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Abstract Amplitude and phase estimation of AM/FM sig-
nals with parametric polynomial representation require the
polynomial orders for phase and amplitude to be known. But
in reality, they are not known and have to be estimated.

A well-known method for estimation is the higher-order
ambiguity function (HAF) or its variants. But the HAF
method has several reported drawbacks such as error prop-
agation and slowly varying or even constant amplitude
assumption. Especially for the long duration time-varying
signals like AM/FM signals, which require high orders for the
phase and amplitude, computational load is very heavy due to
nonlinear optimization involving many variables. This paper
utilizes a micro-segmentation approach where the length of
segment is selected such that the amplitude and instanta-
neous frequency (IF) is constant over the segment. With this
selection first, the amplitude and phase estimates for each
micro-segment are obtained optimally in the LS sense, and
then, these estimates are concatenated to obtain the overall
amplitude and phase estimates. The initial estimates are not
optimal but sufficiently close to the optimal solution for sub-
sequent processing. Therefore, by using the initial estimates,
the overall polynomial orders for the amplitude and phase
are estimated. Using estimated orders, the initial amplitude
and phase functions are fitted to the polynomials to obtain
the final signal. The method does not use any multivariable
nonlinear optimization and is efficient in the sense that the
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MSE performance is close enough to the Cramer—Rao bound.
Simulation examples are presented.
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1 Introduction

In many practical signal applications involving amplitude
and/or phase modulation, we encounter discrete-time signals
which can be represented as

s[n] = a[n]e’?™, (1

where a[n] and @[n] are the real amplitude and phase func-
tions, respectively. The amplitude is assumed to be positive,
and the phase is assumed to be continuous. Such signals are
common in AM/FM communication, radar, sonar applica-
tions, and in many other practical problems. The problem is
to estimate time-varying signal s[n] from its noisy version

x[nl=s[n]+wlnl=alnle"™ +w[n] n=0,1,...,N—1,
()

where w[n] is a zero-mean white Gaussian complex noise
process with unknown variance o-2.

A widely used method is the parametric approach where
the amplitude and phase functions are represented as a linear
combination of some known basis functions py and g; given

by

P
aln] = argilnl, 3)
k=0
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Plnl = > bipilnl, )
k=0

and the coefficients a; and by corresponding to the basis
functions need to be estimated. The parameters a; and by
are real-valued amplitude and phase coefficients. In general,
basis functions can be any functions which are square inte-
grable and span the space of real and integrable functions in
a given observation interval. Also, they can be selected to
be different for amplitude and phase functions. In this paper,
they are assumed to be polynomials both for the amplitude
and the phase. Therefore, P and Q correspond to orders for
amplitude and phase polynomials, respectively.

The first approach tried for the estimation of the parame-
tersin (3) and (4) is the maximum likelihood (ML) estimation
[6,13]. For the Gaussian noise case, the ML estimation of
the parameters is equivalent to the LS optimization [6]. The
ML estimation of the parameters requires a multivariable
nonlinear optimization problem to be solved. Therefore, the
solution requires iterative techniques like nonlinear conju-
gate gradient (NL-CG) or quasi-Newton type algorithms and
is computationally intensive [6,13]. All mentioned methods
do not ensure the convergence to a global minimum. There-
fore, another requirement is a good initial estimate avoiding
possible local minima.

Compared with the ML approach, a suboptimal but prac-
tical method is the parameter estimation with higher-order
ambiguity function (HAF) [10,16], and [1]. If the ampli-
tude a[n] in (1) is constant, then s[n] is a polynomial phase
signal (PPS) of order Q. The basic principal of the HAF
transformation is that, when s[n] = age/?""! is multiplied
by e /?I"=71 1 being a constant integer, then the order of
resultant PPS will be decreased by one. Therefore, a PPS of
order Q, when transformed with HAF of the same order, will
produce a pure-tone signal of the frequency, which is pro-
portional to the highest coefficient b . Therefore, the highest
order coefficient estimate b can be obtained from Qth order
HAF. Then, by multiplying s[n] with e /% 0n? will decrease
the order of s[n] to Q — 1. By repeating the process iteratively,
all coefficients of PPS are estimated.

An algorithm which uses both time-frequency distribu-
tion and HAF is given in [5] where the components of a
multi-component signal are estimated in a sequential man-
ner. There are several drawbacks of this successful method.
Although there are various attempts to handle slowly vary-
ing amplitude case [16], the amplitude is assumed to be
constant in general [14]. But in (1), this is not the case
in some cases. Furthermore, there may be error propaga-
tion in successive order reduction with HAF algorithm.
Therefore, the method requires a good SNR. There are
approaches [7], which try to reduce the effect of this propa-
gation, but due to higher polynomials order still there is error
propagation.
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There are some other methods, which do not use polyno-
mial modeling for the estimation of amplitude and instan-
taneous frequency (IF). In [2], a method is given which
estimates IF using empirical mode decomposition (EMD).
In [4], the amplitude and instantaneous frequency changes
on signal are obtained from the spectrogram.

In order to handle more general cases, signals with both
time varying amplitude and long durations need to be con-
sidered. With long duration, we mean a time interval of the
signal over which the amplitude and phase functions cannot
be expressed with polynomials of order 3 or less. Therefore,
when long duration is the case, higher polynomial orders (>3)
need to be handled. One approach to deal with the problem
is the segmentation. In [8], a method is proposed where the
long duration signal is divided into non-sequential and over-
lapping segments and for each segment a parametric ML
approach is used to estimate the signal corresponding to that
segment. Then, the overlapping segments are aggregated with
windowing. A segmentation strategy is also given. The seg-
ments are determined depending on their local energy on
time-frequency plane. Each segment is represented at most
with a polynomial of order 3. The proper length and the order
for each segment are determined by trying orders from 1 to
3 and lengths from a predetermined range (15-60 samples).
The proper order and segment length, which gives a polyno-
mial fit error less than a predetermined threshold, are selected
for each segment with trail. The main motivation behind this
approach is that the optimization with orders less than 3 is
easier.

The main drawback with the method is that we still need
to run a nonlinear multivariable optimization algorithm for
each segment and we have the same local minima and com-
putation problems of the ML method. Therefore, simulated
annealing (SA) which is a stochastic method is used to find
the parameters for each segment in [8].

1.1 Contribution of the paper

In this paper, we propose a different segmentation strategy
and use an overall polynomial order estimation method for
the signal estimation. The proposed segmentation is called
as micro-segmentation in the sense that the segment length
is selected such that the amplitude function over the segment
can be assumed to be constant and the phase function can
be assumed to be linear. In other words, the assumption is
that the rate of change in amplitude and phase function is
slow compared with signal itself. Therefore, we can select a
micro-segment such that the amplitude and frequency can be
nearly constant over the selected segment. With this selection
of segments, the total number of parameters which need to be
estimated for a micro-segment is 3. Since the related ML or
LS optimization is separable, two of parameters are expressed
in terms of the third one. This will reduce the optimization
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with 3 parameters to a 1-D search and subsequent substitu-
tion. It will be shown that the optimal polynomial parameters
for both amplitude and phase of the micro-segment are sim-
ply obtained using Discrete-Time Fourier Transform DTFT
(FFT). Segments are non-overlapping. The overall amplitude
and phase estimates for the signal in (1) are obtained by con-
catenating microsegments. An example AM/FM signal and
a micro-segment are shown in Fig. 1.

An issue which naturally comes to mind is the selection of
micro-segment length over which the amplitude and the IF
are constant. A method is also proposed for proper selection
of the micro-segment length. The method is robust enough
to select flexibly the segment length in an allowed range.

The overall amplitude and phase estimates obtained by
concatenation of the corresponding micro-segmentation esti-
mates are not optimal in LS sense. But they are good enough
to be used for overall polynomial order estimation for both
amplitude and phase function. Therefore, another contri-
bution of the paper is the estimation of the polynomial
orders for overall amplitude and phase functions. The micro-
segmentation-based estimate for both amplitude and phase
is fitted to a polynomial where the degree of polynomial is
searched in range. If we observe the differential fit error evo-
lution in a trial range, it will be seen that there is high contrast
around actual polynomial order. This is a result of sufficient
SNR improvement at micro-segmentation step, which clar-
ifies the main shape of the amplitude and phase functions.
Therefore, by detecting this order, a proper order can be esti-
mated for both amplitude and phase function. It will be shown
that with this polynomial order, the estimates obtained with
micro-segmentation are significantly improved approaching
the Cramer—Rao bound.

The rest of the paper is organized as follows. In Sect. 2, the
micro-segmentation-based estimates are derived. In Sect. 3,
overall polynomial order estimation is explained together
with several methods which can be applied to the micro-
segmentation estimate for making the task of polynomial
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order estimation easier. In Sect. 4, the performance analy-
sis for parametric ML approach is determined to be used as
a reference for comparison purposes. In Sect. 5, simulation
results are presented.

2 Micro-segment based estimation

Given an amplitude and frequency modulated signal of form

(2), we define a segment of length N, < K
xulm] =x[no+m], 0<m<=<N, ©)

where n is the starting instant of the segment. The amplitude
and phase functions are similarly defined as

Aylm] = alng + m] (6)
and
Pulm] = Blno + m], @)

The segment length is selected such that the amplitude and
frequency functions are constant over the segment. In other
words, the assumption is that the rate of change in signal
s[n] is higher, at least K times, than the rate of change in
amplitude and IF function. Then, we can express the micro-
segment signal as

xulm] = a, el G fumt ) 4y m] ®)

where a,,, f,, and ¢, are constants and w,[m] is the noise
corresponding to the segment. With this selection of the seg-
ment, we have the same parameter estimation problem with
set of unknown parameters reduced to 3. Therefore, we can
define the least square optimization problem as,

Ny—1
: 2
Jap, fu. o) = E ‘x,u[m] - auej(znfﬂm""/’u) 9)
m=0
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where the parameter set is minimized as follows:

[a/,c’ flln @M} = argminau’fﬂ,gou J(apLs f/l.’ (pu) (10)

Although we have 3 parameters to be optimized, the objective
function is separable; therefore, we can first solve {a,,, ¢}
in terms of f},, then substitute these values in (9) to solve for
fﬂ [6]. With this method, the frequency estimate fu can be
solved as

N . 2
£ = argmax ‘XM (eﬂ”fu)‘ (11)
Fu

and using this value {d,,, ¢§,.} are estimated as

a0t = LX,L (eﬂ”fu) = LDTFT{xM[n]}f:f . (12)
Ny Ny "
In other words, for micro-segment parameter optimization,
first we need to compute DTFT of the sequence x,[m] and
then find the frequency fAM at which the square magnitude
of DTFT is maximum and using this frequency compute
{au, ¢} from (12).

The overall estimates corresponding to amplitude and
phase function are obtained by concatenating micro segment
estimates corresponding to them. The amplitude is obtained
by

dms [no +ml = Ayml=a,, 0<m<N, (13)
and similarly phase is obtained by

s [n0 +m] = @ulm) =27 fum + ¢, 0 <m < N, (14)
and the signal estimate is obtained as

Smsl] = s [ ]e?Pmsl) (15)
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where n is the starting instant of a segment, a5 [1], (?)ms [m],
and §,,s[n] are the overall amplitude, phase and signal esti-
mates.

There are three considerations with this approach. Altho-
ugh we assumed that the amplitude is positive, if {d,,, fu, Oul
is a solution to the optimization problem in (10), then
{—ay., fﬂ, Ou + Rk + 1), k integer} is also a solution.
That is, there is an ambiguity in solution. Therefore, when-
ever a, is negative, it should be replaced with absolute
value and 7 should be added to ¢, to remove ambigu-
ity.

The other consideration is finding the frequency at which
square magnitude DTFT of x,[m] is the maximum. Usu-
ally DTFT is computed via FFT at discrete frequencies.
To find the maximum point, we need to sample the DTFT
in a fine grid. Therefore, the frequency which maximizes
X (e7¥f1)|2 is found by searching over the FFT frequency
bins followed by an interpolation step to refine the fre-
quency estimate. The interpolation is obtained by fitting the
maximum frequency bin of FFT and several other points
around it to a second-order polynomial. The analytic maxi-
mum of this fitted polynomial gives the refined maximum of
|Xﬂ(ej2”fﬂ)|2.

The third and crucial consideration is the concatenation
of the micro-segments. While the overall amplitude estimate
can be easily obtained by concatenation of micro-segment
amplitudes, for phase concatenation, we need to remove
phase ambiguity of k27 between subsequent segments. This
is achieved by checking the phase difference between phase
at first time index of current micro-segment and phase at last
time index of previous micro-segment. With this arrange-
ment, an unwrapped phase sequence is obtained.
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In Fig. 2, we show the initial amplitude, phase, and fre-
quency estimates obtained from a noisy long duration signal
of N = 512 with micro-segmentation using N, = 12. The
amplitude polynomial order is 10, and the phase polynomial
order is 8. In Fig. 3, real parts of the noisy signal and micro-
segmentation-based estimates are shown on top of the noise-
less signal where the SNR is the time average SNR defined
as

SN st

SNR = 101log .
>N [$tn) = stalf?

(16)

A similar definition is also used in [6]. But some other def-
initions which define the SNR based on the domain where
the signal is represented can be found in [15]. In Fig. 2 for
the phase estimate, we see a constant phase offset of k2.
Therefore, the true and estimated phase functions are parallel
to each other.

From Fig. 2, we observe that the IF and phase estimates
are better compared with amplitude estimate. Since the phase
is unwrapped, it is monotonically increasing. Therefore, the
noise on it is not seen from the figure as a result of scale
resolution.

Now, the question is how to select the micro-segment
length. Before determining a suitable length, it should be
noted that we have two constraints that need to be satisfied.
First, in order to have a good estimate, the number of data
points in a micro-segment should be sufficiently large com-
pared with number of parameters to be estimated. In our
case, it is 3. Since we have a complex signal, the data size
are twice the size of segment N,,. Therefore, we should have
2N, > 3. On the other hand, as we made an assumption at
the beginning that the rate of change in signal s[n] is at least
K times greater than that of both amplitude and IF functions,

we need to select a segment length in the range defined by

2K N, <K A7)
where, K is defined as follows,
K — min( fsignal) (18)

max [max ( famp) » max (fip)]

Though we can search for an optimum length in this range, it
is not our intention to get a further optimized estimate at this
stage. As it will be seen in Sect. 3, initial results obtained at
this stage will be sufficient for subsequent processing.

3 Polynomial fit-based estimation
3.1 Polynomial order estimation

In mathematical analysis, according to Weierstrass approxi-
mation theorem [12], every continuous function defined on
a closed interval [a, b] can be uniformly approximated as
closely as desired by a polynomial function. In fact, the
polynomial functions are among the simplest functions for
continuous function representation. Increasing the order for
representation will achieve better approximation. Therefore,
as the order is increased, more detailed parts of the function
will be fitted or approximated.

In most of the denoising applications, since the noise
spectrum is white and actual signal spectrum is low-pass
compared to noise, the majority of high-frequency energy
of the noisy signal is due to the noise. Therefore, removing
the high frequencies beyond a properly selected cut-off, fre-
quency will remove most of the noise. In our case, we can
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Fig. 4 Normalized fit error (MSE) versus polynomial order

also assume that both the amplitude and phase functions are
low-pass functions compared to noise.

A similar approach can be used when approximating a
noisy signal with polynomial functions. While the actual
noiseless signal can be approximated with a polynomial of
order P which gives an approximation error e, a higher-
order Pyoisy > P will be needed to approximate the noisy
function with the same error. Because the noise part con-
tains more high-frequency fluctuations than the actual signal
and require higher polynomial orders to approximate it. But
what we want is to approximate the actual function rather
than noise. Therefore, when approximating the noisy func-
tion if take a cut-off order P which is smaller than Phoisy and
as close as possible to the actual order P, then the approx-
imation error will be larger than e, 7, but we will eliminate
most of the noise and get an estimate of the function. Then,
the problem is how to find the order P or an estimate for it.

One method is to use the noise variance. If we know the
noise variance, then we can search for a range of orders and
select the order for which the approximation error to noisy
function is less than or equal the noise variance. Because if
we are getting a lower approximation error than the noise
variance, that means we are fitting to the noise rather than
the noiseless function. Therefore, we should not go beyond
that order. In Fig. 4, we can see the mean square fit error
(MSE), normalized to function energy, for an initial phase
estimate. The straight line in figure is the noise variance. But
the problem with this method is that we do not know the
noise variance.

An alternative method for order estimation can be obtained
from the change in approximation or fit error as a function of
polynomial order. If we observe the change in approximation
error we will see that up to an order P, the rate of change
will be high but beyond that it will follow a comparably
flat pattern. For example looking at Fig. 4, we will see that
the approximation error is decreasing sharply between 0 and
10 beyond that, the rate of change is much slower. That is,
around 8-10, there is a break point. The region from 0 to 8
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Fig. 6 Normalized MSE fit error and differential fit error versus poly-
nomial (amplitude function) at SNR=5dB

or from 0 to 10 is the area where the actual function shape is
approximated but the region beyond that is the region of noise
fitting. Therefore, even though we do not know the noise
variance, from this rate of change pattern we can estimate
an order with a proper threshold. But in order to use this
method, we need to have a good SNR. Otherwise, the contrast
in change pattern may not be so clear. Therefore, micro-
segment-based amplitude and phase estimates will be used
for this purpose. This change pattern is clearly observable
from Figs. 5 and 6.

In Figs. 5 and 6, both the normalized MSE fit error and the
differential fit error are plotted for the micro-segmentation
phase and amplitude estimates obtained from a noisy signal
with SNR=5dB.

The normalized MSE fit error and differential fit error are
defined as,

—1 A 2
2,11\/:01 |ams [n] — Apms [n]|
—1 (A 2
S0 |amsln]|
p=172,..., MaxPol (19)
depf(p):epf(p)_epf(p—l) p=2,3...,MaxPol (20)

epr(p) = 10log
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where a5 [n] is overall micro-segmentation-based amplitude
estimate and d@p,[n] is the polynomial fit of a,,s[n] at pth
order where MaxPol is the predefined maximum search range
and de, (1) = 0. The order p around which there is a high
contrast is detected by the following moving average based
search:

P =MmiNy,, (p)<yo P p=12...,MaxPol, 21
where

1 M
mae(p) = 522, |depr(p+ )| (22)

with M being the length of moving average filter. The min-
imization basically detects a region during which the mean
of absolute differential fit error drops below a threshold yq.

Having the assumption that the rate of change in signal
s[n] is higher, at least K times, than the rate of change in
amplitude and IF function, we can conclude that compared
with s[n] the amplitude function and unwrapped phase func-
tions are higher resolution functions and can be down sam-
pled by K. In other words, we can represent them with N /K
samples. Therefore, this gives us an intuition that without any
compression or dimensionality reduction and just by down
sampling we can express the functions with N/K samples.
Therefore, the basis expansions given in (3) and (4) should
give us better compressed representations. With this intu-
ition, we can select MaxPol as the smallest integer greater or
equal to N/K.

But on the other hand, since the search in (22) can be
implemented with an online algorithm, the search will ter-
minate around true polynomial order plus M. In other words,
if the true polynomial order is P, then the search will termi-

Time

nate at P + M + ¢p where ¢p is the integer estimation error
on P and is expected to be small when SNR is good. After
that the search will terminate and the corresponding a pmsln]
will be selected as the polynomial fit estimate for amplitude
function a[n].

In Fig. 7, the polynomial fit estimates corresponding
to micro-segmentation-based estimates given in Fig. 2 are
shown. Where true/estimated orders, obtained with this
search method for amplitude and phase are 10/8 and 8/8,
respectively. The function estimates are plotted on top of their
noiseless versions to see the improvement. From differences
between two results, it is clear that there is a good improve-
ment. In Fig. 8, the improvement in SNR corresponding to
overall signal is shown. From this figure also, we see that
there is a good improvement.

3.2 Micro-segmentation-based estimate improvement

As we explained in Sect. 2, the main objective of micro-
segmentation-based estimation is to get an intermediate esti-
mate to be used for polynomial-based estimation. The goal
of the micro-segmentation method is not to obtain a final
estimate. But, with some effort, an even improved estimate
can be obtained which will ease the task of polynomial order
estimation.

Regarding the N, of micro-segment, apart from con-
straints given in (17), in general, a large window is preferable
at low SNR for better noise removal and a small window is
preferable for better time resolution.

In this work, we preferred to use the following segmen-
tation strategy. First, we select a segment size N, which is
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Fig. 9 Three segmentation
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indexes shifted by N, /L with

L=3

sufficiently large compared to the number of parameters, then
we construct L segmentation indices on time axis which are
shifted, as shown in Fig. 9, compared with each other by
N, /L. Indexes are plotted for L = 3, and the points on lines
represent the segment boundaries.

Using these L segment indexes, we obtained L overall
estimates for amplitude and phase. Then, by averaging these
estimates, we obtain the final micro-segment estimates as

L
L 2
*
L

As can be seen from Figs. 2 and 7, micro-segmentation-
based IF and phase estimates are better by far compared with
amplitude estimates. But, at low SNR values (SNR < 5dB)
for some micro-segments where noise is dominant, the phase
or IF estimates will be too noisy. In fact, the estimates at
those segments will be discontinuous and different from the
neighboring segments. Such an example is shown in Fig. 11.
Where a jump is observed in micro-segmentation-based IF
estimate at SNR < 5dB.

amsln] = % i ams.1[n] 23) Wl?ile for r.nicro—segm.entat.ion estimate the effect of this
= jump is local, if we use this estimate for the subsequent poly-

and nomial fit, the effect will spread out and the polynomial fit
estimate will be worse than micro-segmentation estimate.

A 1 & This effect can be seen also in Fig. 11. These types of jumps
Dmsln] = L Z Ds.ln] (24) are indications of high noise. When these jumps are observed,
=1 we need to increase micro-segment length so as to smooth out

where a5 [n] and @ms,l Ln], [ = 1,2,3 are overall esti- the noise. Therefore, we used the following method. During

mates for each shift and ¥, ;[n] is the unwrapped phase.
In this way, we obtained better estimates compared with sin-
gle micro-segmentation estimate. Actually, this approach in
effect is the sliding window with hope size N, /L. But we
preferred this approach for the ease of concatenation. The rea-
son for using average of shifted multiple micro-segmentation
estimates is to have both sufficient number of data points for
the parameter estimation and also to have a better time res-
olution. After determining sufficient number of data points
for estimation of a,,, f,, and ¢,,, we selected it to be L = 3.
In Fig. 10, the micro-segmentation estimates obtained with
single shift and L = 3 shifts are given at SNR=10dB with
N,, = 12. From this figure, we can clearly see that the aver-
age of multiple shifts improves the estimate.

@ Springer

computations whenever there is a phase or frequency jump
between two micro-segments of any three shifted overall esti-
mates dp; 1[n], @ms,l[n],l = 1,2,..., L, we restarted the
micro-segment estimation with a longer segment length N,
compared with first one. Here, the jumps are detected by com-
paring the difference between the IF estimate in a segment
and its neighbors. If difference exceeds a given threshold y,
then the decision is given. Experimentally, this threshold for
normalized frequency, set to yy = 0.08. This threshold cor-
responds to a phase shift of 0.165r radians.

In second round with increased segment length N,,,, we
again monitored the discontinuity. But this time upon discon-
tinuity detection, we used selective averaging of L shifted
estimates rather than restarting the micro-segmentation
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Fig. 10 Micro-segment Micro Segmentation Amplitude with one shift Micro Segmentation IF with one shift
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estimate with a further increased segment length. With selec- a =[ajaz...... apl” (25)
tive averaging, we mean selecting only those estimates
Qms.i[n] or By 1[n] which do not include any discontinuity. and
. . o T
If it happens that in tbe seconq roundAw1th increased segment 5 _ [ biby...... bQ] (26)
length all of the L shifted estimates a5 ;[n] or Bys (0], [ =
1,2, ..., L contain such a jump, then just one of them should  and using the following notation
be selected and the polynomial fit step should be omitted. p
The final signal estimate should be obtained with micro- ™= [0.1,2,...... N1 @7)
segmentation-based estimates only. Thls.approach pre'vents x = x[n] = [x[0] x[1] x[2]...... x[N — 1717, (28)
at low SNR the performance of overall signal estimation to
be not worse than micro-estimate. w = wln] = [w[0] w[1] w[2]...... w[N — 1717, 29)
To sum up, with two simple methods, that is, averaging of
i i i i Bln] J9101 9111 ,j912] JOIN—1] T
multiple micro-segmentation estimates and use of a longer  ¢/*'"! = |e e i e (30)
segment length on detection of IF jumps, we tried to increase
the quality of micro-segment estimate. Together with these ~ We can have,
improvements, the overall algorithm for AM/FM signal esti-
provements, ¢ £ J x = ®a+w. G1)
mation is listed in Table 1.
where @ is a Nx (P + 1) matrix defined as follows
4 Performance comparison ] ] ] ]
o= [go (n] 0/ g [nlee/") gy [n]eciM) .. gplnlec! } .
4.1 Cramer—Rao bound (32)

In this section, we provide measures to be used for perfor-
mance evaluation of the proposed method. The measure is
the Cramer—Rao bound for parametric signal estimation. The
CRB on the ML estimation of parameters of (3) and (4) is
obtained in [6]. Here, the basic notation and results will be
summarized. Also with a slight modification, the total bound
on the signal MSE will be obtained.

Defining the coefficients of the amplitude and phase func-
tions in (3) and (4) by the vectors as

where, “e ” in (32) denotes component-by-component mul-
tiplication of vectors. With this notation and white Gaussian
noise assumption, the log-likelihood function is obtained as
follows. [6]

1
A =—N (Inm +2Ino) — — || ¥ — Va || (33)
o

where o2 is the noise variance, ¥— [ Re{x}” Im{x}T]T and
W = [Re{®}” Im{®}7]".
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Fig. 11 The jumps in IF
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Given the likelihood function A in (33, the Fisher Infor- The matrix is obtained [6] as
mation Matrix (FIM) for the parameter set § = bTa’ 17 is 2
defined by F = SRe{la0)" 10}, (35)
where
F E G (34)
= 36;00; |- A = j[po[n]es[n] pi[nles(n] pz[nles[n]...... polnlesn]]. (36)
Table 1 AM/FM signal estimation algorithm
1 Compute shifted overall micro-segment estimates dys ;[1] Q)ms,l[n], l=1,2,...,Lwith N,.
2 If all IF or (?)ms,l[n], I =1,2,..., L does not contain discontinuity

Compute dys[n] = + 3L dms i [n], Dusln] = £ 31, B 101,

Set flag = 0 % discontinuity flag

else
Re compute dy,[n] and @msi,l[”], [=1,2,...,Lwith N,
If all Q)n,s,l[n],l =1,2,..., L with Ny, are discontinuous
Set flag =1
ams[n] = s, [0), - Byus[n) = i 1]
else
Compute dy,s[n] and Q)mx [n] with selective average
Set flag =0
3 If flag=1
aln = apslnl, Pl = Busln]
else
Find the orders P and Q for dyus[n] and @ms [n] with search
a[nl = polynomial_fit (Gms(nl, P) Pn] = polynomial_fit(@m[n], 0)
4 §[n] = aln]e/ M)

@ Springer



SIViP (2014) 8:399-413

409

Fig. 12 Test signal Example 1 » Signal Amplitude Function, Order =10
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CRB forset§ = [bTaT] is defined as the inverse of F, that 25 MSE vs.SNR
iS —— Initial
’ 20 —— Micro Segment |4
) —— PolFit
CRB(#) = F 37) sl s
—= CRB

In an actual application rather than a and b parameters, we
will be interested in signal s[n] itself. Therefore, we will drive
the bounds on the variance of the estimate for the signal at
time instant n. The signal s[n] is a function of the parame-
ter set @ = [b7a”]". Having CRB(#), CRB(s[n]) can be
obtained as [11]

CRB(s[x]) = (s,)" CRB () s, (38)
where

, _ 0s[n]
i =g (39)
Using (3), (4) and (37) s;, will be obtained as
s, =I[A[n] @n]]" (40)

where s), is simply the transpose of the row of [A®] corre-
sponding to time instant n. Since in our application we have
N time instants, we need to compute (38) for all of them. But,
in order to get an overall performance indication, we will sum
them up and obtain the following bound as a reference for
the MSE error performance.

N—-1

CRB(s) = Z CRB(s[n])

n=0

(41)

This is the total variance bound for the estimate of the signal
values at all time instants between 0 and N — 1.

SNR

Fig. 13 MSE versus SNR for Example 1

4.2 Comparison with existing methods

Though Cramer—Rao bound is the destination or target for
the performance evaluation of the proposed method. A com-
parison with some other method will also be useful both in
terms of performance and complexity.

A known method for the estimation of signal in (1) is
the parametric maximum likelihood (ML) estimation [6,13]
where the amplitude and phase parameters are given by (25)
and (26). As explained before with this method, the ampli-
tude and phase orders need to be known in advance and this
is one of the difficulties. Also since the estimation of parame-
ters is found by optimization of (33) using quasi-Newton type
iterative algorithms [9], good initial conditions are required
to avoid convergence to local minima. Therefore, for the
comparison purposes, when finding the parameters with ML
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Fig. 14 True and estimated orders versus SNR for Example 1

method we will assume that the orders, both for the ampli-
tude and the phase are known or estimated by some other
method. Also, we will use the polynomial coefficients cor-
responding to micro-segment amplitude and phase estimates
as the initial parameters. In fact, in this type of parametric
time-varying signal estimation, the time-frequency distrib-
ution based estimates are usually used as initial parameters
[6,13].

The performance comparison between the proposed
method and parametric ML method is given in simulation
results section. Since we use the same initial parameter set
both for the proposed method and ML method with BFGS,
any complexity comparison should be focused on rest of the
algorithms. Due to iterative nature of BFGS type algorithms,
an exact comparison may not be possible. But the follow-

25 MSE vs.SNR ‘
—— Initial
——Micro Segment;
20¢ —*—PolFit
15 —=—CRB
o
°
L
D]
=

5 10 15 20
SNR

Fig. 16 MSE versus SNR for Example 2

ing discussion is believed to be useful for understanding the
computation complexity of proposed and ML method.

With proposed method, the final estimates are found
by polynomial approximation of micro-segment estimates.
Polynomial orders are also estimated from micro-segment
estimates. The order estimation is based on a search between
1 and MaxPol. As explained in polynomial fit-based estima-
tion section, a function of order P will roughly require P+ M
steps and M was experimentally set to 5 in algorithm. There-
fore, the order estimation requires P + M least squares (L.S)
to be solved. The parameters to be found in each LS varies
between 1 and P+ M. In this regard considering a signal with
amplitude order P and a phase order Q, the total complexity
is equivalent to cost of solving P + M LS for amplitude
and the costof Q +M LS for phase. The LS can be imple-
mented either directly with pseudo-inverse or with conjugate
gradient (CG) which is expected to save computations.

Fig. 15 Test signal Example 2 5 Signal Amplitude Function, Order =10
1.5
1 K 4 1
0 H H\ .
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0.5
2 . . . . L .
-400 -200 0 200 400 -400 -200 0 200 400
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0.3 200
0
0.2
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0 ‘ : : -600 : : ‘
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Time Time
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Fig. 17 Test signal Example 3 Slgnal
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With parametric ML method, if orders are known, then
we can run a quasi-Newton algorithm like BEGS [9]. These
algorithms require the optimized cost function and its gradi-
ent to be computed at each iteration step. In fact, the function
and gradient evaluation is done several times in line search
section. The cost function and its gradient is highly nonlinear
[6], and their computations complexity are very large com-
pared to solving a LS problem with the same parameter size
[3]. Considering that the convergence of the BFGS requires
many steps, the computation burden of ML is apparent.

With the above reasoning, it is apparent that the proposed
algorithm requires less computation than the ML method.
Also, it is not affected by any convergence issues and in this
respect it is robust.

5 Simulation results

Three test signals of 512 samples were used with various
SNR values between 5 and 20dB in simulation examples.
The SNR definition is the one given in (16). For all exam-
ples, the length of micro-segments was selected as N, = 12,
and the second length in case of discontinuity was set to
N, = 15. The number of micro-segmentation estimates for
averaging was taken as L = 3. The threshold for deciding
on IF or phase discontinuity was set to yy = 0.08. The max-
imum polynomial order for search was set MaxPol =26, and
moving search length was set to M = 5. The thresholds
for estimating the orders were set to yorqg = 0.4 for phase
and yorq = 0.3 for the amplitude. As stated before, the ML
method (BFGS) was used with true or known orders and ini-
tialized with polynomial coefficients of micro-segment esti-

mates. Simulation was carried out for 400 runs for each SNR
value. The MSE defined by

N-1

MSE = > [$[n] - s[n]|*

n=0

(42)

was obtained for each run, and the average of each SNR value
was compared with CRB in (41).

In first example (Example 1), the signal was selected with
true amplitude order P = 10 and true phase order as Q = 8.
The noiseless signal, its amplitude, phase, and IF functions
are shown in Fig. 12. In Fig. 13, MSE versus SNR is plotted
in logarithmic scale. The top line corresponds to the MSE
for the noisy signal, the second line under that corresponds
to MSE for micro-segmentation estimate, and the last three
lines on top of each other correspond to the MSE for the
polynomial estimate, ML estimate and the CRB. In Fig. 14,
the true and estimated orders versus SNR are plotted. The
standard deviation for 400 runs is also plotted. Based on
these figures, we observe that the proposed method is very
effective to estimate the AM/FM signal parameters. While
the micro-segmentation-based estimate is far from the CRB,
both the polynomial fit estimate and ML estimate are close
to it. From Fig. 14, we observe that the standard deviation on
polynomial order estimate with the proposed search is very
small. This is an indication of the robustness of the proposed
method for order estimation. On the other hand, while the
mean estimated order for phase is nearly equal to the true
value, it is under estimated for amplitude order, but still MSE
is close to the CRB. In fact, an under estimate for low SNR
is a desirable side effect for noise removal.
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Fig. 18 MSE versus SNR for Example 3

In Example 2, given in Figs. 15 and 16, the signal was
selected with true amplitude order P = 10 and true phase
order as Q = 5. For this example, we can see that both the
performance of proposed algorithm and the ML method are
close to the CRB. While for both methods, there is a small
degradation at low SNR compared with CRB, the perfor-
mance of proposed method is better than ML. The order esti-
mation performance was observed to similar to Example 1.

In Example 3, given in Fig. 17 and 18, the signal was
selected with true amplitude order P = 6 and true phase
order as Q = 9. For this example, also we can see that both
the performance of proposed algorithm and the ML method
are close to the CRB. Again, the performance of proposed
method is better than ML at low SNR. The order estimation
performance was observed to be similar to Examples 1 and 2.

From three examples, a clear observation is that the micro-
segmentation-based IF or phase estimates are by far better
than the amplitude estimate. Also, the subsequent order esti-
mation is better by far than that of amplitude. In all exam-
ples, the mean of the phase order is nearly equal to the true
order, and the standard deviation is negligible. On the other
hand, while amplitude order estimate also has a negligible
standard deviation, it is usually lower estimated. But still the
estimated amplitude order together with phase order, improve
the micro-segmentation estimate significantly.

From the three examples and Figures 12, 13, 14, 15, 16,
17 and 18 it is observed that the proposed method efficiently
estimates the AM/FM signal without using any multivariable
nonlinear optimization. The performance is comparable to
that of the Cramer—Rao bound and is better than ML at low
SNR. The method proposed for order estimation is robust
enough for improving the SNR for micro-segmentation esti-
mates.

6 Conclusion

A flexible method which does not require multivariable non-
linear optimization is proposed to estimate long duration

@ Springer

and non-stationary AM/FM signals in white Gaussian addi-
tive noise. In the first step, amplitude and phase functions
are separated optimally (the LS sense) at micro-segment
level. This provides a sufficient SNR improvement compared
with the initial noisy signal. In the second step, using the
segmentation-based estimates of phase and amplitude func-
tions, the corresponding orders were estimated. The MSE
error performance, though not optimal, is comparable to the
Cramer—Rao bound and is better than ML at low SNR. For
long signals with highly nonlinear amplitude and phase func-
tions, the method is efficient and flexible. Since the IF or
phase estimates are very good compared to the amplitude,
the method can be successfully applied to polynomial phase
signals (PPS) with constant amplitude.
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