STRONGLY J-CLEAN SKEW TRIANGULAR MATRIX RINGS*

BY

YOSUM KURTULMAZ

Abstract

Let R be an arbitrary ring with identity. An element $a \in R$ is strongly J-clean if there exist an idempotent $e \in R$ and element $w \in J(R)$ such that $a=e+w$ and $e w=e w$. A ring R is strongly J-clean in case every element in R is strongly J-clean. In this note, we investigate the strong J-cleanness of the skew triangular matrix ring $T_{n}(R, \sigma)$ over a local ring R, where σ is an endomorphism of R and $n=2,3,4$.

Mathematics Subject Classification 2010: 15B33, 15B99, 16L99. Key words: strongly J-clean ring, skew triangular matrix ring, local ring.

1. Introduction

Throughout this paper all rings are associative with identity unless otherwise stated. Let R be aring. $J(R)$ and $U(R)$ will denote, respectively, the Jacobson radical and the group of units in R. An element $a \in R$ is strongly clean if there exist an idempotent $e \in R$ and a unit $u \in R$ such that $a=e+u$ and $e u=u e$. A ring R is strongly clean if every element in R is strongly clean. Many authors have studied such rings from very different points of view (cf. [1-9]). An element $a \in R$ is strongly J-clean provided that there exist an idempotent $e \in R$ and element $w \in J(R)$ such that $a=e+w$ and $e w=e w$. A ring R is strongly J-clean in case every element in R is strongly J-clean. Strong J-cleanness over commutative rings is studied in [1] and deduced the strong J-cleanness of $T_{n}(R)$ for a large class of local rings R, where $T_{n}(R)$ denotes the ring of all upper triangular matrices over R.

[^0]Let σ be an endomorphism of R preserving 1 and $T_{n}(R, \sigma)$ be the set of all upper triangular matrices over the rings R. For any $\left(a_{i j}\right),\left(b_{i j}\right) \in$ $T_{n}(R, \sigma)$, we define $\left(a_{i j}\right)+\left(b_{i j}\right)=\left(a_{i j}+b_{i j}\right)$, and $\left(a_{i j}\right)\left(b_{i j}\right)=\left(c_{i j}\right)$ where $c_{i j}=\sum_{k=i}^{n} a_{i k} \sigma^{k-i}\left(b_{k j}\right)$. Then $T_{n}(R, \sigma)$ is a ring under the preceding addition and multiplication. It is clear that $T_{n}(R, \sigma)$ will be $T_{n}(R)$ only when σ is the identity morphism. Let $a \in R$ and the maps $l_{a}: R \rightarrow R$ and $r_{a}: R \rightarrow R$ denote, respectively, the abelian group endomorphisms given by $l_{a}(r)=a r$ and $r_{a}(r)=r a$ for all $r \in R$. Thus, $l_{a}-r_{b}$ is an abelian group endomorphism such that $\left(l_{a}-r_{b}\right)(r)=a r-r b$ for any $r \in R$.

Strong cleanness of $T_{n}(R, \sigma)$ for several n was studied in [3]. In this article, we investigate the strong J-cleanness of $T_{n}(R, \sigma)$ over a local ring R for $n=2,3,4$ and then extend strong cleanness to such properties. In this direction we show that $T_{2}(R, \sigma)$ is strongly J-clean if and only if for any $a \in 1+J(R), b \in J(R), l_{a}-r_{\sigma(b)}: R \rightarrow R$ is surjective and $R / J(R) \cong \mathbb{Z}_{2}$. Further if $l_{a}-r_{\sigma(b)}$ and $l_{b}-r_{\sigma(a)}$ are surjective for any $a \in 1+J(R), b \in J(R)$, then $T_{3}(R, \sigma)$ is strongly J-clean if and only if $R / J(R) \cong \mathbb{Z}_{2}$. The necessary condition for $T_{3}(R, \sigma)$ to be strongly J-clean is also discussed. In addition to these, if $l_{a}-r_{\sigma(b)}$ and $l_{b}-r_{\sigma(a)}$ are surjective for any $a \in 1+J(R)$, $b \in J(R)$, then $T_{4}(R, \sigma)$ is strongly J-clean if and only if $R / J(R) \cong \mathbb{Z}_{2}$.
2. The case $n=2$

By [Theorem 4.4, 2], the triangular matrix ring $T_{2}(R)$ over a local ring R is strongly J-clean if and only if R is bleached and $R / J(R) \cong \mathbb{Z}_{2}$. We extend this result to the skew triangular matrix ring $T_{2}(R, \sigma)$ over a local ring R.

Remark 2.1 will be used in the sequel without reference to.
Remark 2.1. Note that if for any $\operatorname{ring} R, R / J(R) \cong \mathbb{Z}_{2}$, then $2 \in J(R)$, $1+J(R)=U(R)$ and $1+U(R)=J(R)$. For if, f is the isomorphism $R / J(R) \cong \mathbb{Z}_{2}$ then $f(1+J(R))=1+2 \mathbb{Z}$. Hence $f(2+J(R))=2+2 \mathbb{Z}=$ $0+2 \mathbb{Z}$. So $2+J(R)=0+J(R)$, that is $2 \in J(R)$. $1+J(R) \subseteq U(R)$. Let $u \in U(R)$. Then $f(u+J(R))=1+2 \mathbb{Z}=f(1+J(R))$. Hence $u-1 \in J(R)$ and so $u \in 1+J(R)$. Thus, $U(R) \subseteq 1+J(R)$ and $U(R)=1+J(R)$.

Lemma 2.2. Let R be a ring and let σ be an endomorphism of R. If $T_{n}(R, \sigma)$ is strongly J-clean for some $n \in \mathbb{N}$, then so is R.

Proof. Let $e=\operatorname{diag}(1,0, \ldots, 0) \in T_{n}(R, \sigma)$. Then $R \cong e T_{n}(R, \sigma) e$. From Corollary 3.5 in [2], R is strongly J-clean.

Theorem 2.3. Let R be a local ring, and let σ be an endomorphism of R. Then the following are equivalent:
(1) $T_{2}(R, \sigma)$ is strongly J-clean.
(2) If $a \in 1+J(R), b \in J(R)$, then $l_{a}-r_{\sigma(b)}: R \rightarrow R$ is surjective and $R / J(R) \cong \mathbb{Z}_{2}$

Proof. $(1) \Rightarrow(2)$ From Lemma $2.2, R$ is strongly J-clean and by Lemma 4.2 in $[2], R / J(R) \cong \mathbb{Z}_{2}$. By Remark $2.1,1+J(R)=U(R)$. Let $a \in 1+J(R), b \in J(R), v \in R$. Then $A=\left(\begin{array}{cc}a & -v \\ 0 & b\end{array}\right) \in T_{2}(R, \sigma)$. By hypothesis, there exists an idempotent $E=\left(\begin{array}{ll}e & x \\ 0 & f\end{array}\right) \in T_{2}(R, \sigma)$ such that $A-E \in J\left(T_{2}(R, \sigma)\right)$ and $A E=E A$. Since R is local, all idempotents in R are 0 and 1. Thus, we see that $e=1, f=0$; otherwise, $A-E \notin$ $J\left(T_{2}(R, \sigma)\right)$. So $E=\left(\begin{array}{ll}1 & x \\ 0 & 0\end{array}\right)$. As $A E=E A$, we get $-v+x \sigma(b)=a x$. Hence, $a x-x \sigma(b)=-v$ for some $x \in R$. As a result, $l_{a}-r_{\sigma(b)}: R \rightarrow R$ is surjective.

$$
(2) \Rightarrow(1) \text { Let } A=\left(\begin{array}{ll}
a & v \\
0 & b
\end{array}\right) \in T_{2}(R, \sigma)
$$

Case 1. If $a, b \in J(R)$, then $A \in J\left(T_{2}(R, \sigma)\right)$ is strongly J-clean.
Case 2. If $a, b \in 1+J(R)$, then $A-I_{2} \in J\left(T_{2}(R, \sigma)\right)$; hence, $A=$ $I_{2}+\left(A-I_{2}\right) \in T_{2}(R, \sigma)$ is strongly J-clean.

Case 3. If $a \in 1+J(R), b \in J(R)$, by hypothesis, $l_{a}-r_{\sigma(b)}: R \rightarrow R$ is surjective. Thus, $a x-x \sigma(b)=v$ for some $x \in R$. Choose $E=\left(\begin{array}{cc}1 & x \\ 0 & 0\end{array}\right) \in$ $T_{2}(R, \sigma)$. Then $E^{2}=E \in T_{2}(R, \sigma), A E=E A$ and $A-E \in J\left(T_{2}(R, \sigma)\right)$. That is, $A \in T_{2}(R, \sigma)$ is strongly J-clean.

Case 4. If $a \in J(R), b \in 1+J(R)$, then $a+1 \in 1+J(R), b+1 \in J(R)$ and by hypothesis, $l_{a+1}-r_{\sigma(b+1)}: R \rightarrow R$ is surjective. Thus $a x-x \sigma(b)=-v$ for some $x \in R$. Choose $E=\left(\begin{array}{cc}0 & x \\ 0 & 1\end{array}\right) \in T_{2}(R, \sigma)$. Then $E^{2}=E \in T_{2}(R, \sigma)$, $A E=E A$ and $A-E \in J\left(T_{2}(R, \sigma)\right)$. Hence, $A \in T_{2}(R, \sigma)$ is strongly J-clean. Therefore $A \in T_{2}(R, \sigma)$ is strongly J-clean.

Corollary 2.4. Let R be a local ring, and let σ be an endomorphism of R. Then the following are equivalent:
(1) $T_{2}(R, \sigma)$ is strongly J-clean.
(2) $R / J(R) \cong \mathbb{Z}_{2}$ and $T_{2}(R, \sigma)$ is strongly clean.

Proof. $(1) \Rightarrow(2)$ It is clear.
$(2) \Rightarrow(1)$ Let $a \in 1+J(R), b \in J(R), v \in R$. Then $A=\left(\begin{array}{cc}a & -v \\ 0 & b\end{array}\right) \in$ $T_{2}(R, \sigma)$. By hypothesis, there exists an idempotent $E=\left(\begin{array}{ll}e & x \\ 0 & f\end{array}\right) \in$ $T_{2}(R, \sigma)$ such that $A-E \in J\left(T_{2}(R, \sigma)\right)$ and $A E=E A$. Since R is local, we see that $e=0, f=1$; otherwise, $A-E \notin J\left(T_{2}(R, \sigma)\right)$. So $E=\left(\begin{array}{ll}0 & x \\ 0 & 1\end{array}\right)$. It follows from $A E=E A$ that $v+x \sigma(b)=a x$, and so $a x-v=x \sigma(b)$. Therefore $l_{a}-r_{\sigma(b)}: R \rightarrow R$ is surjective. By Theorem 2.3, $T_{2}(R, \sigma)$ is strongly J-clean as $R / J(R) \cong \mathbb{Z}_{2}$.

Corollary 2.5. Let R be a ring, and $R / J(R) \cong \mathbb{Z}_{2}$. If $J(R)$ is nil, then $T_{2}(R, \sigma)$ is strongly J-clean.

Proof. Clearly R is local. Let $a \in 1+J(R), b \in J(R)$. Then we can find some $n \in \mathbb{N}$ such that $b^{n}=0$. For any $v \in R$, we choose $x=$ $\left(l_{a^{-1}}+l_{a^{-2}} r_{b}+\cdots+l_{a^{-n}} r_{b^{n-1}}\right)(v)$. It can be easily checked that $\left(l_{a}-r_{b}\right)(x)$ $=\left(l_{a}-r_{b}\right)\left(l_{a^{-1}}+l_{a^{-2}} r_{b}+\cdots+l_{a^{-n}} r_{b^{n-1}}\right)(v)=\left(v+a^{-1} v b+\cdots+a^{-n+1} v b^{n-1}\right)-$ $\left(a^{-1} v b+\cdots+a^{-n} v b^{n}\right)=v$. Hence, $l_{a}-r_{b}: R \rightarrow R$ is surjective. Similarly, $l_{a}-r_{\sigma(b)}$ is surjective since $\sigma(b) \in J(R)$. This completes the proof by Theorem 2.3.

Example 2.6. Let $\mathbb{Z}_{2^{n}}=\mathbb{Z} / 2^{n} \mathbb{Z}, n \in \mathbb{N}$, and let σ be an endomorphism of $\mathbb{Z}_{2^{n}}$. Then, $T_{2}\left(\mathbb{Z}_{2^{n}}, \sigma\right)$ is strongly J-clean. As $\mathbb{Z}_{2^{n}}$ is a local ring with the Jacobson radical $2 \mathbb{Z}_{2^{n}}$. Obviously, $J\left(\mathbb{Z}_{2^{n}}\right)$ is nil, and we are through by Corollary 2.5.

Example 2.7. Let $\mathbb{Z}_{4}=\mathbb{Z} / 4 \mathbb{Z}$, let

$$
R=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}_{4}\right\}
$$

and let $\sigma: R \rightarrow R,\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right) \mapsto\left(\begin{array}{cc}a & -b \\ 0 & a\end{array}\right)$. Then $T_{2}(R, \sigma)$ is strongly J clean. Obviously, σ is an endomorphism of R. It is easy to check that
$J(R)=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \right\rvert\, a \in \mathbb{Z}_{2}, b \in \mathbb{Z}_{4}\right\}$, and then $R / J(R) \cong \mathbb{Z}_{2}$ is a field. Thus, R is a local ring. In addition, $(J(R))^{4}=0$, thus $J(R)$ is nil. Therefore we obtain the result by Corollary 2.5 .

3. The case $n=3$

We now extend Theorem 2.3. to the case of 3×3 skew triangular matrix rings over a local ring.

Theorem 3.1. Let R be a local ring. If $l_{a}-r_{\sigma(b)}$ and $l_{b}-r_{\sigma(a)}$ are surjective for any $a \in 1+J(R), b \in J(R)$, then $T_{3}(R, \sigma)$ is strongly J-clean if and only if $R / J(R) \cong \mathbb{Z}_{2}$.

Proof. (\Leftarrow) We noted in Remark 2.1, in this case we have $\sigma(J(R)) \subseteq$ $J(R), \sigma(U(R)) \subseteq U(R), 1+J(R)=U(R)$ and $1+U(R)=J(R)$ and we use them in the sequel intrinsically.Let $A=\left(a_{i j}\right) \in T_{3}(R, \sigma)$. We divide the proof into six cases.

Case 1. If $a_{11}, a_{22}, a_{33} \in 1+J(R)$, then $A=I_{3}+\left(A-I_{3}\right)$, and so $A-I_{3} \in J\left(T_{3}(R, \sigma)\right)$. Then $A \in T_{3}(R, \sigma)$ is strongly J-clean.

Case 2. If $a_{11} \in J(R), a_{22}, a_{33} \in 1+J(R)$, then we have an $e_{12} \in R$ such that $a_{11} e_{12}-e_{12} \sigma\left(a_{22}\right)=-a_{12}$. Further, we have some $e_{13} \in R$ such that $a_{11} e_{13}-e_{13} \sigma^{2}\left(a_{33}\right)=e_{12} \sigma\left(a_{23}\right)-a_{13}$. Choose

$$
E=\left(\begin{array}{ccc}
0 & e_{12} & e_{13} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \in T_{3}(R, \sigma) .
$$

Then $E^{2}=E$, and $A=E+(A-E)$, where $A-E \in J\left(T_{3}(R, \sigma)\right)$. Furthermore,

$$
\begin{gathered}
E A=\left(\begin{array}{ccc}
0 & e_{12} \sigma\left(a_{22}\right) & e_{12} \sigma\left(a_{23}\right)+e_{13} \sigma^{2}\left(a_{33}\right) \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right), \\
A E=\left(\begin{array}{ccc}
0 & a_{11} e_{12}+a_{12} & a_{11} e_{13}+a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right),
\end{gathered}
$$

and so $E A=A E$. That is, $A \in T_{3}(R, \sigma)$ is strongly J-clean.
Case 3. If $a_{11} \in 1+J(R), a_{22} \in J(R), a_{33} \in 1+J(R)$, then we have an $e_{12} \in R$ such that $a_{11} e_{12}-e_{12} \sigma\left(a_{22}\right)=a_{12}$. Further, we have some $e_{23} \in R$
such that $a_{22} e_{23}-e_{23} \sigma\left(a_{33}\right)=-a_{23}$. Thus $-a_{11} e_{12} \sigma\left(e_{23}\right)+a_{12} \sigma\left(e_{23}\right)=$ $-e_{12} \sigma\left(a_{22}\right) \sigma\left(e_{23}\right)=e_{12} \sigma\left(a_{23}\right)-e_{12} \sigma\left(e_{23}\right) \sigma^{2}\left(a_{33}\right)$. Choose

$$
E=\left(\begin{array}{ccc}
1 & e_{12} & -e_{12} \sigma\left(e_{23}\right) \\
0 & 0 & e_{23} \\
0 & 0 & 1
\end{array}\right) \in T_{3}(R, \sigma) .
$$

Then $E^{2}=E$, and $A=E+(A-E)$, where $A-E \in J\left(T_{3}(R, \sigma)\right)$. Furthermore,

$$
\begin{gathered}
E A=\left(\begin{array}{ccc}
a_{11} & a_{12}+e_{12} \sigma\left(a_{22}\right) & a_{13}+e_{12} \sigma\left(a_{23}\right)-e_{12} \sigma\left(e_{23}\right) \sigma^{2}\left(a_{33}\right) \\
0 & 0 & e_{23} \sigma\left(a_{33}\right) \\
0 & 0 & a_{33}
\end{array}\right), \\
A E=\left(\begin{array}{ccc}
a_{11} & a_{11} e_{12} & -a_{11} e_{12} \sigma\left(e_{23}\right)+a_{12} \sigma\left(e_{23}\right)+a_{13} \\
0 & 0 & a_{22} e_{23}+a_{23} \\
0 & 0 & a_{33}
\end{array}\right),
\end{gathered}
$$

and so $E A=A E$. Thus, $A \in T_{3}(R, \sigma)$ is strongly J-clean.
Case 4. If $a_{11}, a_{22} \in 1+J(R), a_{33} \in J(R)$, then we find some $e_{23} \in R$ such that $a_{22} e_{23}-e_{23} \sigma\left(a_{33}\right)=a_{23}$. Thus, there exists $e_{13} \in R$ such that $a_{11} e_{13}-e_{13} \sigma^{2}\left(a_{33}\right)=a_{13}-a_{12} \sigma\left(e_{23}\right)$. Choose

$$
E=\left(\begin{array}{ccc}
1 & 0 & e_{13} \\
0 & 1 & e_{23} \\
0 & 0 & 0
\end{array}\right) \in T_{3}(R, \sigma)
$$

Then $E^{2}=E$, and $A=E+(A-E)$, where $A-E \in J\left(T_{3}(R, \sigma)\right)$. Furthermore,

$$
\begin{gathered}
E A=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13}+e_{13} \sigma^{2}\left(a_{33}\right) \\
0 & a_{22} & a_{23}+e_{23} \sigma\left(a_{33}\right) \\
0 & 0 & 0
\end{array}\right), \\
A E=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{11} e_{13}+a_{12} \sigma\left(e_{23}\right) \\
0 & a_{22} & a_{22} e_{23} \\
0 & 0 & 0
\end{array}\right),
\end{gathered}
$$

and so $E A=A E$. Therefore $A \in T_{3}(R, \sigma)$ is strongly J-clean.
Case 5. If $a_{11} \in 1+J(R), a_{22}, a_{33} \in J(R)$, then we have some $e_{12} \in R$ such that $a_{11} e_{12}-e_{12} \sigma\left(a_{22}\right)=a_{12}$. Further, there exists $e_{13} \in R$ such that $a_{11} e_{13}-e_{13} \sigma^{2}\left(a_{33}\right)=a_{13}+e_{12} \sigma\left(e_{23}\right)$. Choose

$$
E=\left(\begin{array}{ccc}
1 & e_{12} & e_{13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \in T_{3}(R, \sigma)
$$

Then $E^{2}=E$, and $A=E+(A-E)$, where $A-E \in J\left(T_{3}(R, \sigma)\right)$. Hence

$$
\begin{gathered}
E A=\left(\begin{array}{ccc}
a_{11} & a_{12}+e_{12} \sigma\left(a_{22}\right) & a_{13}+e_{12} \sigma\left(a_{23}\right)+e_{13} \sigma^{2}\left(a_{33}\right) \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
A E=\left(\begin{array}{ccc}
a_{11} & a_{11} e_{12} & a_{11} e_{13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
\end{gathered}
$$

and so $E A=A E$. Thus $A \in T_{3}(R, \sigma)$ is strongly J-clean.
Case 6. If $a_{11} \in J(R), a_{22} \in 1+J(R), a_{33} \in J(R)$, then we find some $e_{23} \in R$ such that $a_{22} e_{23}-e_{23} \sigma\left(a_{33}\right)=a_{23}$. Hence there is $e_{12} \in R$ such that $a_{11} e_{12}-e_{12} \sigma\left(a_{22}\right)=-a_{12}$. It is easy to verify that

$$
e_{12} \sigma\left(a_{23}\right)+e_{12} \sigma\left(e_{23}\right) \sigma^{2}\left(a_{33}\right)=e_{12} \sigma\left(a_{22} e_{23}\right)=a_{11} e_{12} \sigma\left(e_{23}\right)+a_{12} \sigma\left(e_{23}\right) .
$$

Choose

$$
E=\left(\begin{array}{ccc}
0 & e_{12} & e_{12} \sigma\left(e_{23}\right) \\
0 & 1 & e_{23} \\
0 & 0 & 0
\end{array}\right) \in T_{3}(R, \sigma) .
$$

Then $E^{2}=E$, and $A=E+(A-E)$, where $A-E \in J\left(T_{3}(R, \sigma)\right)$. In addition,

$$
\begin{aligned}
E A & =\left(\begin{array}{ccc}
0 & e_{12} \sigma\left(a_{22}\right) & e_{12} \sigma\left(a_{23}\right)+e_{12} \sigma\left(e_{23}\right) \sigma^{2}\left(a_{33}\right) \\
0 & a_{22} & a_{23}+e_{23} \sigma\left(a_{33}\right) \\
0 & 0 & 0
\end{array}\right), \\
A E & =\left(\begin{array}{ccc}
0 & a_{11} e_{12}+a_{12} & a_{11} e_{12} \sigma\left(e_{23}\right)+a_{12} \sigma\left(e_{23}\right) \\
0 & a_{22} & a_{22} e_{23} \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

and so $E A=A E$. Consequently, $A \in T_{3}(R, \sigma)$ is strongly J-clean.
Case 7. If $a_{11}, a_{22} \in J(R), a_{33} \in 1+J(R)$, then we find $e_{23} \in R$ such that $a_{22} e_{23}-e_{23} \sigma\left(a_{33}\right)=-a_{23}$. Further, we have an $e_{13} \in R$ such that $a_{11} e_{13}-e_{13} \sigma^{2}\left(a_{33}\right)=-a_{13}-a_{12} \sigma\left(e_{23}\right)$. Choose

$$
E=\left(\begin{array}{ccc}
0 & 0 & e_{13} \\
0 & 0 & e_{23} \\
0 & 0 & 1
\end{array}\right) \in T_{3}(R, \sigma) .
$$

Then $E^{2}=E$, and $A=E+(A-E)$, where $A-E \in J\left(T_{3}(R, \sigma)\right)$. Furthermore,

$$
\begin{gathered}
E A=\left(\begin{array}{ccc}
0 & 0 & e_{13} \sigma^{2}\left(a_{33}\right) \\
0 & 0 & e_{23} \sigma\left(a_{33}\right) \\
0 & 0 & a_{33}
\end{array}\right) \\
A E=\left(\begin{array}{ccc}
0 & 0 & a_{11} e_{13}+a_{12} \sigma\left(e_{23}\right)+a_{13} \\
0 & 0 & a_{22} e_{23}+a_{23} \\
0 & 0 & a_{33}
\end{array}\right),
\end{gathered}
$$

and so $E A=A E$. As a result, $A \in T_{3}(R, \sigma)$ is strongly J-clean.
Case 8. If $a_{11}, a_{22}, a_{33} \in J(R)$, then $A=0+A$, where $A \in J\left(T_{3}(R, \sigma)\right)$.
Hence, $A \in T_{3}(R, \sigma)$ is strongly J-clean.
Thus, $T_{3}(R, \sigma)$ is strongly J-clean.
(\Rightarrow) Similar to Theorem 2.3 , we easily complete the proof.
Corollary 3.2. Let R be a ring, and $R / J(R) \cong \mathbb{Z}_{2}$. If $J(R)$ is nil, then $T_{3}(R, \sigma)$ is strongly J-clean.

Proof. Obviously R is local. Let $a \in U(R), b \in J(R)$. Then we can find some $n \in \mathbb{N}$ such that $b^{n}=0$; hence, $(\sigma(b))^{n}=0$. For any $v \in R$, we choose $x=\left(l_{a^{-1}}+l_{a^{-2}} r_{\sigma(b)}+\cdots+l_{a^{-n}} r_{\sigma(b)^{n-1}}\right)(v)$. It can be easily checked that $\left(l_{a}-r_{\sigma(b)}\right)(x)=\left(l_{a}-r_{\sigma(b)}\right)\left(l_{a^{-1}}+l_{a^{-2}} r_{\sigma(b)}+\cdots+l_{a^{-n}} r_{\sigma(b)^{n-1}}\right)(v)=$ $\left(v+a^{-1} v \sigma(b)+\cdots+a^{-n+1} v \sigma(b)^{n-1}\right)-\left(a^{-1} v \sigma(b)+\cdots+a^{-n} v \sigma(b)^{n}\right)=v$. Thus, $l_{a}-r_{\sigma(b)}: R \rightarrow R$ is surjective. Likewise, $l_{b}-r_{\sigma(a)}: R \rightarrow R$ is surjective. Consequently, $T_{3}(R, \sigma)$ is strongly J-clean by Theorem 3.1.

4. A characterization

We will consider the necessary and sufficient conditions under which the skew triangular matrix ring $T_{3}(R, \sigma)$ is strongly J-clean.

Lemma 4.1. Let R be a local ring. If $T_{3}(R, \sigma)$ is strongly J-clean, then $l_{a}-r_{\sigma(b)}, l_{a}-r_{\sigma^{2}(b)}, l_{b}-r_{\sigma(a)}$ and $l_{b}-r_{\sigma^{2}(a)}$ are surjective for any $a \in 1+J(R), b \in J(R)$.

Proof. Let $a \in 1+J(R), b \in J(R)$. Clearly, $T_{2}(R, \sigma)$ is strongly J clean. By Theorem 2.3, $l_{a}-r_{\sigma(b)}$ is surjective. As $1-b \in 1+J(R)$ and $1-a \in J(R)$, we get $l_{1-b}-r_{\sigma(1-a)}: R \rightarrow R$ is surjective. For any $v \in R$, we have an $x \in R$ such that $(1-b) x-x \sigma(1-a)=-v$. Thus, $b x-x \sigma(a)=v$ and so $l_{b}-r_{\sigma(a)}: R \rightarrow R$ is surjective.

Let $v \in R$ and let

$$
A=\left(\begin{array}{ccc}
b & 0 & v \\
0 & b & 0 \\
0 & 0 & a
\end{array}\right) \in T_{3}(R, \sigma) .
$$

We have an idempotent $E=\left(e_{i j}\right) \in T_{3}(R, \sigma)$ such that $A-E \in J\left(T_{3}(R, \sigma)\right)$ and $E A=A E$. This implies that $e_{11}, e_{22}, e_{33} \in R$ are all idempotents. As $a \in 1+J(R), b \in J(R)$, we have $e_{11}=0, e_{22}=0$ and $e_{33}=1$; otherwise, $A-E \notin J\left(T_{3}(R, \sigma)\right)$. As $E^{=} E$, we have

$$
E=\left(\begin{array}{ccc}
0 & 0 & e_{13} \\
0 & 0 & e_{23} \\
0 & 0 & 1
\end{array}\right),
$$

for some $e_{13}, e_{23} \in R$. Observing that

$$
\left(\begin{array}{ccc}
0 & 0 & b e_{13}+v \\
0 & 0 & b e_{23} \\
0 & 0 & a
\end{array}\right)=A E=E A=\left(\begin{array}{ccc}
0 & 0 & e_{13} \sigma^{2}(a) \\
0 & 0 & e_{23} \sigma(a) \\
0 & 0 & a
\end{array}\right)
$$

we have $b e_{13}-e_{13} \sigma^{2}(a)=-v$. Thus, $l_{b}-r_{\sigma^{2}}(a): R \rightarrow R$ is surjective. Since $1-a \in J(R)$ and $1-b \in 1+J(R)$, we have, $l_{1-a}-r_{\sigma^{2}(1-b)}: R \rightarrow R$ is surjective. Thus, we can find some $x \in R$ such that $(1-a) x-x \sigma^{2}(1-b)=$ $-v$. This implies that $a x-x \sigma^{2}(b)=v$, hence $l_{a}-r_{\sigma^{2}(b)}$ is surjective.

Theorem 4.2. Let R be a local ring and let σ be an endomorphism of R. Then the following are equivalent:
(1) $T_{3}(R, \sigma)$ is strongly J-clean.
(2) $R / J(R) \cong \mathbb{Z}_{2}$, and $l_{a}-r_{\sigma(b)}$ and $l_{b}-r_{\sigma(a)}$ are surjective for any $a \in 1+J(R), b \in J(R)$.

Proof. (1) $\Rightarrow(2)$ is obvious from Lemma 4.1.
$(2) \Rightarrow$ (1) Clear from Theorem 3.1.
Corollary 4.3. Let R be a local ring and let σ be an endomorphism of R.Then the following are equivalent:
(1) $T_{2}(R, \sigma)$ is strongly J-clean.
(2) $T_{3}(R, \sigma)$ is strongly J-clean.
(3) $R / J(R) \cong \mathbb{Z}_{2}$ and $l_{a}-r_{\sigma(b)}$ is surjective for any $a \in 1+J(R), b \in J(R)$.

Proof. (1) $\Leftrightarrow(3)$ is proved by Theorem 2.3.
$(2) \Leftrightarrow(3)$ is obvious from Theorem 4.2.

5. The case $n=4$

We now extend the preceding discussion to the case of 4×4 skew triangular matrix rings over a local ring.

Theorem 5.1. Let R be a local ring. If $l_{a}-r_{\sigma(b)}$ and $l_{b}-r_{\sigma(a)}$ are surjective for any $a \in 1+J(R), b \in J(R)$, then $T_{4}(R, \sigma)$ is strongly J-clean if and only if $R / J(R) \cong \mathbb{Z}_{2}$.

Proof. (\Leftarrow) As $R / J(R) \cong \mathbb{Z}_{2}, \sigma(J(R)) \subseteq J(R)$. Let

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
0 & a_{22} & a_{23} & a_{24} \\
0 & 0 & a_{33} & a_{34} \\
0 & 0 & 0 & a_{44}
\end{array}\right) \in T_{4}(R, \sigma)
$$

We show the existence of

$$
E=\left(\begin{array}{cccc}
e_{11} & e_{12} & e_{13} & e_{14} \\
0 & e_{22} & e_{23} & e_{24} \\
0 & 0 & e_{33} & e_{34} \\
0 & 0 & 0 & e_{44}
\end{array}\right) \in T_{4}(R, \sigma)
$$

such that $E^{2}=E, A E=E A$ and $A-E \in J\left(T_{4}(R, \sigma)\right)$. One can easily derive from $E^{2}=E$ that
(a) $e_{12}=e_{11} e_{12}+e_{12} \sigma\left(e_{22}\right)$
(b) $e_{13}=e_{11} e_{13}+e_{12} \sigma\left(e_{23}\right)+e_{13} \sigma^{2}\left(e_{33}\right)$
(c) $e_{23}=e_{22} e_{23}+e_{23} \sigma\left(e_{33}\right)$
and from $A E=E A$ that
(d) $a_{11} e_{12}-e_{12} \sigma\left(a_{22}\right)=e_{11} a_{12}-a_{12} \sigma\left(e_{22}\right)$
(e) $a_{11} e_{13}-e_{13} \sigma^{2}\left(a_{33}\right)=e_{11} a_{13}+e_{12} \sigma\left(a_{23}\right)-a_{12} \sigma\left(e_{23}\right)-a_{13} \sigma^{2}\left(e_{33}\right)$
(f) $a_{22} e_{23}-e_{23} \sigma\left(a_{33}\right)=e_{22} a_{23}-a_{23} \sigma\left(e_{33}\right)$

Case 1. If $a_{22} \in J(R), a_{11} \in 1+J(R)$ then $e_{22}=0, e_{11}=1$. Hence, (d) implies that $a_{11} e_{12}-e_{12} \sigma\left(a_{22}\right)=a_{12}$ and by assumption there exists $e_{12} \in R$ such that $\left(l_{a_{11}}-r_{\sigma\left(a_{22}\right)}\right)\left(e_{12}\right)=a_{12}$.
(\mathbf{A}) If $a_{33} \in 1+J(R)$, then $e_{33}=1$. From (f), $a_{22} e_{23}-e_{23} \sigma\left(a_{33}\right)=-a_{23}$ and (b) implies that $e_{13}=-e_{12} \sigma\left(e_{23}\right)$.
(B) If $a_{33} \in J(R)$, then $e_{33}=0$. By (c), $e_{23}=0$. From (e), we have $a_{11} e_{13}-e_{13} \sigma^{2}\left(a_{33}\right)=a_{13}+e_{12} \sigma\left(a_{23}\right)-a_{12} \sigma\left(e_{23}\right)$ and by assumption there exists $e_{13} \in R$ such that $\left(l_{a_{11}}-r_{\sigma\left(a_{33}\right)}\right)\left(e_{13}\right)=a_{13}+e_{12} \sigma\left(a_{23}\right)-a_{12} \sigma\left(e_{23}\right)$.

Case 2. If $a_{22} \in 1+J(R), a_{11} \in 1+J(R)$, then $e_{22}=1, e_{11}=1$. By (a) implies that $e_{12}=0$.
(\mathbf{C}) If $a_{33} \in 1+J(R)$, then $e_{33}=1$. From (b), we have $e_{13}=0$ and (c) implies that $e_{23}=0$.
(\mathbf{D}) If $a_{33} \in J(R)$, then $e_{33}=0$. By (f), we have $a_{22} e_{23}-e_{23} \sigma\left(a_{33}\right)=$ a_{23}, and (e) gives rise to $a_{11} e_{13}-e_{13} \sigma^{2}\left(a_{33}\right)=a_{13}+e_{12} \sigma\left(a_{23}\right)-a_{12} \sigma\left(e_{23}\right)$ and by assumption there exists $e_{13} \in R$ such that $\left(l_{a_{11}}-r_{\sigma\left(a_{33}\right)}\right)\left(e_{13}\right)=$ $a_{13}+e_{12} \sigma\left(a_{23}\right)-a_{12} \sigma\left(e_{23}\right)$.

Case 3. If $a_{22} \in 1+J(R), a_{11} \in J(R)$, then $e_{22}=1, e_{11}=0$. Вy (d), $a_{11} e_{12}-e_{12} \sigma\left(a_{22}\right)=-a_{12}$ and there exists $e_{12} \in R$ such that $\left(l_{a_{11}}-\right.$ $\left.r_{\sigma\left(a_{22}\right)}\right)\left(e_{12}\right)=-a_{12}$.
(\mathbf{E}) If $a_{33} \in 1+J(R)$, then $e_{33}=1$. From (c), we have $e_{23}=0$. Then from (e), we have $a_{11} e_{13}-e_{13} \sigma^{2}\left(a_{33}\right)=e_{12} \sigma\left(a_{23}\right)-a_{13}$
(\mathbf{F}) If $a_{33} \in J(R)$, then $e_{33}=0$. From (f), we have $a_{22} e_{23}-e_{23} \sigma\left(a_{33}\right)=$ a_{23} and there exists $e_{23} \in R$ such that $\left(l_{a_{22}}-r_{\sigma\left(a_{33}\right)}\right)\left(e_{23}\right)=a_{23}$. Then (b) implies that $e_{13}=e_{12} \sigma\left(e_{23}\right)$.

Case 4. If $a_{22} \in J(R), a_{11} \in J(R)$, then $e_{22}=0, e_{11}=0$. Hence, (a) implies that $e_{12}=0$.
(\mathbf{G}) If $a_{33} \in 1+J(R)$, then $e_{33}=1$. From (f), $a_{22} e_{23}-e_{23} \sigma\left(a_{33}\right)=-a_{23}$ and there exists $e_{23} \in R$ such that $\left(l_{a_{22}}-r_{\sigma\left(a_{33}\right)}\right)\left(e_{23}\right)=a_{23}$. So (e) gives us $a_{11} e_{13}-e_{13} \sigma^{2}\left(a_{33}\right)=-a_{12} \sigma\left(e_{23}\right)-a_{13}$. Hence there exists $e_{13} \in R$ such that $\left(l_{a_{11}}-r_{\sigma^{2}\left(a_{33}\right)}\right)\left(e_{13}\right)=-a_{12} \sigma\left(e_{23}\right)-a_{13}$.
(\mathbf{H}) If $a_{33} \in J(R)$, then $e_{33}=0$. From (c), we have $e_{23}=0$ and by (b) we obtain $e_{13}=0$.

Similar to preceding calculations from $E^{2}=E$ we have

$$
\begin{equation*}
e_{14}=e_{11} e_{14}+e_{12} \sigma\left(e_{24}\right)+e_{13} \sigma^{2}\left(e_{34}\right)+e_{14} \sigma^{3}\left(e_{44}\right) \tag{1}
\end{equation*}
$$

(2) $e_{24}=e_{22} e_{24}+e_{23} \sigma\left(e_{34}\right)+e_{24} \sigma^{2}\left(e_{44}\right)$
(3) $e_{34}=e_{33} e_{34}+e_{34} \sigma\left(e_{44}\right)$
and from $A E=E A$ we have
(4) $a_{11} e_{14}-e_{14} \sigma^{3}\left(a_{44}\right)=-a_{12} \sigma\left(e_{24}\right)-a_{13} \sigma^{2}\left(e_{34}\right)-a_{14} \sigma^{3}\left(e_{44}\right)+e_{11} a_{14}+$ $e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)$
(5) $a_{22} e_{24}-e_{24} \sigma^{2}\left(a_{44}\right)=-a_{23} \sigma\left(e_{34}\right)-a_{24} \sigma^{2}\left(e_{44}\right)+e_{22} a_{24}+e_{23} \sigma\left(a_{34}\right)$
(6) $a_{33} e_{34}-e_{34} \sigma\left(a_{44}\right)=-a_{34} \sigma\left(e_{44}\right)+e_{33} a_{34}+e_{34} \sigma\left(a_{44}\right)$

To complete the proof we only need to show the existence of e_{14}, e_{24} and e_{34} in R satisfying preceding conditions (1)-(6).

Case 1. If $a_{44} \in J(R), a_{33} \in 1+J(R)$, then $e_{44}=0$ and $e_{33}=1$, otherwise $A-E \notin J\left(T_{4}(R, \sigma)\right)$. By (6), $a_{33} e_{34}-e_{34} \sigma\left(a_{44}\right)=a_{34}$ and by hypothesis there exists e_{34} such that $\left(l_{a_{33}}-r_{\sigma\left(a_{44}\right)}\right)\left(e_{34}\right)=a_{34}$. Then by (5), $a_{22} e_{24}-e_{24} \sigma^{2}\left(a_{44}\right)=-a_{23} \sigma\left(e_{34}\right)+e_{22} a_{24}+e_{23} \sigma\left(a_{34}\right)$. There are two possibilities:
(A) If $a_{22} \in 1+J(R)$, then $e_{22}=1$ otherwise $A-E \notin J\left(T_{4}(R, \sigma)\right)$. Then there exists $e_{24} \in R$ such that $\left(l_{a_{22}}-r_{\sigma^{2}\left(a_{44}\right)}\right)\left(e_{24}\right)=a_{24}-a_{23} \sigma\left(e_{34}\right)+$ $e_{23} \sigma\left(a_{34}\right)$. From (4), $a_{11} e_{14}-e_{14} \sigma^{3}\left(a_{44}\right)=-a_{12} \sigma\left(e_{24}\right)-a_{13} \sigma^{2}\left(e_{34}\right)+e_{11} a_{14}+$ $e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)$. If $a_{11} \in U(R)$, then $e_{11}=1$, otherwise $A-E \notin$ $J\left(T_{4}(R, \sigma)\right)$. Hence, there exists $e_{14} \in R$ such that $\left(l_{a_{11}}-r_{\sigma^{3}\left(a_{44}\right)}\right)\left(e_{14}\right)=$ $-a_{12} \sigma\left(e_{24}\right)-a_{13} \sigma^{2}\left(e_{34}\right)+a_{14}+e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)$. If $a_{11} \in J(R)$, then $e_{11}=0$ and by (1), $e_{14}=e_{12} \sigma\left(e_{24}\right)+e_{13} \sigma^{2}\left(e_{34}\right)$.
(B) If $a_{22} \in J(R)$, then $e_{22}=0$ otherwise $A-E \notin J\left(T_{4}(R, \sigma)\right)$. By (2), $e_{24}=e_{23} \sigma\left(e_{34}\right)$. From equation (4), $a_{11} e_{14}-e_{14} \sigma^{3}\left(a_{44}\right)=-a_{12} \sigma\left(e_{24}\right)-$ $a_{13} \sigma^{2}\left(e_{34}\right)+e_{11} a_{14}+e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)$. If $a_{11} \in U(R)$, then $e_{11}=$ 1. By hypothesis, there exists $e_{14} \in R$ such that $\left(l_{a_{11}}-r_{\sigma^{3}\left(a_{44}\right)}\right)\left(e_{14}\right)=$ $-a_{12} \sigma\left(e_{24}\right)-a_{13} \sigma^{2}\left(e_{34}\right)+a_{14}+e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)$. If $a_{11} \in J(R)$, then $e_{11}=0$ and by (1), $e_{14}=e_{12} \sigma\left(e_{24}\right)+e_{13} \sigma^{2}\left(e_{34}\right)$.

Case 2. If $a_{44} \in 1+J(R), a_{33} \in 1+J(R)$, then $e_{44}=e_{33}=1$. Then by (3), $e_{34}=0$. Again there are two possibilities:
(C) If $a_{22} \in U(R)$, then $e_{22}=1$ and by $(2), e_{24}=0$. If $a_{11} \in U(R)$, then $e_{11}=1$ and by $(1), e_{14}=0$. If $a_{11} \in J(R)$, then $e_{11}=0$. Then by equation (4), $a_{11} e_{14}-e_{14} \sigma^{3}\left(a_{44}\right)=e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)$. Hence, there exists $e_{14} \in J(R)$ such that $\left(l_{a_{11}}-r_{\sigma^{3}\left(a_{44}\right)}\right)\left(e_{14}\right)=e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)$
(D) If $a_{22} \in J(R)$, then $e_{22}=0$ and by (5), $a_{22} e_{24}-e_{24} \sigma^{2}\left(a_{44}\right)=$ $-a_{24}+e_{23} \sigma\left(a_{34}\right)$. So, there exists $e_{24} \in R$ such that $\left(l_{a_{22}}-r_{\sigma_{\left(a_{34}\right)}}\left(e_{24}\right)=\right.$
$-a_{24}+e_{23} \sigma\left(a_{34}\right)$. If $a_{11} \in J(R)$, then $e_{11}=0$. From equation (4), $a_{11} e_{14}-$ $e_{14} \sigma^{3}\left(a_{44}\right)=-a_{12} \sigma\left(e_{24}\right)-a_{14}+e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma\left(a_{34}\right)$. By assumption, there exists $e_{14} \in R$ such that $\left(l_{a_{11}}-r_{\sigma_{\left(a_{44}\right)}^{3}}\right)=-a_{12} \sigma\left(e_{24}\right)-a_{14}+e_{12} \sigma\left(a_{24}\right)+$ $e_{13} \sigma\left(a_{34}\right)$. If $a_{11} \in U(R)$, then $e_{11}=1$. By equation (1), $e_{14}=-e_{12} \sigma\left(e_{24}\right)$.

Case 3. If $a_{44} \in 1+J(R), a_{33} \in J(R)$. In this case $e_{33}=0$ and $e_{44}=1$. By (6), $a_{33} e_{34}-e_{34} \sigma\left(a_{44}\right)=-a_{34}$. Hence, there exists $e_{34} \in R$ such that $\left(l_{a_{33}}-r_{\sigma\left(a_{44}\right)}\right)\left(e_{34}\right)=-a_{34}$. Using (5), $a_{22} e_{24}-e_{24} \sigma^{2}\left(a_{44}\right)=$ $e_{22} a_{24}+e_{23} \sigma\left(a_{34}\right)-a_{23} \sigma\left(e_{34}\right)-a_{24}$. Then there are two possibilities:
(E) If $a_{22} \in 1+J(R)$, then $e_{22}=1$ and from (2), $e_{24}=-e_{23} \sigma\left(e_{34}\right)$. Then by (4), $a_{11} e_{14}-e_{14} \sigma^{3}\left(a_{44}\right)=e_{11} a_{14}+e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)-a_{12} \sigma\left(e_{24}\right)-$ $a_{13} \sigma^{2}\left(e_{34}\right)-a_{14}$. If $a_{11} \in J(R)$, then $e_{11}=0$. So there exists $e_{14} \in R$ such that $\left(l_{a_{11}}-r_{\sigma^{3}\left(a_{44}\right)}\right)\left(e_{14}\right)=e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)-a_{12} \sigma\left(e_{24}\right)-a_{13} \sigma^{2}\left(e_{34}\right)-$ a_{14}. If $a_{11} \in U(R)$, then $e_{11}=1$ and by (1), $e_{14}=-e_{12} \sigma\left(e_{24}\right)-e_{13} \sigma^{2}\left(e_{34}\right)$.
(F) If $a_{22} \in J(R)$, then $e_{22}=0$ and by hypothesis there exists $e_{24} \in R$ such that $\left(l_{a_{22}}-r_{\sigma^{2}\left(a_{44}\right)}\right)\left(e_{24}\right)=-a_{24}+e_{23} \sigma\left(a_{34}\right)-a_{23} \sigma\left(e_{34}\right)$. From equation (4), $a_{11} e_{14}-e_{14} \sigma^{3}\left(a_{44}\right)=e_{11} a_{14}+e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)-a_{12} \sigma\left(e_{24}\right)-$ $a_{13} \sigma^{2}\left(e_{34}\right)-a_{14}$. If $a_{11} \in J(R)$, then $e_{11}=0$. From (4) and by hypothesis, there exists $e_{14} \in R$ such that $\left(l_{a_{11}}-r_{\sigma^{3}\left(a_{44}\right)}\right)\left(e_{14}\right)=e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)-$ $a_{12} \sigma\left(e_{24}\right)-a_{13} \sigma^{2}\left(e_{34}\right)-a_{14}$. If $a_{11} \in U(R)$, then $e_{11}=1$ and by (1), $e_{14}=-e_{12} \sigma\left(e_{24}\right)-e_{13} \sigma^{2}\left(e_{34}\right)$.

Case 4. If $a_{44} \in J(R), a_{33} \in J(R)$. In this case $e_{33}=e_{44}=0$. By (3), $e_{34}=0$.
(G) If $a_{22} \in J(R)$, then $e_{22}=0$. By (2), $e_{24}=0$. If $a_{11} \in J(R)$, then $e_{11}=0$ and from (1), $e_{14}=0$. If $a_{11} \in U(R)$, then $e_{11}=1$. Hence, equation (4) becomes $a_{11} e_{14}-e_{14} \sigma^{3}\left(a_{44}\right)=a_{14}+e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)$. By hypothesis there exists $e_{14} \in R$ such that $\left(l_{a_{11}}-r_{\sigma^{3}\left(a_{44}\right)}\right)\left(e_{14}\right)=a_{14}+$ $e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)$.
(H) If $a_{22} \in 1+J(R)$, then $e_{22}=1$ and from (5), $a_{22} e_{24}-e_{24} \sigma^{2}\left(a_{44}\right)=$ $a_{24}+e_{23} \sigma\left(a_{34}\right)$. By assumption, there exists $e_{24} \in R$ such that ($l_{a_{22}}-$ $\left.r_{\sigma^{2}\left(a_{44}\right)}\right)\left(e_{24}\right)=a_{24}+e_{23} \sigma\left(a_{34}\right)$. If $a_{11} \in U(R)$, then $e_{11}=1$ and by (4), $a_{11} e_{14}-e_{14} \sigma^{3}\left(a_{44}\right)=-a_{12} \sigma\left(e_{24}\right)+a_{14}+e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)$.

Hence, there exists $e_{14} \in R$ such that $\left(l_{a_{11}}-r_{\sigma^{3}\left(a_{44}\right)}\right)\left(e_{14}\right)=-a_{12} \sigma\left(e_{24}\right)+$ $a_{14}+e_{12} \sigma\left(a_{24}\right)+e_{13} \sigma^{2}\left(a_{34}\right)$. If $a_{11} \in J(R)$, then $e_{11}=0$ and from (1), $e_{14}=e_{12} \sigma\left(e_{24}\right)$. Thus, we always find e_{14}, e_{24} and e_{34} in R.
(\Rightarrow) Analogous to Theorem 2.3 we easily obtain the result.

Acknowledgements. I would like to thank the referee for his/her careful reading and valuable comments.

REFERENCES

1. Chen, H. - On strongly J-clean rings, Comm. Algebra, 38 (2010), 3790-3804.
2. Chen, H. - On uniquely clean rings, Comm. Algebra, 39 (2011), 189-198.
3. Chen, H.; Kose, H.; Kurtulmaz, Y. - Strongly clean triangular matrix rings with endomorphisms, arXiv:1306.2440.
4. Diesl, A.J. - Classes of strongly clean rings, Thesis (Ph.D.)-University of California, Berkeley. 2006.
5. Li, Y. - Strongly clean matrix rings over local rings, J. Algebra, 312 (2007), 397-404.
6. Nicholson, W.K.; Zhou, Y. - Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J., 46 (2004), 227-236.
7. Nicholson, W.K.; Zhou, Y. - Clean rings: a survey, Advances in ring theory, 181-198, World Sci. Publ., Hackensack, NJ, 2005.
8. Yang, X.; Zhou, Y. - Some families of strongly clean rings, Linear Algebra Appl., 425 (2007), 119-129.
9. Yang, X.; Zhou, Y. - Strong cleanness of the 2×2 matrix ring over a general local ring, J. Algebra, 320 (2008), 2280-2290.

Received: 5.VI.2013
Revised: 18.VI. 2013
Accepted: 21.VI. 2013

> Bilkent University, Department of Mathematics, Bilkent, Ankara, TURKEY
> yosum@fen.bilkent.edu.tr

[^0]: *This paper is dedicated to my mother Gönül Ünalan.

