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Abstract. An element of a ring R is called strongly J#-clean provided that it can be
written as the sum of an idempotent and an element in J#(R) that commute. In this
paper, we characterize the strong J#-cleanness of matrices over projective-free rings. This
extends many known results on strongly clean matrices over commutative local rings.
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1 Introduction

Let R be a ring with identity. We say that x ∈ R is strongly clean provided that
there exists an idempotent e ∈ R such that x− e ∈ U(R) and ex = xe. A ring R is
strongly clean in case every element in R is strongly clean. We refer the reader to [7]
and [8] for the general theory of such rings. In [2, Theorem 12], Borooah, Diesl and
Dorsey proved that for a commutative local ring R and a monic polynomial h ∈ R[t]
of degree n, the following are equivalent: (1) h has an SRC-factorization in R[t];
(2) every ϕ ∈ Mn(R) satisfying h is strongly clean. By [6, Example 3.1.7], the above
statement (1) cannot be weakened from SRC-factorization to SR-factorization. The
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purpose of this paper is to investigate a subclass of strongly clean rings which behave
like such ones but can be characterized by a kind of SR-factorizations, and so get
more explicit factorizations for many class of matrices over projective-free rings.

Let J(R) be the Jacobson radical of R. Set

J#(R) = {x ∈ R | ∃n ∈ N such that xn ∈ J(R)}.
For instance, let R = M2(Z2). Then

J#(R) =
{(

0 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)}
,

while J(R) = 0. Thus, J#(R) and J(R) are distinct in general. We say that an
element a ∈ R is strongly J#-clean provided that there exists an idempotent e ∈ R
such that a− e ∈ J#(R) and ea = ae. If R is commutative, then a ∈ R is strongly
J#-clean if and only if a is strongly J-clean (cf. [3]). But they behave differently for
matrices over commutative rings. A Jordan-Chevalley decomposition of an n × n
matrix A over an algebraically closed field (e.g., the field of complex numbers) is
an expression A = E + W , where E is semisimple, W is nilpotent, and E and W
commute. The Jordan-Chevalley decomposition is extensively studied in Lie theory
and operator algebra. As a corollary, we will completely determine when an n× n
matrix over a filed is the sum of an idempotent matrix and a nilpotent matrix that
commute. Thus, the strongly J#-clean factorization of matrices over rings is an
analog of the Jordan-Chevalley decomposition for matrices over fields.

In this paper, we characterize the strong J#-cleanness of matrices over projective-
free rings. Here, a commutative ring R is projective-free provided that every finitely
generated projective R-module is free. For instance, every commutative local ring,
every commutative semi-local ring, every principal ideal domain, every Bézout do-
main (e.g., the ring of all algebraic integers) and the polynomial ring R[x] over a
principal ideal domain R are all projective-free. We will show that strongly J#-clean
matrices over projective-free rings are completely determined by a kind of “SC”-
factorizations of the characteristic polynomials. These extend many known results
on strongly clean matrices to such new factorizations of matrices over projective-free
rings (cf. [1, 2, 5]).

Throughout this paper, all rings have an identity and all modules are unitary
modules. We always use U(R) to denote the set of all units in a ring R. If ϕ ∈
Mn(R), we use χ(ϕ) to stand for the characteristic polynomial det(tIn − ϕ).

2 Full Matrices over Projective-free Rings

Let A =
(

1 1
1 0

)
∈ M2(Z2). It is directly verified that A is not strongly J#-clean,

though A is strongly clean. It is hard to determine the strong cleanness even for
matrices over the integers, but the strongly J#-clean case is a completely different
situation. The aim of this section is to characterize a single strongly J#-clean
n × n matrix over a projective-free ring. For a left R-module M , we denote the
endomorphism ring of M by End(M).

Lemma 2.1. Let M be a left R-module, E = End(M) and let α ∈ E. Then the
following are equivalent:
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(1) α ∈ E is strongly J#-clean.

(2) There exists a left R-module decomposition M = P ⊕ Q, where P, Q are
α-invariant, α|P ∈ J#(End(P )) and (1M − α)|Q ∈ J#(End(Q)).

Proof. (1)⇒(2) Since α is strongly J#-clean in E, there exists an idempotent π ∈ E
and u ∈ J#(E) such that α = (1−π)+u and πu = uπ. Thus, πα = πu ∈ J#(πEπ).
Further, 1−α = π−u, and so (1−π)(1−α) = (1−π)(−u) ∈ J#((1−π)E(1−π)). Set
P = Mπ and Q = M(1−π). Then M = P ⊕Q. As απ = πα, we see that P and Q
are α-invariant. As απ ∈ J#(πEπ), we can find t ∈ N such that (απ)t ∈ J(πEπ).
Let γ ∈ End(P ). For any x ∈ M , it is easy to see that (x)π

(
1P − γ(α|P )t

)
=

(x)π
(
π − (πγπ)(παπ)t

)
, where γ : M → M is given by (m)γ = (m)πγ for any

m ∈ M . Hence, 1P − γ(α|P )t ∈ Aut(P ) and so (α|P )t ∈ J(End(P )). This implies
that α|P ∈ J#(End(P )). Likewise, we verify that (1− α)|Q ∈ J#(End(Q)).

(2)⇒(1) For any λ ∈ End(Q), we construct an R-homomorphism λ ∈ End(M)
given by (p + q)λ = (q)λ. By hypothesis, α|P ∈ J#(End(P )) and (1M − α)|Q ∈
J#(End(Q)). Thus, α = 1Q + α|P − (1M − α)|Q. As P and Q are α-invariant,
we see that α1Q = 1Q α. In addition, 1Q ∈ End(M) is an idempotent. Since
α|P (1M − α)|Q = 0 = (1M − α)|Q α|P , we have α|P − (1M − α)|Q ∈ J#(End(M)),
as required. ¤

Lemma 2.2. [6, Lemma 3.2.6] Let R be a ring and M a left R-module. Suppose
that x, y, a, b ∈ End(M) such that xa + yb = 1M , xy = yx = 0, ay = ya and
xb = bx. Then M = ker(x)⊕ ker(y) as left R-modules.

Lemma 2.3. Let R be a commutative ring and ϕ ∈ Mn(R). Then the following
are equivalent:

(1) ϕ ∈ J#(Mn(R)).
(2) χ(ϕ) ≡ tn (mod J(R)), i.e., χ(ϕ)− tn ∈ J(R)[t].
(3) There exists a monic polynomial h ∈ R[t] such that h ≡ tdeg h (mod J(R))

and h(ϕ) = 0.

Proof. (1)⇒(2) Since ϕ ∈ J#(Mn(R)), there exists some m ∈ N such that ϕm ∈
J(Mn(R)). As J(Mn(R)) = Mn(J(R)), we get ϕ ∈ N

(
Mn(R/J(R))

)
. In view of [6,

Proposition 3.5.4], χ(ϕ) ≡ tn (mod N(R/J(R))). Write χ(ϕ) = tn+a1t
n−1+· · ·+an.

Then χ(ϕ) = tn + a1 tn−1 + · · · + an. We infer that each ami
i + J(R) = 0 + J(R)

where mi ∈ N. This implies that ai ∈ J#(R). That is, χ(ϕ) ≡ tn (mod J#(R)).
Obviously, J(R) ⊆ J#(R). For any x ∈ J#(R), there exists some m ∈ N such that
xn ∈ J(R). For any maximal ideal M of R, M is prime, and so x ∈ M . This implies
that x ∈ J(R), hence J#(R) ⊆ J(R). Therefore, J#(R) = J(R), as required.

(2)⇒(3) Choose h = χ(ϕ). Then h ≡ tdeg h (mod J(R)). In light of the Cayley-
Hamilton theorem, h(ϕ) = 0, as required.

(3)⇒(1) By hypothesis, there exists a monic polynomial h ∈ R[t] such that
h ≡ tdeg h (mod J(R)) and h(ϕ) = 0. Write h = tn + a1t

n−1 + · · · + an. Choose
h = tn + a1 tn−1 + · · · + an ∈ (R/J(R))[t]. Then h ≡ tn (mod N(R/J(R))) and
h(ϕ) = 0. According to [6, Proposition 3.5.4], there exists some m ∈ N such that
(ϕ)m = 0 in R/J(R). Therefore, ϕm ∈ Mn(J(R)), and so ϕ ∈ J#(Mn(R)). ¤
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Definition 2.4. For r ∈ R, define

Jr = {f ∈ R[t] | f monic and f ≡ (t− r)deg f (mod J#(R))}.

Lemma 2.5. Let R be a projective-free ring, ϕ ∈ Mn(R), and let h ∈ R[t] be a
monic polynomial of degree n. If h(ϕ) = 0 and there exists a factorization h = h0h1

such that h0 ∈ J0 and h1 ∈ J1, then ϕ is strongly J#-clean.

Proof. Write h0 = tp + a1t
p−1 + · · · + ap and h1 = (t − 1)q + b1t

q−1 + · · · + bq.
Then ai, bj ∈ J#(R) for all i, j. Since R is commutative, we get ai, bj ∈ J(R).
Thus, h0 = tp and h1 = (t − 1)q in (R/J(R))[t]. Hence, (h0, h1) = 1. In virtue of
[6, Lemma 3.5.10], we have some u0, u1 ∈ R[t] such that u0h0 + u1h1 = 1. Then
we obtain u0(ϕ)h0(ϕ) + u1(ϕ)h1(ϕ) = 1nR. By hypothesis, h(ϕ) = h0(ϕ)h1(ϕ) =
h1(ϕ)h0(ϕ) = 0. Clearly, u0(ϕ)h1(ϕ) = h1(ϕ)u0(ϕ) and h0(ϕ)u1(ϕ) = u1(ϕ)h0(ϕ).
In light of Lemma 2.2, nR = ker(h0(ϕ))⊕ ker(h1(ϕ)). As h0t = th0 and h1t = th1,
we have h0(ϕ)ϕ = ϕh0(ϕ) and h1(ϕ)ϕ = ϕh1(ϕ), and so ker(h0(ϕ)) and ker(h1(ϕ))
are both ϕ-invariant. It is easy to verify that h0(ϕ|ker(h0(ϕ))) = 0. Since h0 ∈ J0,
we see that h0 ≡ tdeg h0 (mod J#(R)), hence ϕ|ker(h0(ϕ)) ∈ J#

(
End(ker(h0(ϕ)))

)
.

It is easy to verify that h1(ϕ|ker(h1(ϕ))) = 0. Set g(u) = (−1)deg h1h1(1−u). Then
g((1−ϕ)|ker(h1(ϕ))) = 0. Since h1 ∈ J1, we see that h1 ≡ (t−1)deg h1 (mod J#(R)).
Hence, g(u) ≡ (−1)deg h1(−u)deg g (mod J(R)). This implies that g ∈ J0. By virtue
of Lemma 2.3, (1− ϕ)|ker(h1(ϕ)) ∈ J#

(
End(ker(h1(ϕ)))

)
. According to Lemma 2.1,

ϕ ∈ Mn(R) is strongly J#-clean. ¤

For h = tn + an−1t
n−1 + · · ·+ a1t + a0 ∈ R[t], the matrix

Ch =




0 0 · · · 0 −a0

1 0 · · · 0 −a1
...

...
. . .

...
...

0 0 · · · 1 −an−1


 ∈ Mn(R)

is called the companion matrix of h.

Theorem 2.6. Let R be a projective-free ring and h ∈ R[t] a monic polynomial of
degree n. Then the following are equivalent:

(1) Every ϕ ∈ Mn(R) with χ(ϕ) = h is strongly J#-clean.

(2) The companion matrix Ch of h is strongly J#-clean.

(3) There exists a factorization h = h0h1 such that h0 ∈ J0 and h1 ∈ J1.
Proof. (1)⇒(2) Write h = tn + an−1t

n−1 + · · · + a1t + a0 ∈ R[t]. Choose Ch as
above. Then χ(Ch) = h. By hypothesis, Ch ∈ Mn(R) is strongly J#-clean.

(2)⇒(3) In view of Lemma 2.1, there exists a decomposition nR = A⊕B such
that A and B are ϕ-invariant, ϕ|A ∈ J#(EndR(A)) and (1−ϕ)|B ∈ J#(EndR(B)).
Since R is a projective-free ring, there exist p, q ∈ N such that A ∼= pR and B ∼= qR.
Regarding EndR(A) as Mp(R), we see that ϕ|A ∈ J#(Mp(R)). By virtue of Lemma
2.3, χ(ϕ|A) ≡ tp (mod J#(R)). Thus χ(ϕ|A) ∈ J0. Analogously, (1 − ϕ)|B ∈
J#(Mq(R)). It follows from Lemma 2.3 that χ((1−ϕ)|B) ≡ tq (mod J#(R)). This
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implies that det(λIq− (1−ϕ)|B) ≡ λq (mod J#(R)). Hence, det((1−λ)Iq−ϕ|B) ≡
(−λ)q (mod J#(R)). Set t = 1− λ. Then det(tIq − ϕ|B) ≡ (t− 1)q (mod J#(R)).
Therefore, we get χ(ϕ|B) ≡ (t − 1)q (mod J#(R)). We infer that χ(ϕ|B) ∈ J1.
Clearly, χ(ϕ) = χ(ϕ|A)χ(ϕ|B). Choose h0 = χ(ϕ|A) and h1 = χ(ϕ|B). Then there
exists a factorization h = h0h1 such that h0 ∈ J0 and h1 ∈ J1, as desired.

(3)⇒(1) For every ϕ ∈ Mn(R) with χ(ϕ) = h, it follows by the Cayley-Hamilton
theorem that h(ϕ) = 0. Therefore, ϕ is strongly J#-clean by Lemma 2.5. ¤

Corollary 2.7. Let F be a field and A ∈ Mn(F ). Then the following are equivalent:

(1) A is the sum of an idempotent matrix and a nilpotent matrix that commute.

(2) χ(A) = tk(t− 1)l for some k, l ≥ 0.

Proof. As J(Mn(F )) = 0, we see that an n×n matrix is contained in J#(Mn(F )) if
and only if it is a nilpotent matrix. So A ∈ Mn(F ) is strongly J#-clean if and only
if A is the sum of an idempotent matrix and a nilpotent matrix that commute. By
virtue of Theorem 2.6, this is the case if and only if χ(A) = h0h1, where h0 ∈ J0 and
h1 ∈ J1. Clearly, h0 ∈ J0 if and only if h0 ≡ tdeg h0 (mod J#(F )). But J#(F ) = 0,
and so h0 = tk, where k = deg h0. Likewise, h1 = (t − 1)l, where l = deg h1.
Therefore, we complete the proof. ¤

For matrices over integers, we have a similar situation as J(Mn(Z)) = 0. Hence,
Corollary 2.7 still holds if we replace the field F by Z. For instance, choose

A =



−2 2 −1
−4 4 −2
−1 1 0


 ∈ M3(Z).

Then χ(A) = t(t−1)2. Thus, A is the sum of an idempotent matrix and a nilpotent
matrix that commute. In fact, we have a corresponding factorization

A =



−1 1 0
−2 2 0
0 0 1


 +



−1 1 −1
−2 2 −2
−1 1 −1


 .

Corollary 2.8. Let R be a projective-free ring and ϕ ∈ M2(R). Then ϕ is strongly
J#-clean if and only if one of the following holds:

(1) χ(ϕ) ≡ t2 (mod J(R)).
(2) χ(ϕ) ≡ (t− 1)2 (mod J(R)).
(3) χ(ϕ) has a root in J(R) and a root in 1 + J(R).

Proof. Suppose that ϕ is strongly J#-clean. By virtue of Theorem 2.6, there exists
a factorization χ(ϕ) = h0h1 such that h0 ∈ J0 and h1 ∈ J1.

Case I. deg(h0) = 2 and deg(h1) = 0. Then h0 = χ(ϕ) = t2−tr(ϕ)t+det(ϕ) and
h1 = 1. As h0 ∈ J0, it follows from Lemma 2.3 that ϕ ∈ J#(M2(R)) or χ(ϕ) ≡ t2

(mod J(R)).
Case II. deg(h0) = 1 and deg(h1) = 1. Then h0 = t − α and h1 = t − β. Since

R is commutative, J#(R) = J(R). As h0 ∈ J0, we see that h0 ≡ t (mod J(R)),
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and then α ∈ J(R). As h1 ∈ J1, we see that h1 ≡ t − 1 (mod J(R)), and then
β ∈ 1 + J(R). Therefore, χ(ϕ) has a root in J(R) and a root in 1 + J(R).

Case III. deg(h0) = 0 and deg(h1) = 2. Then h1(t) = det(tI2 − ϕ) ≡ (t − 1)2

(mod J(R)). Set u = 1− t. Then det(uI2 − (I2 −ϕ)) ≡ u2 (mod J(R)). According
to Lemma 2.3, I2 − ϕ ∈ J#(M2(R)) or χ(ϕ) ≡ (t− 1)2 (mod J(R)).

Now we show the converse. If χ(ϕ) ≡ t2 or χ(ϕ) ≡ (t − 1)2 (mod J(R)), then
ϕ ∈ J#(M2(R)) or I2 − ϕ ∈ J#(M2(R)). This implies that ϕ is strongly J#-clean.
Otherwise, ϕ, I2 − ϕ 6∈ J(M2(R)). In addition, χ(ϕ) has a root in J(R) and a root
in 1+J(R). According to [4, Theorem 16.4.31], ϕ is strongly J-clean, and therefore
it is strongly J#-clean. ¤

Choose A =
(

0 2
1 3

)
∈ M2(Z4). It is easy to check that A, I2 −A ∈ M2(Z4) are

not nilpotent. But χ(A) = t2 + t+2 has a root 2 ∈ J(Z4) and a root 1 ∈ 1+J(Z4).
As J(Z4) = {0, 2} is nil, we know that every matrix in J#(M2(Z4)) is nilpotent.
It follows from Corollary 2.8 that A is the sum of an idempotent matrix and a
nilpotent matrix that commute. Let Z(2) = {m

n |m,n ∈ Z, 2 - n}, and let A =(
1 1
2
9

0

)
∈ M2(Z(2)). Then J(Z(2)) = { 2m

n |m,n ∈ Z, 2 - n}. As χ(A) = t2 − t + 2
9

has a root 1
3 ∈ 1 + J(Z(2)) and a root 2

3 ∈ J(Z(2)), by Corollary 2.8, A is strongly
J-clean.

Corollary 2.9. Let R be a projective-free ring, and f(t) = t2 + at + b ∈ R[t] with
1 + a ∈ J(R) and b 6∈ J(R). Then the following are equivalent:

(1) Every ϕ ∈ M2(R) with χ(ϕ) = f(t) is strongly J#-clean.

(2) There exist r1 ∈ J(R) and r2 ∈ 1 + J(R) such that f(r1) = f(r2) = 0.

(3) There exists r ∈ J(R) such that f(r) = 0.

Proof. (1)⇒(2) Since every ϕ ∈ M2(R) with χ(ϕ) = f(t) is strongly J#-clean, it
follows by Corollary 2.8 that f(t) = (t−r1)(t−r2) with r1 ∈ J(R) and r2 ∈ 1+J(R).

(2)⇒(3) is trivial.
(3)⇒(1) As r2 + ar + b = 0, we see that f(t) = (t − r)(t + a + r). Clearly,

t− r ∈ J0. As 1 + a + r ∈ J(R), we see that t + a + r ∈ J1. According to Theorem
2.6, we complete the proof. ¤

Let ϕ be a 3× 3 matrix over a commutative ring R. Set

mid(ϕ) = det(I3 − ϕ)− 1 + tr(ϕ) + det(ϕ).

Corollary 2.10. Let R be a projective-free ring and let ϕ ∈ M3(R). Then ϕ is
strongly J#-clean if and only if one of the following holds:

(1) χ(ϕ) ≡ t3 (mod J(R)).
(2) χ(ϕ) ≡ (t− 1)3 (mod J(R)).
(3) χ(ϕ) has a root in 1 + J(R), tr(ϕ) ∈ 1 + J(R), mid(ϕ) ∈ J(R) and det(ϕ) ∈

J(R).
(4) χ(ϕ) has a root in J(R), tr(ϕ) ∈ 2 + J(R), mid(ϕ) ∈ 1 + J(R) and det(ϕ) ∈

J(R).
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Proof. Suppose that ϕ is strongly J#-clean. By virtue of Theorem 2.6, there exists
a factorization χ(ϕ) = h0h1 such that h0 ∈ J0 and h1 ∈ J1.

Case I. deg(h0) = 3 and deg(h1) = 0. Then h0 = χ(ϕ) and h1 = 1. As h0 ∈ J0,
it follows from Lemma 2.3 that ϕ ∈ J#(M3(R)).

Case II. deg(h0) = 0 and deg(h1) = 3. Then h1(t) = det(tI3 − ϕ) ≡ (t − 1)3

(mod J(R)). Set u = 1− t. Then det(uI3 − (I3 −ϕ)) ≡ u3 (mod J(R)). According
to Lemma 2.3, I3 − ϕ ∈ J#(M3(R)).

Case III. deg(h0) = 2 and deg(h1) = 1. Then h0 = t2 + at + b and h1 = t − α.
As h0 ∈ J0, we have h0 ≡ t2 (mod J(R)), hence a, b ∈ J(R). As h1 ∈ J1, we
have h1 ≡ t − 1 (mod J(R)), hence, α ∈ 1 + J(R). We see that a − α = −tr(ϕ),
b− aα = mid(ϕ) and −bα = −det(ϕ). Therefore, tr(ϕ) ∈ 1+J(R), mid(ϕ) ∈ J(R)
and det(ϕ) ∈ J(R).

Case IV. deg(h0) = 1 and deg(h1) = 2. Then h0 = t − α and h1 = t2 + at + b.
As h0 ∈ J0, we have h0 ≡ t (mod J(R)), hence α ∈ J(R). As h1 ∈ J1, we have
h1 ≡ (t − 1)2 (mod J(R)), and then a ∈ −2 + J(R) and b ∈ 1 + J(R). Obviously,
χ(ϕ) = t3 − tr(ϕ)t2 + mid(ϕ)t − det(ϕ), and so a − α = −tr(ϕ), b − aα = mid(ϕ)
and −bα = −det(ϕ). Therefore, tr(ϕ) ∈ 2 + J(R), mid(ϕ) ∈ 1 + J(R) and det(ϕ)
∈ J(R).

Conversely, if χ(ϕ) ≡ t3 or χ(ϕ) ≡ (t−1)3 (mod J(R)), then ϕ ∈ J#(M3(R)) or
I3−ϕ ∈ J#(M3(R)). Hence, ϕ is strongly J#-clean. Suppose that χ(ϕ) has a root
α ∈ 1+J(R), tr(ϕ) ∈ 1+J(R) and det(ϕ) ∈ J(R). Then χ(ϕ) = (t2 +at+b)(t−α)
for some a, b ∈ R. This implies that a − α = −tr(ϕ) and −bα = −det(ϕ). Hence,
a, b ∈ J(R). Let h0 = t2 + at + b and h1 = t− α. Then χ(ϕ) = h0h1 where h0 ∈ J0
and h1 ∈ J1. According to Theorem 2.6, ϕ is strongly J#-clean.

Suppose that χ(ϕ) has a root α ∈ J(R), tr(ϕ) ∈ 2 + J(R), mid(ϕ) ∈ 1 + J(R)
and det(ϕ) ∈ J(R). Then χ(ϕ) = (t−α)(t2 +at+b) for some a, b ∈ R. This implies
that a−α = −tr(ϕ) and b−aα = mid(ϕ). Hence, a ∈ −2+J(R) and b ∈ 1+J(R).
Let h0 = t−α and h1 = t2 + at + b. Then χ(ϕ) = h0h1 where h0 ∈ J0 and h1 ∈ J1.
According to Theorem 2.6, ϕ is strongly J#-clean, and we are done. ¤

3 Matrices over Power Series Rings

The purpose of this section is to extend the preceding discussion to matrices over
power series rings. We use R[[x]] to stand for the ring of all power series over R.
Let A(x) = (aij(x)) ∈ Mn(R[[x]]). We use A(0) to stand for (aij(0)) ∈ Mn(R).

Theorem 3.1. Let R be a projective-free ring and let A(x) ∈ M2(R[[x]]). Then
the following are equivalent:

(1) A(x) ∈ M2(R[[x]]) is strongly J#-clean.

(2) A(0) ∈ M2(R) is strongly J#-clean.

Proof. (1)⇒(2) Since A(x) is strongly J#-clean in M2(R[[x]]), there exists E(x) =
E2(x) ∈ M2(R[[x]]) and U(x) ∈ J#(M2(R[[x]])) such that A(x) = E(x)+U(x) and
E(x)U(x) = U(x)E(x). This implies that A(0) = E(0) + U(0) and E(0)U(0) =
U(0)E(0), where E(0) = E2(0) ∈ M2(R) and U(0) ∈ J#(M2(R)). As a result, A(0)
is strongly J#-clean in M2(R).
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(2)⇒(1) Construct a ring morphism ϕ : R[[x]] → R given by f(x) 7→ f(0).
Then R ∼= R[[x]]/ ker f , where ker f = {f(x) | f(0) = 0} ⊆ J(R[[x]]). For any
finitely generated projective R[[x]]-module P , P ⊗R (R[[x]]/ ker f) is a finitely gen-
erated projective R[[x]]/ ker f -module, hence it is free. Write P ⊗R (R[[x]]/ ker f) ∼=
(R[[x]]/ ker f)m for some m ∈ N. Then

P ⊗R (R[[x]]/ ker f) ∼= (R[[x]])m ⊗R (R[[x]]/ ker f).

That is, P/P (ker f) ∼= (R[[x]])m/(R[[x]])m(ker f) with ker f ⊆ J(R[[x]]). By the
Nakayama theorem, P ∼= (R[[x]])m is free. Thus, R[[x]] is projective-free. Since
A(0) is strongly J#-clean in M2(R), it follows from Corollary 2.8 that A(0) ∈
J#(M2(R)), or I2−A(0) ∈ J#(M2(R)), or the characteristic polynomial χ(A(0)) =
y2 + µy + λ has a root α ∈ 1 + J(R) and a root β ∈ J(R). If A(0) ∈ J#(M2(R)),
then A(x) ∈ J#(M2(R[[x]])). If I2 − A(0) ∈ J#(M2(R)), then I2 − A(x) ∈
J#(M2(R[[x]])). Otherwise, write y =

∑∞
i=0 bix

i and χ(A(x)) = y2−µ(x)y− λ(x).
Then y2 =

∑∞
i=0 cix

i, where ci =
∑i

k=0 bkbi−k. Let µ(x) =
∑∞

i=0 µix
i and

λ(x) =
∑∞

i=0 λix
i ∈ R[[x]], where µ0 = µ and λ0 = λ. Then y2 − µ(x)y − λ(x) = 0

holds in R[[x]] if the following equations are satisfied:

b2
0 − b0µ0 − λ0 = 0,

(b0b1 + b1b0)− (b0µ1 + b1µ0)− λ1 = 0,

(b0b2 + b2
1 + b2b0)− (b0µ2 + b1µ1 + b2µ0)− λ2 = 0,

. . .

Obviously, µ0 = α + β ∈ U(R) and α − β ∈ U(R). Let b0 = α. Since R is
commutative, there exists some b1 ∈ R such that b0b1 + b1(b0 − µ0) = λ1 + b0µ1.
Further, there exists some b2 ∈ R such that

b0b2 + b2(b0 − µ0) = λ2 − b2
1 + b0µ2 + b1µ1.

By iteration of this process, we get b3, b4, . . . , and so on. Then y2−µ(x)y−λ(x) = 0
has a root y0(x) ∈ 1 + J(R[[x]]). If b0 = β ∈ J(R), analogously, we can show that
y2 − µ(x)y − λ(x) = 0 has a root y1(x) ∈ J(R[[x]]). In light of Corollary 2.8, the
result follows. ¤

Corollary 3.2. Let R be a projective-free ring and let A(x) ∈ M2(R[[x]]/(xm))
(m ≥ 1). Then the following are equivalent:

(1) A(x) ∈ M2(R[[x]]/(xm)) is strongly J#-clean.

(2) A(0) ∈ M2(R) is strongly J#-clean.

Proof. (1)⇒(2) is obvious.
(2)⇒(1) Let ψ : R[[x]] → R[[x]]/(xm) be given by ψ(f) = f . Then it reduces

a surjective ring homomorphism ψ∗ : M2(R[[x]]) → M2(R[[x]]/(xm)). Hence, we
have B ∈ M2(R[[x]]) such that ψ∗(B(x)) = A(x). According to Theorem 3.1, we
complete the proof. ¤
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Example 3.3. Let R = Z4[x]/(x2) and A(x) =
(

2 2 + 2x
2 + x 3 + 3x

)
∈ M2(R). Clearly,

Z4 is a projective-free ring, and R = Z4[[x]]/(x2). Since we have the strongly J#-

clean decomposition A(0) =
(

0 2
2 1

)
+

(
2 0
0 2

)
in M2(Z4), it follows by Corollary

3.2 that A(x) ∈ M2(R) is strongly J#-clean.

Theorem 3.4. Let R be a projective-free ring and let A(x) ∈ M3(R[[x]]). Then
the following are equivalent:

(1) A(x) ∈ M3(R[[x]]) is strongly J#-clean.

(2) A(x) ∈ M3(R[[x]]/(xm)) (m ≥ 1) is strongly J#-clean.

(3) A(0) ∈ M3(R) is strongly J#-clean.

Proof. (1)⇒(2) and (2)⇒(3) are clear.
(3)⇒(1) As A(0) is strongly J#-clean in M3(R), it follows from Corollary 2.10

that A(0) ∈ J#(M3(R)); or I3−A(0) ∈ J#(M3(R)); or χ(A(0)) has a root in J(R),
tr(A(0)) ∈ 2 + J(R), mid(A(0)) ∈ 1 + J(R) and det(A(0)) ∈ J(R); or χ(A(0)) has
a root in 1 + J(R), tr(A(0)) ∈ 1 + J(R), mid(A(0)) ∈ J(R) and det(A(0)) ∈ J(R).
If A(0) ∈ J#(M3(R)) or I3 − A(0) ∈ J#(M3(R)), then A(x) ∈ J#(M3(R[[x]]))
or I3 − A(x) ∈ J#(M3(R[[x]])). Hence, A(x) ∈ M3(R[[x]]) is strongly J#-clean.
Assume that χ(A(0)) = t3−µt2−λt− γ has a root α ∈ J(R), tr(A(0)) ∈ 2+J(R),
mid(A(0)) ∈ 1 + J(R) and det(A(0)) ∈ J(R). Write y =

∑∞
i=0 bix

i. Then y2 =∑∞
i=0 cix

i, where ci =
∑i

k=0 bkbi−k. Furthermore, y3 =
∑∞

i=0 dix
i, where di =∑i

k=0 bkci−k. Let µ(x) =
∑∞

i=0 µix
i, λ(x) =

∑∞
i=0 λix

i, γ(x) =
∑∞

i=0 γix
i ∈ R[[x]],

where µ0 = µ, λ0 = λ and γ0 = γ. Then y3 − µ(x)y2 − λ(x)y − γ(x) = 0 holds in
R[[x]] if the following equations are satisfied:

b3
0 − b2

0µ0 − b0λ0 − γ0 = 0,

(3b2
0 − 2b0µ0 − λ0)b1 = γ1 + b2

0µ1 + b0λ1,

(3b2
0 − 2b0µ0 − λ0)b2 = γ2 + b2

0µ2 + b2
1µ0 + 2b0b1µ1 + b0λ2 + b1λ0 − 3b0b

2
1,

. . .

Let b0 = α ∈ J(R). Obviously, µ0 = tr(A(0)) ∈ 2 + J(R) and λ0 = −mid(A(0)) ∈
U(R). Hence, 3b2

0 − 2b0µ0 − λ0 ∈ U(R). Thus, we see that

b1 = (3b2
0 − 2b0µ0 − λ0)−1(γ1 + b2

0µ1 + b0λ1),
b2 = (3b2

0 − 2b0µ0 − λ0)−1(γ2 + b2
0µ2 + b2

1µ0 + 2b0b1µ1 + b0λ2 + b1λ0 − 3b0b
2
1).

By iteration of this process, we get b3, b4, . . . , and so on. Then the polynomial
y3−µ(x)y2−λ(x)y−γ(x) = 0 has a root y0(x) ∈ J(R[[x]]). It follows from tr(A(0))
∈ 2 + J(R) that tr(A(x)) ∈ 2 + J(R[[x]]). Likewise, mid(A(x)) ∈ 1 + J(R[[x]]).
According to Corollary 2.10, A(x) ∈ M3(R[[x]]) is strongly J#-clean.

Assume that χ(A(0)) has a root 1+α ∈ J(R), tr(A(0)) ∈ 1+J(R), mid(A(0)) ∈
J(R) and det(A(0)) ∈ J(R). Then

det(I3 −A(0)) = 1− tr(A(0)) + mid(A(0))− det(A(0)) ∈ J(R).
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Set B(x) = I3 − A(x). Then χ(B(0)) has a root α ∈ J(R), tr(B(0)) ∈ 2 + J(R)
and det(B(0)) ∈ J(R). Hence, mid(B(0)) = det(A(0))−1+tr(B(0))+det(B(0)) ∈
1 + J(R). By the preceding discussion, we see that B(x) ∈ M3(R[[x]]) is strongly
J#-clean, and then we are done. ¤

From the evidence above, we end this paper by asking the following question:
Let R be a projective-free ring and let A(x) ∈ Mn(R[[x]]) (n ≥ 4). Does the strong
J#-cleanness of A(x) ∈ Mn(R[[x]]) coincide with that of A(0) ∈ Mn(R)?
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