

0 otherwise.

kdt
ih
=

⎧⎪⎨⎪⎩

1 if doctor d ∈ D who is assigned to the hospital at point h ∈ H is

present at village i ∈ I at time period t ∈ T,

0 otherwise.

(1)

minimize
∑
n∈N

∑
m∈N

∑
d∈D

∑
t∈T

xdt
nm

⋅ dnm −

∑
n∈N

∑
m∈N

∑
d∈D

∑
t∈TM

xdt
nm

⋅ dnm

+

∑
i∈I

∑
h∈H

∑
d∈D

∑
t∈TM∪TF

kdt
ih
⋅ dih,
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these points at times in TM in our modelling approach. In the final part, the distance 
between the node visited on Friday afternoon and the base hospital, and between the 
base hospital and the village that will be visited the following Monday morning are 
added up. By this way, total distance of doctors is calculated by considering their 
trips within a week as well as their weekly returns from/to the hospital.

Constraint (2) guarantees that each doctor starts her tour at the beginning of the 
month. Each village is visited according to its visit frequency by constraint (3). Con-
straints (4) and (5) are the flow balance constraints. Unless a doctor is assigned to a 
village, she cannot be in that village at time period t due to constraint (6). Constraint 

(2)
∑
i∈I

∑
h∈H

xd1
hi

= 1, d ∈ D

(3)
∑
d∈D

∑
t≤40

ydt
i
= fi, i ∈ I

(4)
∑
n∈N

xdt
ni
= ydt

i
, i ∈ I, d ∈ D, t ∈ T�{41}

(5)
∑
n∈N

xdt+1
in

= ydt
i
, i ∈ I, d ∈ D, t ∈ T�{41}

(6)ydt
i
≤ ud

i
, i ∈ I, d ∈ D, t ∈ T�{41}

(7)
∑
d∈D

ud
i
= 1, i ∈ I

(8)
∑
i∈I

ydt
i
≤ 1, d ∈ D, t ∈ T�{41}

(9)
∑
n∈N

∑
m∈N

xdt
nm

≤ 1, d ∈ D, t ∈ T ,

(10)
∑
i∈I

∑
t≤40

ydt
i
≤ �, d ∈ D

(11)
∑
i∈I

∑
h∈H

∑
t∈T

xdt
ih
= 1, d ∈ D

(12)yd41
i

= 0, i ∈ I, d ∈ D

(13)kdt
ih
≥ ydt

i
+ ud

h
− 1, i ∈ I, h ∈ H, d ∈ D, t ∈ T ,
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(7) assigns each village to exactly one doctor and ensures the continuity of care 
together with the constraint (6) which prevents visiting the villages with a different 
doctors. A doctor can be in or travel to at most one village at a certain time period 
by constraints (8) and (9). The working hour limitation of the doctors is satisfied via 
constraint (10) and it is guaranteed that they return to the hospitals as soon as their 
schedule is completed by constraints (11) and (12). Constraint (13) linearizes the k 
variable which can be defined as the multiplication of y and u.

The location decisions are made via constraints (14)–(18). In this set of constraints, 
p hospitals are selected as bases, and every doctor is assigned to one. Any trip from 
a hospital is prevented if a doctor is not assigned to that hospital.

The remainder of the formulation are the specialized constraint sets for each visit fre-
quency and rule. For a village with visit frequency of 2, set of constraints (19)–(23) 
guarantee that once it is visited at time period t, then it should be visited either at 
the preceding or succeeding period (in case of two consecutive period visit), or 20 
periods later (in case it is visited at the same half-day every 2 weeks). Note that, end 
of the weeks should be handled carefully to prevent the undesired schedules. For 
instance t = 10 and t = 11 cannot be accepted as two consecutive periods since they 
belong to different weeks. In order to prevent this type of issues, constraints (21) and 
(23) are defined separately.

(14)
∑
h∈H

zh = p

(15)
∑
h∈H

ud
h
= 1, d ∈ D

(16)xdt
hi
≤ ud

h
, i ∈ I, h ∈ H, d ∈ D, t ∈ T

(17)xdt
ih
≤ ud

h
, i ∈ I, h ∈ H, d ∈ D, t ∈ T

(18)ud
h
≤ zh, h ∈ H, d ∈ D

(19)yd2
i
+ yd21

i
≥ yd1

i
, i ∈ I2, d ∈ D

(20)ydt+1
i

+ ydt−1
i

+ ydt+20
i

≥ ydt
i
, i ∈ I2, d ∈ D, t ≤ 20

(21)ydt−1
i

+ ydt+20
i

≥ ydt
i
, i ∈ I2, d ∈ D, t = {10, 20}

(22)ydt+1
i

+ ydt−1
i

+ ydt−20
i

≥ ydt
i
, i ∈ I2, d ∈ D, 21 ≤ t ≤ 39,

(23)ydt−1
i

+ ydt−20
i

≥ ydt
i
, i ∈ I2, d ∈ D, t = {30, 40}
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(24)
∑
t≤20

ydt
i
≥ 2 ⋅ ud

i
, i ∈ I4, d ∈ D,

(25)yd2
i
+ yd11

i
≥ yd1

i
, i ∈ I4, d ∈ D,

(26)ydt+1
i

+ ydt−1
i

+ ydt+10
i

≥ ydt
i
, i ∈ I4, d ∈ D, 2 ≤ t ≤ 20,

(27)ydt+20
i

+ ydt+30
i

≥ ydt
i
+ ydt+10

i
, i ∈ I4, d ∈ D, 1 ≤ t ≤ 10,

(28)ydt+20
i

+ ydt+21
i

≥ ydt
i
+ ydt+1

i
, i ∈ I4, d ∈ D, 1 ≤ t ≤ 19 ∶ t ≠ 10,

(29)
∑
t≤10

ydt
i
≥ 2 ⋅ ud

i
, i ∈ I8, d ∈ D,

(30)yd2
i
+ yd6

i
≥ yd1

i
, i ∈ I8, d ∈ D,

(31)ydt+1
i

+ ydt−1
i

+ ydt+5
i

≥ ydt
i
, i ∈ I8, d ∈ D, 2 ≤ t ≤ 5,

(32)ydt+1
i

+ ydt−1
i

+ ydt−5
i

≥ ydt
i
, i ∈ I8, d ∈ D, 6 ≤ t ≤ 10,

(33)ydt+10
i

≥ ydt
i
, i ∈ I8, d ∈ D, 1 ≤ t ≤ 30,

(34)
∑
t≤10

ydt
i
≥ 3 ⋅ ud

i
, i ∈ I12, d ∈ D,

(35)yd2
i
+ yd3

i
≥ 2 ⋅ yd1

i
, i ∈ I12, d ∈ D,

(36)yd1
i
+ yd3

i
+ yd4

i
≥ 2 ⋅ yd2

i
, i ∈ I12, d ∈ D,

(37)ydt−2
i

+ ydt−1
i

+ ydt+1
i

+ ydt+2
i

≥ 2ydt
i

i ∈ I12, d ∈ D, 3 ≤ t ≤ 8

(38)yd7
i
+ yd8

i
+ yd10

i
≥ 2 ⋅ yd9

i
, i ∈ I12, d ∈ D,

(39)yd8
i
+ yd9

i
≥ 2 ⋅ yd10

i
, i ∈ I12, d ∈ D,

(40)ydt+10
i

≥ ydt
i
, i ∈ I12, d ∈ D, 1 ≤ t ≤ 30,
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Similarly sets of constraints (24)–(28), (29)–(33) and (34)–(40) are defined to sat-
isfy the visit rules of frequency levels of 4, 8 and 12, respectively. Note that for the 
villages with visit frequency of 4, bi-weekly schedules are constructed as the next 
2 weeks of the month will be the repetition of the first two. Similarly, for the villages 
with frequency of 8 and 12 only weekly schedules are determined and they are repli-
cated for the remainder of the month. Finally, the domains of the decision variables 
are given in constraint (41).

Proposition 1  Even though there are two alternative visit rules for the villages with 
frequency of eight, they are visited in two consecutive half-days in an optimal solu-
tion as long as triangle inequality holds.

Proof  Assume to the contrary that there is an optimal solution in which a village 
with visit frequency of 8 is visited a half-day in every 5 periods. Consider an alter-
native solution which is obtained by moving the second visit of that village right 
after the first one in the first week, i.e. visiting this village in two consecutive peri-
ods while shifting the remaining villages by one period. It can be shown that this 
modified solution always provides a lower travel distance when triangle inequality 
holds. Since this village must be visited at the same time periods in the following 
3 weeks as well, we can repeat this process and improve the objective function value 
further. Therefore, the initial solution cannot be optimal which creates a contradic-
tion 	�  ◻.

3.2 � Valid inequalities

Next, we develop some valid inequalities to strengthen our IP formulation and decrease 
the computational times. These inequalities are logical derivations generated from the 
requirements of the problem and they can be represented as follows:

Constraints (42) and (43) are implied by the capacity of the doctors. A doctor can-
not be assigned to more than 3 villages with visit frequency of 12, and 5 villages 
with visit frequency of 8 and 12. The capacity restriction is additionally defined via 

(41)xdt
nm
, ydt

i
, ud

n
, zh, k

dt
ih
∈ {0, 1}, n,m ∈ N, i ∈ I, h ∈ H, d ∈ D, t ∈ T ,

(42)
∑
i∈I12

ud
i
≤ 3, d ∈ D

(43)
∑
i∈I12

ud
i
+

∑
i∈I8

ud
i
≤ 5, d ∈ D

(44)
∑
i∈I

ud
i
⋅ fi ≤ �, d ∈ D

(45)xdt
ij
≤ ud

i
, i ∈ I, j ∈ I, d ∈ D, t ∈ T



889

1 3

Mobile healthcare services in rural areas: an application…

u variables in constraint (44). Finally, the routes from a village are prevented for a 
doctor unless he is assigned to that village in constraint (45).

Since different combinations of valid inequalities may have different effects on 
the solution times, we aim to find the most suitable one among 16 possible combi-
nations. In order to do so, we perform extensive computational analysis on 15 test 
instances, which are detailed in Sect. 5.1. All possible combinations of these four 
valid inequalities are tested on a total of 240 configurations. For each configuration, 
we record the optimal solutions and the run times.

We find the most effective combination(s) by evaluating their computational per-
formance in terms of their run times. In order to determine the valid inequalities 
that generally perform well, we compare each combinations with the original model 
(without any valid inequalities). Additionally, we make instance-based comparisons 
by evaluating how each combination performs against the best one identified for that 
instance. The results of our analysis are summarized in Table 4. Further details can 
also be found in Savaşer (2017).

As a result of these extensive analyses, we decided to keep three combinations; 
only (44), (43)–(44) and all four inequalities. These three combinations have either 
the most number of instances with the top solution time or perform close to the 
fastest instance on average. In addition, they are also frequently better than the origi-
nal model without valid inequalities. Since these three combinations provide desir-
able outcomes for the determined performance indicators, we continue to work with 
them.

Table 4   Valid inequality effectiveness analysis

Valid inequality (VI) 
combinations

Faster than w/o VI (# 
of instances)

Top solution time (# 
of instances)

Avg. solution time differ-
ence (% Slower than the 
fastest)

w/o VI – 3 29.24
Only (42) 9 2 26.42
Only (43) 7 1 26.66
Only (44) 11 4 16.47
Only (45) 4 1 40.40
(42), (43) 8 2 28.08
(42), (44) 8 2 28.79
(42), (45) 7 2 37.35
(43), (44) 9 4 21.81
(43), (45) 5 2 35.91
(44), (45) 8 1 33.98
(42), (43), (44) 8 2 19.96
(42), (43), (45) 7 2 43.16
(42), (44), (45) 6 4 30.68
(43), (44), (45) 4 2 48.75
(42), (43), (44), (45) 8 4 34.54
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In the next step, these three combinations and the original model are tested on 
the 10 instances of the medium data set whose details are given in Sect. 5.1. It is 
observed that it gets harder to solve the mathematical model optimally when the 
data set size increases. Hence, we limit each experiment with a 2-h time bound. 
At the end of this duration, we record the value of the objective function and the 
remaining optimality gap for each setting.

According to the computational analysis, we observe that the original model finds 
the best objective value in only one of the 10 instances. Combinations only (44), 
(43)–(44) and (42)–(43)–(44)–(45) find the minimum distance value in 2, 3 and 4 
instances, respectively. We also observe that the last combination has the lowest 
average optimality gap and outperforms the original model in 6 instances out of 10. 
We refer the reader to Savaşer (2017) for further details on this data set analysis. As 
a result, we select this combination as the most suitable one for our PLRP model and 
the final version of the model denoted by P can be represented as follows:

4 � Heuristic approach

In this section, we develop a new heuristic based on a cluster first-route second 
approach in which we can exploit the hierarchical relationship between the assign-
ment and routing decisions. In the first stage of the heuristic, we assign villages to 
doctors without violating working hour limitations. In the second stage, we deter-
mine the optimal schedule of each doctor individually based on their villages assign-
ments which minimizes total traveled distance.

There are some studies in the literature that use two-phased heuristic algorithms. 
Archetti et al. (2018) generates a feasible solution in the initial stage with a MILP 
and improve it by TS in the second phase. An et al. (2012) addresses the problem 
of nurse scheduling by considering only high-frequency patients at the first phase 
with a MIP formulation, and integrates the less-frequent ones into the solution in the 
following stage. Even though the idea of benefiting from an optimization program 
is similar, in this study we consider a cluster first-route second approach and have 
problem specific requirements that must be satisfied.

In the first phase of our heuristic, we determine the clusters for each doctor by 
an IP formulation that takes the p-median model as a basis. This formulation deter-
mines the villages and the base hospital assigned to each doctor, which are within 
the working hour limitations, while minimizing the overall distance within the clus-
ters. The notation we use in the IP is consistent with the original model. The addi-
tional parameters and decision variables are given below:

Additional Parameters and Decision Variables:

C: number of clusters, i.e. number of doctors

(P) minimize (1)

subject to, (2) − (41),

(42), (43), (44), (45)
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xj =

{
1, if village j ∈ I is selected as a cluster origin,

0, otherwise.

yij =

{
1, if village i ∈ I is assigned to cluster origin j ∈ I,

0, otherwise.

The following IP for the clustering stage can now be proposed:

In the objective function (46), we minimize the total weighted distance within all 
clusters. We prioritize larger villages by multiplying the distance with visit frequen-
cies. We note here that alternative weighting schemes can be used in the objective 
function. For instance, one may choose to assign a weight of four to the villages with 
frequency of 12 and eight as these villages are consecutively visited in each week, 
and a weight of fi to the remaining villages. In constraint (47), the overall village set 
is divided into C clusters so that each doctor is assigned to a single one. Constraint 
(48) ensures that each village is assigned to an origin, i.e. every village receives 
healthcare services by a doctor. It should be noted here that the origins are dummy 
location points defined to use the p-median formulation and have no effect on the 
results of the heuristic approach. Constraint (49) satisfies the capacity limitations 

(46)minimize
∑
i∈I

∑
j∈I

dij ⋅ fi ⋅ yij

(47)
∑
j∈I

xj = C,

(48)
∑
j∈I

yij = 1, i ∈ I,

(49)
∑
i∈I

fi ⋅ yij ≤ �, j ∈ I

(50)yij ≤ xj, i ∈ I, j ∈ I,

(51)xj = yjj, j ∈ I,

(52)
∑
h∈H

zh = p,

(53)
∑
h∈H

yhj = xj, j ∈ I

(54)yhj ≤ zh, j ∈ I, h ∈ H,

(55)xj, yij, zh ∈ {0, 1}, i, j ∈ I, h ∈ H,
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of a cluster (doctor). By constraints (50) and (51), a village cannot be assigned to 
a non-origin node and it is assigned to itself if it is an origin. p base hospitals are 
selected in constraint (52) and a base hospital is assigned to each cluster in con-
straint (53). Infeasible base hospital assignments are prevented by constraint (54). 
Finally, constraint (55) presents the domain restrictions of the decision variables.

After determining doctors and the villages assigned to them, we use a simplified 
version of P in the routing phase of the heuristic. We adapt the formulation by first 
eliminating the doctor index d and location decisions as they are determined in the 
first phase. We also update the set I, distances and visit frequencies so that they only 
include the information of the villages which belong to that cluster. Therefore, we 
can claim that the computational challenges of our PLRP model are significantly 
simplified. With this adapted model, we determine the optimal schedule of each 
doctor separately and the objective values are summed up to obtain the overall dis-
tance traveled by all doctors.

After finding an initial feasible solution to the problem, we investigate the ways 
of improving the overall distance value. We focus on improving the clustering stage 
of the heuristic with an iterative approach since the routing phase is solved to opti-
mality by a mathematical model.

In this approach, we aim to find the next best cluster at each iteration. In other 
words, we determine the clusters of villages that provide the minimum objective 
value which is greater than the previous iteration at each step. Then, we generate the 
schedules of the doctors and calculate the total distance value. At the end of the pro-
cedure, the smallest overall distance value is selected as the solution of the heuristic. 
In order to determine the next best cluster, we introduce an additional constraint to 
the clustering model, which can be represented as follows:

� represents the objective function value of the previous iteration and 𝜖 > 0 is a 
small enough number that prevents bypassing a feasible solution. With this con-
straint, we set a lower bound for the objective function of the clustering IP and force 
the model to find a new set of clusters. Note that, � value is set to 0 in the first itera-
tion to guarantee the feasibility of constraint.

Despite this constraint, we can still obtain the same clusters with a different ori-
gins in the next iteration. Since the cluster origin is only a dummy decision in this 
process, these iterations cannot improve the solution. In order to prevent these rep-
etitions, we add another constraint to the model:

The set S represents the villages that are assigned to the first cluster, which includes 
village 1. This constraint tells that the villages in the first cluster cannot be all in 
the same cluster at the next iteration. We add this constraint to the formulation at 
each iteration and keep the ones that are generated in the previous steps. It should 

(56)
∑
i∈I

∑
j∈I

dij ⋅ fi ⋅ yij ≥ � + �

(57)
∑
s∈S

ysk ≤ |S| − 1, k =
{
j ∈ I ∶ y1j = 1

}
S =

{
i ∈ I ∶ yik = 1

}
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be noted here that, this constraint might skip the optimal solution as it is only stated 
for the first cluster. When we schedule more than 2 doctors, it is possible to find the 
optimal solution where the first cluster is the same but remaining ones are different.

Using constraint (57) might bypass the optimal solution, whereas not using it might 
result in unnecessary repetitions. Therefore, we execute the heuristic with two different 
settings; the one with constraint (57) will be referred as Heuristic-1 and other with-
out it will be referred as Heuristic-2. The representation of Heuristic-1 is provided in 
Algorithm 1. 

Notice that the representation of Heuristic-2 can be obtained by removing step 4. It 
should be noted that constraint (56) eliminates the possibility of finding an alternative 
cluster with the same objective function value. Although it is theoretically possible, it is 
highly unlikely to find such alternative clusters if the distance values are accurately esti-
mated with many decimal places. If that is not the case, equation (56) may be replaced 
with (57) instead of using both of them simultaneously in Heuristic-1.

5 � Numerical experiments

In this section, we analyze the performance of our model P and heuristics via 
extensive computational studies. First, we explain the characteristics of the data 
sets we use. Next, we solve P with CPLEX and perform sensitivity analysis on 
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the parameters of the model. Finally, we evaluate the performance of the heuristic 
approaches by comparing their solutions with P and each other. We provide the 
solution times of all three approaches and the differences between the optimization 
model and heuristic results.

5.1 � Instance generation

In this study, we use a real life data set from Burdur, which is among the first cities 
that the Ministry of Health provided mobile healthcare services in Turkey. The data 
covers three main municipalities of the city which have 50 residential points in total. 
Three different sized sets are formed as small, medium and large data sets. These 
are generated by taking the first 15, 30 and all 50 nodes of the main data set; where 
12, 26, 45 of the nodes are the villages and the remaining ones are alternative base 
hospital locations, respectively. The details of the data sets can be found in Kara and 
Savaser (2018).

We gather the exact coordinates of these villages from Google Maps and calcu-
late the Euclidean distances between each pair. In addition, we determine the visit 
frequencies according to the population size of each point. However, we also gener-
ate alternative artificial frequencies to perform detailed computational analysis. We 
set the capacity of each doctor to 40 periods. Finally, we vary the number of base 
hospitals according to the number of doctors required for each instance. These result 
in 30, 10 and 10 instances for small, medium and large sized samples, respectively.

5.2 � Solving P using CPLEX

In this part, we first focus on solving P using an off-the-shelf solver, CPLEX, and 
analyze the solutions. We perform sensitivity analysis in order to understand the 
changes in the solution times of P when a commercial solver is used. To do so, we 
vary the number of doctors (size of set D) and base hospitals to be selected (p). We 
perform additional sensitivity analysis by changing the distribution of visit frequen-
cies (f).

5.2.1 � Optimal solutions

We solve P using CPLEX with all three data sets. For the small data set, we find 
the optimal solutions in reasonable times. Even though we try to solve the medium 
and large data sets with 2-h and 4-h time limits, respectively, we are unable to reach 
to the optimal solution due to the size of the problem in either case. Setting longer 
time-limits does not help as the solver terminates with an out-of-memory error.

We present the findings on the small data set in Table 5. According to this table, 
the computational times show significant variations from each other in 30 instances. 
The mean of the solution times is 2,811 s which is slightly above 45 min. The stand-
ard deviation of the instances is 2,984 s. The 90% confidence interval of the solution 
time of this data set is within 1,915 and 3,707 s, i.e. 32 and 62 min.
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The information provided in Table 5 is going to be used in Sect. 5.3 while com-
paring the heuristic results with the optimal solutions. The detailed instance specifi-
cations are provided in Table 8, and the correlation between different solution times 
and instance characteristics are discussed thoroughly thereafter.

5.2.2 � Sensitivity analysis

We then analyze the effects of the parameters on the solution times. We triplicate 
each instance by changing the order of the visit frequencies to increase the size of 
our data set. Therefore, the number of villages with each frequency level remains the 
same; however, the distribution of frequencies among all villages change in the other 
two variants of that instance.

The number of doctors required to visit all villages varies according to the fre-
quency levels. More villages with frequency of 12 directly increases the required 
number of doctors. On the other hand, scheduling less doctors can be enough when 
the majority of the villages are smaller with frequency of 1 or 2.

In our data set, a single doctor is scheduled in 6 of the instances. There are 18 
and 6 other instances that require to schedule 2 and 3 doctors, respectively. After 
solving P for all these instances, we determine the minimum, average and the maxi-
mum solution times according to the varying number of doctors. These results can 
be found in Table 6.

It can be observed from the results that increasing the number of doctors makes 
the problem more complex as expected, thus, the solution times increase dramati-
cally. While the schedule of a single doctor can be determined to optimality in less 
than a minute on average, the schedules of multiple doctors can be generated in 

Table 5   Results of P on small data set

Instance 
number

Objective value Solution time (s) Instance 
number

Objective value Solution time (s)

1 7,908.40 6,773 16 5,002.72 2,569
2 7,885.68 2,989 17 4,663.24 3,669
3 6,097.48 5,926 18 5,310.06 3,259
4 6,012.08 12,742 19 4,863.60 3,381
5 5,594.12 3,989 20 2,984.28 6,978
6 5,179.78 3,878 21 3,059.73 1,494
7 4,805.67 344 22 2,601.60 1,127
8 4,943.81 357 23 5,281.18 6,684
9 4,491.33 1,180 24 4,895.42 5,071
10 5,551.66 197 25 2,731.42 31
11 4,235.74 210 26 2,919.58 62
12 4,876.04 2,677 27 2,752.23 24
13 6,053.13 303 28 2,717.74 24
14 4,856.33 5,483 29 2,681.71 18
15 5,310.06 2,890 30 2,767.94 22
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45 min (2 doctors) and approximately 2 h (3 doctors) on average. In addition to these 
average values, the minimum and maximum solution times are also increasing with 
the number of doctors. It can also be claimed that the solution time is expected to be 
around 24 and 63 s with 90% confidence when there is only 1 doctor. Similarly, the 
average solution time lies within 36 to 54 min for 2 doctors and 99 to 148 min for 3 
doctors with 90% confidence interval.

Next, we systematically vary the number of base hospitals (p) over the 30 
instances of the small data set. In fact, certain instances are duplicates of each other 
with different p values. For instance, instances 3 and 4 have the same frequency dis-
tribution and three doctors; however, instance 3 selects two base hospitals, whereas 
instance 4 selects three. There are 18 instances that pick one, 10 instances that pick 
two and 2 instances which pick three base hospitals. In order to make more reliable 
comparisons, we categorize the instances according to the number of doctors and 
then perform the analyses on the number of base hospitals. The respective solution 
time analysis can be found in Table 7.

In Table  7, it is observed that selecting less base hospitals results mostly in 
shorter solution times. The instances that have only one doctor cannot be compared 
with other instances as they can only select one base hospital. However, they pro-
vide the shortest solution times on average, which is parallel to the outcomes of the 
previous analysis.

When we schedule two doctors, p = 1 provides a lower average solution time 
than p = 2 . On the other hand, there could be exceptions as the maximum solution 
time of the former setting is higher than the latter one. We obtain similar outcomes 
when we route three doctors. When there is only one base hospital for all doctors, 
the model can be solved in around 1.5 h on average. Approximately 18 additional 
minutes are required to solve the setting which selects one more base hospitals for 
three doctors. When p = 3 , the average solution time becomes almost 2.5 h. There 
are also exceptions in scheduling three doctors that are observed in minimum solu-
tion times; however, the computational times increase with the increasing number of 
base hospitals in majority of the cases.

We then analyze the distribution of the workload between doctors. To do so, we 
first assume a balanced allocation is obtained when the monthly workload differ-
ence between any two doctors is less than or equal to 6 half-days. When there are 
minimum number of doctors required, i.e. �D� = �∑

i∈I fi

40

�
 , and total workload of the 

Table 6   Solution time analysis based on number of doctors

Number 
of doc-
tors

Num-
ber of 
instances

Minimum 
solution time 
(s)

Average 
solution 
time (s)

Maximum 
solution time 
(s)

Standard devia-
tion of solution 
time

90% Confidence 
interval of solu-
tion time

1 6 17 44 180 48.41 [23.59, 63.29]
2 18 197 2,724 8,948 2,320.27 [2,204.25, 

3,242.97]
3 6 2,065 7,120 18,893 4,320.39 [5,348.34, 

8,891.32]
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system is at least 90% of overall doctor capacity, 90% of our solutions provide a bal-
anced allocation. On the other hand, if there are more than enough doctors to sched-
ule, the results may become unbalanced. For instance, when there are two doctors 
for a total workload of 40, a solution that allocates 30 half-days to one doctor and 10 
half-days to another may be optimal. This is because we do not model workload fair-
ness between doctors explicitly in our approach; however, this would be an interest-
ing future research direction. According to this analysis, we recommend using our 
model when the number of doctors is sufficient but not excessive, and the monthly 
workloads would plausibly be fair.

As it is mentioned above, certain instances are duplicates of each other with dif-
ferent p values. We also compare these pairs with each other in order to observe the 
effects of varying number of base hospitals for the exact same setting. These com-
parisons can be found in Fig. 1.

There are eight instance pairs that are duplicates of each other. Among these 
instance pairs, we find out that increasing the number of base hospitals (p) by one 
unit strictly increases the solution times, either slightly or dramatically. For example, 
instance 19 requires only 7% more time than instance 18, whereas the solution time 
of instance 14 is almost 15 times higher than the computational time of instance 
13. Therefore, we can claim that higher p values for the same instance increases the 
complexity of the problem and results in higher solution times.

We also investigate the allocation and routing decisions in these duplicate 
instances when p is increased. Among the eight instance pairs, village allocations 
to doctors do not change in five of those when there is an extra base hospital. In 
two of those instances, we observe only minor allocation changes, e.g. the alloca-
tion of two villages are swapped between doctors. On the other hand, we observe 
that base hospital and doctor allocations may change when an additional hospital 
is open. Particularly, this allocation change is more likely to happen if the addi-
tional base hospital is located closer to the villages a doctor visits. While solving 
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Fig. 1   Solution time analysis based on duplicate instances
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large scale instances, this observation may be leveraged to determine good solu-
tions without solving the entire problem again. Instead, a doctor may be allocated 
to the new base hospital, especially if the villages are closer to that location, and 
the route of that doctor can be optimized quickly.

We then evaluate the frequency distributions by investigating the impacts of 
having a dominant frequency According to the 90 settings of the small data set, 
average solution times of 3 variants of 30 instances are provided in Table 8.

Before interpreting the solutions, we categorize the instances according to the 
visit frequency that is observed at least six times, so that this frequency level 
constructs the majority. According to this, the instances that have majority of fre-
quency of 12 are 1-6. The common characteristic of these instances is that they 
have to schedule three doctors. Therefore, aligning with our previous observa-
tions, the solution times of these instances are the highest with the exception of 
instance 2. On the contrary, the instances that contain mostly frequency of two 
and one, which are instances 25–30, require only 1 doctor. Hence, they are solved 
in less than 100 s on average.

The instances with majority of frequency of eight are 15-19 and four are 
instances 20–24. We observe that these instances mostly provide results within 
2,000 and 4,500 s, which indicates that they cannot be solved easily. On the other 
hand, the remaining instances 7-14 do not have any dominating visit frequency, 
i.e. the frequencies are balanced among all villages. When these instances are 
analyzed, we find out that they can be solved in shorter times compared to oth-
ers with the exception of instance 14. Moreover, among these 8 instances, 
{7, 8, 10, 13} select only one base hospital and they are solved under 5 min.

Overall, we can say that having villages with visit frequency of one and two 
solves the model faster, whereas dominance of frequency of 12 increases the 
solution times. This situation can be easily associated with the varying number of 
doctors. Besides that, we can claim that having evenly distributed frequencies and 
selecting less base hospitals result in shorter computational times and eases the 
complexity of problem significantly.

In order to derive some insights about features of an optimal solution, we 
finally analyze which of the alternative visiting rules are selected in optimal solu-
tions for different visit frequencies. In accordance with Proposition 1, villages 
with frequency of eight are always visited in two consecutive half-days every 
week. In 30 instances we look at, there are 82 and 55 villages in total with fre-
quency of four and two, respectively. 78% and 87% of the time, these villages 
are visited in two consecutive half-days in the same week to minimize the total 
travel time. We observe that these villages are generally visited in one half-day 
per week (or 2 weeks) when the remainder of the villages that are assigned to the 
same doctor have higher frequencies. For instance, assume a doctor is allocated to 
three villages with frequency of 12 and a single village with frequency of four. In 
this case, there are no feasible solutions where the village with frequency of four 
is visited consecutively in a week, hence non-consecutive visits are necessary. As 
a result, we observe that the villages with alternative visiting rules are most likely 
visited in consecutive half-days as long as such a visit schedule is feasible. This 
outcome may be utilized by the decision makers to determine good solutions for 
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large scale instances when using optimization models are time-intensive, imprac-
tical or impossible.

5.3 � Performance evaluation of heuristic approaches

The main goal of the heuristics is to determine solutions in shorter times than the 
mathematical model without significant solution quality compromises. With this 

Table 8   Average solution times of small data set

Instance set specifications

Instance set # of Freq 12 # of Freq 8 # of Freq 4 # of Freq 2 # of Freq 1 p Average 
solution 
time (s)

1 8 2 2 0 0 1 8,926
2 7 4 1 0 0 1 2,670
3 7 3 1 1 0 2 6,549
4 7 3 1 1 0 3 7,642
5 7 2 1 2 0 2 7,283
6 7 2 1 2 0 3 9,647
7 5 1 2 0 4 1 310
8 4 2 3 1 2 1 299
9 4 2 3 1 2 2 2,062
10 4 1 2 3 2 1 258
11 4 1 2 3 2 2 1,186
12 3 3 4 2 0 2 2,150
13 3 3 3 1 2 1 258
14 3 3 3 1 2 2 4,417
15 0 8 2 2 0 1 4,597
16 1 7 1 2 1 1 2,130
17 1 7 1 2 1 2 2,325
18 1 6 3 2 0 1 3,046
19 1 6 3 2 0 2 3,272
20 0 0 8 2 2 1 8,921
21 0 1 7 0 4 1 2,077
22 0 1 7 0 4 2 3,574
23 2 4 6 0 0 1 4,478
24 1 5 6 0 0 2 4,247
25 0 2 1 8 1 1 80
26 0 2 2 7 1 1 86
27 1 1 1 6 3 1 29
28 1 1 2 0 8 1 22
29 2 0 1 2 7 1 18
30 1 1 2 2 6 1 24
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purpose, we first solve 24 instances of the small data set with both heuristic settings 
and compare their outcomes with the optimal results of P . We set the number of 
iterations to 20 as it provides high quality solutions in short amount of time. Note 
that solving instances 25-30 of this data set cannot provide any insights about the 
heuristic performances. This is because they schedule only one doctor and the first 
iteration of the heuristic will be exactly the same as solving this instance with the 
original model.

The results of Heuristic-1 and Heuristic-2 are presented in Table 9. For each vari-
ation, we provide their objective value, solution time, and optimality gap. We also 
give the iteration number that provides the best result for each instance under the 
’Iteration’ column. To compare the computational performance of the heuristics 
with the solver, we provide the difference between their solution times, where nega-
tive values show by how much the heuristics are faster.

We observe that both heuristic variations provide significantly better computa-
tional times than the mathematical model at each instance, where they are approx-
imately 56  min faster than the solver on average. Heuristic-1 provides a solution 
between 1 and 4 min with the average of 132 s and Heuristic-2 solves the problem 
within 1.5 and 5 min while its average is slightly less than 3 min.

Another observation is related to the solution qualities. Among the 24 instances, 
Heuristic-1 is able to find the optimal solution in 18 of them, whereas Heuristic-2 
can find it in 16 instances. The average optimality gaps are only 0.79% for the first 
variation and 1.12% for the second one. Thus, it can be claimed that both approaches 
are eligible to find high-quality solutions in the majority of the instances and per-
form quite well on the small data set.

When we compare the two variations, Heuristic-1 seems to perform better in 
terms of solution time and quality. However, there are still some instances where 
Heuristic-2 outperforms the first one. In order to illustrate both cases, first consider 
instance 14, where Heuristic-1 finds the optimal solution; however, Heuristic-2 fails 
to do so and finds a solution that falls 6.88% behind the optimal one. The main rea-
soning behind this is the additional constraint (57). Since repetition of the clusters 
are not allowed in this approach, Heuristic-1 determines different cluster sets and 
finds the best at the 16th iteration. However, the same clusters are observed multiple 
times in Heuristic-2 and the optimal clusters cannot be found in 20 iterations. On the 
other hand, this heuristic finds the optimal solution in instance 19 but Heuristic-1 
cannot. As it is discussed in Sect. 4, constraint (57) eliminates the optimal clustering 
structure and finds a solution which has an 1.32% optimality gap. Therefore, we can 
see that both approaches have their own drawbacks in terms of finding the optimal 
solution.

In order to provide more managerial insights, we map and compare the routes of 
doctors based on the results of the mathematical model and heuristic approach. We 
consider instance 16 and depict the routes of two doctors over 4 weeks in Fig. 2. 
With a 2.58% gap from the optimal solution, heuristic assigns very similar villages 
to each doctor. The only difference is that second doctor (indicated with blue) is 
responsible for village 5 instead of 11 and 12. Other than that, it could be observed 
that the structure of the routes are similar to each other, indicating that heuristic 
solutions are still practically applicable.
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We proceed by testing the heuristic on the medium data set. We observe that the 
best results are found within the first 10 iterations of the small data set in 88% of 
the instances. Since the schedules are determined with the mathematical model, we 
decrease the number of iterations to 10 to keep the solution times reasonable. We 
record the same values for this data set; however, instead of the optimal objective 
value of P , we provide the value obtained at the end of 2 h. These results can be 
found in Table 10.

The instances can be solved in 171 s on average with Heuristic-1. It takes around 
40 more seconds for Heuristic-2 to solve the same instances. In addition to this, both 
heuristics improve the solutions that the model finds in 2 h in most of the instances. 
We observe 5.73% and 6.22% improvements on the solutions on average by the first 
and second variations, respectively. Both approaches provide the same result for the 
first four instances, and among the remaining six, each setting outperforms the other 
in half of them. Similar to the small data set results, there are certain cases where 
one methodology provides better results than the other, hence, we cannot determine 
a strict domination between the two. Yet, we can claim that the heuristic approaches 
perform well and they provide better solutions in 3–4 min than the solver generates 
in 2 h.

Finally, we solve the large data set. We provide the results of the mathematical 
model after 4 h as well as the heuristic distances, solution times and improvements 
over the solver solutions. The outcomes can be found in Table 11.

As the size of the instances grow, the quality of solutions decrease for the math-
ematical model. Therefore, we observe considerable improvements on the distance 
values in both Heuristic-1 and Heuristic-2 solutions. The average improvement 
percentages of respective methodologies are 62.6% and 62.5%, which do not dif-
ferentiate them. As it is observed in both small and medium data set analyses, Heu-
ristic-1 provides the results in slightly shorter times, namely in 6 min 21 s on aver-
age, whereas Heuristic-2’s average computational time corresponds to 6 min 43 s. 
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Fig. 2   Small data set—instance 16, weekly routes of model (top) and heuristic 1 with 2.58% gap (bot-
tom)
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Among the 10 instances of the large data set, Heuristic-1 provides better solutions in 
6 of them while Heuristic-2 outperforms the former approach in 3 instances.

In the end, we cannot claim that one of the heuristic variations is significantly 
better than the other. Depending on the instance, either methodology can generate 
a solution that the other one skips. Nevertheless, we can still see that Heuristic-1 
finds better solutions in slightly more cases. In addition to that, the solution times 
of this approach turn out to be better in almost all of the instances. Even though we 
develop Heuristic-2 as we suspect that initial setting would skip solutions that might 
be optimal, we find out that clustering stage performs well enough to find qualified 
solutions in shorter times in Heuristic-1.

6 � Conclusion

In this study, we focus on the mobile healthcare problem in rural areas, where prac-
titioners travel between the villages to provide services and the aim is to increase the 
accessibility of these services in the underdeveloped communities. We introduce a 
model that considers essential requirements such as continuity of care and evenly 
distributed visits. We use the policies of Ministry of Health of Turkey as a basis for 
our mathematical formulation. Yet, our modelling approach can easily be adapted to 
similar policies of other countries.

We present the first study in home healthcare and PLRP literature that determines 
the schedules of the doctors endogenously, ensures continuity of care and evenly 
distributed visits simultaneously. As determining the routes in the model increases 
the size and complexity of the problem, we also develop a heuristic based on a clus-
ter first-route second approach to solve larger instances more effectively. In the ini-
tial phase of this solution methodology, we allocate villages to the doctors by an IP 
that is based on p-median formulation and we route the doctors with the IP model 
that we develop in the second phase.

In order to decrease the size of the solution space and improve the computational 
performance, we propose valid inequalities and test their computational efficacy. We 
observe that the small sized sets can be solved in reasonable times using a com-
mercial solver. Computational experiments and sensitivity analysis reveal important 
managerial insights about the correlation of instance specifics and optimal solutions. 
We find out that scheduling more doctors and selecting more base hospitals increase 
the solution times, whereas having more balanced visit frequency distributions helps 
finding optimal solutions in shorter times. As the IP model do not perform well 
when the sizes of the instances increase, we test and evaluate the performance of 
the heuristic. We find out that they reduce the computational times drastically and 
generate optimal or near optimal solutions in the small data set. In the medium and 
large sets, we observe that the heuristic improves the objective values of the math-
ematical model that are found in certain time limits in all instances and we obtained 
these improved solutions in much shorter times. Therefore, we can claim that we 
develop a fast and efficient heuristic for our problem.

From a managerial point of view, the importance of monitoring the health of 
a community has been increasing since the COVID-19 pandemic. It is crucial to 
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provide systematic healthcare services, especially for those who do not have easy 
access. In addition, ensuring continuity of care with dedicated patient-doctor assign-
ments and following up status of patients are vital to improve the overall health of 
the population. Mobile services may also play a significant role during the pandem-
ics in providing regular testing and vaccination efforts. Therefore, we develop an 
efficient algorithm as a tool for the decision makers so that they can rapidly find 
cost-effective schedules for the assigned doctors who are frequently visiting the 
rural communities.

Even though we focus on delivering mobile healthcare services in rural areas, 
there are many other applications of mobile services under healthcare as well as 
different areas. For instance, nurses provide home healthcare to the elderly quite 
often, and specialists (e.g. cardiologists, dermatologists) visit patients that require 
continuous care and chronic treatment. We have also seen that the home healthcare 
becomes more important under unprecedented times such as a pandemic. Educa-
tion or sanitation services could also be provided with periodic mobile services. 
Recently, as a result of the arising need through the world, doctors, teachers and 
sanitation engineers started to travel through the refugee camps to provide respec-
tive services. These problem types can be addressed by extending our work based on 
the problem-specific requirements of these applications. Another extension of our 
study is to take workload fairness among doctors into account. Although consider-
ing fairness among patients is a priority in the healthcare logistics applications, an 
interesting future research direction could be improving the quality and practicality 
of the schedules by incorporating workload fairness among doctors.
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