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Abstract

Linear multiplicative programs are an important class of nonconvex optimisationproblems
that are currently the subject of considerable research as regards the development of com-
putational algorithms. In this paper, we show that mathematical programs of this nature are,
in fact, a special case of more general signomial programming, which in turn implies that
research on this latter problem may be valuable in analysing and solving linear multiplica-
tive programs. In particular, we use signomial programming duality theory to establish a
dual program for a nonconvex linear multiplicative program. An interpretation of the dual
variables is given.

1. Introduction

We consider mathematical programs of the form

Minimise
n∏

i =1

.aT
i x + bi / subject to Dx ≥ c; (P1)

wherex ∈ R
m is a vector of variables andai ∈ R

m, bi ∈ R, i = 1; : : : ;n, c ∈ R
K

and D ∈ R
K×m are constants. We assume that the feasible region{x | Dx ≥ c} is

nonempty and bounded so that program (P1) has a finite optimal solution.
We call program (P1) a linear multiplicative program. It is a nonconvex program

with multiple local optima. Applications include economic analysis [6], bond portfolio
optimisation [7] and VLSI chip design [12]. Matsui [13] shows that this program is
NP-hard. Extensive analysis of this problem was first carried out forn = 2 by
Forgo [5], Swarup [16] and Konnoet al. [8, 9], where several earlier references may

1Graduate School of Management, University of California, Irvine, CA 92697-3125, USA; e-mail:
chscott@gsm.uci.edu.
2Decision and Information Sciences Department, Warrington School of Business, University of Florida,
Gainesville, FL, USA.
c© Australian Mathematical Society 2005, Serial-fee code 1446-8735/05

393

http://www.austms.org.au/Publ/ANZIAM/V46P3/2094.html
mailto:chscott@gsm.uci.edu


394 Carlton H. Scott and Thomas R. Jefferson [2]

be found. Subsequently further development particularly with regard to computational
methods forn > 2 occurred (see, for example, [1, 2, 10, 11, 15, 17]).

In this paper, we show that a linear multiplicative program is a particular case of a
signomial program and hence theory developed for signomial programs is transferable
to linear multiplicative programs. In particular, by making this correspondence, we
develop a dual program for a linear multiplicative program. An interesting interpre-
tation is given for the dual variables which is similar to that in prototype geometric
programming.

2. Signomial programming and duality

A general signomial problem is of the form

Minimise g0.t/ subject to gk.t/ ≤ �k.≡ ±1/; k = 1; : : : ; p; and t > 0;

wheregk.t/ = ∑
i ∈[k] ¦i ci

∑m
j =1 tai j

j , k = 0; : : : ; p, are signomial functions, which
are in general nonconvex. The index sets[k], k = 0; : : : ; p, form a sequential
partition of the integers 1 ton, that is,[0] = {1; : : : ;n1}, [1] = {n1 + 1; : : : ;n2}, : : : ,
[p] = {np+1; : : : ;n}. Hereci , i = 1; : : : ;n, are strictly positive andai j , i = 1; : : : ;n,
j = 1; : : : ;m, are arbitrary coefficients. Further,¦i = ±1, i = 1; : : : ;n, and
consequently, signomial programs are nonconvex programs with multiple localoptima.
Note that signomial programs are an extension of prototype geometric programs [4]
from posynomial functions to signomials [14].

The corresponding dual program [14] is

Maximise
p∏

k=0

∏
i ∈[k]

(
ci

Ži

)¦i Ži b∏
k=1

½
½k
k

subject to a generalised normality condition
∑

i ∈[0] ¦i Ži = 1, orthogonality conditions∑n
i =1 ¦i ai j Ži = 0, j = 1; : : : ;m, linear inequality constraints�k

∑
i ∈[k] ¦i Ži = ½k ≥ 0,

k = 1; : : : ; p, and nonnegativity constraints

Ži ≥ 0; i = 1; : : : ;n; ½k ≥ 0; k = 1; : : : ; p:

For every pointt0 whereg0.t/ is a local minimum there exists a set of dual variables
Ž0, ½0 such thatv.Ž0; ½0/ = g0.t0/.

Since a weak duality theorem does not hold, this dual is termed a pseudo-dual.
The global minimum is obtained through a process called pseudominimisation [14]
whereby all local maxima of the dual are obtained with the global minimum being
the minimum of these local maxima. This concept of “pseudo-duality” is similar to
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Craven’s concept of “quasi-duality” [3] which shows the existence of points termed
“quasimin” and “quasimax” where the duality gap is zero. In both of the above cases
which deal with nonconvex problems, a strong duality result holds without a weak
duality result.

A locally optimal primal solution can be constructed from a locally optimal dual
solution from the following relations between the primal and dual variables:

ci

∏m
j =1 tai j

j

g0.t/
= Ži ; i ∈ [0]

and

ci

m∏
j =1

t
ai j

j = Ži

½k
; i ∈ [k]; k = 1; : : : ; p:

3. Dual linear multiplicative program

For notational convenience, we assume thatD, c, bi , i = 1; : : : ;n, are nonnegative
andai j = ¦i j a

+
i j , i = 1; : : : ;n, j = 1; : : : ;m, where¦i j is a sign function defined by

¦i j =
{

+1; if ai j > 0;

−1; otherwise:

Note thata+
i j > 0. Further, without loss of generality, we require thataT

i x + bi > 0
andxi > 0, i = 1; : : : ;n.

Program (P1) may be written in the following form:

Minimise
m∏

i =1

si subject to




m∑
j =1

¦i j a
+
i j x j + bi ≤ si ; i = 1; : : : ;n;

m∑
j =1

dkj xj ≥ ck; k = 1; : : : ; K

(P2)

and finally as a signomial program:

Minimise
m∏

i =1

si subject to




s−1
i

m∑
j =1

¦i j a
+
i j x j + bi s

−1
i ≤ 1; i = 1; : : : ;n;

c−1
k

m∑
j =1

dkj xj ≥ 1; k = 1; : : : ; K ;

(P3)

with si > 0, i = 1; : : : ;n andxj > 0, j = 1; : : : ;m.
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Using the prescription in Section2, we may construct the following dual to pro-
gram (P3). This is

Maximise

(
1

Ž0

)Ž0 n∏
i =1

m∏
j =1

(
a+

i j

Ži j

)¦i j Ži j n∏
i =1

(
bi

þi

)þi K∏
k=1

m∏
j =1

(
c−1

k dkj

k j

)−k j

×
n∏

i =1

Ž
Ži
i

K∏
k=1


k

k (D3)

subject to the normality condition

Ž0 = 1; (3.1)

the orthogonality conditions

Ž0 −
m∑

j =1

¦i j Ži j − þi = 0; i = 1; : : : ;n; (3.2)

n∑
i =1

¦i j Ži j −
K∑

k=1

k j = 0; j = 1; : : : ;m

and

Ži =
m∑

j =1

¦i j Ži j + þi ; i = 1; : : : ;n; (3.3)

k =
m∑

j =1

k j ; Ži j ≥ 0; k j ≥ 0; Ži ≥ 0; þi ≥ 0;

wherei = 1; : : : ;n, j = 1; : : : ;m, k = 1; : : : ; K .
Combining results (3.1)–(3.3) shows that

∑m
j =1 ¦i j Ži j = 1 − þi , i = 1; : : : ;n and

Ži = 1. Hence the dual program (D3) may be simplified somewhat to yield:

Minimise
n∏

i =1

m∏
j =1

(
a+

i j

Ži j

)¦i j Ži j n∏
i =1

(
bi

þi

)þi K∏
k=1

m∏
j =1

(
c−1

k dkj

k j

)−k j K∏
k=1


k

k (D4)

subject to the linear constraints
∑m

j =1 ¦i j Ži j + þi = 1,
∑n

i =1 ¦i j Ži j − ∑K
k=1 k j = 0,∑m

j =1 k j − k = 0, Ži j ≥ 0, k j ≥ 0, þi ≥ 0, wherei = 1; : : : ;n, j = 1; : : : ;m,
k = 1; : : : ; K .

Further, at optimality, the primal and dual variables are related by

s−1
i a+

i j x j = Ži j =Ži ; s−1
i bi = þi =Ži ; c−1

k dkj xj = k j=k;

wherei = 1; : : : ;n, j = 1; : : : ;m, k = 1; : : : ; K .
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SinceŽi = 1, i = 1; : : : ;n, it follows that

Ži j = a+
i j x j∑m

j =1 ¦i j a
+
i j x j + bi

; þi = bi∑m
j =1 ¦i j a

+
i j x j + bi

and

xj = ckd−1
k j

k j

k
: (3.4)

Note that the dual variablesŽi j andþi may be interpreted as the relative contribution of
each variablexj and parameterbi respectively to termi in the multiplicative objective
at optimality. In polynomial geometric programming, the dual variablesŽi have an
interpretation as the relative contribution of each termi to the optimal objective value.
Hence in both cases they have an interpretation in terms of a relative contribution.
Note also that the optimal primal variables are readily calculated from (3.4).
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