FACTORIZATIONS OF MATRICES OVER PROJECTIVE FREE RINGS

ARTICLE in ALGEBRA COLLOQUIUM • DECEMBER 2015
Impact Factor: 0.3

READS
48

3 AUTHORS:

Huanyin Chen
Hangzhou Normal University
291 PUBLICATIONS 771 CITATIONS

SEE PROFILE

Yosum Kurtulmaz
Bilkent University
17 PUBLICATIONS
3 CItATIONS

```
SEE PROFILE
```


Factorizations of Matrices over Projective-free Rings*

Huanyin Chen
Department of Mathematics, Hangzhou Normal University
Hangzhou 310036, China
E-mail: huanyinchen@aliyun.com
H. Kose
Department of Mathematics, Ahi Evran University, Kirsehir, Turkey
E-mail: handankose@gmail.com
\section*{Y. Kurtulmaz}
Department of Mathematics, Bilkent University, Ankara, Turkey
E-mail: yosum@fen.bilkent.edu.tr
Received 17 March 2012
Revised 25 April 2012
Communicated by L.A. Bokut

Abstract

An element of a ring R is called strongly $J^{\#}$-clean provided that it can be written as the sum of an idempotent and an element in $J^{\#}(R)$ that commute. In this paper, we characterize the strong $J^{\#}$-cleanness of matrices over projective-free rings. This extends many known results on strongly clean matrices over commutative local rings.

2010 Mathematics Subject Classification: 15A23, 15B99, 16L99
Keywords: strongly $J^{\#}$-matrix, characteristic polynomial, projective-free ring

1 Introduction

Let R be a ring with identity. We say that $x \in R$ is strongly clean provided that there exists an idempotent $e \in R$ such that $x-e \in U(R)$ and $e x=x e$. A ring R is strongly clean in case every element in R is strongly clean. We refer the reader to [7] and [8] for the general theory of such rings. In [2, Theorem 12], Borooah, Diesl and Dorsey proved that for a commutative local ring R and a monic polynomial $h \in R[t]$ of degree n, the following are equivalent: (1) h has an $S R C$-factorization in $R[t]$; (2) every $\varphi \in M_{n}(R)$ satisfying h is strongly clean. By [6, Example 3.1.7], the above statement (1) cannot be weakened from $S R C$-factorization to $S R$-factorization. The

[^0]purpose of this paper is to investigate a subclass of strongly clean rings which behave like such ones but can be characterized by a kind of $S R$-factorizations, and so get more explicit factorizations for many class of matrices over projective-free rings.

Let $J(R)$ be the Jacobson radical of R. Set

$$
J^{\#}(R)=\left\{x \in R \mid \exists n \in \mathbb{N} \text { such that } x^{n} \in J(R)\right\}
$$

For instance, let $R=M_{2}\left(\mathbb{Z}_{2}\right)$. Then

$$
J^{\#}(R)=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\},
$$

while $J(R)=0$. Thus, $J^{\#}(R)$ and $J(R)$ are distinct in general. We say that an element $a \in R$ is strongly $J^{\#}$-clean provided that there exists an idempotent $e \in R$ such that $a-e \in J^{\#}(R)$ and $e a=a e$. If R is commutative, then $a \in R$ is strongly $J^{\#}$-clean if and only if a is strongly J-clean (cf. [3]). But they behave differently for matrices over commutative rings. A Jordan-Chevalley decomposition of an $n \times n$ matrix A over an algebraically closed field (e.g., the field of complex numbers) is an expression $A=E+W$, where E is semisimple, W is nilpotent, and E and W commute. The Jordan-Chevalley decomposition is extensively studied in Lie theory and operator algebra. As a corollary, we will completely determine when an $n \times n$ matrix over a filed is the sum of an idempotent matrix and a nilpotent matrix that commute. Thus, the strongly $J^{\#}$-clean factorization of matrices over rings is an analog of the Jordan-Chevalley decomposition for matrices over fields.

In this paper, we characterize the strong $J^{\#}$-cleanness of matrices over projectivefree rings. Here, a commutative ring R is projective-free provided that every finitely generated projective R-module is free. For instance, every commutative local ring, every commutative semi-local ring, every principal ideal domain, every Bézout domain (e.g., the ring of all algebraic integers) and the polynomial ring $R[x]$ over a principal ideal domain R are all projective-free. We will show that strongly $J^{\#}$-clean matrices over projective-free rings are completely determined by a kind of "SC"factorizations of the characteristic polynomials. These extend many known results on strongly clean matrices to such new factorizations of matrices over projective-free rings (cf. $[1,2,5])$.

Throughout this paper, all rings have an identity and all modules are unitary modules. We always use $U(R)$ to denote the set of all units in a ring R. If $\varphi \in$ $M_{n}(R)$, we use $\chi(\varphi)$ to stand for the characteristic polynomial $\operatorname{det}\left(t I_{n}-\varphi\right)$.

2 Full Matrices over Projective-free Rings

Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) \in M_{2}\left(\mathbb{Z}_{2}\right)$. It is directly verified that A is not strongly $J^{\#}$-clean, though A is strongly clean. It is hard to determine the strong cleanness even for matrices over the integers, but the strongly $J^{\#}$-clean case is a completely different situation. The aim of this section is to characterize a single strongly $J^{\#}$-clean $n \times n$ matrix over a projective-free ring. For a left R-module M, we denote the endomorphism ring of M by $\operatorname{End}(M)$.

Lemma 2.1. Let M be a left R-module, $E=\operatorname{End}(M)$ and let $\alpha \in E$. Then the following are equivalent:
(1) $\alpha \in E$ is strongly $J \#$-clean.
(2) There exists a left R-module decomposition $M=P \oplus Q$, where P, Q are α-invariant, $\left.\alpha\right|_{P} \in J^{\#}(\operatorname{End}(P))$ and $\left.\left(1_{M}-\alpha\right)\right|_{Q} \in J^{\#}(\operatorname{End}(Q))$.
Proof. (1) \Rightarrow (2) Since α is strongly $J^{\#}$-clean in E, there exists an idempotent $\pi \in E$ and $u \in J^{\#}(E)$ such that $\alpha=(1-\pi)+u$ and $\pi u=u \pi$. Thus, $\pi \alpha=\pi u \in J^{\#}(\pi E \pi)$. Further, $1-\alpha=\pi-u$, and so $(1-\pi)(1-\alpha)=(1-\pi)(-u) \in J^{\#}((1-\pi) E(1-\pi))$. Set $P=M \pi$ and $Q=M(1-\pi)$. Then $M=P \oplus Q$. As $\alpha \pi=\pi \alpha$, we see that P and Q are α-invariant. As $\alpha \pi \in J^{\#}(\pi E \pi)$, we can find $t \in \mathbb{N}$ such that $(\alpha \pi)^{t} \in J(\pi E \pi)$. Let $\gamma \in \operatorname{End}(P)$. For any $x \in M$, it is easy to see that $(x) \pi\left(1_{P}-\gamma\left(\left.\alpha\right|_{P}\right)^{t}\right)=$ $(x) \pi\left(\pi-(\pi \bar{\gamma} \pi)(\pi \alpha \pi)^{t}\right)$, where $\bar{\gamma}: M \rightarrow M$ is given by $(m) \bar{\gamma}=(m) \pi \gamma$ for any $m \in M$. Hence, $1_{P}-\gamma\left(\left.\alpha\right|_{P}\right)^{t} \in \operatorname{Aut}(P)$ and so $\left(\left.\alpha\right|_{P}\right)^{t} \in J(\operatorname{End}(P))$. This implies that $\left.\alpha\right|_{P} \in J^{\#}(\operatorname{End}(P))$. Likewise, we verify that $\left.(1-\alpha)\right|_{Q} \in J^{\#}(\operatorname{End}(Q))$.
$(2) \Rightarrow(1)$ For any $\lambda \in \operatorname{End}(Q)$, we construct an R-homomorphism $\bar{\lambda} \in \operatorname{End}(M)$ given by $(p+q) \bar{\lambda}=(q) \lambda$. By hypothesis, $\left.\alpha\right|_{P} \in J^{\#}(\operatorname{End}(P))$ and $\left.\left(1_{M}-\alpha\right)\right|_{Q} \in$ $J \#(\operatorname{End}(Q))$. Thus, $\alpha=\overline{1_{Q}}+\overline{\left.\alpha\right|_{P}}-\overline{\left.\left(1_{M}-\alpha\right)\right|_{Q}}$. As P and Q are α-invariant, we see that $\alpha \overline{1_{Q}}=\overline{1_{Q}} \alpha$. In addition, $\overline{1_{Q}} \in \operatorname{End}(M)$ is an idempotent. Since $\overline{\left.\alpha\right|_{P}} \overline{\left.\left(1_{M}-\alpha\right)\right|_{Q}}=0=\overline{\left.\left(1_{M}-\alpha\right)\right|_{Q}} \overline{\left.\alpha\right|_{P}}$, we have $\overline{\left.\alpha\right|_{P}}-\overline{\left.\left(1_{M}-\alpha\right)\right|_{Q}} \in J^{\#}(\operatorname{End}(M))$, as required.

Lemma 2.2. [6, Lemma 3.2.6] Let R be a ring and M a left R-module. Suppose that $x, y, a, b \in \operatorname{End}(M)$ such that $x a+y b=1_{M}, x y=y x=0, a y=y a$ and $x b=b x$. Then $M=\operatorname{ker}(x) \oplus \operatorname{ker}(y)$ as left R-modules.

Lemma 2.3. Let R be a commutative ring and $\varphi \in M_{n}(R)$. Then the following are equivalent:
(1) $\varphi \in J^{\#}\left(M_{n}(R)\right)$.
(2) $\chi(\varphi) \equiv t^{n}(\bmod J(R))$, i.e., $\chi(\varphi)-t^{n} \in J(R)[t]$.
(3) There exists a monic polynomial $h \in R[t]$ such that $h \equiv t^{\operatorname{deg} h}(\bmod J(R))$ and $h(\varphi)=0$.
Proof. (1) $\Rightarrow(2)$ Since $\varphi \in J^{\#}\left(M_{n}(R)\right)$, there exists some $m \in \mathbb{N}$ such that $\varphi^{m} \in$ $J\left(M_{n}(R)\right)$. As $J\left(M_{n}(R)\right)=M_{n}(J(R))$, we get $\bar{\varphi} \in N\left(M_{n}(R / J(R))\right)$. In view of $[6$, Proposition 3.5.4], $\chi(\bar{\varphi}) \equiv t^{n}(\bmod N(R / J(R)))$. Write $\chi(\varphi)=t^{n}+a_{1} t^{n-1}+\cdots+a_{n}$. Then $\chi(\bar{\varphi})=t^{n}+\overline{a_{1}} t^{n-1}+\cdots+\overline{a_{n}}$. We infer that each $a_{i}^{m_{i}}+J(R)=0+J(R)$ where $m_{i} \in \mathbb{N}$. This implies that $a_{i} \in J^{\#}(R)$. That is, $\chi(\varphi) \equiv t^{n}\left(\bmod J^{\#}(R)\right)$. Obviously, $J(R) \subseteq J^{\#}(R)$. For any $x \in J^{\#}(R)$, there exists some $m \in \mathbb{N}$ such that $x^{n} \in J(R)$. For any maximal ideal M of R, M is prime, and so $x \in M$. This implies that $x \in J(R)$, hence $J^{\#}(R) \subseteq J(R)$. Therefore, $J^{\#}(R)=J(R)$, as required.
$(2) \Rightarrow(3)$ Choose $h=\chi(\varphi)$. Then $h \equiv t^{\operatorname{deg} h}(\bmod J(R))$. In light of the CayleyHamilton theorem, $h(\varphi)=0$, as required.
$(3) \Rightarrow(1)$ By hypothesis, there exists a monic polynomial $h \in R[t]$ such that $h \equiv t^{\operatorname{deg} h}(\bmod J(R))$ and $h(\varphi)=0$. Write $h=t^{n}+a_{1} t^{n-1}+\cdots+a_{n}$. Choose $\bar{h}=t^{n}+\overline{a_{1}} t^{n-1}+\cdots+\overline{a_{n}} \in(R / J(R))[t]$. Then $\bar{h} \equiv t^{n}(\bmod N(R / J(R)))$ and $\bar{h}(\bar{\varphi})=0$. According to $[6$, Proposition 3.5.4], there exists some $m \in \mathbb{N}$ such that $(\bar{\varphi})^{m}=\overline{0}$ in $R / J(R)$. Therefore, $\varphi^{m} \in M_{n}(J(R))$, and so $\varphi \in J^{\#}\left(M_{n}(R)\right)$.

Definition 2.4. For $r \in R$, define

$$
\mathbb{J}_{r}=\left\{f \in R[t] \mid f \text { monic and } f \equiv(t-r)^{\operatorname{deg} f}\left(\bmod J^{\#}(R)\right)\right\} .
$$

Lemma 2.5. Let R be a projective-free ring, $\varphi \in M_{n}(R)$, and let $h \in R[t]$ be a monic polynomial of degree n. If $h(\varphi)=0$ and there exists a factorization $h=h_{0} h_{1}$ such that $h_{0} \in \mathbb{J}_{0}$ and $h_{1} \in \mathbb{J}_{1}$, then φ is strongly $J^{\#}$-clean.
Proof. Write $h_{0}=t^{p}+a_{1} t^{p-1}+\cdots+a_{p}$ and $h_{1}=(t-1)^{q}+b_{1} t^{q-1}+\cdots+b_{q}$. Then $a_{i}, b_{j} \in J^{\#}(R)$ for all i, j. Since R is commutative, we get $a_{i}, b_{j} \in J(R)$. Thus, $\overline{h_{0}}=t^{p}$ and $\overline{h_{1}}=(t-\overline{1})^{q}$ in $(R / J(R))[t]$. Hence, $\left(\overline{h_{0}}, \overline{h_{1}}\right)=\overline{1}$. In virtue of [6, Lemma 3.5.10], we have some $u_{0}, u_{1} \in R[t]$ such that $u_{0} h_{0}+u_{1} h_{1}=1$. Then we obtain $u_{0}(\varphi) h_{0}(\varphi)+u_{1}(\varphi) h_{1}(\varphi)=1_{n R}$. By hypothesis, $h(\varphi)=h_{0}(\varphi) h_{1}(\varphi)=$ $h_{1}(\varphi) h_{0}(\varphi)=0$. Clearly, $u_{0}(\varphi) h_{1}(\varphi)=h_{1}(\varphi) u_{0}(\varphi)$ and $h_{0}(\varphi) u_{1}(\varphi)=u_{1}(\varphi) h_{0}(\varphi)$. In light of Lemma 2.2, nR $=\operatorname{ker}\left(h_{0}(\varphi)\right) \oplus \operatorname{ker}\left(h_{1}(\varphi)\right)$. As $h_{0} t=t h_{0}$ and $h_{1} t=t h_{1}$, we have $h_{0}(\varphi) \varphi=\varphi h_{0}(\varphi)$ and $h_{1}(\varphi) \varphi=\varphi h_{1}(\varphi)$, and so $\operatorname{ker}\left(h_{0}(\varphi)\right)$ and $\operatorname{ker}\left(h_{1}(\varphi)\right)$ are both φ-invariant. It is easy to verify that $h_{0}\left(\left.\varphi\right|_{\operatorname{ker}\left(h_{0}(\varphi)\right)}\right)=0$. Since $h_{0} \in \mathbb{J}_{0}$, we see that $h_{0} \equiv t^{\operatorname{deg} h_{0}}\left(\bmod J^{\#}(R)\right)$, hence $\left.\varphi\right|_{\operatorname{ker}\left(h_{0}(\varphi)\right)} \in J^{\#}\left(\operatorname{End}\left(\operatorname{ker}\left(h_{0}(\varphi)\right)\right)\right)$.

It is easy to verify that $h_{1}\left(\left.\varphi\right|_{\operatorname{ker}\left(h_{1}(\varphi)\right)}\right)=0$. Set $g(u)=(-1)^{\operatorname{deg} h_{1}} h_{1}(1-u)$. Then $g\left(\left.(1-\varphi)\right|_{\operatorname{ker}\left(h_{1}(\varphi)\right)}\right)=0$. Since $h_{1} \in \mathbb{J}_{1}$, we see that $h_{1} \equiv(t-1)^{\operatorname{deg} h_{1}}\left(\bmod J^{\#}(R)\right)$. Hence, $g(u) \equiv(-1)^{\operatorname{deg} h_{1}}(-u)^{\operatorname{deg} g}(\bmod J(R))$. This implies that $g \in \mathbb{J}_{0}$. By virtue of Lemma 2.3, $\left.(1-\varphi)\right|_{\operatorname{ker}\left(h_{1}(\varphi)\right)} \in J^{\#}\left(\operatorname{End}\left(\operatorname{ker}\left(h_{1}(\varphi)\right)\right)\right)$. According to Lemma 2.1, $\varphi \in M_{n}(R)$ is strongly $J^{\#}$-clean.

For $h=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0} \in R[t]$, the matrix

$$
C_{h}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right) \in M_{n}(R)
$$

is called the companion matrix of h.
Theorem 2.6. Let R be a projective-free ring and $h \in R[t]$ a monic polynomial of degree n. Then the following are equivalent:
(1) Every $\varphi \in M_{n}(R)$ with $\chi(\varphi)=h$ is strongly $J^{\#}$ _clean.
(2) The companion matrix C_{h} of h is strongly $J^{\#}$-clean.
(3) There exists a factorization $h=h_{0} h_{1}$ such that $h_{0} \in \mathbb{J}_{0}$ and $h_{1} \in \mathbb{J}_{1}$.

Proof. (1) $\Rightarrow(2)$ Write $h=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0} \in R[t]$. Choose C_{h} as above. Then $\chi\left(C_{h}\right)=h$. By hypothesis, $C_{h} \in M_{n}(R)$ is strongly $J^{\#}$-clean.
$(2) \Rightarrow(3)$ In view of Lemma 2.1, there exists a decomposition $n R=A \oplus B$ such that A and B are φ-invariant, $\left.\varphi\right|_{A} \in J^{\#}\left(\operatorname{End}_{R}(A)\right)$ and $\left.(1-\varphi)\right|_{B} \in J^{\#}\left(\operatorname{End}_{R}(B)\right)$. Since R is a projective-free ring, there exist $p, q \in \mathbb{N}$ such that $A \cong p R$ and $B \cong q R$. Regarding $\operatorname{End}_{R}(A)$ as $M_{p}(R)$, we see that $\left.\varphi\right|_{A} \in J^{\#}\left(M_{p}(R)\right)$. By virtue of Lemma 2.3, $\chi\left(\left.\varphi\right|_{A}\right) \equiv t^{p}\left(\bmod J^{\#}(R)\right)$. Thus $\chi\left(\left.\varphi\right|_{A}\right) \in \mathbb{J}_{0}$. Analogously, $\left.(1-\varphi)\right|_{B} \in$ $J^{\#}\left(M_{q}(R)\right)$. It follows from Lemma 2.3 that $\chi\left(\left.(1-\varphi)\right|_{B}\right) \equiv t^{q}\left(\bmod J^{\#}(R)\right)$. This
implies that $\operatorname{det}\left(\lambda I_{q}-\left.(1-\varphi)\right|_{B}\right) \equiv \lambda^{q}\left(\bmod J^{\#}(R)\right)$. Hence, $\operatorname{det}\left((1-\lambda) I_{q}-\left.\varphi\right|_{B}\right) \equiv$ $(-\lambda)^{q}\left(\bmod J^{\#}(R)\right)$. Set $t=1-\lambda$. Then $\operatorname{det}\left(t I_{q}-\left.\varphi\right|_{B}\right) \equiv(t-1)^{q}\left(\bmod J^{\#}(R)\right)$. Therefore, we get $\chi\left(\left.\varphi\right|_{B}\right) \equiv(t-1)^{q}\left(\bmod J^{\#}(R)\right)$. We infer that $\chi\left(\left.\varphi\right|_{B}\right) \in \mathbb{J}_{1}$. Clearly, $\chi(\varphi)=\chi\left(\left.\varphi\right|_{A}\right) \chi\left(\left.\varphi\right|_{B}\right)$. Choose $h_{0}=\chi\left(\left.\varphi\right|_{A}\right)$ and $h_{1}=\chi\left(\left.\varphi\right|_{B}\right)$. Then there exists a factorization $h=h_{0} h_{1}$ such that $h_{0} \in \mathbb{J}_{0}$ and $h_{1} \in \mathbb{J}_{1}$, as desired.
$(3) \Rightarrow(1)$ For every $\varphi \in M_{n}(R)$ with $\chi(\varphi)=h$, it follows by the Cayley-Hamilton theorem that $h(\varphi)=0$. Therefore, φ is strongly $J^{\#}$-clean by Lemma 2.5.
Corollary 2.7. Let F be a field and $A \in M_{n}(F)$. Then the following are equivalent:
(1) A is the sum of an idempotent matrix and a nilpotent matrix that commute.
(2) $\chi(A)=t^{k}(t-1)^{l}$ for some $k, l \geq 0$.

Proof. As $J\left(M_{n}(F)\right)=0$, we see that an $n \times n$ matrix is contained in $J^{\#}\left(M_{n}(F)\right)$ if and only if it is a nilpotent matrix. So $A \in M_{n}(F)$ is strongly $J^{\#}$-clean if and only if A is the sum of an idempotent matrix and a nilpotent matrix that commute. By virtue of Theorem 2.6, this is the case if and only if $\chi(A)=h_{0} h_{1}$, where $h_{0} \in \mathbb{J}_{0}$ and $h_{1} \in \mathbb{J}_{1}$. Clearly, $h_{0} \in \mathbb{J}_{0}$ if and only if $h_{0} \equiv t^{\operatorname{deg} h_{0}}\left(\bmod J^{\#}(F)\right)$. But $J^{\#}(F)=0$, and so $h_{0}=t^{k}$, where $k=\operatorname{deg} h_{0}$. Likewise, $h_{1}=(t-1)^{l}$, where $l=\operatorname{deg} h_{1}$. Therefore, we complete the proof.

For matrices over integers, we have a similar situation as $J\left(M_{n}(\mathbb{Z})\right)=0$. Hence, Corollary 2.7 still holds if we replace the field F by \mathbb{Z}. For instance, choose

$$
A=\left(\begin{array}{ccc}
-2 & 2 & -1 \\
-4 & 4 & -2 \\
-1 & 1 & 0
\end{array}\right) \in M_{3}(\mathbb{Z})
$$

Then $\chi(A)=t(t-1)^{2}$. Thus, A is the sum of an idempotent matrix and a nilpotent matrix that commute. In fact, we have a corresponding factorization

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-2 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{ccc}
-1 & 1 & -1 \\
-2 & 2 & -2 \\
-1 & 1 & -1
\end{array}\right)
$$

Corollary 2.8. Let R be a projective-free ring and $\varphi \in M_{2}(R)$. Then φ is strongly J-clean if and only if one of the following holds:
(1) $\chi(\varphi) \equiv t^{2}(\bmod J(R))$.
(2) $\chi(\varphi) \equiv(t-1)^{2}(\bmod J(R))$.
(3) $\chi(\varphi)$ has a root in $J(R)$ and a root in $1+J(R)$.

Proof. Suppose that φ is strongly $J^{\#}$-clean. By virtue of Theorem 2.6, there exists a factorization $\chi(\varphi)=h_{0} h_{1}$ such that $h_{0} \in \mathbb{J}_{0}$ and $h_{1} \in \mathbb{J}_{1}$.

Case I. $\operatorname{deg}\left(h_{0}\right)=2$ and $\operatorname{deg}\left(h_{1}\right)=0$. Then $h_{0}=\chi(\varphi)=t^{2}-\operatorname{tr}(\varphi) t+\operatorname{det}(\varphi)$ and $h_{1}=1$. As $h_{0} \in \mathbb{J}_{0}$, it follows from Lemma 2.3 that $\varphi \in J^{\#}\left(M_{2}(R)\right)$ or $\chi(\varphi) \equiv t^{2}$ $(\bmod J(R))$.

Case II. $\operatorname{deg}\left(h_{0}\right)=1$ and $\operatorname{deg}\left(h_{1}\right)=1$. Then $h_{0}=t-\alpha$ and $h_{1}=t-\beta$. Since R is commutative, $J^{\#}(R)=J(R)$. As $h_{0} \in \mathbb{J}_{0}$, we see that $h_{0} \equiv t(\bmod J(R))$,
and then $\alpha \in J(R)$. As $h_{1} \in \mathbb{J}_{1}$, we see that $h_{1} \equiv t-1(\bmod J(R))$, and then $\beta \in 1+J(R)$. Therefore, $\chi(\varphi)$ has a root in $J(R)$ and a root in $1+J(R)$.

Case III. $\operatorname{deg}\left(h_{0}\right)=0$ and $\operatorname{deg}\left(h_{1}\right)=2$. Then $h_{1}(t)=\operatorname{det}\left(t I_{2}-\varphi\right) \equiv(t-1)^{2}$ $(\bmod J(R))$. Set $u=1-t$. Then $\operatorname{det}\left(u I_{2}-\left(I_{2}-\varphi\right)\right) \equiv u^{2}(\bmod J(R))$. According to Lemma 2.3, $I_{2}-\varphi \in J^{\#}\left(M_{2}(R)\right)$ or $\chi(\varphi) \equiv(t-1)^{2}(\bmod J(R))$.

Now we show the converse. If $\chi(\varphi) \equiv t^{2}$ or $\chi(\varphi) \equiv(t-1)^{2}(\bmod J(R))$, then $\varphi \in J^{\#}\left(M_{2}(R)\right)$ or $I_{2}-\varphi \in J^{\#}\left(M_{2}(R)\right)$. This implies that φ is strongly $J^{\#}$-clean. Otherwise, $\varphi, I_{2}-\varphi \notin J\left(M_{2}(R)\right)$. In addition, $\chi(\varphi)$ has a root in $J(R)$ and a root in $1+J(R)$. According to [4, Theorem 16.4.31], φ is strongly J-clean, and therefore it is strongly $J^{\#}$-clean.

Choose $A=\left(\begin{array}{l}\overline{0} \\ \overline{1} \\ \frac{2}{3}\end{array}\right) \in M_{2}\left(\mathbb{Z}_{4}\right)$. It is easy to check that $A, I_{2}-A \in M_{2}\left(\mathbb{Z}_{4}\right)$ are not nilpotent. But $\chi(A)=t^{2}+t+2$ has a root $\overline{2} \in J\left(\mathbb{Z}_{4}\right)$ and a root $\overline{1} \in 1+J\left(\mathbb{Z}_{4}\right)$. As $J\left(\mathbb{Z}_{4}\right)=\{\overline{0}, \overline{2}\}$ is nil, we know that every matrix in $J^{\#}\left(M_{2}\left(\mathbb{Z}_{4}\right)\right)$ is nilpotent. It follows from Corollary 2.8 that A is the sum of an idempotent matrix and a nilpotent matrix that commute. Let $\mathbb{Z}_{(2)}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z}, 2 \nmid n\right\}$, and let $A=$ $\left(\begin{array}{cc}1 & 1 \\ \frac{2}{9} & 0\end{array}\right) \in M_{2}\left(\mathbb{Z}_{(2)}\right)$. Then $J\left(\mathbb{Z}_{(2)}\right)=\left\{\left.\frac{2 m}{n} \right\rvert\, m, n \in \mathbb{Z}, 2 \nmid n\right\}$. As $\chi(A)=t^{2}-t+\frac{2}{9}$ has a root $\frac{1}{3} \in 1+J\left(\mathbb{Z}_{(2)}\right)$ and a root $\frac{2}{3} \in J\left(\mathbb{Z}_{(2)}\right)$, by Corollary 2.8, A is strongly J-clean.

Corollary 2.9. Let R be a projective-free ring, and $f(t)=t^{2}+a t+b \in R[t]$ with $1+a \in J(R)$ and $b \notin J(R)$. Then the following are equivalent:
(1) Every $\varphi \in M_{2}(R)$ with $\chi(\varphi)=f(t)$ is strongly $J^{\#}$-clean.
(2) There exist $r_{1} \in J(R)$ and $r_{2} \in 1+J(R)$ such that $f\left(r_{1}\right)=f\left(r_{2}\right)=0$.
(3) There exists $r \in J(R)$ such that $f(r)=0$.

Proof. (1) \Rightarrow (2) Since every $\varphi \in M_{2}(R)$ with $\chi(\varphi)=f(t)$ is strongly $J^{\#}$-clean, it follows by Corollary 2.8 that $f(t)=\left(t-r_{1}\right)\left(t-r_{2}\right)$ with $r_{1} \in J(R)$ and $r_{2} \in 1+J(R)$.
$(2) \Rightarrow(3)$ is trivial.
$(3) \Rightarrow(1)$ As $r^{2}+a r+b=0$, we see that $f(t)=(t-r)(t+a+r)$. Clearly, $t-r \in \mathbb{J}_{0}$. As $1+a+r \in J(R)$, we see that $t+a+r \in \mathbb{J}_{1}$. According to Theorem 2.6 , we complete the proof.

Let φ be a 3×3 matrix over a commutative ring R. Set

$$
\operatorname{mid}(\varphi)=\operatorname{det}\left(I_{3}-\varphi\right)-1+\operatorname{tr}(\varphi)+\operatorname{det}(\varphi)
$$

Corollary 2.10. Let R be a projective-free ring and let $\varphi \in M_{3}(R)$. Then φ is strongly $J^{\#}$-clean if and only if one of the following holds:
(1) $\chi(\varphi) \equiv t^{3}(\bmod J(R))$.
(2) $\chi(\varphi) \equiv(t-1)^{3}(\bmod J(R))$.
(3) $\chi(\varphi)$ has a root in $1+J(R), \operatorname{tr}(\varphi) \in 1+J(R), \operatorname{mid}(\varphi) \in J(R)$ and $\operatorname{det}(\varphi) \in$ $J(R)$.
(4) $\chi(\varphi)$ has a root in $J(R), \operatorname{tr}(\varphi) \in 2+J(R), \operatorname{mid}(\varphi) \in 1+J(R)$ and $\operatorname{det}(\varphi) \in$ $J(R)$.

Proof. Suppose that φ is strongly $J^{\#}$-clean. By virtue of Theorem 2.6, there exists a factorization $\chi(\varphi)=h_{0} h_{1}$ such that $h_{0} \in \mathbb{J}_{0}$ and $h_{1} \in \mathbb{J}_{1}$.

Case I. $\operatorname{deg}\left(h_{0}\right)=3$ and $\operatorname{deg}\left(h_{1}\right)=0$. Then $h_{0}=\chi(\varphi)$ and $h_{1}=1$. As $h_{0} \in \mathbb{J}_{0}$, it follows from Lemma 2.3 that $\varphi \in J^{\#}\left(M_{3}(R)\right)$.

Case II. $\operatorname{deg}\left(h_{0}\right)=0$ and $\operatorname{deg}\left(h_{1}\right)=3$. Then $h_{1}(t)=\operatorname{det}\left(t I_{3}-\varphi\right) \equiv(t-1)^{3}$ $(\bmod J(R))$. Set $u=1-t$. Then $\operatorname{det}\left(u I_{3}-\left(I_{3}-\varphi\right)\right) \equiv u^{3}(\bmod J(R))$. According to Lemma 2.3, $I_{3}-\varphi \in J^{\#}\left(M_{3}(R)\right)$.

Case III. $\operatorname{deg}\left(h_{0}\right)=2$ and $\operatorname{deg}\left(h_{1}\right)=1$. Then $h_{0}=t^{2}+a t+b$ and $h_{1}=t-\alpha$. As $h_{0} \in \mathbb{J}_{0}$, we have $h_{0} \equiv t^{2}(\bmod J(R))$, hence $a, b \in J(R)$. As $h_{1} \in \mathbb{J}_{1}$, we have $h_{1} \equiv t-1(\bmod J(R))$, hence, $\alpha \in 1+J(R)$. We see that $a-\alpha=-\operatorname{tr}(\varphi)$, $b-a \alpha=\operatorname{mid}(\varphi)$ and $-b \alpha=-\operatorname{det}(\varphi)$. Therefore, $\operatorname{tr}(\varphi) \in 1+J(R), \operatorname{mid}(\varphi) \in J(R)$ and $\operatorname{det}(\varphi) \in J(R)$.

Case IV. $\operatorname{deg}\left(h_{0}\right)=1$ and $\operatorname{deg}\left(h_{1}\right)=2$. Then $h_{0}=t-\alpha$ and $h_{1}=t^{2}+a t+b$. As $h_{0} \in \mathbb{J}_{0}$, we have $h_{0} \equiv t(\bmod J(R))$, hence $\alpha \in J(R)$. As $h_{1} \in \mathbb{J}_{1}$, we have $h_{1} \equiv(t-1)^{2}(\bmod J(R))$, and then $a \in-2+J(R)$ and $b \in 1+J(R)$. Obviously, $\chi(\varphi)=t^{3}-\operatorname{tr}(\varphi) t^{2}+\operatorname{mid}(\varphi) t-\operatorname{det}(\varphi)$, and so $a-\alpha=-\operatorname{tr}(\varphi), b-a \alpha=\operatorname{mid}(\varphi)$ and $-b \alpha=-\operatorname{det}(\varphi)$. Therefore, $\operatorname{tr}(\varphi) \in 2+J(R), \operatorname{mid}(\varphi) \in 1+J(R)$ and $\operatorname{det}(\varphi)$ $\in J(R)$.

Conversely, if $\chi(\varphi) \equiv t^{3}$ or $\chi(\varphi) \equiv(t-1)^{3}(\bmod J(R))$, then $\varphi \in J^{\#}\left(M_{3}(R)\right)$ or $I_{3}-\varphi \in J^{\#}\left(M_{3}(R)\right)$. Hence, φ is strongly $J^{\#}$-clean. Suppose that $\chi(\varphi)$ has a root $\alpha \in 1+J(R), \operatorname{tr}(\varphi) \in 1+J(R)$ and $\operatorname{det}(\varphi) \in J(R)$. Then $\chi(\varphi)=\left(t^{2}+a t+b\right)(t-\alpha)$ for some $a, b \in R$. This implies that $a-\alpha=-\operatorname{tr}(\varphi)$ and $-b \alpha=-\operatorname{det}(\varphi)$. Hence, $a, b \in J(R)$. Let $h_{0}=t^{2}+a t+b$ and $h_{1}=t-\alpha$. Then $\chi(\varphi)=h_{0} h_{1}$ where $h_{0} \in \mathbb{J}_{0}$ and $h_{1} \in \mathbb{J}_{1}$. According to Theorem $2.6, \varphi$ is strongly $J^{\#}$-clean.

Suppose that $\chi(\varphi)$ has a root $\alpha \in J(R), \operatorname{tr}(\varphi) \in 2+J(R), \operatorname{mid}(\varphi) \in 1+J(R)$ and $\operatorname{det}(\varphi) \in J(R)$. Then $\chi(\varphi)=(t-\alpha)\left(t^{2}+a t+b\right)$ for some $a, b \in R$. This implies that $a-\alpha=-\operatorname{tr}(\varphi)$ and $b-a \alpha=\operatorname{mid}(\varphi)$. Hence, $a \in-2+J(R)$ and $b \in 1+J(R)$. Let $h_{0}=t-\alpha$ and $h_{1}=t^{2}+a t+b$. Then $\chi(\varphi)=h_{0} h_{1}$ where $h_{0} \in \mathbb{J}_{0}$ and $h_{1} \in \mathbb{J}_{1}$. According to Theorem 2.6, φ is strongly $J^{\#}$-clean, and we are done.

3 Matrices over Power Series Rings

The purpose of this section is to extend the preceding discussion to matrices over power series rings. We use $R[[x]]$ to stand for the ring of all power series over R. Let $A(x)=\left(a_{i j}(x)\right) \in M_{n}(R[[x]])$. We use $A(0)$ to stand for $\left(a_{i j}(0)\right) \in M_{n}(R)$.

Theorem 3.1. Let R be a projective-free ring and let $A(x) \in M_{2}(R[[x]])$. Then the following are equivalent:
(1) $A(x) \in M_{2}(R[[x]])$ is strongly $J^{\#}$-clean.
(2) $A(0) \in M_{2}(R)$ is strongly $J^{\#}$-clean.

Proof. $(1) \Rightarrow(2)$ Since $A(x)$ is strongly $J^{\#}$-clean in $M_{2}(R[[x]])$, there exists $E(x)=$ $E^{2}(x) \in M_{2}(R[[x]])$ and $U(x) \in J^{\#}\left(M_{2}(R[[x]])\right)$ such that $A(x)=E(x)+U(x)$ and $E(x) U(x)=U(x) E(x)$. This implies that $A(0)=E(0)+U(0)$ and $E(0) U(0)=$ $U(0) E(0)$, where $E(0)=E^{2}(0) \in M_{2}(R)$ and $U(0) \in J^{\#}\left(M_{2}(R)\right)$. As a result, $A(0)$ is strongly $J^{\#}$-clean in $M_{2}(R)$.
$(2) \Rightarrow(1)$ Construct a ring morphism $\varphi: R[[x]] \rightarrow R$ given by $f(x) \mapsto f(0)$. Then $R \cong R[\mid x]] / \operatorname{ker} f$, where $\operatorname{ker} f=\{f(x) \mid f(0)=0\} \subseteq J(R[[x]])$. For any finitely generated projective $R[[x]]$-module $P, P \otimes_{R}(R[[x]] / \operatorname{ker} f)$ is a finitely generated projective $R[[x]] /$ ker f-module, hence it is free. Write $P \otimes_{R}(R[[x]] /$ ker $f) \cong$ $(R[[x]] / \operatorname{ker} f)^{m}$ for some $m \in \mathbb{N}$. Then

$$
P \otimes_{R}(R[[x]] / \operatorname{ker} f) \cong(R[[x]])^{m} \otimes_{R}(R[[x]] / \operatorname{ker} f) .
$$

That is, $P / P(\operatorname{ker} f) \cong(R[[x]])^{m} /(R[[x]])^{m}(\operatorname{ker} f)$ with $\operatorname{ker} f \subseteq J(R[[x]])$. By the Nakayama theorem, $P \cong(R[[x]])^{m}$ is free. Thus, $R[[x]]$ is projective-free. Since $A(0)$ is strongly $J \#$-clean in $M_{2}(R)$, it follows from Corollary 2.8 that $A(0) \in$ $J \#\left(M_{2}(R)\right)$, or $I_{2}-A(0) \in J \#\left(M_{2}(R)\right)$, or the characteristic polynomial $\chi(A(0))=$ $y^{2}+\mu y+\lambda$ has a root $\alpha \in 1+J(R)$ and a root $\beta \in J(R)$. If $A(0) \in J \#\left(M_{2}(R)\right)$, then $A(x) \in J^{\#}\left(M_{2}(R[[x]])\right)$. If $I_{2}-A(0) \in J^{\#}\left(M_{2}(R)\right)$, then $I_{2}-A(x) \in$ $J \#\left(M_{2}(R[[x]])\right)$. Otherwise, write $y=\sum_{i=0}^{\infty} b_{i} x^{i}$ and $\chi(A(x))=y^{2}-\mu(x) y-\lambda(x)$. Then $y^{2}=\sum_{i=0}^{\infty} c_{i} x^{i}$, where $c_{i}=\sum_{k=0}^{i} b_{k} b_{i-k}$. Let $\mu(x)=\sum_{i=0}^{\infty} \mu_{i} x^{i}$ and $\lambda(x)=\sum_{i=0}^{\infty} \lambda_{i} x^{i} \in R[[x]]$, where $\mu_{0}=\mu$ and $\lambda_{0}=\lambda$. Then $y^{2}-\mu(x) y-\lambda(x)=0$ holds in $R[[x]]$ if the following equations are satisfied:

$$
\begin{gathered}
b_{0}^{2}-b_{0} \mu_{0}-\lambda_{0}=0 \\
\left(b_{0} b_{1}+b_{1} b_{0}\right)-\left(b_{0} \mu_{1}+b_{1} \mu_{0}\right)-\lambda_{1}=0, \\
\left(b_{0} b_{2}+b_{1}^{2}+b_{2} b_{0}\right)-\left(b_{0} \mu_{2}+b_{1} \mu_{1}+b_{2} \mu_{0}\right)-\lambda_{2}=0,
\end{gathered}
$$

Obviously, $\mu_{0}=\alpha+\beta \in U(R)$ and $\alpha-\beta \in U(R)$. Let $b_{0}=\alpha$. Since R is commutative, there exists some $b_{1} \in R$ such that $b_{0} b_{1}+b_{1}\left(b_{0}-\mu_{0}\right)=\lambda_{1}+b_{0} \mu_{1}$. Further, there exists some $b_{2} \in R$ such that

$$
b_{0} b_{2}+b_{2}\left(b_{0}-\mu_{0}\right)=\lambda_{2}-b_{1}^{2}+b_{0} \mu_{2}+b_{1} \mu_{1} .
$$

By iteration of this process, we get b_{3}, b_{4}, \ldots, and so on. Then $y^{2}-\mu(x) y-\lambda(x)=0$ has a root $y_{0}(x) \in 1+J(R[[x]])$. If $b_{0}=\beta \in J(R)$, analogously, we can show that $y^{2}-\mu(x) y-\lambda(x)=0$ has a root $y_{1}(x) \in J(R[[x]])$. In light of Corollary 2.8, the result follows.

Corollary 3.2. Let R be a projective-free ring and let $A(x) \in M_{2}\left(R[[x]] /\left(x^{m}\right)\right)$ ($m \geq 1$). Then the following are equivalent:
(1) $A(x) \in M_{2}\left(R[[x]] /\left(x^{m}\right)\right)$ is strongly $J^{\#}$-clean.
(2) $A(0) \in M_{2}(R)$ is strongly $J^{\#}$-clean.

Proof. (1) $\Rightarrow(2)$ is obvious.
$(2) \Rightarrow(1)$ Let $\psi: R[[x]] \rightarrow R[[x]] /\left(x^{m}\right)$ be given by $\psi(f)=\bar{f}$. Then it reduces a surjective ring homomorphism $\psi^{*}: M_{2}(R[[x]]) \rightarrow M_{2}\left(R[[x]] /\left(x^{m}\right)\right)$. Hence, we have $B \in M_{2}(R[[x]])$ such that $\psi^{*}(B(x))=A(x)$. According to Theorem 3.1, we complete the proof.

Example 3.3. Let $R=\mathbb{Z}_{4}[x] /\left(x^{2}\right)$ and $A(x)=\left(\begin{array}{cc}\overline{2} & \overline{2}+\overline{2} x \\ \overline{2}+x & \overline{3}+\overline{3} x\end{array}\right) \in M_{2}(R)$. Clearly, \mathbb{Z}_{4} is a projective-free ring, and $R=\mathbb{Z}_{4}[[x]] /\left(x^{2}\right)$. Since we have the strongly $J^{\#_{-}}$ clean decomposition $A(0)=\left(\begin{array}{c}\overline{0} \\ \overline{2} \\ \overline{1} \\ \overline{1}\end{array}\right)+\left(\begin{array}{c}\overline{2} \\ \overline{0} \\ \overline{2}\end{array}\right)$ in $M_{2}\left(\mathbb{Z}_{4}\right)$, it follows by Corollary 3.2 that $A(x) \in M_{2}(R)$ is strongly $J^{\#}$-clean.

Theorem 3.4. Let R be a projective-free ring and let $A(x) \in M_{3}(R[[x]])$. Then the following are equivalent:
(1) $A(x) \in M_{3}(R[[x]])$ is strongly $J^{\#}$-clean.
(2) $A(x) \in M_{3}\left(R[[x]] /\left(x^{m}\right)\right)(m \geq 1)$ is strongly $J^{\#}$-clean.
(3) $A(0) \in M_{3}(R)$ is strongly $J^{\#}$-clean.

Proof. $(1) \Rightarrow(2)$ and $(2) \Rightarrow(3)$ are clear.
$(3) \Rightarrow(1)$ As $A(0)$ is strongly $J^{\#}$-clean in $M_{3}(R)$, it follows from Corollary 2.10 that $A(0) \in J^{\#}\left(M_{3}(R)\right)$; or $I_{3}-A(0) \in J^{\#}\left(M_{3}(R)\right)$; or $\chi(A(0))$ has a root in $J(R)$, $\operatorname{tr}(A(0)) \in 2+J(R), \operatorname{mid}(A(0)) \in 1+J(R)$ and $\operatorname{det}(A(0)) \in J(R)$; or $\chi(A(0))$ has a root in $1+J(R), \operatorname{tr}(A(0)) \in 1+J(R), \operatorname{mid}(A(0)) \in J(R)$ and $\operatorname{det}(A(0)) \in J(R)$. If $A(0) \in J^{\#}\left(M_{3}(R)\right)$ or $I_{3}-A(0) \in J^{\#}\left(M_{3}(R)\right)$, then $A(x) \in J^{\#}\left(M_{3}(R[[x]])\right)$ or $I_{3}-A(x) \in J^{\#}\left(M_{3}(R[[x]])\right)$. Hence, $A(x) \in M_{3}(R[[x]])$ is strongly $J^{\#}$-clean. Assume that $\chi(A(0))=t^{3}-\mu t^{2}-\lambda t-\gamma$ has a root $\alpha \in J(R), \operatorname{tr}(A(0)) \in 2+J(R)$, $\operatorname{mid}(A(0)) \in 1+J(R)$ and $\operatorname{det}(A(0)) \in J(R)$. Write $y=\sum_{i=0}^{\infty} b_{i} x^{i}$. Then $y^{2}=$ $\sum_{i=0}^{\infty} c_{i} x^{i}$, where $c_{i}=\sum_{k=0}^{i} b_{k} b_{i-k}$. Furthermore, $y^{3}=\sum_{i=0}^{\infty} d_{i} x^{i}$, where $d_{i}=$ $\sum_{k=0}^{i} b_{k} c_{i-k}$. Let $\mu(x)=\sum_{i=0}^{\infty} \mu_{i} x^{i}, \lambda(x)=\sum_{i=0}^{\infty} \lambda_{i} x^{i}, \gamma(x)=\sum_{i=0}^{\infty} \gamma_{i} x^{i} \in R[[x]]$, where $\mu_{0}=\mu, \lambda_{0}=\lambda$ and $\gamma_{0}=\gamma$. Then $y^{3}-\mu(x) y^{2}-\lambda(x) y-\gamma(x)=0$ holds in $R[[x]]$ if the following equations are satisfied:

$$
\begin{gathered}
b_{0}^{3}-b_{0}^{2} \mu_{0}-b_{0} \lambda_{0}-\gamma_{0}=0 \\
\left(3 b_{0}^{2}-2 b_{0} \mu_{0}-\lambda_{0}\right) b_{1}=\gamma_{1}+b_{0}^{2} \mu_{1}+b_{0} \lambda_{1} \\
\left(3 b_{0}^{2}-2 b_{0} \mu_{0}-\lambda_{0}\right) b_{2}=\gamma_{2}+b_{0}^{2} \mu_{2}+b_{1}^{2} \mu_{0}+2 b_{0} b_{1} \mu_{1}+b_{0} \lambda_{2}+b_{1} \lambda_{0}-3 b_{0} b_{1}^{2}
\end{gathered}
$$

Let $b_{0}=\alpha \in J(R)$. Obviously, $\mu_{0}=\operatorname{tr}(A(0)) \in 2+J(R)$ and $\lambda_{0}=-\operatorname{mid}(A(0)) \in$ $U(R)$. Hence, $3 b_{0}^{2}-2 b_{0} \mu_{0}-\lambda_{0} \in U(R)$. Thus, we see that

$$
\begin{gathered}
b_{1}=\left(3 b_{0}^{2}-2 b_{0} \mu_{0}-\lambda_{0}\right)^{-1}\left(\gamma_{1}+b_{0}^{2} \mu_{1}+b_{0} \lambda_{1}\right) \\
b_{2}=\left(3 b_{0}^{2}-2 b_{0} \mu_{0}-\lambda_{0}\right)^{-1}\left(\gamma_{2}+b_{0}^{2} \mu_{2}+b_{1}^{2} \mu_{0}+2 b_{0} b_{1} \mu_{1}+b_{0} \lambda_{2}+b_{1} \lambda_{0}-3 b_{0} b_{1}^{2}\right)
\end{gathered}
$$

By iteration of this process, we get b_{3}, b_{4}, \ldots, and so on. Then the polynomial $y^{3}-\mu(x) y^{2}-\lambda(x) y-\gamma(x)=0$ has a root $y_{0}(x) \in J(R[[x]])$. It follows from $\operatorname{tr}(A(0))$ $\in 2+J(R)$ that $\operatorname{tr}(A(x)) \in 2+J(R[[x]])$. Likewise, $\operatorname{mid}(A(x)) \in 1+J(R[[x]])$. According to Corollary 2.10, $A(x) \in M_{3}(R[[x]])$ is strongly $J^{\#}$-clean.

Assume that $\chi(A(0))$ has a root $1+\alpha \in J(R), \operatorname{tr}(A(0)) \in 1+J(R), \operatorname{mid}(A(0)) \in$ $J(R)$ and $\operatorname{det}(A(0)) \in J(R)$. Then

$$
\operatorname{det}\left(I_{3}-A(0)\right)=1-\operatorname{tr}(A(0))+\operatorname{mid}(A(0))-\operatorname{det}(A(0)) \in J(R)
$$

Set $B(x)=I_{3}-A(x)$. Then $\chi(B(0))$ has a root $\alpha \in J(R), \operatorname{tr}(B(0)) \in 2+J(R)$ and $\operatorname{det}(B(0)) \in J(R)$. Hence, $\operatorname{mid}(B(0))=\operatorname{det}(A(0))-1+\operatorname{tr}(B(0))+\operatorname{det}(B(0)) \in$ $1+J(R)$. By the preceding discussion, we see that $B(x) \in M_{3}(R[[x]])$ is strongly J-clean, and then we are done.

From the evidence above, we end this paper by asking the following question: Let R be a projective-free ring and let $A(x) \in M_{n}(R[[x]])(n \geq 4)$. Does the strong $J^{\#}$-cleanness of $A(x) \in M_{n}(R[[x]])$ coincide with that of $A(0) \in M_{n}(R)$?

References

[1] G. Borooah, A.J. Diesl, T.J. Dorsey, Strongly clean triangular matrix rings over local rings, J. Algebra 312 (2007) 773-797.
[2] G. Borooah, A.J. Diesl, T.J. Dorsey, Strongly clean matrix rings over projective-free rings, J. Pure Appl. Algebra 212 (2008) 281-296.
[3] H. Chen, On strongly J-clean rings, Comm. Algebra 38 (2010) 3790-3804.
[4] H. Chen, Rings Related to Stable Range Conditions, Series in Algebra 11, World Scientific, Hackensack, NJ, 2011.
[5] A.J. Diesl, Classes of strongly clean rings, Ph.D. Thesis, University of California, Berkeley, 2006.
[6] T.J. Dorsey, Cleanness and strong cleanness of rings of matrices, Ph.D. Thesis, University of California, Berkeley, 2006.
[7] W.K. Nicholson, Clean rings: a survey, in: Advances in Ring Theory, World Scientific, Hackensack, NJ, 2005, pp. 181-198.
[8] A.A. Tuganbaev, Rings Close to Regular, Kluwer Academic Publishers, Dordrecht-Boston-London, 2002.

[^0]: ${ }^{*}$ This research was supported by the Scientific and Technological Research Council of Turkey (2221 Visiting Scientists Fellowship Programme) and the Natural Science Foundation of Zhejiang Province (Y6090404), China.

