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Abstract. Let R be an arbitrary ring with identity. An element a € R is strongly
J-clean if there exist an idempotent e € R and element w € J(R) such that a = e+ w
and ew = ew. A ring R is strongly J-clean in case every element in R is strongly J-clean.
In this note, we investigate the strong J-cleanness of the skew triangular matrix ring
T.(R, o) over a local ring R, where o is an endomorphism of R and n = 2,3, 4.
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1. Introduction

Throughout this paper all rings are associative with identity unless other-
wise stated. Let R be aring. J(R) and U(R) will denote, respectively, the
Jacobson radical and the group of units in R. An element a € R is strongly
clean if there exist an idempotent e € R and a unit v € R such that a = e4u
and eu = ue. A ring R is strongly clean if every element in R is strongly
clean. Many authors have studied such rings from very different points of
view (cf. [1-9]). An element a € R is strongly J-clean provided that there
exist an idempotent e € R and element w € J(R) such that a = e + w and
ew = ew. A ring R is strongly J-clean in case every element in R is strongly
J-clean. Strong J-cleanness over commutative rings is studied in [1] and
deduced the strong J-cleanness of T),(R) for a large class of local rings R,
where T,,(R) denotes the ring of all upper triangular matrices over R.
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2 YOSUM KURTULMAZ 2

Let o be an endomorphism of R preserving 1 and T),(R, o) be the set
of all upper triangular matrices over the rings R. For any (a;;), (bij) €
Tn(R,U), we define (aij) + (sz) = (aij + bij), and (aij)(bij) = (Cij) where
Cij = D pi aikak_i(bkj). Then T,,(R, o) is a ring under the preceding addi-
tion and multiplication. It is clear that T),(R, o) will be T,,(R) only when
o is the identity morphism. Let a € R and the maps [, : R — R and
re ¢ R — R denote, respectively, the abelian group endomorphisms given
by l,(r) = ar and rq(r) = ra for all » € R. Thus, [, — 7} is an abelian group
endomorphism such that (I, — r)(r) = ar — rb for any r € R.

Strong cleanness of T, (R, o) for several n was studied in [3]. In this
article, we investigate the strong J-cleanness of T,,(R, o) over a local ring R
for n = 2, 3,4 and then extend strong cleanness to such properties. In this
direction we show that T»(R, o) is strongly J-clean if and only if for any
a€l+J(R),be J(R), lo—1op) : R — R is surjective and R/J(R) = Zy.
Further if I, —75(5) and l—7,(4) are surjective for any a € 1+J(R),b € J(R),
then T5(R, o) is strongly J-clean if and only if R/J(R) = Zy. The necessary
condition for T3(R, o) to be strongly J-clean is also discussed. In addition
to these, if [, — r,) and [ — 74(q) are surjective for any a € 1+ J(R),
b e J(R), then Ty(R, o) is strongly J-clean if and only if R/J(R) = Z,.

2. The case n =2

By [Theorem 4.4, 2], the triangular matrix ring T»(R) over a local ring
R is strongly J-clean if and only if R is bleached and R/J(R) = Zy. We
extend this result to the skew triangular matrix ring 75(R, o) over a local
ring R.

Remark 2.1 will be used in the sequel without reference to.

Remark 2.1. Note that if for any ring R, R/J(R) = Z2, then 2 € J(R),
1+ J(R) = U(R) and 1 + U(R) = J(R). For if, f is the isomorphism
R/J(R) 2 Zy then f(1+ J(R)) =1+ 2Z. Hence f(2+ J(R)) = 2 + 27 =
0+ 27Z. So 2+ J(R) = 0+ J(R), that is 2 € J(R). 1+ J(R) C U(R). Let
w € U(R). Then f(u+J(R)) = 1+2Z = f(1+ J(R)). Hence u—1 € J(R)
and so u € 1 + J(R). Thus, U(R) C1+ J(R) and U(R) =1+ J(R).

Lemma 2.2. Let R be a ring and let o be an endomorphism of R. If
To(R,0) is strongly J-clean for some n € N, then so is R.

Proof. Let e = diag(1,0,...,0) € T,(R,0). Then R = eT,,(R,0)e.
From Corollary 3.5 in [2], R is strongly J-clean. O
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3 STRONGLY J-CLEAN SKEW TRIANGULAR MATRIX RINGS 3

Theorem 2.3. Let R be a local ring, and let o be an endomorphism of
R. Then the following are equivalent:

(1) To(R,0) is strongly J-clean.

(2) Ifa € 14+ J(R),b € J(R), then lo, — 754y : R — R is surjective and
R/J(R) = Z,

Proof. (1) = (2) From Lemma 2.2, R is strongly J-clean and by
Lemma 4.2 in [2], R/J(R) = Zo. By Remark 2.1, 1 + J(R) = U(R). Let
a€l+JR),be JR),v €R Then A = (g _b”) € Ty(R,0). By
e x
0 f
A—E € J(Tx(R,0)) and AE = EA. Since R is local, all idempotents
in R are 0 and 1. Thus, we see that e = 1, f = 0; otherwise, A — F &

hypothesis, there exists an idempotent E = ( > € Ty(R,0) such that

J(Tx(R,0)). So E = (é g . As AE = FA, we get —v + zo(b) = ax.
Hence, ax — zo(b) = —v for some x € R. As a result, I, —r50) : R — Ris
surjective.

(2) = (1) Let A = (g Z) € Ty(R, 0).
Case 1. If a,b € J(R), then A € J(T»(R,0)) is strongly J-clean.
Case 2. If a,b € 1+ J(R), then A — I € J(TQ(R,J)); hence, A =

Iy + (A — 1) € T5(R, 0) is strongly J-clean.

Case 3. If a € 1+ J(R),b € J(R), by hypothesis, l, — 753 : R — R is
surjective. Thus, ax — zo(b) = v for some = € R. Choose E = (é g) €
T5(R,0). Then E* = E € Ty(R,0), AE = EA and A — E € J(T»(R,0)).
That is, A € Ta(R, o) is strongly J-clean.

Cased. Ifa € J(R),b € 14+J(R), thenat1 € 1+J(R),b+1 € J(R) and
by hypothesis, lo41—7¢(b41) : R — Ris surjective. Thus ax—x0(b) = —v for

some © € R. Choose F = (8 313> € Ty(R,0). Then E? = E € Ty(R, 0),

AE = EA and A — E € J(T»(R,0)). Hence, A € Ty(R,0) is strongly
J-clean. Therefore A € Ty(R, 0) is strongly J-clean. O

Corollary 2.4. Let R be a local ring, and let o be an endomorphism of
R. Then the following are equivalent:
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4 YOSUM KURTULMAZ 4

(1) Ty(R,0) is strongly J-clean.
(2) R/J(R) = Zs and T5(R, o) is strongly clean.
Proof. (1) = (2) It is clear.

(2) = (1) Let @ € 1+ J(R),b € J(R),v € R. Then A = <8 _bv> ©

0 f
T>(R,0) such that A — E € J(T3(R,0)) and AE = EA. Since R is local,
we see that e = 0, f = 1; otherwise, A— FE ¢ J(TQ(R, 0')). So E = <8 313>
It follows from AE = EA that v + zo(b) = ax, and so ax — v = zo(b).
Therefore I, — 744 @ B — R is surjective. By Theorem 2.3, Ty(R,0) is
strongly J-clean as R/J(R) = Zs. O

T5(R,0). By hypothesis, there exists an idempotent E = (e x) €

Corollary 2.5. Let R be a ring, and R/J(R) = Zs. If J(R) is nil, then
T5(R, o) is strongly J-clean.

Proof. Clearly R is local. Let a € 1+ J(R),b € J(R). Then we
can find some n € N such that " = 0. For any v € R, we choose x =
(L=t 4+ lg—2mp+ - -+ ly=nrpn—1) (v). It can be easily checked that (I, —75) ()
=(la—1p) (ly-1+lg-2mp+ - ~+lg-nrpn-1) (V) = (v+a"tvb+- - +a " Tob" 1) —
(a‘lvb—i— e —HL—"vbn) = v. Hence, I, — 1, : R — R is surjective. Similarly,
la — 7o) is surjective since o(b) € J(R). This completes the proof by
Theorem 2.3. U

Example 2.6. Let Zon = Z/2"Z,n € N, and let o be an endomorphism
of Zon. Then, T5(Zan,0) is strongly J-clean. As Zon is a local ring with
the Jacobson radical 2Zgn. Obviously, J (Zgn) is nil, and we are through by
Corollary 2.5.

Example 2.7. Let Zy = 7 /47, let
a b
R_{<O (I) |a,b€Z4},

and let 0 : R — R, (g 2) — <8 _ab>. Then T5(R,0) is strongly J-

clean. Obviously, o is an endomorphism of R. It is easy to check that
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) STRONGLY J-CLEAN SKEW TRIANGULAR MATRIX RINGS 5

J(R) = {(8 Z) | a € Za,b € Zy4}, and then R/J(R) = Zs is a field. Thus,

R is a local ring. In addition, (J(R))4 = 0, thus J(R) is nil. Therefore we
obtain the result by Corollary 2.5.

3. The case n = 3

We now extend Theorem 2.3. to the case of 3 x 3 skew triangular matrix
rings over a local ring.

Theorem 3.1. Let R be a local ring. If lo — 1oy and ly — ry(q) are
surjective for any a € 1+ J(R),b € J(R), then T3(R,0) is strongly J-clean
if and only if R/J(R) = Zs.

Proof. (<) We noted in Remark 2.1, in this case we have o(J(R)) C
J(R), o(UR)) CU(R), 1+ J(R) =U(R) and 1 + U(R) = J(R) and we
use them in the sequel intrinsically.Let A = (a;;) € T3(R, o). We divide the
proof into six cases.

Case 1. If aj1,a99,a33 € 1 + J(R), then A = I3 + (A — I3), and so
A—1I3 € J(T5(R,0)). Then A € T3(R,0) is strongly J-clean.

Case 2. If a1; € J(R),a22,a33 € 1 + J(R), then we have an e;2 € R
such that aj1e12 — ej20(aze) = —aje. Further, we have some ej3 € R such
that ajje1s — 61302(a33) = 6120(6123) — ais. Choose

0 en ers
E=|0 1 0 |eTRo).
0 O 1

Then E? = E,and A = E+ (A—E), where A— E € J(T3(R,0)). Further-
more,
0 epo(az) eio(ags) + e1z0*(ass)

EA= |0 as ass ;
0 0 ass
0 aireip +a2 are;s+as
AE= |0 a2 as3 ;
0 0 ass

and so EA = AE. That is, A € T3(R, 0) is strongly J-clean.
Case 3. If aj; € 14+ J(R),a2 € J(R),a33 € 1+ J(R), then we have an
e12 € R such that aj1e12 — e120(ag2) = aje. Further, we have some eg3 € R
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6 YOSUM KURTULMAZ 6

such that a9o2€93 — 6230(6133) = —a93. Thus —a11€120(623) + a120(€23) =
—6120’(@22)0’(623) = 6120’(0,23) — 6120’(623)0’2((133). ChOOSG

1 eip —eppo(e2s)
E=10 0 €923 ETg(R,J).
0 O 1

Then E? = E, and A = E + (A— E), where A— E € J(T3(R, 0)). Further-

more,

ai1  aiz + eppo(age) aiz+epo(as) — 6120(623)02(%3)

FA= 0 0 6230(&33) 5
0 0 ass
air  aiiéi2 —a116120(623) + a120(€23) + a3
AE = 0 0 a922€93 + a3 N
0 0 ass

and so EA = AE. Thus, A € T3(R,0) is strongly J-clean.

Case 4. If a11,a22 € 1 + J(R),a33 € J(R), then we find some ey3 € R
such that agoess — eg30(ags) = agsz. Thus, there exists ej3 € R such that
ajie1s — 6130’2(a33) = a13 — (1120'(623). ChOOSG

1 0 €13
E=10 1 eo3 €T3(R,J).
00 0

Then E? = E, and A = E + (A— E), where A— E € J(T3(R, 0)). Further-
more,
a1l a2 a3+ 61302(a33)

FEA=1| 0 ax a3s+eso(ass) |,
0 0 0
ail a2 aieis + ajpo(ezs)
AE =1 0 ax a22€23 ;
0 0 0

and so EA = AE. Therefore A € T3(R, o) is strongly J-clean.

Case 5. If aj; € 1 + J(R), age,ass € J(R), then we have some e13 € R
such that ajje1a — e120(ag2) = ajz. Further, there exists ej3 € R such that
a11€13 — 61302(6133) =a13 + 6120(623). Choose

1 en e3
E=[0 0 0| enRo).
0 O 0
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7 STRONGLY J-CLEAN SKEW TRIANGULAR MATRIX RINGS 7

Then E? = E,and A= E + (A — E), where A — E € J(T3(R,0)). Hence

ay aiz +epo(ag) aiz+ epo(ass) + e1z0?(ass)

EFA=1| 0 0 0 ,
0 0 0
ajl aiiei2 arieis
AE=1| 0 0 0 ,
0 0 0

and so EA = AE. Thus A € T3(R, 0) is strongly J-clean.

Case 6. If a;; € J(R),a22 € 1 + J(R),as3 € J(R), then we find some
eo3 € R such that agsess — eago(ass) = ags. Hence there is e;5 € R such
that ajjel2 — 6120’(0,22) = —ai2. It is easy to Verify that

e120(ag3) + 6120(623)02((133) = e120(aess) = ajjeizo(es) + ajzo(egs).

Choose
0 ez epo(ens)
E=10 1 €923 € Tg(R,O').
0 O 0
Then E? = E, and A = E + (A — E), where A — E € J(T3(R,0)). In
addition,

0 6120’(0,22) 612‘7((1223) + 6120'(623)0'2 (a33)

EFEA=1{0 a22 assz + ea30(as3) )
0 0 0
0 aieiz+ a2 arieno(es) + aizo(eas)
AE =10 a9so a22€23
0 0 0

and so FA = AE. Consequently, A € T3(R, o) is strongly J-clean.
Case 7. If ajj,a92 € J(R),a33 € 1 + J(R), then we find ey3 € R such

that agsess — eazo(ags) = —ags. Further, we have an ej3 € R such that
ai1€e13 — 6130'2(a33) = —ai13 — (1120'(623). Choose
0 0 €13
E=10 0 eo3 ETg(R,J).
0 0 1
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8 YOSUM KURTULMAZ 8

Then E? = E,and A = E+ (A— E), where A— E € J(T3(R,0)). Further-
more,
0 0 ez0*(ass)
EA=10 0 6230(&33) s

0 0 ass
0 0 anes+ azo(e)+ as
AE=10 0 a99€93 + a93 5
0 0 ass

and so EA = AE. As a result, A € T3(R, o) is strongly J-clean.

Case 8. If aj1,a92,a33 € J(R), then A =0+ A, where A € J(T3(R,0)).
Hence, A € T3(R,0) is strongly J-clean.

Thus, T5(R, o) is strongly J-clean.

(=) Similar to Theorem 2.3, we easily complete the proof. O

Corollary 3.2. Let R be a ring, and R/J(R) = Zs. If J(R) is nil, then
T3(R, o) is strongly J-clean.

Proof. Obviously R is local. Let a € U(R),b € J(R). Then we can
find some n € N such that "™ = 0; hence, (U(b))n = 0. For any v € R, we
choose x = (lafl g2+ +la—nra(b)n71)(v). It can be easily checked
that (la - Tcr(b))(x) = (la - Tcr(b)) (la—l + la—QTU(b) +eee la—”ra(b)”_l)(v) =
(v+atvo(b) + - +a " g (b)) — (a tvo(b) + -+ a "vo(B)") = v.
Thus, l, —ryp) : B — R is surjective. Likewise, Iy — 75, : R = R is
surjective. Consequently, T5(R, o) is strongly J-clean by Theorem 3.1. [

4. A characterization

We will consider the necessary and sufficient conditions under which the
skew triangular matrix ring T5(R, o) is strongly J-clean.

Lemma 4.1. Let R be a local ring. If T5(R, o) is strongly J-clean,
then lo — To@b)s la = To2@)s b — To(a) and ly — 152(q) are surjective for any
acl+J(R),be J(R).

Proof. Let a € 1+ J(R),b € J(R). Clearly, T5(R,0) is strongly J-
clean. By Theorem 2.3, I, — 7,3 is surjective. As 1 —b € 1+ J(R) and
l—a€ J(R), we get Iy —7Tg(1—a) : B — R is surjective. For any v € R, we
have an x € R such that (1 —b)z — zo(1 — a) = —v. Thus, bx — zo(a) = v
and so I — ry(q) : B — R is surjective.
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9 STRONGLY J-CLEAN SKEW TRIANGULAR MATRIX RINGS 9

Let v € R and let

b 0
A=1{o0 b € Ty(R, 0).
00

QO

We have an idempotent E = (e;;) € T3(R, o) such that A—E € J(T3(R, o))
and FA = AE. This implies that eq1, e92,e33 € R are all idempotents. As
a€l+J(R),be J(R), we have e;; = 0,e90 = 0 and e33 = 1; otherwise,
A—FE ¢ J(T3(R,0)). As EZE, we have

0 0 €13
E=10 0 €23 | ,
0 0 1
for some ej3,e03 € R. Observing that
0 0 beiz+v 0 0 ez0%(a)
0 0 b€23 =AF =FA= 0 0 6230’(0,) ;
00 a 0 0 a
we have bejs —e130%(a) = —v. Thus, I —7,2(a) : R — R is surjective. Since

l—a€ J(R)and 1 —=b € 1+ J(R), we have, l1—q — 175215 : B = R is
surjective. Thus, we can find some = € R such that (1 —a)z —x0?(1—b) =
—v. This implies that ax — xo?(b) = v, hence I, — To2(p) is surjective. [

Theorem 4.2. Let R be a local ring and let o be an endomorphism of
R. Then the following are equivalent:

(1) T5(R,0) is strongly J-clean.

(2) R/J(R) = Zs, and lo — rop) and ly — T(q) are surjective for any
ac€l+ J(R),be J(R).

Proof. (1) = (2) is obvious from Lemma 4.1.
(2) = (1) Clear from Theorem 3.1. O

Corollary 4.3. Let R be a local ring and let o be an endomorphism of
R.Then the following are equivalent:

(1) T5(R, o) is strongly J-clean.
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10 YOSUM KURTULMAZ 10

(2) T3(R,0) is strongly J-clean.
(3) R/J(R) = Zy andly—74(p) is surjective for any a € 1+J(R),b € J(R).

Proof. (1) < (3) is proved by Theorem 2.3.
(2) < (3) is obvious from Theorem 4.2. O

5. The case n =4

We now extend the preceding discussion to the case of 4 x 4 skew trian-
gular matrix rings over a local ring.

Theorem 5.1. Let R be a local ring. If lo — o) and ly — r4(q) are
surjective for any a € 1+ J(R), b € J(R), then Ty(R, o) is strongly J-clean
if and only if R/J(R) = Zs.

Proof. (<) As R/J(R) = Za, o(J(R)) C J(R). Let

aip a2 aiz a4

0 a azz axy
0 0 ass as S T4(R, U) .
0

0 0 ays

A=

We show the existence of

€11 €12 €13 €14

1
0 ez e23 ey

0 0 es3 e €T4(R,U),
0

0 0 ey

E =

such that E? = E,AE = FA and A — E € J(Ty(R,0)). One can easily
derive from E? = E that

(a) e12 = errer2 + e1z0(e22)
(b) e13 = erre13 + e120(e23) + e1302(e33)
(c) e23 = eaneas + ea30(e33)

and from AFE = EA that

(d) a11€12 — 6120'((122) = €11a12 — a120(622)
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11 STRONGLY J-CLEAN SKEW TRIANGULAR MATRIX RINGS 11

(e) airers — e1302(ass) = ernars + e120(ass) — arao(eas) — a1302(ess)
(f) agzeas — eaz0(ass) = egnans — azzo(ess)

Case 1. If agp € J(R), a1 € 1 + J(R) then egy = 0, e1;7 = 1. Hence,
(d) implies that aj1e12 — e120(age) = a1z and by assumption there exists
e12 € R such that (la), — ro(ay))(€12) = a12-

(A) If as3 € 1—|—J(R), then eg3 = 1. From (f), a22623—6230(a33) = —a93
and (b) implies that e;3 = —ej90(ea3).

(B) If ag3 € J(R), then es3 = 0. By (c), ea3 = 0. From (e), we have
arreis — e130%(az3) = a3 + e1a0(ags) — ajno(e3) and by assumption there
exists e;3 € R such that (lall — Ta(a33))(613) = ai3 + 6120(&23) — a120(€23).

Case 2. If ags € 1+ J(R), a11 € 1 + J(R), then ez2 = 1, e1; = 1. By
(a) implies that e;o = 0.

(C) If agg € 1 + J(R), then eg3 = 1. From (b), we have e;3 = 0 and (c)
implies that eg3 = 0.

(D) If ag3 € J(R), then ezs = 0. By (f), we have agseas — eago(ags) =
as3, and (e) gives rise to ajje13 — e1302(azz) = a3 + e1p0(asz) — ajao(ea3)
and by assumption there exists ej3 € R such that (la); — To(as))(€13) =
a1z + e120(ag3) — a120(e23).

Case 3. If agpy € 1 + J(R), a11 € J(R), then ezs = 1, e1;7 = 0. By
(d), ajrei2 — e120(age) = —ajz and there exists ejo € R such that (I, —
TO'((J,QQ))(€12) = —am2.

(E) If ags € 1 + J(R), then es3 = 1. From (c), we have ea3 = 0. Then
from (e), we have ajie1s — 6130’2((133) = 6120’(0,23) — ais

(F) If ags € J(R), then ez3 = 0. From (f), we have agoesg — 6230(6133) =
a3 and there exists eg3 € R such that (lay, — To(ass))(€23) = a23. Then (b)
implies that €13 — 6120(623).

Case 4. If ayy € J(R), a1; € J(R), then ego = 0, e;; = 0. Hence, (a)
implies that e;o = 0.

(G) If ass € 1+J(R), then €33 = 1. From (f), a22€23—€230((133) = —as3
and there exists ez3 € R such that (lay, — 7o (ayy))(€23) = a23. So (e) gives
us aiie1s — 6130’2 (CL33) = —(1120’(623) — al3. Hence there exists €13 € R such
that (lall — TU2(a33))(613) = —alga(egg) — ais.

(H) If as3 € J(R), then eg3 = 0. From (c), we have eg3 = 0 and by (b)
we obtain e;3 = 0.

Similar to preceding calculations from E? = E we have

(1) e14 = er1€14 + e120(e24) + e130%(e34) + €140°(€44)
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12 YOSUM KURTULMAZ 12

(2) eaq = egze24 + €230 (e34) + €240%(eaq)
(3) e3s4 = e33e34 + €340 (e44)

and from AF = FA we have

(4) ar1e14 — e140°(ags) = —a120(eas) — a130°(e34) — a140>(eas) + €11014 +
e120(agq) + 61302(a34)

(5) agxeas — 62402(a44) = —ag30(ezq) — a2402(€44) + eg9a94 + e230(asy)

(6) aszess — ezq0(ass) = —asso(eqq) + €33a34 + €340 (a44)

To complete the proof we only need to show the existence of e14, €24 and
e34 in R satisfying preceding conditions (1)-(6).

Case 1. If aq4 € J(R), ass € 1+ J(R), then eqy = 0 and e33 = 1,
otherwise A — E ¢ J(Ty(R,0)). By (6), assess — e340(asq) = azq and by
hypothesis there exists e34 such that (las; — T(au))(€31) = azs. Then by
(5), agseaq — €2402(ays) = —ao30(e34) + €aaoq + €230 (azs). There are two
possibilities:

(A) If aga € 1+ J(R), then ege = 1 otherwise A — E ¢ J(T4(R,0)).
Then there exists e4 € R such that (lay, —752(q,,))(€24) = a24 —a230(€34) +
e230(azs). From (4), aj1e1a—e140°(aqs) = —a120(e2s) —a130*(esa)+er1ara+
e120(agy) + e130%(azs). If a1y € U(R), then e;; = 1, otherwise A — E ¢
J(T4(R,0)). Hence, there exists e1q € R such that (la,, — 763(4,,))(€14) =
—a120(eaq) — a130%(e34) + arq + e120(asy) + e130%(asq). If agp € J(R), then
e11 = 0 and by (1), €1y = 6120(624) + 61302(634).

(B) If age € J(R), then ez = 0 otherwise A — E & J(T4(R,0)). By (2),
€4 = 6230(634). From equation (4), ailelq — 61403(6144) = —a120(€24) —
a1302(e3q) + ernaig + e120(agq) + e1302(azq). If a1 € U(R), then ey =
1. By hypothesis, there exists e;4 € R such that (la;, — 743(ay))(€14) =
—a120(624) — a1302(€34) + a4 + €120(a24) + 61302(a34). If ail € J(R), then
e11 = 0 and by (1), e1q = e120(e24) + e1302%(e34).

Case 2. If agy € 1 + J(R),a33 el+ J(R), then eqyy = e33 = 1. Then
by (3), es4 = 0. Again there are two possibilities:

(C) If a9y € U(R), then egy = 1 and by (2), eoq = 0. If a1l € U(R),
then e;; = 1 and by (1), e;4 = 0. If aj; € J(R), then e;; = 0. Then by
equation (4), aj1e1q — €140°(aqy) = e1po(ags) + e130%(azs). Hence, there
exists e1q € J(R) such that (lo), — 743(ayy))(€14) = €120 (a24) + e1302(azy)

(D) If a9y € J(R), then egs = 0 and by (5), a99€94 — 62402(6144) =

—agq + ex30(asy). So, there exists ezy € R such that (I, — ?”o-(a34)(624) =
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—agq + ex30(asq). If a1 € J(R), then e;; = 0. From equation (4), ajje;q —
e140°3(a44) = —a120(e24) —ars+e120(asq)+e130(azys). By assumption, there
exists e;4 € R such that (I, — o3, )) = —ajg0(exs) — a14 + e120(agy) +
e13o(agq). If a1y € U(R), then e;; = 1. By equation (1), ejq4 = —ej20(eaq).

Case 3. If aygy € 1+ J(R),a33 € J(R). In this case ez3 = 0 and
eqqy = 1. By (6), assess — esq0(asq) = —asy. Hence, there exists ezqy € R
such that (lass — ’I”U(a44))(634) = —Qas4. Using (5), a992€94 — 62402(a44) =
e92a24 + €230 (asy) — agso(esq) — azq. Then there are two possibilities:

(E) If age € 14+J(R), then ego = 1 and from (2), ez4 = —ea30(e34). Then
by (4), ajre1s — e1403(asa) = e11a14 + e120(agq) + €130 (ass) — ar20(eq) —
a1302(e3q) — arq. If ay; € J(R), then ey; = 0. So there exists e;4 € R such
that (lall — TU3(a44))(614) = 6120(&24) + 61302 (a34) — a120(624) — a1302(e34) —
ais. If a1 € U(R), then e;; = 1 and by (1), e1q4 = —e120(€24) — e1302%(e34).

(F) If age € J(R), then ezs = 0 and by hypothesis there exists egq € R
such that (14, —TUQ(a44))(€24) = —agq+e930(ass)—agzo(esq). From equation
(4)7 a11€14 — 61403(a44) = ej1ai4 + 6120(a24) + 61302((134) - a120(€24) -
a1302(e3q) — ayg. If a;; € J(R), then e;; = 0 . From (4) and by hypothesis,
there exists e;4 € R such that (I4,, —Tas(a44))(€14) = e190(ags)+e130%(azs) —
aipo(ex) — azo?(esq) — ayg. If a;y € U(R), then e;; = 1 and by (1),
e1r = —e120(eaq) — 130> (e34).

Case 4. If ayy € J(R),a33 € J(R). In this case e33 = eqq = 0. By (3),
€34 = 0.

(G) If asy € J(R), then egy = 0. By (2), eoq = 0. If a1l € J(R),
then e;; = 0 and from (1), e;4 = 0. If a;; € U(R), then e;; = 1. Hence,
equation (4) becomes ajjeiq — €140°(agq) = arg + e120(as) + e130%(azs).
By hypothesis there exists e14 € R such that (la), — 743(q,,))(€14) = a14 +
e120(azq) + e130°(azy).

(H) If ag € 1+ J(R), then egs = 1 and from (5), agzeas — e240%(a4q) =
agq + ez3o(asq). By assumption, there exists ey € R such that (lg,, —
TO-Q(a44))(€24) = agq + e230(asq). If ay € U(R), then e;; = 1 and by (4),
aiieis — 61403((144) = —a120(e24) + a1a + e120(az) + 61302(a34)-

Hence, there exists e14 € R such that (lo,, —743(ay))(€14) = —a120(€24)+
ayy + epo(azy) + 61302(6134). If a1; € J(R), then e;; = 0 and from (1),
e14 = e120(eaq). Thus, we always find eq4, e24 and esq in R.

(=) Analogous to Theorem 2.3 we easily obtain the result. O
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