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I n this study, we consider the integrated inventory replenishment and transportation operations in a supply chain
where the orders placed by the downstream retailer are dispatched by the upstream warehouse via an in-house fleet of

limited size. We first consider the single-item single-echelon case where the retailer operates with a quantity based replen-
ishment policy, (r,Q), and the warehouse is an ample supplier. We model the transportation operations as a queueing sys-
tem and derive the operating characteristics of the system in exact terms. We extend this basic model to a two-echelon
supply chain where the warehouse employs a base-stock policy. The departure process of the warehouse is characterized
in distribution, which is then approximated by an Erlang arrival process by matching the first two moments for the analy-
sis of the transportation queueing system. The operating characteristics and the expected cost rate are derived. An exten-
sion of this system to multiple retailers is also discussed. Numerical results are presented to illustrate the performance
and the sensitivity of the models and the value of coordinating inventory and transportation operations.
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1. Introduction

In this study, we jointly consider the inventory
replenishment and transportation operations in a sup-
ply chain with stochastic demand. Our work has been
motivated by the current practices as well as the exist-
ing gap in the literature regarding the coordination of
the stock control and dispatch operations in supply
chains. As illustrated by our numerical findings,
simultaneous consideration of inventory and trans-
portation management functions raises interesting
issues and provides managerial insights such as the
significance of the joint consideration of the replenish-
ment and the transportation functions, optimal fleet
sizes, and the impact of delays due to transportation
unit.
To reflect the significance of the issue, we note

that the total logistics activities comprise approxi-
mately 1.28 trillion USD or about 8.5% of the US
GDP in 2011 (Burnson 2012). Two major compo-
nents of the logistics costs are the transportation
costs and inventory carrying costs where transporta-
tion (largely trucking costs) accounted for 63%

while inventory carrying costs accounted for 33% in
the US economy in 2002 (FHWA 2005). The sheer
size of the expenses involved is an incentive for
both shippers and carriers to find ways to reduce
them. Better management of the physical assets for
transporting goods and also of inventories them-
selves may provide significant savings (http://
www.smartops.com). The integrated management of
transportation capacity and inventory becomes espe-
cially crucial in developing economies where the
total logistics supply chain costs account for about
24% of the GDP, of which about 10% is due to indi-
rect costs such as inefficient logistics activities
resulting in higher inventories and shortages (Dob-
berstein et al. 2005). In a typical developed market,
such indirect costs account for about 5% of the
GDP. Moreover, truck driver shortages have become
a major logistical concern in developed countries
(RT 2010), causing truck unavailability.
In a supply chain, one of the most commonly used

mode of dispatching the orders is in-house transpor-
tation. In-house transportation has the advantage of
providing more controlled and reliable transportation
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together with increased visibility of the products in
transit. Furthermore, in certain environments, specifi-
cally designed vehicles are needed; for example, haz-
ardous materials or cold chains for fresh food or
medical supplies require custom-designed vehicles
with specific temperature and humidity controls.
Although in-house transportation is commonly used
and is an essential stage in the fulfillment of the
customer orders, joint modeling of inventory replen-
ishment and transportation dynamics and investiga-
tion of the impacts and the restrictions faced by
each function have not been much elaborated in the
literature.
In supply chains where these logistics activities are

not coordinated, inventory and transportation opera-
tions are managed separately with different and pos-
sibly conflicting objectives. In particular, the
inventory manager searches for the “optimal” inven-
tory control parameters that would minimize inven-
tory related costs (holding, backordering, and
ordering) whereas the transportation manager
searches for the least number of trucks sufficient to
yield acceptable congestion levels, utilization ratios,
and minimum fleet related costs. Evidently, uncoordi-
nated decisions might not yield optimal operating
characteristics for the whole system, as these two
logistics activities are closely interrelated. Regarding
the fleet size issue, if the decision makers do not adopt
a coordinated perspective, they might fail to correctly
assess the overall cost of operating the system. If an
over-estimated fleet size is used, the delays due to
transportation are reduced but the operating costs of
the transportation unit will be inflated. On the other
hand, if a smaller fleet than the optimal is used,
although the business would keep going, impact of
delays due to transportation capacity would have a
negative impact on inventory management practices.
Our work provides insights regarding the optimal
choice of the fleet size and also the additional costs
that would be incurred if it is set in a sub-optimal
way.
In this study, we address the joint modeling of

replenishment and transportation functions in a sup-
ply chain. To introduce the settings and the main
issues, we start with a single-echelon model with a
single retailer, stochastic demand, and capacitated
in-house fleet. This problem results in a classical
inventory problem with random lead times, where
the lead times have the special distribution induced
by the underlying queueing system at the transporta-
tion unit. We derive the exact expressions for the
operating characteristics and the long term expected
cost function when the retailer faces unit Poisson
demand. In the second model, we extend the model
to a two-echelon supply chain with single supplier
and single retailer where the retailer employs an

(r,Q) policy and the warehouse employs a base stock
inventory policy. In this setting, the warehouse faces
orders of size Q that may not be satisfied immedi-
ately due to insufficient stocks. In this setting the
departure process of the orders from the warehouse,
which constitutes the arrival process of the transpor-
tation unit, is different than the arrival process to the
warehouse. The inter-departure times of this process
is characterized in probability distribution, which is
then used to propose an approximation by an Erlang
process with matching first two moments. This
approximation enables the analysis of the underlying
queuing systems for transportation operations. The
corresponding (approximate) operating characteris-
tics and the expected cost rate are established for the
two-echelon model. As a further extension, the appli-
cability of the model to N retailers is demonstrated
where the retailers adopt a joint (Q,S) replenishment
policy.
Before summarizing our findings, let us first

briefly refer to the related literature to better locate
the contributions of our study. The existing studies
on coordinated replenishment and distribution prob-
lems in supply chains mostly consider these prob-
lems separately, and the settings arising from their
integration have not been explored in detail. To the
best of our knowledge, there are only three studies
that consider the impact of cargo capacity on coordi-
nated inventory replenishment decisions in a sto-
chastic demand environment. The first one, which
also motivated our work to a large extent, is by Ca-
chon (2001), and the other two are more recent
extensions by Gurbuz et al. (2007) and Tanrikulu
et al. (2010). Cachon (2001) and Tanrikulu et al.
(2010) analyze a supply chain environment where
the joint replenishment orders of retailers are dis-
patched by an ample supplier with capacitated
trucks. It is assumed that fleet size is unlimited. Gur-
buz et al. (2007) also assume an ample supplier;
however, the joint orders are shipped by a single
truck from the warehouse to a cross-dock facility. If
the joint order size exceeds the truck capacity, excess
quantity is still shipped with an additional penalty
cost. In all of these studies, the capacity constraints
are either explicitly or implicitly on the size of an
individual order; they have no limitation on the
number of orders in transit any time due to fleet size
restriction. This assumption has two implications—
one practical and one theoretical. In practice, such
limitations do exist. A supply chain that has opted to
have its own fleet (of finite size) may hesitate to uti-
lize third parties due to delivery quality concerns or
the administrative burden of emergency manage-
ment. From a theoretical perspective, the assumption
of unlimited fleet size implies that the orders are dis-
patched immediately so long as the warehouse has
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stock. That is, the stochastic delivery delays encoun-
tered by the lower echelon are only a function of the
inventory control dynamics at the upper echelon.
Limited fleet size introduces another source of delays
that has not been studied before.
Another stream of research also addresses truck

cargo capacity under different settings for single loca-
tion inventory systems (e.g., Alp et al. 2003, Ernst and
Pyke 1993, Toptal et al. 2003, Yano and Gerchak
1989), and also in the context of inventory/routing
problems (e.g., Ball et al. 1983, Federgruen and
Zipkin 1984, Sindhuchao et al. 2005, Tanrikulu et al.
2010, Toptal and Cetinkaya 2006). The methodology
in these papers differs greatly from ours due to either
the fleet size limitation considered herein and/or the
stochastic nature of demand in our model. We there-
fore do not further elaborate such literature.
Finally, we note that the joint inventory replenish-

ment problem has been studied extensively in
literature, in both deterministic and stochastic envi-
ronments, and the early works go back to Balintfy
(1964), who developed the continuous-review
can-order policy, and Ignall (1969), who is the first to
study the optimal joint replenishment policy. The
optimal policy, even for two items and zero lead
times, has a very complicated structure. Hence most
of the existing studies focus on intuitive heuristic
policy classes. Related works include Renberg and
Planche (1967) who first proposed the (Q,S) policy,
Pantumsinchai (1992), who presented an exact analy-
sis of this policy under Poisson demands, and Cheung
and Lee (2002), Nielsen and Larsen (2005), and Oz-
kaya et al. (2005, 2006).
Our study makes a number of contributions in the-

oretical and application aspects. From a theoretical
perspective, our main contribution lies in providing a
unified modeling framework to integrate the sto-
chastic dynamics of inventory replenishment and
transportation operations. Our approach rests on
characterizing in distribution the departure process
of the warehouse. This departure process becomes
the arrival process of the transportation unit, which
carries the items to replenish the retailer’s inventory.
For a single-echelon environment, we extend the clas-
sical (r,Q) model in a way that integrates the trans-
portation and inventory replenishment operations
and provide exact expressions for the total expected
cost function. For a two-echelon environment, we
provide an approximate total expected cost function
that utilizes the inter-departure distribution. We list
the special cases where our approach becomes an
exact analysis for the two-echelon system. We also
obtained an interesting result that states that the vari-
ance of inter-departure times from the warehouse is
bounded above by the variance of the inter-arrival
times of the joint orders from the retailers.

From a practical perspective, our analysis and
numerical results provide several managerial insights.
First of all, we show that there is a considerable value
in coordinating the transportation and inventory
operations. In section 5, we show that system-wide
cost of an uncoordinated system might be 175%
higher than the cost of the coordinated system for a
particular problem instance. We illustrate that explic-
itly modeling the limited size of the available fleet has
a significant impact on the resulting system costs, and
that the cost inefficiency can be as high as 68% if the
fleet size limitations are ignored. We identify the min-
imum and maximum fleet size thresholds where con-
gestion levels are permissible and operations are
economical, respectively. We believe that such bench-
marks would be of use for investment and/or supply
chain design decisions. In our numerical study, we
observe that diminishing marginal return of increased
transportation capacity does not necessarily hold in
general, and that under certain settings, insights
gained with unlimited fleet size do not match with
those when fleet size is limited. Furthermore, we
address the characteristics of the environments where
using the upper echelon as cross-dock may be more
beneficial.
The rest of the study is organized as follows: in sec-

tion 2, we describe the problem environment in detail
and analyze the single-echelon version of the prob-
lem. In section 3, we extend our analysis to a two-ech-
elon environment. In section 4, we further extend our
models to a multiple retailers, single warehouse envi-
ronment. In section 5, numerical experiments and
observations are provided. Finally in section 6, an
overall summary of the study and future research
directions are provided.

2. Coordinated Logistics: Single
Echelon

Consider a continuous review, single-item, single-
echelon inventory system with an ample warehouse
and a retailer. The retailer faces stationary and inde-
pendent unit Poisson demand with rate k, and
unmet demands are fully backordered. Holding and
shortage costs incurred at the retailer are denoted
by h and b, respectively, per unit per time. The
retailer operates with an (r,Q) policy where an order
of size Q is placed whenever the inventory position
at the retailer drops to r. The warehouse operates
with an in-house fleet of K trucks that are utilized
for delivering the orders placed by the retailer. The
orders received by the warehouse are immediately
processed and streamed to the transportation unit
for dispatching. There is a cost of /(K,C) to main-
tain a fleet of K trucks where each of them can
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accommodate C units. This cost component includes
costs for maintenance, repair, depreciation, cost of
truck drivers and the apprentice for loading and
unloading items, etc.
For each truck utilized for order shipments, a fixed

cost of A(C) is incurred independent of the quantity
loaded in the truck. One of the components of this
fixed cost would be the fuel cost of transportation,
which is a function of the truck capacity. We assume
that at least 50% truck utilization is attained for order
deliveries. Enforcing a minimum truck utilization is a
common practice in industry due to transportation
limitations and large fixed costs, as well as environ-
mental regulations that encourage the reduction of
carbon dioxide emissions by several means. More-
over, we also restrict the order size Q to be less than a
full truck load, C, as this has several benefits. First of
all, Q > C implies delaying the shipment and would
not be desirable when the unit backordering cost is
higher than the unit holding cost (see Cachon 2001).
Moreover, if order integrality is adapted, Q > C
would result in a shipment delay of a full truck for
which a fixed cost is charged anyway. Therefore,
when the unit backordering cost is higher than the
unit holding cost, we do not expect the optimal Q
being larger than C. Apart from this intuitive justifica-
tion for the assumption that Q � C, we should note
that if Q is allowed to be greater than C, then the oper-
ating system should adopt more complicated proto-
cols regarding order integrity and order sequencing.
In particular, if Q > C, several trucks may be needed
to carry an order, and at an instant only a portion of
the order may be available at the inventory. In such
cases whether or not order integrality should be
adopted or whether the full trucks should be dis-
patched right away or wait until the whole order is
ready become important issues both practically and
theoretically. No matter which procedure is selected
for implementation, the resulting system would
clearly be more complicated. Note also that the opti-
mal dispatching procedures under such situations are
not known. Consequently, we assume that C/2 <
Q � C.
The duration of a one-way trip from the warehouse

to the retailer is given by D/2 where D is the duration
of a return trip. Consequently, the replenishment lead
time for the retailer is L = D/2 if there is an available
truck at the transportation unit at the order instant
and is larger than D/2 if there is a delay due to truck
unavailability. Figure 1 depicts a representation of the
system under consideration.
As the warehouse is an ample supplier, the orders

received by the warehouse are immediately processed
and relayed to the transportation unit for shipment
on a first-come-first-served basis, without any delay.
The time between each successive retailer order has

an Erlang distribution with shape and scale parame-
ters Q and k, respectively, as the retailer observes unit
Poisson demand with rate k and employs an (r,Q) pol-
icy. Under these settings, the transportation unit oper-
ates as an EQ=D=K queue where the arrival process to
the queue is the departure process of retailer orders
from the warehouse, the deterministic service time D
corresponds to the fixed transit times of vehicles, and
the number of servers is the fleet size, K.

2.1. Waiting Time Distribution of Retailer Orders
In this section, we characterize the random waiting
time, Wq, of an order at the transportation unit that
operates as an EQ=D=K queue. Note that the effective
replenishment lead time for the retailer is a random
variable and is given by L ¼ D=2 þ Wq.
The waiting time distribution in a multi-server GI/

D/c queue is equivalent to that of a single-server
GI�=D=1 queue, where the inter-arrival time distribu-
tion GI� is the convolution of c inter-arrival times with
distribution GI (Tijms 1995, p. 321), that is, shorter
inter-arrival times are compensated with a higher
number of servers, yielding stochastically equivalent
waiting times. In our setting, this implies that the
waiting time distribution of an EQ=D=K queue is iden-
tical to that of a M/D/Q9K queue. To find the wait-
ing time distribution of an M/D/c queue where
c = Q9K, we adopt the method of Franx (2001). In
order to be coherent with the common terminology,
we use customer and server for a joint order and a
truck, respectively.
Let pi denote the stationary probability that there

are i customers in the system, given as

pi ¼
Xc
j¼0

pj
ðkDÞi
i!

e�kD þ
Xiþc

j¼cþ1

pj
ðkDÞiþc�j

ðiþ c� jÞ! e
�kD; i 2 N :

The pi’s constitute the solution of an infinite system
of linear equations subject to the normalizationP1

i¼0 pi ¼ 1. According to Tijms (1995, p. 289), the
state probabilities pj of an M/D/c queue exhibit the
geometric tail property, pj � dc�j for large j, where
c ∈ (1,∞) is the unique solution of kD(1�c) +
c ln (c) = 0 and d is given by d ¼ ðc� kDcÞ�1Pc�1

i¼0 piðci � ccÞ. Through this geometric tail property,
the infinite system of linear equations for the pj’s is

Figure 1 Representation of the System
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reduced to a finite system by replacing pj by
pMð1=cÞj�M for j > M for an appropriately chosen M.
Let qi be the stationary probability that the queue con-
tains i customers, where q0 ¼ Pc

i¼0 pi and qi ¼ piþc

for i > 0. Also, define the cumulative probability that
there are j or less customers in the queue as
Gj ¼

Pj
i¼0 qi. Then, referring to Franx (2001), the dis-

tribution of the waiting time (Wq in our case) in the
queue of aM/D/c system is given as

FWqðwÞ ¼ e�kðawD�wÞ Xawc�1

j¼0

Gawc�j�1
kjðawD� wÞj

j!
; ð1Þ

where aw is the greatest integer less than or equal to
w
D þ 1 for w � 0. This is a mixed distribution with
discrete and continuous parts. Observe that FWqðwÞ
implicitly depends on K as the number of servers is
c = K9Q.

2.2. Inventory Related Costs at the Retailer
We next derive the expected holding and backorder-
ing cost rates incurred at the retailer conditioned on a
given value ofWq, by following the approach of Axs€a-
ter (1990). This approach is based on the observation
that a unit ordered by the retailer is used to fill the
(r + Q)th subsequent demand following this order.
Recall that the lead time is given by L ¼ D=2 þ Wq

and the retailer employs an (r,Q) policy. Let
S = r + Q, and l = D/2 + w is a given effective lead
time for a particular realization of Wq ¼ w. Then, the
expected holding and backordering costs per unit per
time, gðSjliÞ, is given as

gðSjlÞ ¼ 1

k
½Sðhþ bÞFPðS; klÞ � klðhþ bÞFPðS� 1; klÞ

þ bðkl� SÞ�; ð2Þ

where FPðy; klÞ denotes the cumulative probability
distribution of a Poisson variable with rate kl (Ca-
chon 2001). When Q = 1, a unit demand always trig-
gers an order. However for Q > 1, the demands
arriving at the retailer wait until a total of Q units
accumulate, and only after this is an order placed.
Suppose a demand arrives at the retailer at time τ,
but a replenishment decision is delayed until time
τ + t. That order is supplied to the retailer at
τ + t + l. Let M denote the total number of demand
arrivals at the retailer between τ and τ + t. When
M = m, the unit demand that occurred at τ is used
to fill the (r + Q � m)th subsequent demand after
τ + t. It is known that M has a discrete uniform dis-
tribution on 0,…,Q � 1 (see Axs€ater 1993). Hence,
the expected holding and backordering cost per time
per unit for the retailer with a given effective lead-
time l is

1

Q

XQ�1

m¼0

gðrþQ�mjlÞ; ð3Þ

where the function g is given by Equation (2).

2.3. Policy Optimization
For the ample supplier, taking the expectation of the
cost expression in Equation (3) with respect to the dis-
tribution of W ¼ Wq, we can write the expected cost
rate of the system as

ACðr;Q;KÞ¼ k
AðCÞ
Q

þ/ðK;CÞ

þk
Z
w

1

Q

XQ�1

m¼0

gðrþQ�mjD=2þwÞdFWqðwÞ:

ð4Þ

Hence, the following optimization problem is to be
solved to find the optimal policy parameters, r,Q, and
K:

min
r;Q:C=2\Q�C;K

ACðr;Q;KÞ:

The expected unit holding and backorder cost rate
given by Eqution (3) is convex in r (see Axs€ater
1993). As expectation is a linear operator, AC(r,Q,K)
is also convex in r. Therefore, the optimal re-order
point r�ðQ;KÞ can be found by a convex optimiza-
tion algorithm for given Q and K values. However,
as the total cost rate ACðr�ðQ;KÞ;Q;KÞ is not neces-
sarily convex in Q, the optimal shipment quantity
Q� for given K is obtained by a complete search over
the feasible interval (C/2,C]. Although unimodality
over K is observed in our numerical analysis, an
exhaustive search for the optimal K value is needed
as there is no analytical result in this respect. How-
ever, there are natural lower and upper bounds on
the value of K for a given Q. The total cost rate for
the system is finite only if the underlying queue sat-
isfies the stability condition q ¼ k�D

K�Q \ 1. This
means that there is a minimum number of trucks
that is needed for the queueing system to reach the
steady state for a given Q. Let KminðQÞ be the small-
est positive K that satisfies q < 1. In our numerical
experiments, we observe that for a fixed value of Q,
each truck added to KminðQÞ brings a diminishing
decrease in total expected holding and backordering
costs. Hence, there is a sufficiently large K value that
approximates the total inventory costs of an
unlimited fleet size situation. As it is natural to
expect /(K,C) to be an increasing function in K, that
value of K would be an upper bound on the optimal
value of the fleet size.
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3. Coordinated Logistics: Two-Echelon
Supply Chain

In this section, we extend our analysis to a two-
echelon inventory system. In this setting the ware-
house is no longer an ample supplier but employs a
base-stock policy, i.e., whenever an order of size Q
is received from the retailer, an order of the same
size is placed immediately. This policy can be repre-
sented by ðSw � Q; SwÞ where the order-up-to level
Sw represents the inventory position of the ware-
house at any given time. Note as a convention that,
if the inventory level of the warehouse is less than
Sw � Q as an initial condition, then an immediate
order that is greater than Q is placed so that the
inventory position is raised up to Sw at the start of
the planning horizon. Retailer orders are satisfied
on a first-come-first-served basis and the integrity of
the orders is sustained. As partial shipments are not
allowed, the optimal order-up-to level will be an
integer multiple of the batch size, i.e., Sw ¼ D�Q,
where D is a nonnegative integer. Lw denotes the
replenishment lead time between the warehouse
and its ample supplier whereas Aw denotes the
fixed cost of ordering at the warehouse.
Contrary to the single-echelon model, a retailer

order may not be relayed to the transportation unit
immediately due to possible stock-out occasions at
the warehouse. This creates another source of delay
for the retailer order. Because of this, the departure
process of the orders at the retailer is no longer
Erlang. Therefore, the queueing system that governs
the transportation unit becomes a general G/D/K
queue. Consequently, the effective replenishment
lead time for the retailer becomes L ¼ D=2þ
Wq þ Ws where Ws denotes the random variable for
the delay due to lack of sufficient inventory at the
warehouse and Wq is the waiting time at the transpor-
tation unit in a G/D/K queue.

3.1. Departure Process of Retailer Orders at the
Warehouse
In this part, we derive the probabilistic characteristics
of the departure process of the orders at the ware-
house that employs a ðSw � Q; SwÞ policy. Note that
the ðSw � Q; SwÞ policy is equivalent to a base-stock
(S � 1,S) policy when a batch of size Q is considered
as a single unit and S is set to D in terms of the new
unit that corresponds to one batch. For simplicity, we
derive the expressions for an (S � 1,S) system in this
section.
Consider a warehouse operating under an (S � 1,S)

policy where S � 0. Suppose the warehouse faces
unit demands with i.i.d. inter-arrival times given by
fXj; j � 1g, and probability density function (pdf) and
cumulative distribution functions (cdf) fXð	Þ and FXð	Þ,

respectively. We set
Pn

j¼m aj ¼ 0 if m > n for any
aj 2 < without loss of generality. Let X0 ¼ 0, and
fXðjÞ ð	Þ and FXðjÞ ð	Þ denote the pdf and cdf of jth arrival
time, XðjÞ ¼ Pj

n¼1 Xn, respectively. First, suppose that
a demand arrives at time τ that immediately triggers
an order. Due to the nature of the (S � 1,S) policy, this
order satisfies the Sth subsequent demand whose
arrival time is s þ PS

n¼1 Xn. Whenever this demand
arrives, if the warehouse has positive on-hand inven-
tory, then this demand is immediately dispatched.
Hence, its departure time from the warehouse would
be s þ PS

n¼1 Xn, the same as its arrival time. Other-
wise, it waits for the arrival of the triggered order, and
its departure time will be s þ Lw (see Axs€ater 1990 for
more details). Letting DTS denote the departure time
of the Sth subsequent demand after τ, we have

DTS ¼ sþmax
XS
n¼1

Xn; Lw

 !
:

Next, consider the jth demand that arrives after τ,
which triggers another order and arrives at time
s þ Pj

n¼1 Xn þ Lw. Then, we can write the departure
time DTjþS of the (j + S)th subsequent demand after τ
as

DTjþS ¼ sþmax
XjþS

n¼1

Xn;
Xj
n¼1

Xn þ Lw

 !
:

Let YjþS be the time between the departures of the
jth and (j � 1)st demands after τ:

YjþS ¼ DTjþS �DTjþS�1

¼ max
XjþS

n¼j

Xn;Xj þ Lw

0
@

1
A�max

XjþS�1

n¼j

Xn; Lw

0
@

1
A:

An illustration of the consecutive departures from
warehouse is given in Figure 2. Let Zj ¼

PjþS�1
n¼jþ1 Xn.

Figure 2 Illustration of the Consecutive Demand Departures
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Then the cdf FZð	Þ of Zj is identical to FXðS�1Þ ð	Þ, the cdf
of XðS�1Þ for all j.
The following expression for YjþS provides a more

convenient representation:

From the above construction, we observe that inter-
departure times of the orders from the warehouse
have identical distributions and YjþS ¼ XjþS if S = 0.
The distribution function of these identical variables,
say Y, is denoted by FYðyÞ and is given below.

THEOREM 1. The distribution function FYðyÞ ¼ FYj
ðyÞ

of the inter-departure time Yj of an (S�1,S) inventory
system with deterministic lead time and unit renewal
demands is identical for all j, which is given as follows:

for y � 0, Lw [ 0, and �FXð	Þ ¼ 1 � FXð	Þ.

PROOF. See the Appendix.

As Yj’s are identical variables, E½Yj� ¼ E½Y� and
Var½Yj� ¼ Var½Y� for all j. On the other hand, again
from the definition of the inter-departure time given
by Equation (5), we observe that the departure pro-
cess has (S + 1)-dependence, as each departure
depends on the (S + 1) preceding arrivals. We pro-
vide the mean and the variance of the inter-depar-
ture times below.

THEOREM 2. Let E[X] and Var[X] be the expectation
and the variance of the inter-arrival time X, respectively.
Then, E[Y] = E[X], Var[Y]�Var[X], where

PROOF. See the Appendix.

The above result indicates that (i) the mean inter-
arrival times to the warehouse are the same as the

mean inter-departure times from the warehouse,
which is expected in order to have a stable system,
and (ii) the variance of the inter-departure times from
the warehouse is no more than the variance of the
inter-arrival times. This implies that the lead time at
the warehouse has a “smoothing” effect to reduce the
variability of the inter-departure times, which is not
obvious immediately. An explanation can be as fol-
lows: due to the (S � 1,S) policy employed at the
warehouse, if an inter-arrival is too short (X < L), then

it is likely that the later demand will wait until the
end of the lead time, extending the corresponding
inter-departure time of the orders (Y � X + L). Simi-
larly, if an inter-arrival is too long (X > L), then the
corresponding inter-departure could be shorter if the
former order waits for stock availability (Y � X � L).
Hence, extreme inter-arrival times may be pulled
down or pushed up to moderate inter-departure
intervals, resulting in possible variance reduction.

3.2. Approximations for System Analysis
In this section, we present two approximations that
we have used for the analysis of the two-echelon
system. The first one is related to the departure
process of the warehouse and the second is about
the independence of Ws and Wq. The departure
process of the warehouse characterized by Theorem

YjþS ¼
XjþS if ðLw � ZjÞ� minðXj;XjþSÞ
Xj þ Zj þ XjþS � Lw if Xj\ðLw � ZjÞ�XjþS

Lw � Zj if XjþS\ðLw � ZjÞ�Xj

Xj if ðLw � ZjÞ[ maxðXj;XjþSÞ

8>><
>>: : ð5Þ

FYðyÞ ¼

FXðyÞ
R1

Lw�y

�FXðLw � zÞ dFZðzÞ

þ RLw
0

Rminðy;Lw�zÞ

0

FXðLw � zþ y� x2Þ dFXðx2Þ dFZðzÞ if S[ 0

FXðyÞ if S ¼ 0

8>>>>><
>>>>>:

ð6Þ

Var½X� � Var½Y� ¼ 2

Z1
z¼0

Z1
x¼Lw�z

�FXðxÞ dx

0
B@

1
CA ZLw�z

x¼0

FXðxÞ dx
0
@

1
A

8><
>:

9>=
>;dFZðzÞ:
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1 introduces a challenging problem in terms of the
queuing system at the transportation unit, as the
arrival process has identical but serially correlated
inter-arrival times, which renders it impossible to
identify the waiting time distribution at the trans-
portation unit explicitly. To the best of our knowl-
edge, even the waiting time distribution of G/D/K
queues with independent renewal arrivals is a diffi-
cult problem (see, e.g., Schleyer and Furmans 2007,
Whitt 1993). We make the observation from Equa-
tion (5) that when the lead time at the warehouse is
zero or if it tends to infinity, the departure process
of the warehouse coincides with that of the arrivals,
resulting in Erlang departures. For moderate values
of the lead time, the departure process is not an
exact Erlang process, but it does not deviate signifi-
cantly from that either, as illustrated in section 5.
Therefore, in order to overcome the difficulty, we
approximate the exact inter-departure distribution
by a suitable Erlang distribution. Note that approxi-
mating some random characteristics with an Erlang
distribution is also a commonly used approach in
the literature (see, e.g., Altiok 1985, Bitran and Tiru-
pati 1988, Graves 1985, Whitt 1982). Therefore, we
propose to use an Erlang departure process whose
first two moments match with those of the true
departure process (which is characterized by Theo-
rems 1 and 2) for an approximate system analysis.
As a convention, if the shape parameter from
matching the moments results in a non-integer
value, we use the closest integer.
The total waiting time of a retailer order before

being shipped with a truck is given by
W ¼ Ws þ Wq. The common stochastic dynamics
underlying the realizations of Ws and Wq may
impose a dependency between the variables Ws and
Wq, which seems to be non-trivial to identify exactly.
In order to characterize the probability distribution
of W, one can either refer to simulation methods or
to some approximate analytical methods. For practi-
cal purposes, we propose an approximation that is
based on the assumption that Ws and Wq are inde-
pendent random variables. In particular, we assume
that an order departing from the warehouse and
arriving at the transportation unit finds the transpor-
tation system in the steady state and the waiting
times at the warehouse and at the transportation
unit are independent. It will be established in the
numerical section that the performance of the ana-
lytical model under an Erlang approximation and an
independence assumption deviates from the simu-
lated system by a negligible amount unless the traf-
fic is highly congested.
Consequently, the waiting time distribution of a

retailer order at the warehouse is approximated by

FWðxÞ ¼
Zx
y¼0

FWqðx� yÞ dFWsðyÞ; ð7Þ

where FWqðxÞ is given by Equation (1). For character-
ization of the distribution function FWsðsÞ of the
random delay Ws at the warehouse, we refer to
Ozkaya et al. (2005) who provide the delay distribu-
tions at the upper echelon for various stochastic
joint replenishment policies. When the retailer
employs the (r,Q) policy and the warehouse order-
up-to level is Sw, it is given by

FWsðsÞ ¼
0 s\0
1� FEðLw � s;D�Q; kÞ 0� s� Lw
1 s� Lw

(
; ð8Þ

where FEðx; k; kÞ denotes the distribution function of
an Erlang random variable with shape and scale
parameters k and k and with density f(x,k,k).

3.3. Policy Optimization
In this section, we derive expressions for the total
relevant expected costs per unit time achieved at
the steady state, under the approximations explai-
ned above. We verified through simulations that the
system converges to a steady state under any arbi-
trary starting inventory level as far as the traffic
ratio is less than one. As expected, the convergence
rate depends on the problem parameters, in particu-
lar on the traffic ratio and the starting inventory
level.
For a particular realization of the retailer lead time,

L = l, the expected holding and backordering costs
incurred at the retailer side are still given by Equation
(3) as explained in section 2.2. Consequently, the
expected holding and backordering costs incurred at
the retailer are obtained by un-conditioning this
expression as follows:

Uðr;Q;K;DÞ ¼
Z
w

1

Q

XQ�1

m¼0

gðrþQ�mjD=2þ wÞ dFWðwÞ;

where FW is given by Equation (7). Note that
W ¼ Wq þ Ws, and FWðwÞ implicitly depends on K
and Sw ¼ D�Q, which in turn affect the FWqð	Þ and
FWsð	Þ.
Next, we consider the holding cost rate incurred at

the warehouse. We use a method similar to that of
Axs€ater (1990) and note that a holding cost for a joint
retailer demand of size Q that arrives at the ware-
house at time τ is incurred if the Dth subsequent joint
retailer demand arrives after s þ Lw. Hence the
expected time a retailer order incurs a holding cost at
the warehouse inventory is
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Z1
x¼Lw

ðx� LwÞfEðx;MQ; kÞdx;

where fE xð ,DQ; kÞ denotes the Erlang pdf with
parameters DQ and k. This expression reduces to

MQ
k

FPðMQ; kLwÞ � LwFPðMQ� 1; kLwÞ:
In addition to the holding time at the warehouse,

holding cost is also incurred while waiting for an
available truck to be dispatched at the transportation
unit. Let E½Wq� be the expected dispatching waiting
time at the transportation unit. Then the holding cost
incurred at the warehouse level, WH(Q,D,K) is given
by

Then the expected cost rate of the entire supply
chain is given by

ACðr;Q;K;DÞ ¼ k
AðCÞ þ Aw

Q
þ /ðK;CÞ

þ kUðr;Q;K;DÞ þWHðQ;D;KÞ:
ð10Þ

The first part of this expression represents the
retailer and warehouse order setup cost rates. The
other parts represent the fleet maintenance costs,
holding and backorder costs incurred at the retailer
level, and the holding cost incurred at the ware-
house level, respectively. Considering the truck utili-
zation constraint, the optimization problem is stated
as

min
r;Q2ðC=2;C�;K;D

ACðr;Q;K;DÞ:

4. Extensions

4.1. N-Retailers
The analysis discussed in the previous sections can be
extended to a system with N retailers that use a joint
replenishment policy where the joint order size is
fixed as Q. As the (Q,S) joint replenishment policy
exhibits this structure and is a simple and commonly
used one, we illustrate how to extend our models
under this policy. Suppose the N retailers are sup-
plied by a single warehouse. Let ki denote the
demand rate of retailer i and k0 ¼ PN

i¼1 ki. Also let
Li ¼ D=2 þ li be the total time required to replenish

retailer i after a loaded truck departs from the ware-
house.

4.1.1. Single Echelon. Similar to the single re-
tailer case, when Q = 1, a unit demand always trig-
gers a joint replenishment order. However for Q > 1,
the demands arriving at retailers wait until a total of
Q units accumulate and then a joint order is placed.
Suppose a demand arrives at retailer i at time τ, but
a joint replenishment decision is delayed until time
τ + t. That joint order is supplied to the retailer at
τ + t + l. Let Mi denote the total number of demand
arrivals for retailer i between τ and τ + t. When
Mi ¼ mi, the unit demand that occurred at τ is used
to fill the ðSi � miÞth subsequent demand after τ + t.
Let M0 � Mi be the total number of retailer

demands (including i) that have occurred in (τ,τ + t].
When M0 ¼ m0, the probability that mi of these
demands are from retailer i is binomial with param-
eters m0 and success probability ri ¼ ki=k0. In accor-
dance with the single retailer case, the total expected
inventory holding and backordering cost can be
given as

UsðQ;S;KÞ ¼
Z
w

1

Q

XQ�1

m0¼0

Xm0

mi¼0

ðm0

mi
ÞðriÞmið1� riÞm0�mi

giðSi �mi j Li þ wÞ dFWqðwÞ:

Consequently, the total expected cost function can
be written as follows:

ACðQ;S;KÞ ¼ k0
AðCÞ
Q

þ /ðK;CÞ þ
XN
i¼1

kiUsðQ;S;KÞ:

ð11Þ

4.1.2. Two-Echelon. For the two-echelon system,
similar to the above discussion, the expected inven-
tory holding and backordering costs for each retailer i
can be written as follows:

UðQ;S;K;DÞi ¼
Z
w

1

Q

XQ�1

m0¼0

Xm0

mi¼0

ðm0

mi
ÞðriÞmi

� ð1� riÞm0�migiðSi �mijLi þ wÞ dFWðwÞ:

Hence, the total expected operating cost for the
entire supply chain is

WHðQ;D;KÞ ¼ hwQ
k
Q

E½Wq� þ DQ
k

FPðDQ; kLwÞ � LwFPðDQ� 1; kLwÞ
� �

: ð9Þ
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ACðQ;S;K;DÞ ¼ k0
AðCÞ þ Aw

Q
þ /ðK;CÞ

þ
XN
i¼1

kiUðQ;S;K;DÞi þWHðQ;D;KÞ;

ð12Þ

where WH(Q,D,K) is as in Equation (9) with the
exception that k is replaced by k0.
It can easily be verified that the expressions in

Equations (11) and (12) reduce to expressions in Equa-
tions (4) and (10) for N = 1, respectively. Given the
total expected cost functions in Equations (11) and
(12), optimal policy parameters can be sought in
accordance with the single retailer case as explained
in sections 2.3 and 3.3.

4.2. Time-Based Policies
The (Q,S) policy employed by the retailers is an exam-
ple of a “quantity-based policy” in which an inven-
tory replenishment is triggered by the accumulation
of demand quantity. As an alternative, a “time-based
policy” can be considered, in which the inventory
replenishments are triggered by accumulation of a
certain time. A commonly implemented periodic
review time-based policy is the (R, T) policy where T
is the length of the period and R is the vector of
order-up-to levels. The inventory position of the ith
retailer is raised up to Ri at every T time units. The
order quantity placed at the end of a period is the
total demand observed during that period, which is a
Poisson random variable with expected value k0T.
Hence under this policy the order quantity is not a
constant but a randomly changing quantity, which
also implies that the arrivals to the transportation unit
are not constant either. Therefore, when the system
operates with an in-house fleet for transportation, a
modeling approach similar to the one employed in
our study cannot be adopted directly under the (R, T)
policy. To be more specific, note that an order of ran-
dom size arrives to the truck queue in every T time
units. As the number of trucks available at any
instance is at most K, it is possible that an arriving
order must be split and partially shipped at different
times, with more than one truck. Similarly it is possi-
ble that two or more orders are consolidated and
shipped on the same truck. Due to such complica-
tions, optimal dispatching protocols should also be
sought, and the focus of the problem changes. We
therefore keep time-based policies out of our scope.
However, detailed comparative analyses of quan-

tity-based and time-based policies are available in the
literature. See, for example, Cetinkaya et al. (2006)
and Mutlu et al. (2010), who both report that quan-
tity-based policies are superior to the time-based poli-
cies in an environment where the shipments are

consolidated at the warehouse, which serves multiple
retailers that employ a joint replenishment policy.
Another related study is by Shang et al. (2010), who
compare the (R,T) policy to a quantity-based policy
under a serial multi-echelon inventory system. The
authors show that the overall system benefits from
switching from a time-based policy to a quantity-
based policy.

5. Numerical Study

In this section, we report the results of our numerical
tests conducted to gain insights on different aspects of
the problem under concern. As a test bed, all combi-
nations of the following parameters are used unless
otherwise stated: N 2 {1,2,16}, k0 2 f4; 8; 16; 32g,
h = 1, b 2 {4,8,16,32}, C 2 {4,8,12,16,32}, D 2 {2,4,
8}. It is assumed that the retailers are identical in
their demand rate, holding and backordering
costs, and lead times for the multiple retailers case.
We also assume that the fixed retail order cost has the
following structure: AðCÞ ¼ a� Cc for a,c > 0 and
/ðK;CÞ ¼ KCb. Our numerical study focuses on
investigating mainly three issues: (i) the value of
coordination and the importance of modeling the
limited fleet, (ii) the impact of a limited fleet on the
integrated system of inventory and transportation,
and (iii) the accuracy of the Erlang approximations.
These issues are discussed in the following sections.
Although all these issues deserve a detailed discus-
sion, due to space restrictions we sometimes restrict
our attention to special cases and sometimes report
our findings without providing the actual numerical
results. Further details can be obtained from the
authors.

5.1. Analysis of a Limited Fleet
In this part, we analyze the value of coordinating
transportation and inventory decisions and the
impact of problem parameters on the operating char-
acteristics. We take AðCÞ ¼ aCc with a 2 {0.25,1,4}
and c = 1, similar to the experimental set of Cachon
(2001), who analyzes the unlimited fleet version of
this problem. We do not associate any cost to fleet
maintenance in this section to mainly focus on
inventory ordering related costs whenever neces-
sary.

5.1.1. Value of Coordination. Consider a prob-
lem instance where the warehouse is an ample sup-
plier, k ¼ 8;N ¼ 1; b ¼ 8;C ¼ 16;D ¼ 8;AðCÞ ¼
0:25C;/ðC;KÞ ¼ KC0:5. For the coordinated system,
the optimal parameters for this problem instance are
Q� ¼ 16; S� ¼ 49, and K� ¼ 5, whereas the optimal
cost is 34.64. Assume that this system is operated in
an uncoordinated fashion. If the inventory manager
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assumes that the transportation unit will deliver the
order in exactly D = 8 time units without any delay
(note that this assumption corresponds to assuming
infinite fleet size), then she will prefer to operate with
Q = 11 and S = 45. In this case, the minimum number
of trucks to operate the system with q < 1 is six. If the
transportation unit decides to operate with six trucks,
then the realized system-wide costs would be 95.28,
which is 175.03% higher than the cost of the coordi-
nated system (see Table 1). We define this percentage
as the “value of coordination.” In such a case, the traf-
fic ratio will be 0.97. Due to this high congestion,
orders will wait at the warehouse for truck availabil-
ity for excessive times and hence the delivery lead
time will be much higher than eight on the average in
practice. To alleviate this high congestion, if both
units negotiate to operate with more trucks, system-
wide costs get lower, but there is still a considerable
value for coordinating the system. In particular, if the
transportation unit operates with seven, eight, or nine
trucks, then the value of coordination becomes
22.64%, 33.29%, and 44.82%, respectively (see Table
1). In the uncoordinated system, the inventory man-
ager might anticipate the congestion due to truck
unavailability and she might inflate the value of D
while determining the optimal policy parameters. If
D is inflated by 50% and set to 12, then the inventory
manager will obtain Q = 12 and S = 63. In this case,
Kmin ¼ 9. In such a case, there is still considerable
room for improvement. In particular, the value of
coordination becomes 19.43%, 25.62%, 34.49%, and
43.45% if the transportation unit operates with 9, 10,

11, or 12 trucks, respectively. Table 1 also summarizes
the results if the delivery lead time is inflated by dif-
ferent percentages.

5.1.2. Importance of Modeling Limited Fleet. We
next comment on the importance of explicitly model-
ing the limited size of the available fleet. To assess
this, we evaluated the increase in the operating costs
that would have been incurred if the optimal policy
parameters of an unlimited fleet size model are used,
when the system is in fact operated with a limited
number of trucks. We conduct our experiments for a
single-echelon system in this part in order to base
our comparisons on exact cost figures. In particular,
let ðQ�; S�Þ be the optimal parameters of the model
with limited fleet size (see section 2) and ðQ�

U; S
�
UÞ be

those of unlimited fleet size model. Also let Kmin ¼
KminðQ�Þ be the minimum number of trucks needed
to satisfy the stability condition, q < 1. To assess the
contribution of our model, we compare the cost that
would be incurred if the system is operated with
(possibly) sub-optimal parameters ðQ�

U; S
�
UÞ to the

optimal cost rates for a fleet size ranging from Kmin

to Kmin þ 3. We present the results in Table 2, where
the percentage losses in the expected cost rate are
given and ∞ indicates that the Q�

U and the given fleet
size result in a q > 1 that violates the stability condi-
tion. From the table, we observe that the cost ineffi-
ciency could be as high as 68%, and the loss
decreases when the number of available trucks or
the capacity of the trucks increase, as expected intui-
tively. These findings confirm that our modeling

Table 1 Value of Coordination for a Problem Instance

AC(Q,S,K) Value of Coordination (%)

D Q S Kmin Kmin Kmin þ 1 Kmin þ 2 Kmin þ 3 Kmin Kmin þ 1 Kmin þ 2 Kmin þ 3

8 11 45 6 95.28 42.49 46.18 50.17 175.03 22.64 33.29 44.82
10 12 54 7 64.28 47.43 51.19 55.19 61.95 19.49 28.97 39.04
12 12 63 9 53.37 56.13 60.1 64.1 19.43 25.62 34.49 43.45

Table 2 Percentage Losses under ðQ�
U ;S

�
U Þ of the Unlimited Fleet Case, N = 4, D = 8

b = 16 b = 32

k0 C Kmin Kmin þ 1 Kmin þ 2 Kmin þ 3 Kmin Kmin þ 1 Kmin þ 2 Kmin þ 3

16 2 54.95 25.24 8.68 2.58 68.04 38.84 17.17 6.96
4 27.65 3.74 0 0 41.23 9.22 2.31 0.52
8 2.13 0 0 0 6.22 0 0 0
16 0 0 0 0 ∞ 4.95 0.10 0
32 ∞ 47.65 0 0 ∞ ∞ 4.44 0

32 2 44.93 26.97 14.95 8.16 56.46 36.06 20.46 10.91
4 41.40 10.61 1.73 0 57.53 22.52 7.26 2.42
8 13.82 1.09 0 0 19.26 1.35 0 0
16 1.55 0 0 0 1.92 0 0 0
32 0.84 0 0 0 7.42 0 0 0
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approach provides an opportunity for significant
cost savings.

5.1.3. Sensitivity of Optimal Policy to the
Problem Parameters. The computational results pre-
sented here are based on the approximations of sec-
tion 3.2. Our main findings can be summarized as
follows:

(i) The optimal order size, Q�, optimal truck utili-
zation, Q�=C, and optimal order-up-to levels,
S�, are non-increasing in the fleet size, K (see
Table 3).

(ii) There is an upper bound on the fleet size that
yields operating characteristics practically
equivalent to an unlimited fleet environment.
We observe that this upper bound is non-
increasing in fixed ordering cost. As lower
fixed costs lead to lower Q� values with more
frequent shipments, the system becomes more
vulnerable to operating under limited fleet
sizes and requires more trucks to behave like
an unlimited fleet environment.

(iii) For a given fleet size K, Q� and S� are non-
decreasing in the truck capacity C.

(iv) Q� and hence the truck utilization are non-
increasing in the backordering cost.

(v) An increase in the transit time, D, or the
demand rate, k, increases the traffic ratio, q, as
well as the expected demand during lead time.
This leads to larger Q� values and larger truck
utilization.

(vi) From Table 3, it is observed that the supplier
operates as a cross-dock facility for small fleet
sizes with D� ¼ 0: This can be explained with
the observation that for small K, higher Q val-
ues are needed, which results in large inven-
tory carrying costs and hence the system pulls
down the value of D.

(vii) As K increases, we do not always observe a
diminishing return in the optimal cost rate
when operated with optimal ðQ�; S�Þ values
(see Figure 3 for an example). This example

indicates that the marginal benefit of additional
truck capacity does not necessarily decrease as
this capacity increases, which is contrary to
what is commonly observed in the literature
for capacitated problems (see, e.g., Alp and
Tan 2008).

(viii) No monotonic relation is observed between N
and Q�. The total demand rate k0 is fixed and
the total order-up-to levels are observed to
decrease as N gets smaller. This is because the
total demand is partitioned to fewer retailers,
reducing the uncertainty. For an unlimited fleet
size, Cachon (2001) states that Q� is always non-
increasing in N in single-echelon environments,
as larger order sizes in the (Q,S) policy lead to
larger variations among the inventory levels of
retailers as N increases and this brings elevated
operating costs. However, under limited fleet
size, especially with a scarcity of trucks, a
reduction in Q increases the traffic ratio, which
in turn has negative impacts on the holding and
backordering costs due to increased delays. This
negative impact may dominate the impact of
the increase in the number of retailers, and
hence there are cases where Q� (and the truck
utilization) increases as N increases with limited
fleet size (see Table 4).

Table 3 The Effects of the Change in A(C) and K on Total Cost Rate when N = 1, k0 = 4, D = 8, Lw ¼ 2 , and bi = 32 for all i

A(C)

a = 0.25, c = 1 a = 1, c = 1 a = 4, c = 1

K ðQ�;S�;M�;C�Þ E ½Wq � E ½Ws � ðQ�; S�;M�;C�Þ E ½Wq � E ½Ws � ðQ�; S�;M�; C�Þ E ½Wq � E ½Ws �
2 (21,49,0,32) 0.03 2 (22,49,0,32) 0.01 2 (32,58,0,32) 0 2
3 (14,43,0,16) 0.03 2 (16,44,0,16) 0.00 2 (16,44,0,16) 0 2
4 (11,40,0,16) 0.01 2 (15,43,0,16) 0.00 2 (16,44,0,16) 0 2
9 (8,30,1,8) 0 0.28 (8,30,1,8) 0 0.28 (8,30,1,8) 0 0.28
14 (5,28,2,4) 0 0.11 (5,28,2,4) 0 0.11 (5,28,2,4) 0 0.11

For each problem instance, the best truck capacity, C�, is found by searching from the set {2,4,8,16,32}.

Figure 3 Illustration of the Change of AC(Q�; (S�(Q�; K ));K ; C) in K
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(ix) Finally we elaborate on the waiting times due
to insufficient inventory and unavailability of a
truck for dispatching. Table 3 also reports the
expected waiting time in the transportation
queue, E½Wq�, and in the warehouse E½Ws�. In
general, an increase in Q leads to a decrease in
E½Wq�. However, E½Ws� is decreasing in Q only
when D is fixed. It is observed that when the
supplier operates as a cross-dock, E½Ws� is sig-
nificantly larger than E½Wq�.

Table 5 provides instances to observe the impact of
Wq and Ws in a two-echelon environment. For
Lw ¼ 2, an increase in D from 0 to 1 reduces the total
waiting times drastically (from 5.27 to 3.29) by reduc-
ing the operating costs at the retailers more than the
increased inventory costs at the warehouse. On the
other hand, when warehouse lead time Lw ¼ 1, Wq

dominates Ws, and keeping inventory at the ware-
house does not bring further benefits.

5.2. Accuracy of the Approximation
We first examine the accuracy of the Erlang
approximation adopted in section 3, where the
departure process of the warehouse operating
under an ðSw � Q; SwÞ policy is approximated by
an Erlang (Q0; k00) process, whose first two moments
match with the exact arrival process. Figure 4 illus-
trates two examples regarding the performance of
this approximation. In this figure, exact and
approximated distribution functions are depicted.
When Lw ¼ 4, the exact and approximated scale
and shape parameters turned out to be the same,
that is, k0 ¼ k0 and Q0 ¼ Q, and the two cdfs are
almost identical (Figure 4a). When Lw ¼ 6, the
adjusted parameters are k0 ¼ 5 and shape Q0 ¼ 5,
which are different from k0 and Q, but again the
approximation is highly accurate (Figure 4b). For
the lead time values beyond these limits, that is,
for Lw [ 6 and Lw \ 4; the approximated scale and
shape parameters were not changed, and the
approximation performed perfectly. We see that
Erlang approximation performs highly satisfactorily
in terms of the distribution function.
Next, we examine the accuracy of the assumption

that Ws and Wq are independent (see section 3.2).
In order to assess the error due to this assumption,
we obtained the exact and the approximate cdf of
the waiting time (W ¼ Ws þ Wq), the former
obtained by a simulation study and the latter by
Equations (6)–(8). This approximation is affected by

Table 4 Impact of Number of Retailers, N, when k0 = 4, bi ¼ 4,
a = 1, c = 1, and D = 8 in Single-Echelon Environments

N = 1 N = 2 N = 4 N = 16
K C ðQ�;S�

i Þ ðQ�;S�
i Þ ðQ�;S�

i Þ ðQ�; S�
i Þ

2 32 (30, 41) (21, 17) (21,9) (23,3)
3 16 (15, 28) (16, 15) (16,8) (14,2)
4 16 (15, 28) (16, 15) (15,8) (11,2)

Table 5 Impact of Lw , E[Wq], and E[Ws] on D when Q ¼ 11, K = 3, k0 = 4, b = 32, h = 1, a = 0.25, c = 1, and C = 16

D = 0 D = 1

Lw AC(	) E ½Wq � E ½Ws � AC(	) E ½Wq � E ½Ws �
2 73.40 3.27 2 71.54 3.23 0.06
1 72.88 3.27 1 73.45 3.27 0.00

(a) (b)

Figure 4 Comparison of the Erlang Approximation and the Exact Queue Inter-arrival Times when k0 ¼ 4;Q ¼ 4;D ¼ 5; Lw ¼ 4 in (a) and
Lw ¼ 6 in (b)
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the traffic ratio, which has a direct impact on Wq,
the base stock level at the warehouse, Sw ¼ DQ,
and the ratio DQ

k0Lw
. This ratio indicates the number

of orders that the base stock level can satisfy dur-
ing the warehouse lead time. Figure 5 depicts
interlaced graphs of the exact and approximate
cdfs of W. As can be seen from the graph, when
D = 3 the functions overlap perfectly, but when
D = 6, there is some discrepancy. The maximum
and the average differences between the functions
are 0.0454 and 0.0083, respectively, when D = 6.
The same values are 0.0028 and 0.0005, respec-
tively, when D = 3.
We also assessed the impact of approximations on

the operating characteristics of the system by compar-
ing the cost rate of proposed analytical model to the
cost rate obtained by simulating the real system. In
simulations, we used a run length of 100,000 ware-
house orderings and the average of 20 replications are
taken as the expected cost rate of the system. The
accuracy of the approximation is measured by
%err ¼ 100� ðACsim � ACappÞ=ACsim; where ACsim is
the exact cost rate and ACapp is the approximate one.
As an example, for the problem instance of Figure 5b,
which corresponds to relatively large differences
between the exact and approximate waiting time cdfs,
the optimal fleet size turns out to be 19 and %err is
0.81, quite a small error. We also investigated 144
other scenarios, and Table 6 summarizes the accuracy
of the approximations. The following parameter
ranges are used to generate these problem instances:
Lw 2 f1; 2g; b 2 f4; 16; 32g; k 2 f8; 16; 32g;C 2 f2; 8;

16; 32g;D ¼ 8;N ¼ 4. We arbitrarily set Q,S, and D
values so that 36 problem instances are generated for
each of the traffic ratio ranges shown in Table 6 . We
simulated the system until 1 million warehouse
orders are generated and discarded the initial 30% of
the simulation time.
In Table 6, we report the cases for q � 0.92.

This is due to the fact that as the traffic intensity
increases, assessment of the quality of approxima-
tion by simulations becomes less reliable, as the
actual system not only converges to a steady state
extremely slowly but also shows significant vari-
ance. Hence capturing the true performance by
simulation becomes very difficult and making
comparisons with the approximations would be
misleading.

6. Conclusion and Future Studies

In this study, we considered the effect of transpor-
tation fleet capacity on the performance of a supply
chain. We considered single- and two-echelon
environments with a single retailer and a single
warehouse. It is assumed that the retailer adopts
the (r,Q) policy and the warehouse operates with a
fleet of vehicles to satisfy the orders placed by the
retailer. We derive the exact operating characteris-
tics for the single-echelon environment and propose
an approximate analysis for a two-echelon environ-
ment. Our results are also extended to a N-retailer
environment.
Our results indicate that consideration of the trans-

portation capacity and the fleet size in conjunction
with the inventory replenishment operations can lead
to substantial savings for the whole supply chain. We
believe that our study may have important applica-
tions for supply chain design. In addition our study
can be extended to contractual design agreements,
especially for the 3PL provider firms that supply
logistic service to retailer chains.

Table 6 The Accuracy of the Approximation for Different q

q %ljerr j min % err median % err max % err

q � 0.7 0.026 0.000 0.021 0.088
0.7 < q � 0.8 0.205 0.002 0.132 0.766
0.8 < q � 0.9 0.534 0.025 0.432 1.885
0.9 < q � 0.92 0.618 0.002 0.288 3.702

(a) (b)

Figure 5 Comparison of Exact and Approximate W when Q = 4, k0 ¼ 8, D = 8, Lw ¼ 3, K = 17; D = 3 in (a) and D = 6 in (b)
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Appendix: Proofs

PROOF OF THEOREM 1. When S = 0, it is straightforward to observe that Yj ¼ Xj from Equation (5) and hence
FYðyÞ ¼ FXðyÞ. For S > 0, we rewrite Equation (5) in terms of the events E1 � E4 as

Yj ¼
Xj if E1 
 ðL� Zj�SÞ� minðXj�S;XjÞ
Xj�S þ Zj�S þ Xj � L if E2 
 Xj�S\ðL� Zj�SÞ�Xj

L� Zj�S if E3 
 Xj\ðL� Zj�SÞ�Xj�S

Xj�S if E4 
 ðL� Zj�SÞ[ maxðXj�S;XjÞ.

8>><
>>:

Then, FYj
ðyÞ ¼ PðYj � yÞ ¼ P4

n¼1 PðYj � y;EnÞ: As Y0
js have identical distribution, we let Yj 
 Y; with cdf

FY, and as X0
js are identical, we use FX to denote their cdf and FZ to denote that of Z. Note that

PðY� y;E1Þ ¼ PðXj � y; L� Zj�S � minðXj�S;XjÞÞ

¼
Z1

z¼L�y

Zy
x2¼L�z

Z1
x1¼L�z

dFX1
ðx1Þ dFX2

ðx2Þ dFZðzÞ

¼
Z1

z¼L�y

�FXðL� zÞ FXðyÞ dFZðzÞ �
Z1

z¼L�y

�FXðL� zÞ FXðL� zÞ dFZðzÞ


 1:1þ 1:2

PðY� y;E2Þ ¼ PðXj�S þ Zj�S þ Xj � L� y;Xj�S\L� Zj�S �XjÞ

¼
ZL
z¼0

Zminðy;L�zÞ

x2¼0

ZL�zþy�x2

x1¼L�z

dFX1ðx1Þ dFX2ðx2Þ dFZðzÞ

¼
ZL
z¼0

Zminðy;L�zÞ

x2¼0

FXðL� zþ y� x2Þ dFXðx2Þ dFZðzÞ

�
ZL
z¼0

FXðL� zÞ FXðminðy; L� zÞÞ dFZðzÞ


 2:1þ 2:2

PðY� y;E3Þ ¼ PðL� Zj�S � y;Xj\L� Zj�S �Xj�SÞ

¼
Z1

z¼L�y

�FXðL� zÞ FXðL� zÞ dFZðzÞ


 3:1

PðY� y;E4Þ ¼ PðXj�S � y; L� Zj�S [ maxðXj�S;XjÞÞ

¼
Z1
z¼0

Zminðy;L�zÞ

x2¼0

ZL�z

x1¼0

dFX1
ðx1Þ dFX2

ðx2Þ dFZðzÞ

¼
ZL
z¼0

FXðL� zÞ FXðminðy; L� zÞÞ dFZðzÞ


 4:1:

We observe that 1.2 cancels with 3.1, and 2.2 cancels with 4.1, yielding the result. h
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PROOF OF THEOREM 2. As for a stable system we need E[Y] = E[X], we skip the proof of this part, which is
similar to the proof below. To show Var[Y] � Var[X], we find E½Y2�. Let a ¼ L � Zj�S. Then from Equation
(1) we have

E½Y2� ¼
ZL

a¼�1

Z1
x2¼a

Z1
x1¼a

x22fZðL� aÞ dFX1
ðx1Þ dFX2

ðx2Þ da

þ
ZL

a¼�1

Z1
x2¼a

Za
x1¼0

ðx2 þ x1 � aÞ2fZðL� aÞ dFX1ðx1Þ dFX2ðx2Þ da

þ
ZL

a¼�1

Za
x2¼0

Z1
x1¼a

a2fZðL� aÞ dFX1
ðx1Þ dFX2

ðx2Þ da

þ
ZL

a¼�1

Za
x2¼0

Za
x1¼0

x21fZðL� aÞ dFX1
ðx1Þ dFX2

ðx2Þ da:

Evaluating the above integrals, we get

E½Y2� ¼ E½X2�
ZL

a¼�1
fZðL� aÞ daþ

ZL
a¼�1

2aFXðaÞ a�FXðaÞ �
Z1

x2¼a

x2dFXðx2Þ
0
@

1
A

8<
:

þ 2

Za
x1¼0

x1dFXðx1Þ
Z1

x2¼a

x2dFXðx2Þ � a�FXðaÞ
0
@

1
A
9=
;fZðL� aÞ da

Letting z = L � a we rewrite the above as

E½Y2� ¼ E½X2� þ 2

Z1
z¼0

Z1
x¼L�z

xdFXðxÞ � ðL� zÞ�FXðL� zÞ
0
@

1
A

8<
:

	
ZL�z

x¼0

xdFXðxÞ � ðL� zÞFXðL� zÞ
0
@

1
A
9=
;dFZðzÞ:

Observing that
RL�z

x¼0

x dFXðxÞ ¼ ðL � zÞFXðL � zÞ � RL�z

x¼0

FXðxÞ dx and
R1

x¼L� z

xdFXðxÞ ¼ E½X� � RL�z

x¼0

xdFXðxÞ
we have

E½Y2� ¼ E½X2� � 2

Z1
z¼0

Z1
x¼L�z

�FXðxÞdx
0
@

1
A ZL�z

x¼0

FXðxÞ dx
0
@

1
A

2
4

3
5dFZðzÞ

which implies the result. h
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