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Abstract. An element of a ring R is called strongly J#-clean provided that it can be
written as the sum of an idempotent and an element in J#(R) that commute. In this
paper, we characterize the strong J#-cleanness of matrices over projective-free rings. This
extends many known results on strongly clean matrices over commutative local rings.
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1 Introduction

Let R be a ring with identity. We say that z € R is strongly clean provided that
there exists an idempotent e € R such that © — e € U(R) and ex = xe. A ring R is
strongly clean in case every element in R is strongly clean. We refer the reader to [7]
and [8] for the general theory of such rings. In [2, Theorem 12], Borooah, Diesl and
Dorsey proved that for a commutative local ring R and a monic polynomial h € R|t]
of degree n, the following are equivalent: (1) h has an SRC-factorization in RJ[t];
(2) every ¢ € M, (R) satisfying h is strongly clean. By [6, Example 3.1.7], the above
statement (1) cannot be weakened from S RC-factorization to S R-factorization. The
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Turkey (2221 Visiting Scientists Fellowship Programme) and the Natural Science Founda-
tion of Zhejiang Province (Y6090404), China.
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purpose of this paper is to investigate a subclass of strongly clean rings which behave

like such ones but can be characterized by a kind of SR-factorizations, and so get

more explicit factorizations for many class of matrices over projective-free rings.
Let J(R) be the Jacobson radical of R. Set

J#(R) = {x € R| 3n € N such that 2" € J(R)}.
For instance, let R = Ms(Z2). Then

7#®) ={(50)(80) (10)}

while J(R) = 0. Thus, J#(R) and J(R) are distinct in general. We say that an
element a € R is strongly J#-clean provided that there exists an idempotent e € R
such that a — e € J#(R) and ea = ae. If R is commutative, then a € R is strongly
J#-clean if and only if a is strongly J-clean (cf. [3]). But they behave differently for
matrices over commutative rings. A Jordan-Chevalley decomposition of an n X n
matrix A over an algebraically closed field (e.g., the field of complex numbers) is
an expression A = E + W, where E is semisimple, W is nilpotent, and £ and W
commute. The Jordan-Chevalley decomposition is extensively studied in Lie theory
and operator algebra. As a corollary, we will completely determine when an n X n
matrix over a filed is the sum of an idempotent matrix and a nilpotent matrix that
commute. Thus, the strongly J#-clean factorization of matrices over rings is an
analog of the Jordan-Chevalley decomposition for matrices over fields.

In this paper, we characterize the strong J#-cleanness of matrices over projective-
free rings. Here, a commutative ring R is projective-free provided that every finitely
generated projective R-module is free. For instance, every commutative local ring,
every commutative semi-local ring, every principal ideal domain, every Bézout do-
main (e.g., the ring of all algebraic integers) and the polynomial ring R[x] over a
principal ideal domain R are all projective-free. We will show that strongly J#-clean
matrices over projective-free rings are completely determined by a kind of “SC”-
factorizations of the characteristic polynomials. These extend many known results
on strongly clean matrices to such new factorizations of matrices over projective-free
rings (cf. [1, 2, 5]).

Throughout this paper, all rings have an identity and all modules are unitary
modules. We always use U(R) to denote the set of all units in a ring R. If ¢ €
M, (R), we use x(¢) to stand for the characteristic polynomial det(tI, — ).

2 Full Matrices over Projective-free Rings

Let A = (% (1)) € My(Zs). Tt is directly verified that A is not strongly J#-clean,

though A is strongly clean. It is hard to determine the strong cleanness even for
matrices over the integers, but the strongly J#-clean case is a completely different
situation. The aim of this section is to characterize a single strongly J#-clean
n X n matrix over a projective-free ring. For a left R-module M, we denote the
endomorphism ring of M by End(M).

Lemma 2.1. Let M be a left R-module, E = End(M) and let o € E. Then the
following are equivalent:
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(1) a € E is strongly J#-clean.
(2) There exists a left R-module decomposition M = P @ @, where P,Q are
a-invariant, a|p € J#(End(P)) and (1y — a)|g € J#(End(Q)).

Proof. (1)=(2) Since « is strongly J#-clean in F, there exists an idempotent 7 € E
and u € J#(FE) such that a = (1—7)+u and mu = ur. Thus, ra = 7u € J# (7 En).
Further, 1—a = 7—u, and so (1-7)(1—a) = (1-7)(~u) € J#((1-7)E(1—7)). Set
P=Mmrand Q=M1 —7). Then M = P® Q. As ar = ma, we see that P and @
are a-invariant. As am € J#(rEw), we can find ¢ € N such that (ar)! € J(7En).
Let v € End(P). For any # € M, it is easy to see that (z)7(1p — y(a|p)!) =
(z)7 (7 — (7ym)(ram)), where ¥ : M — M is given by (m)y = (m)my for any
m € M. Hence, 1p — v(a|p)' € Aut(P) and so (a|p)’ € J(End(P)). This implies
that a|p € J#(End(P)). Likewise, we verify that (1 — a)|q € J#(End(Q)).
(2)=(1) For any A € End(Q), we construct an R-homomorphism A € End(M)
given by (p + ¢)A = (¢)A. By hypothesis, a|p € J#(End(P)) and (1) — a)|g €
J#(End(Q)). Thus, a = Ig + alp — (I — a)|g. As P and Q are a-invariant,
we see that alg = Iga. In addition, 1o € End(M) is an idempotent. Since
alp (Il —a)lg =0= 1y — @)|g a|p, we have a|p — (1y — a)|g € J# (End(M)),
as required. O

Lemma 2.2. [6, Lemma 3.2.6] Let R be a ring and M a left R-module. Suppose
that x,y,a,b € End(M) such that xa + yb = 1y, 2y = yxr = 0, ay = ya and
b = bx. Then M = ker(x) ® ker(y) as left R-modules.

Lemma 2.3. Let R be a commutative ring and ¢ € M, (R). Then the following
are equivalent:

(1) ¢ € J#(Mn(R)).

(2) x(¢) =t™ (mod J(R)), i.e., x(¢) —t" € J(R)[t].

(3) There exists a monic polynomial h € R[t] such that h = t%°&" (mod J(R))
and h(y) = 0.

Proof. (1)=(2) Since ¢ € J# (M, (R)), there exists some m € N such that ¢™ €
J(M,(R)). As J(M,(R)) = M,(J(R)), we get g € N (M, (R/J(R))). In view of [6,
Proposition 3.5.4], x () = t" (mod N(R/J(R))). Write x(¢) = t"+a1t" 1+ -+a,.
Then x(¢) = t" + a;t" ' + .-+ +@,. We infer that each a]** + J(R) = 0+ J(R)
where m; € N. This implies that a; € J#(R). That is, x(¢) = t" (mod J#(R)).
Obviously, J(R) C J#(R). For any x € J#(R), there exists some m € N such that
2™ € J(R). For any maximal ideal M of R, M is prime, and so x € M. This implies
that = € J(R), hence J#(R) C J(R). Therefore, J#(R) = J(R), as required.

(2)=(3) Choose h = x(¢). Then h = ti%€" (mod J(R)). In light of the Cayley-
Hamilton theorem, h(p) = 0, as required.

(3)=(1) By hypothesis, there exists a monic polynomial h € RJ[t] such that
h = tdeeh (mod J(R)) and h(p) = 0. Write h = t" + a1t" ! + --- + a,,. Choose
h=t"+at" ' +..-+a, € (R/J(R))[t]. Then h = t" (mod N(R/J(R))) and
h(%) = 0. According to [6, Proposition 3.5.4], there exists some m € N such that

(
(¢()p =0in R/J(R). Therefore, o™ € M, (J(R)), and so ¢ € J# (M, (R)). O

~

3
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Definition 2.4. For r € R, define
J. ={f € R[t] | f monic and f = (t — )&/ (mod J#(R))}.

Lemma 2.5. Let R be a projective-free ring, ¢ € M, (R), and let h € R[t] be a
monic polynomial of degree n. If h(yp) = 0 and there exists a factorization h = hohy
such that hg € Jo and hy € J1, then ¢ is strongly J#-clean.

Proof. Write hg = t? + a1tP~' + -+ a, and hy = (t — 1)7 + b1t? ' + -+ + b,.
Then a;,b; € J#(R) for all 4,5. Since R is commutative, we get a;,b; € J(R).
Thus, hg = t? and hy = (t — 1)? in (R/J(R))[t]. Hence, (hg,hy) = 1. In virtue of
[6, Lemma 3.5.10], we have some wug,u; € R[t] such that uphg + uihy = 1. Then
we obtain ug()ho(p) + u1(p)hi(¢) = 1,r. By hypothesis, h(p) = ho(p)h1(p) =
h1(p)ho(p) = 0. Clearly, ug(p)h1(p) = hi(p)uo(yp) and ho(p)ui(p) = u1(p)ho(p).
In light of Lemma 2.2, nR = ker(ho(p)) ® ker(hi(p)). As hot = thg and hit = thy,
we have ho(p)p = <ph0( ) and h1 (@) = @hi (@), and so ker(ho(v)) and ker(hq(p))
are both g-invariant. It is easy to verify that ho(|ker(no(p))) = 0. Since hg € Jo,
we see that ho = 198" (mod J#(R)), hence Qlier(no(p)) € J# (End(ker(ho(¢)))).
It is easy to verify that Ay (@lker(n, () = 0. Set g(u) = (—1)4°&" 1 by (1—u). Then
9((1 = @) |xex(hy (0))) = 0. Since hy € Jy, we see that hy = (t —1)9°¢"1 (mod J#(R)).
Hence, g(u) = (—1)9%8"1(—4)4°89 (mod J(R)). This implies that g € Jo. By virtue
of Lemma 2.3, (1 — ¢)|ker(n1 (o)) € J7 (End(ker(h1(¢)))). According to Lemma 2.1,
¢ € M, (R) is strongly J#-clean. O

For h =t" + a,_1t"" ' + -+ + a1t + ap € R[t], the matrix

-0 —ag

0 --
0--- 0 —a
Co=1 ... : € M, (R)

0

1

00---1—ap1
is called the companion matrix of h.

Theorem 2.6. Let R be a projective-free ring and h € R[t] a monic polynomial of
degree n. Then the following are equivalent:

(1) Every ¢ € M, (R) with x(p) = h is strongly J#-clean.

(2) The companion matrix Cy, of h is strongly J#-clean.

(3) There exists a factorization h = hohy such that hg € Jo and hy € J;.

Proof. (1)=(2) Write h = t" 4+ ap,_1t""* + -+ + a1t + ag € R[t]. Choose C}, as
above. Then x(C}) = h. By hypothesis, Cj, € M,,(R) is strongly J#-clean.
(2)=-(3) In view of Lemma 2.1, there exists a decomposition nR = A @ B such
that A and B are g-invariant, |4 € J#(Endg(A)) and (1 —¢)|p € J#(Endg(B)).
Since R is a projective-free ring, there exist p, ¢ € N such that A = pR and B = ¢R.
Regarding Endg(A) as M,(R), we see that |4 € J#(M,(R)). By virtue of Lemma
2.3, x(p|la) = t? (mod J#(R)). Thus x(¢la) € Jo. Analogously, (1 — ¢)|p €
J#(M,(R)). It follows from Lemma 2.3 that x((1 —¢)|5) = t¢ (mod J#(R)). This
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implies that det(A, — (1 —¢)|5) = A\? (mod J#(R)). Hence, det((1—\)I,—¢|p) =
(=A)? (mod J#(R)). Set t =1 — A. Then det(tI, — ¢|5) = (t — 1)9 (mod J#(R)).
Therefore, we get x(¢|g) = (t — 1)? (mod J#(R)). We infer that x(p|g) € J1.
Clearly, x(¢) = x(¢la)x(¢lB). Choose hg = x(p|a) and hy = x(¢|g). Then there
exists a factorization h = hghy such that hg € Jy and hy € Jq, as desired.

(3)=(1) For every ¢ € M,(R) with x(¢) = h, it follows by the Cayley-Hamilton
theorem that h(¢) = 0. Therefore, ¢ is strongly J#-clean by Lemma 2.5. O

Corollary 2.7. Let F be a field and A € M,,(F). Then the following are equivalent:
(1) A is the sum of an idempotent matrix and a nilpotent matrix that commute.
(2) x(A) =tk —1)! for some k,1 > 0.

Proof. As J(M,(F)) = 0, we see that an n x n matrix is contained in J# (M, (F)) if
and only if it is a nilpotent matrix. So A € M,,(F) is strongly J#-clean if and only
if A is the sum of an idempotent matrix and a nilpotent matrix that commute. By
virtue of Theorem 2.6, this is the case if and only if x(A) = hohy, where hg € Jo and
hy € J1. Clearly, hy € Jo if and only if hg = t4°8"0 (mod J#(F)). But J#(F) =0,
and so hg = t*, where k = degho. Likewise, hy = (t — 1)}, where | = degh;.
Therefore, we complete the proof. O

For matrices over integers, we have a similar situation as J(M,(Z)) = 0. Hence,
Corollary 2.7 still holds if we replace the field F' by Z. For instance, choose

—2 2 -1
A= -4 4 2| e M3y(2).
~11 0

Then x(A) = t(t—1)2. Thus, A is the sum of an idempotent matrix and a nilpotent
matrix that commute. In fact, we have a corresponding factorization

-110 -11-1
A=1-220)+1] -2 2 -2
0 01 -11-1

Corollary 2.8. Let R be a projective-free ring and ¢ € Ms(R). Then ¢ is strongly
J#-clean if and only if one of the following holds:

(1) x(¢) =#* (mod J(R)).

(2) x(¢) = (t—1)* (mod J(R)).

(3) x(¢) has a root in J(R) and a root in 1+ J(R).

Proof. Suppose that ¢ is strongly J#-clean. By virtue of Theorem 2.6, there exists
a factorization x(¢) = hohy such that hg € Jo and hq € J;.

Case L. deg(hg) = 2 and deg(h;) = 0. Then hg = x(p) = t? —tr(p)t+det(p) and
hi = 1. As hg € Jo, it follows from Lemma 2.3 that ¢ € J#(Mz(R)) or x(p) = t2
(mod J(R)).

Case II. deg(hg) = 1 and deg(hy1) = 1. Then hg =t — @ and h; =t — 3. Since
R is commutative, J#(R) = J(R). As hg € Jy, we see that hg =t (mod J(R)),
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and then a € J(R). As hy € Jy, we see that hy = ¢ — 1 (mod J(R)), and then
B €1+ J(R). Therefore, x(¢) has a root in J(R) and a root in 1 + J(R).

Case II1. deg(hg) = 0 and deg(hy) = 2. Then hy(t) = det(tly — ¢) = (t — 1)?
(mod J(R)). Set u =1—t. Then det(uly — (Is — ¢)) = u? (mod J(R)). According
to Lemma 2.3, Iy — ¢ € J#(Ms(R)) or x(p) = (t — 1)? (mod J(R)).

Now we show the converse. If x(¢) = t2 or x(¢) = (t — 1)? (mod J(R)), then
¢ € J#(Ma(R)) or I — ¢ € J#(My(R)). This implies that ¢ is strongly J#-clean.
Otherwise, ¢, Iy — ¢ & J(M3(R)). In addition, x(p) has a root in J(R) and a root
in 1+ J(R). According to [4, Theorem 16.4.31], ¢ is strongly J-clean, and therefore
it is strongly J#-clean. O

Choose A = <(1) ;) € My(Zy4). Tt is easy to check that A, Iy — A € My(Z,) are

not nilpotent. But x(A) = ¢*> +t+2 has aroot 2 € J(Z4) and aroot 1 € 1+ J(Zs).
As J(Z4) = {0,2} is nil, we know that every matrix in J#(Mx(Z4)) is nilpotent.
It follows from Corollary 2.8 that A is the sum of an idempotent matrix and a
nilpotent matrix that commute. Let Zpy) = {7 |m,n € Z, 2 { n}, and let A =

11 m
(% O) € My(Z2)). Then J(Z2)) = {22 |m,n € Z,2tn}. As x(A) =t*—t+ 2

I}asla root 3 € 14 J(Z)) and a root % € J(Z)), by Corollary 2.8, A is strongly
-clean.

Corollary 2.9. Let R be a projective-free ring, and f(t) = t> + at + b € R[t] with
14+ a€ J(R) and b ¢ J(R). Then the following are equivalent:
(1) Every ¢ € My(R) with x(p) = f(t) is strongly J#-clean.
(2) There exist 1 € J(R) and ro € 1+ J(R) such that f(r1) = f(r2) = 0.
(3) There exists r € J(R) such that f(r) = 0.
Proof. (1)=-(2) Since every ¢ € My(R) with x(¢) = f(t) is strongly J#-clean, it
follows by Corollary 2.8 that f(t) = (t—r1)(t—r2) with 7y € J(R) and 75 € 1+ J(R).
(2)=(3) is trivial.
(3)=(1) As 72 +ar + b = 0, we see that f(t) = (t —r)(t +a + ). Clearly,
t—relJo. Asl+a+r e J(R), we see that t +a+r € J;. According to Theorem
2.6, we complete the proof. O

Let ¢ be a 3 x 3 matrix over a commutative ring R. Set
mid(p) = det(Is — ) — 1 + tr(p) + det(y).

Corollary 2.10. Let R be a projective-free ring and let ¢ € Ms(R). Then ¢ is
strongly J#-clean if and only if one of the following holds:

(1) x(p) =15 (mod J(R)).

(3) has a root in 1 + J(R), tr(¢) € 1 + J(R), mid(p) € J(R) and det(p) €

has a root in J(R), tr(p) € 2+ J(R), mid(p) € 1 + J(R) and det(p) €
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Proof. Suppose that ¢ is strongly J#-clean. By virtue of Theorem 2.6, there exists
a factorization x(¢) = hohy such that hg € Jo and hy € J;.

Case I. deg(hgp) = 3 and deg(hy) = 0. Then hy = x(¢) and hy = 1. As hg € Jo,
it follows from Lemma 2.3 that ¢ € J#(M3(R)).

Case II. deg(hg) = 0 and deg(h1) = 3. Then hy(t) = det(tls — o) = (t — 1)3
(mod J(R)). Set u =1—t. Then det(ul3 — (I3 — ¢)) = v® (mod J(R)). According
to Lemma 2.3, I3 — o € J#(M;3(R)).

Case III. deg(hg) = 2 and deg(hy) = 1. Then hg = t> +at +band hy =t — a.
As hg € Jo, we have hg = t? (mod J(R)), hence a,b € J(R). As hy € Ji, we
have hy =t —1 (mod J(R)), hence, a € 1 + J(R). We see that a — a = —tr(p),
b—aa = mid(yp) and —ba = —det(p). Therefore, tr(¢) € 1+ J(R), mid(p) € J(R)
and det(p) € J(R).

Case IV. deg(ho) = 1 and deg(h;) = 2. Then hg =t — « and hy = t> + at + b.
As hgy € Jo, we have hg =t (mod J(R)), hence o € J(R). As h; € Ji, we have
hy = (t — 1)% (mod J(R)), and then a € —2+ J(R) and b € 1 + J(R). Obviously,
x(p) = t3 — tr(p)t? + mid(p)t — det(p), and so a — a = —tr(p), b — aa = mid(p)
and —ba = —det(p). Therefore, tr(y) € 2+ J(R), mid(p) € 1+ J(R) and det(y)
€ J(R).

Conversely, if x(¢) = t3 or x(¢) = (t—1)? (mod J(R)), then ¢ € J#(M3(R)) or
I3 — ¢ € J#(M;3(R)). Hence, ¢ is strongly J#-clean. Suppose that x(¢) has a root
a €1+ J(R), tr(p) € 1+ J(R) and det(p) € J(R). Then x(¢) = (t>+at+b)(t— )
for some a,b € R. This implies that a — o = —tr(p) and —ba = — det(¢). Hence,
a,b € J(R). Let hg = t*> +at + b and h; =t —a. Then x(¢) = hoh1 where hy € Jgo
and h; € J;. According to Theorem 2.6, ¢ is strongly J#-clean.

Suppose that x(¢) has a root a € J(R), tr(p) € 2+ J(R), mid(p) € 1 + J(R)
and det(p) € J(R). Then x(p) = (t—a)(t* +at+b) for some a,b € R. This implies
that a — o = —tr(p) and b— aa = mid(p). Hence, a € =2+ J(R) and b € 1+ J(R).
Let hg =t —a and hy = t2 +at +b. Then () = hoh; where hg € Jo and hy € J;.
According to Theorem 2.6, ¢ is strongly J#-clean, and we are done. O

3 Matrices over Power Series Rings

The purpose of this section is to extend the preceding discussion to matrices over
power series rings. We use R[[z]] to stand for the ring of all power series over R.
Let A(z) = (a;;(z)) € My, (R[[z]]). We use A(0) to stand for (a;;(0)) € M,,(R).

Theorem 3.1. Let R be a projective-free ring and let A(x) € My(R[[z]]). Then
the following are equivalent:

(1) A(x) € Ma(R[[x]]) is strongly J#-clean.

(2) A(0) € My(R) is strongly J#-clean.

Proof. (1)=(2) Since A(z) is strongly J#-clean in My (R[[z]]), there exists E(z) =
E?(z) € My(R][[z]]) and U(x) € J#(Ma(R[[x]])) such that A(x) = E(x)+U(z) and
E(z)U(x) = U(z)E(x). This implies that A(0) = E(0) + U(0) and E(0)U(0) =
U(0)E(0), where E(0) = E%(0) € My(R) and U(0) € J#(Mx(R)). As a result, A(0)
is strongly J#-clean in My(R).
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(2)=(1) Construct a ring morphism ¢ : R[[z]] — R given by f(z) — f(0).
Then R = R|[z]]/ker f, where ker f = {f(x)|f(0) = 0} C J(R][[z]]). For any
finitely generated projective R[[x]]-module P, P ®@pr (R[[z]]/ ker f) is a finitely gen-
erated projective R[[z]]/ker f-module, hence it is free. Write P ®p (R[[z]]/ ker f) =
(R[[z]])/ ker f)™ for some m € N. Then

P g (R[z]]/ ker f) = (R[[2]])™ ©r (R[[z]]/ ker f).

That is, P/P(ker f) = (R[[z]])"/(R[[z]])" (ker f) with ker f C J(R[[z]]). By the
Nakayama theorem, P = (R[[z]])™ is free. Thus, R[[z]] is projective-free. Since
A(0) is strongly J#-clean in My(R), it follows from Corollary 2.8 that A(0) €
J#(Ms(R)), or Iy — A(0) € J#(My(R)), or the characteristic polynomial x(A(0)) =
y? 4+ puy + X has a root a € 1+ J(R) and a root 3 € J(R). If A(0) € J#(Ms(R)),
then A(z) € J#(Ma(R[[z]])). If I, — A(0) € J#(Mz(R)), then I — A(z) €
J#(Ms(R[[z]])). Otherwise, write y = Y o bz’ and x(A(z)) = y? — p(z)y — A(z).
Then y? = Y% c;z’, where ¢; = >, _obrbi—k. Let p(z) = Yoo, pix’ and
Az) =32y Nz’ € R[[x]], where py = p and A9 = . Then y* — p(x)y — A\(z) =0
holds in R][x]] if the following equations are satisfied:

b3 — bopo — Ao =0,
(bob1 + b1bg) — (bop1 + b1pto) — A1 = 0,
(boba + b7 + babg) — (bopz + b1 + bapo) — A2 = 0,

Obviously, pp = a+ 8 € U(R) and o« — 8 € U(R). Let by = «. Since R is
commutative, there exists some b; € R such that boby + b1(bg — o) = A1 + bops.
Further, there exists some by € R such that

boba + b2(bo — po) = A2 — b7 + bopa + bips.

By iteration of this process, we get bs, by, . .., and so on. Then y% —p(z)y—A(z) =0
has a root yo(x) € 1 + J(R[[z]]). If by = 8 € J(R), analogously, we can show that
y? — p(x)y — AM(z) = 0 has a root y1(x) € J(R[[z]]). In light of Corollary 2.8, the
result follows. O

Corollary 3.2. Let R be a projective-free ring and let A(x) € My(R[[z]]/(z™))
(m >1). Then the following are equivalent:

(1) A(z) € Ma(R[[]]/(2™)) is strongly J#-clean.
(2) A(0) € Ma(R) is strongly J#-clean.

Proof. (1)=-(2) is obvious.

(2)=(1) Let ¢ : R[[z]] — R[[z]]/(z™) be given by ¥ (f) = f. Then it reduces
a surjective ring homomorphism ¥* : My (R[[z]]) — Ma(R[[z]]/(z™)). Hence, we
have B € My(R[[z]]) such that ¢¥*(B(x)) = A(z). According to Theorem 3.1, we
complete the proof. O
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24+x 3+3x
Z4 is a projective-free ring, and R = Z4[[x]]/(2?). Since we have the strongly J#-
02 20
2 1) + (o 2

3.2 that A(x) € My(R) is strongly J#-clean.

Example 3.3. Let R = Zy[z]/(z?) and A(z) = < 2 2+2a:) € M3(R). Clearly,

clean decomposition A(0) = ) in Ms(Z4), it follows by Corollary

Theorem 3.4. Let R be a projective-free ring and let A(x) € Ms(R][[z]]). Then
the following are equivalent:
(1) A(x) € M3(R[[z]]) is strongly J#-clean.

(2) A(z) € M3(R[[z]]/(z™)) (m > 1) is strongly J#-clean.
(3) A(0) € M3(R) is strongly J#-clean.
Proof. (1)=-(2) and (2)=-(3) are clear.
(3)=(1) As A(0) is strongly J#-clean in Mz(R), it follows from Corollary 2.10

that A(0) € J#(Mz(R)); or I3 — A(0) € J#(M3(R)); or x(A(0)) has a root in J(R),
tr(A(0)) € 2+ J(R), mid(A(0)) € 1 + J(R) and det(A(0)) € J(R); or x(A(0)) has
aroot in 1+ J(R), tr(A(0)) € 1 + J(R), mid(A(0)) € J(R) and det(A(0)) € J(R).
If A(0) € J#(M3(R)) or I3 — A(0) € J#(M;5(R)), then A(z) € J#(Ms(R[[z]]))
or I3 — A(x) € J#*(M3(R][[z]])). Hence, A(z) € M3(R[[x]]) is strongly J#-clean.
Assume that y(A(0)) = #3 — ut?> — At — v has a root a € J(R), tr(A(0)) € 2+ J(R),
mid(A(0)) € 1+ J(R) and det(A(0)) € J(R). Write y = > ;2 b;z’. Then y? =
Z;io c;z', where ¢; = >, _brbi—. Furthermore, y* = Y77 d;z*, where d; =
ko brciog. Let p(z) = 3270, wiat, M) = 35720 Nz, () = 3072, vz’ € R[[a]],
where 119 = p1, Ao = A and vp = 7. Then 3® — u(z)y? — A(x)y — v(z) = 0 holds in
R][x]] if the following equations are satisfied:

bg — b2 1o — boro — 70 = 0,
(363 — 2bopo — Xo)br = 71 + bEpa + boAs,
(3b3 — 2bopo — Ao)b2 = 2 + b3ua + bipo + 2bobi i + boAe + biho — 3bob3,

Let bg = a € J(R). Obviously, po = tr(A(0)) € 2+ J(R) and Ay = —mid(A(0)) €
U(R). Hence, 3b% — 2bgjo — Ao € U(R). Thus, we see that

by = (3b2 — Zbop,o — /\0)71("}/1 + b2u1 + bO/\l)
by = (3b3 — 2bopo — o) " (2 + b3ue + b3po + 2bobi 1 + boAa + by Ao — 3bob?).

By iteration of this process, we get bs,by,..., and so on. Then the polynomial
Y3 —u(z)y? — Mx)y—(z) = 0 has a root yo(z) € J(R[[z]]). It follows from tr(A(0))
€ 2+ J(R) that tr(A(z)) € 2 + J(R[[z]]). Likewise, mid(A(z)) € 1+ J(R[[z]]).
According to Corollary 2.10, A(x) € M3(R[[x]]) is strongly J#-clean.

Assume that x(A(0)) has aroot 1+a € J(R), tr(A(0)) € 1+ J(R), mid(A(0)) €
J(R) and det(A(0)) € J(R). Then

det(I5 — A(0)) = 1 — tr(A(0)) + mid(A(0)) — det(A(0)) € J(R).
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Set B(x) = I3 — A(z). Then x(B(0)) has a root « € J(R), tr(B(0)) € 2+ J(R)
and det(B(0)) € J(R). Hence, mid(B(0)) = det(A(0)) — 1+ tr(B(0)) +det(B(0)) €
1+ J(R). By the preceding discussion, we see that B(z) € Ms3(R][z]]) is strongly
J#_clean, and then we are done. O

From the evidence above, we end this paper by asking the following question:
Let R be a projective-free ring and let A(x) € M, (R[[z]]) (n > 4). Does the strong
J#-cleanness of A(x) € M, (R[[z]]) coincide with that of A(0) € M,,(R)?
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