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Abstract. Let G be a finite group and F be a family of subgroups of G closed under
conjugation and taking subgroups. We consider the question whether there exists a
periodic relative F-projective resolution for Z when F is the family of all subgroups
H ≤ G with rkH ≤ rkG − 1. We answer this question negatively by calculating the
relative group cohomology FH∗(G,F2) where G = Z/2 × Z/2 and F is the family of
cyclic subgroups of G. To do this calculation we first observe that the relative group
cohomology FH∗(G,M) can be calculated using the ext-groups over the orbit category of
G restricted to the family F . In second part of the paper, we discuss the construction of
a spectral sequence that converges to the cohomology of a group G and whose horizontal
line at E2 page is isomorphic to the relative group cohomology of G.

1. Introduction

Let G be a finite group and R be a commutative ring of coefficients. For every n ≥ 0,
the n-th cohomology group Hn(G,M) of G with coefficients in an RG-module M is
defined as the n-th cohomology group of the cochain complex HomRG(P∗,M) where P∗
is a projective resolution of R as an RG-module. Given a family F of subgroups of G
which is closed under conjugation and taking subgroups, one defines the relative group
cohomology FH∗(G,M) with respect to the family F by adjusting the definition in the
following way: We say a short exact sequence of RG-modules is F -split if it splits after
restricting it to the subgroups H in F . The definition of projective resolutions is changed
accordingly using F -split sequences (see Definition 2.6). Then, for every RG-module M ,
the relative group cohomology FH∗(G,M) with respect to the family F is defined as the
cohomology of the cochain complex HomRG(P∗,M) where

P∗ : · · · → Pn
∂n−→Pn−1 → · · · → P0 → R→ 0

is a relative F -projective resolution of R.
Computing the relative group cohomology is in general a difficult task. Our first the-

orem gives a method for computing relative group cohomology using ext-groups over the
orbit category. In general calculating ext-groups over the orbit category is easier since
there are many short exact sequences of modules over the orbit category which come
from the natural filtration of the poset of subgroups in F . To state our theorem, we first
introduce some basic definitions about orbit categories.
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The orbit category Γ = OrF G of the group G with respect to the family F is defined as
the category whose objects are orbits of the formG/H whereH ∈ F and whose morphisms
from G/H to G/K are given by G-maps from G/H to G/K. An RΓ -module is defined
as a contravariant functor from Γ to the category of R-modules. We often denote the
R-module M(G/H) simply by M(H) and call M(H) the value of M at H ∈ F . The maps
M(H) → M(K) between two subgroups H and K can be expressed as compositions of
conjugations and restriction maps. The category of RΓ -modules has enough projectives
and injectives, so one can define ext-groups for a pair of RΓ -modules in the usual way.

There are two RΓ -modules which have some special importance for us. The first one is
the constant functor R which has the value R at H for every H ∈ F and the identity map
as maps between them. The second module that we are interested in is the module M ?

which is defined for any RG-module M as the RΓ -module that takes the value MH at
every H ∈ F with the usual restriction and conjugation maps coming from the restriction
and conjugation of invariant subspaces. Our main computational tool is the following:

Theorem 1.1. Let G be a finite group and F be a family of subgroups of G closed under
conjugation and taking subgroups. Then, for every RG-module M ,

FH∗(G,M) ∼= Ext∗RΓ (R,M ?).

This theorem allows us to do some computations which have some importance for
the construction of finite group actions on spheres. One of the ideas for constructing
group actions on spheres is to construct chain complexes of finitely generated permutation
modules of certain isotropy type and then find a G-CW -complex which realizes this
permutation complex as its chain complex. One of the questions that was raised in this
process is the following: Given a finite group G with rank r, if we take F as the family
of all subgroups H of G with rkH ≤ r − 1, then does there exist an F -split sequence of
finitely generated permutation modules ZXi with isotropy in F such that

0→ Z→ ZXn → · · · → ZX2 → ZX1 → ZX0 → Z→ 0

is exact? We answer this question negatively by calculating the relative group cohomology
of the Klein four group relative to its cyclic subgroups. Note that if there were an exact
sequence as above, then by splicing it with itself infinitely many times we could obtain
a relative F -projective resolution and as a consequence the relative group cohomology
FH∗(G,F2) would be periodic. We prove that this is not the case.

Theorem 1.2. Let G = Z/2 × Z/2 and F be the family of all cyclic subgroups of G.
Then, FH∗(G,F2) is not periodic.

The proof of this theorem is given by computing the dimensions of FH i(G,F2) for
all i and showing that the dimensions grow by the sequence (1, 0, 1, 3, 5, 7, . . . ). In the
computation, we use Theorem 1.1 and some short exact sequences coming from the poset
of subgroups of G.

In the rest of the paper, we discuss the connections between relative group cohomology
and higher limits. Given two families U ⊆ V of subgroups of G, the inverse limit functor

lim
←−

V
U : RΓU → RΓV ,
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where ΓU = OrU G and ΓV = OrV G, is defined as the functor which is right adjoint to
the restriction functor (see Definition 5.2 and Proposition 5.4). The limit functor is left
exact, so the n-th higher limit (limVU)n is defined as the n-th right derived functor of the
limit functor. Compositions of limit functors satisfy the identity

limWU = limWV ◦ limVU .

So there is a Grothendieck spectral sequence for the right derived functors of the limit
functor. A special case of this spectral sequence gives a spectral sequence that converges
to the cohomology of a group and whose horizontal line is isomorphic to the relative group
cohomology.

Theorem 1.3 (Theorem 6.1, [9]). Let G be a finite group and R be a commutative coeffi-
cient ring. Let Γ = OrF G where F is a family of subgroups of G closed under conjugation
and taking subgroups. Then, for every RG-module M , there is a first quadrant spectral
sequence

Ep,q
2 = ExtpRΓ (R,Hq(?,M))⇒ Hp+q(G,M).

In particular, on the horizontal line, we have Ep,0
2
∼= FHp(G,M).

This is a special case of a spectral sequence constructed by Mart́ınez-Pérez [9] and it
is stated as a theorem (Theorem 6.1) in [9]. There is also a version of this sequence
for infinite groups constructed by Kropholler [7] using a different approach. In Section
6, we discuss the edge homomorphisms of this spectral sequence and the importance of
this spectral sequence for approaching the questions related to the essential cohomology
of finite groups. We also discuss how this spectral sequence behaves in the case where
G = Z/2× Z/2 and F is the family of cyclic subgroups of G.

The paper is organized as follows: In Section 2, we review the concepts of F -split
sequences and relative projectivity of an RG-module with respect to a family of subgroups
F and define relative group cohomology FH∗(G,M). In Section 3, orbit category and
ext-groups over the orbit category are defined and Theorem 1.1 is proved. Then in Section
4, we perform some computations with the ext-groups over the orbit category and prove
Theorem 1.2. In Sections 5 and 6, we introduce the higher limits and construct the
spectral sequence stated in Theorem 1.3.

2. Relative group cohomology

Let G be a finite group, R be a commutative ring of coefficients, and M be a finitely
generated RG-module. In this section we introduce the definition of relative group co-
homology FH∗(G,M) with respect to a family of subgroups F . When we say F is a
family of subgroups of G, we always mean that F is closed under conjugation and taking
subgroups, i.e., if H ∈ F and K ≤ G such that Kg ≤ H, then K ∈ F .

Definition 2.1. A short exact sequence E : 0 → A → B → C → 0 of RG-modules
is called F -split if for every H ∈ F , the restriction of E to H splits as an extension of
RH-modules.

For a G-set X, there is a notion of X-split sequence defined as follows:
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Definition 2.2. Let X be a G-set and let RX denote the permutation module with the
basis given by X. Then, a short exact sequence 0→ A→ B → C → 0 of RG-modules is
called X-split if the sequence

0→ A⊗R RX → B ⊗R RX → C ⊗R RX → 0

splits as a sequence of RG-modules.

These two notions are connected in the following way:

Proposition 2.3 (Lemma 2.6, [11]). Let G be a finite group and F be a family of subgroups
of G. Let X be a G-set such that XH 6= ∅ if and only if H ∈ F . Then, a sequence
0→ A→ B → C → 0 of RG-modules is F-split if and only if it is X-split.

Proof. We first show that given a short exact sequence 0 → A
i−→B

π−→C → 0 of RG-
modules, its restriction to H ≤ G splits as a sequence of RH-modules if and only if the
sequence

(1) 0 // A⊗R R[G/H]
i⊗id // B ⊗R R[G/H]

π⊗id // C ⊗R R[G/H] // 0

splits as a sequence of RG-modules. Since A ⊗R R[G/H] ∼= IndGH ResGH A, the “only if”
direction is clear. For the “if” direction assume that the sequence (1) splits. Let s be a
splitting for π ⊗ id. Then consider the following diagram

B
π // C

η

��
B ⊗R R[G/H]

id⊗ε

OO

π⊗id
// C ⊗R R[G/H]

spp
id⊗ε

OO

where ε is the augmentation map ε : R[G/H]→ R which takes gH to 1 ∈ R for all g ∈ G
and η is the map defined by η(c) = c ⊗ H. Define ŝ : C → B to be the composition
(id⊗ ε)sη. Then we have

πŝ = π(id⊗ ε)sη = (id⊗ ε)(π ⊗ id)sη = (id⊗ ε)η = id.

Since η is an H-map, the splitting ŝ is also an H-map. Thus, the short exact sequence
0→ A→ B → C → 0 splits when it is restricted to H.

Now, the general case follows easily since RX ∼= ⊕i∈IR[G/Hi] for a set of subgroups
Hi ∈ F satisfying the following condition: if H ∈ F , then Hg ≤ Hi for some g ∈ G and
i ∈ I. �

Now, we define the concept of relative projectivity.

Definition 2.4. An RG-module P is called F -projective if for every F -split sequence of
RG-modules 0 → A → B → C → 0 and an RG-module map α : P → C, there is an
RG-module map β : P → B such that the following diagram commutes

P

α

��

β

��
0 // A // B

π // C // 0 .
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Given a G-set X, we say X is F -free if for every x in X the isotropy subgroup Gx belongs
to F . An RG-module F is called an F -free module if it is isomorphic to a permutation
module RX where X is an F -free G-set. Note that an F -free RG-module is isomorphic
to a direct sum of the form ⊕iR[G/Hi] where Hi ∈ F for all i.

Proposition 2.5. An RG-module M is F-projective if and only if it is a direct summand
of an RG-module of the form N ⊗R RX where RX is an F-free module and N is an
RG-module.

Proof. Let X be a G-set with the the property that XH 6= ∅ if and only if H ∈ F . Then
the sequence 0→ ker ε−→RX

ε−→R→ 0 where ε(
∑
axx) =

∑
ax is an F -split sequence

since its restriction to any subgroup H ∈ F splits. Tensoring this sequence with M , we
get an F -split sequence

0→M ⊗R ker ε→M ⊗R RX →M → 0.

If M is F -projective, then this sequence splits and hence M is a direct summand of
M ⊗R RX. For the converse, it is enough to show that an RG-module of the form
N ⊗R RX is projective. If RX = ⊕iR[G/Hi], then

N ⊗R RX ∼= ⊕i IndGHi
ResGHi

N.

So, we need to show that for every H ∈ F , an RG-module of the form IndGHi
ResGHi

N is
F -projective. This follows from Frobenious reciprocity (see [11, Corollary 2.4] for more
details). �

Note that in the argument above, we have seen that for every RG-module M , there is
an F -split surjective map M ⊗R RX → M where M ⊗R RX is an F -projective module.
Inductively taking such maps, we obtain a projective resolution of M formed by F -
projective modules. Note that each short exact sequence appearing in the construction is
F -split. The resolutions that satisfy this property are given a special name.

Definition 2.6. Let M be an RG-module. A relative F -projective resolution P∗ of M is
an exact sequence of the from

· · · → Pn
∂n−→Pn−1 → · · · → P2

∂2−→P1
∂1−→P0

∂0−→M → 0

where for each n ≥ 0, the RG-module Pn is F -projective and the short exact sequences

0→ ker ∂n → Pn → im ∂n → 0

are F -split.

In [11, Lemma 2.7], it is shown that there is a version of Schanuel’s lemma for F -split
sequences. This follows from the fact that the class of F -split exact sequences is proper.
Note that the concept of relative projective resolution is the same as proper projective
resolutions for the class of F -split exact sequences. Thus, we have the following:

Proposition 2.7. Let M be an RG-module. Then, any two relative F-projective resolu-
tions of M are chain homotopy equivalent.

We can now define the relative cohomology of a group as follows:
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Definition 2.8. Let G be a finite group and F be a family of subgroups of G. For every
RG-module M and for each n ≥ 0, the n-th relative cohomology of G is defined as the
cohomology group

FHn(G,M) := Hn(HomRG(P∗,M)

where P∗ is a relative F -projective resolution of R.

If F is a collection of subgroups of G which is not necessarily closed under conjugation
and taking subgroups, we can still define cohomology relative to this family in the following
way. Let F be a family defined by

F = {K ≤ G | Kg ≤ H for some g ∈ G and H ∈ F}.
We call F the subgroup closure of F . Then, relative cohomology with respect to F is
defined in the following way:

Definition 2.9. Let G be a finite group and F be a collection of subgroups of G. For a
RG-module M , the relative cohomology of G with respect to F is defined by

FHn(G,M) := FHn(G,M)

where F is the subgroup closure of F .

This definition makes sense since a short exact sequence is F -split if and only if it is F -
split. So, the corresponding proper categories are equivalent. Note that when F = {H},
the definition above coincides with the definition of cohomology of a group relative to a
subgroup H (see [1, Section 3.9]). For a more general discussion of relative homological
algebra, we refer the reader to [4].

3. Ext-groups over the orbit category

Let G be a finite group and F be a family of subgroups of G. As before, we assume
that F is closed under conjugation and taking subgroups. The orbit category OrF(G)
of G relative to F is defined as the category whose objects are orbits of the form G/H
with H ∈ F and whose morphisms from G/H to G/K are given by set of G-maps
G/H → G/K. We denote the orbit category OrF G by Γ to simplify the notation. In
fact, for almost everything about orbit categories we follow the notation and terminology
in [8].

Let R be a commutative ring. An RΓ -module is a contravariant functor from Γ to the
category of R-modules. An RΓ -module M is sometimes called a coefficient system and
used in the definition of Bredon cohomology as coefficients (see [2]). Since an RΓ -module
is a functor onto an abelian category, the category of RΓ -modules is an abelian category
and the usual tools for doing homological algebra are available. In particular, a sequence
M ′ −→M −→M ′′ of RΓ -modules is exact if and only if

M ′(H) −→M(H) −→M ′′(H)

is an exact sequence of R-modules for every H ∈ F . The notions of submodule, quotient
module, kernel, image, and cokernel are defined objectwise. The direct sum of RΓ -
modules is given by taking the usual direct sum objectwise. The Hom functor has the
following description.
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Definition 3.1. Let M,N be RΓ -modules. Then,

HomRΓ (M,N) ⊆
⊕
H∈F

HomR(M(H), N(H))

is the R-submodule of morphisms fH : M(H)→ N(H) satisfying the relation fK◦M(ϕ) =
N(ϕ) ◦ fH for every morphism ϕ : G/K −→ G/H.

Recall that by the usual definition of projective modules, an RΓ -module P is projective
if and only if the functor HomRΓ (P,−) is exact.

Lemma 3.2. For each K ∈ F , let PK denote the RΓ -module defined by

PK(G/H) = RMor(G/H,G/K)

where RMor(G/H,G/K) is the free abelian group on the set Mor(G/H,G/K) of all mor-
phisms G/H → G/K. Then, PK is a projective RΓ -module.

Proof. It is easy to see that for each RΓ -module M , we have HomRΓ (PK ,M) ∼= M(K).
Since the exactness is defined objectwise, this means the functor HomRΓ (PK ,−) is exact.
Hence we can conclude that PK is projective. �

The projective module PK is also denoted by R[G/K ? ] since PK(G/H) ∼= R[(G/K)H ].

One often calls R[G/K ? ] a free RΓ -module since all the projective RΓ -modules are

summands of some direct sum of modules of the form R[G/K ? ].
For an RΓ -module M , there exists a surjective map

P =
⊕
H∈F

(
⊕
m∈BH

PH) �M

where BH is a set of generators for M(H) as an R[NG(H)/H]-module. The kernel of this
surjective map is again an RΓ -module and we can find a surjective map of a projective
module onto the kernel. Thus, every RΓ -module M admits a projective resolution

· · · → Pn → Pn−1 → · · · → P2 → P1 → P0 →M.

By standard methods in homological algebra we can show that any two projective reso-
lutions of M are chain homotopy equivalent.

The RΓ -module category has enough injective modules as well and for given RΓ -
modules M and N , the ext-group ExtnRΓ (M,N) is defined as the n-th cohomology of the
cochain complex HomRΓ (M, I∗) where N → I∗ is an injective resolution of N . Since we
also have enough projectives, the ext-group ExtnRΓ (M,N) can also be calculated using a
projective resolution of M . We have the following:

Proposition 3.3. Let M and N are RΓ -modules. Then, for each n ≥ 0, we have

ExtnRΓ (M,N) ∼= Hn(HomRΓ (P∗, N))

where P∗ is a projective resolution of M as an RΓ -module.

Proof. This follows from the balancing theorem in homological algebra. Take an injective
resolution I∗ for N and consider the double complex HomRΓ (P∗, I

∗). Filtering this double
complex in two different ways and by calculating the corresponding spectral sequences,
we get the desired isomorphism. �
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When F = {1}, the ext-group ExtnRΓ (M,N) is the same as the usual ext-group

ExtnRG(M(1), N(1))

over the group ring RG. So, the ext-groups over group rings, and hence the group
cohomology, can be expressed as the ext-group over the orbit category for some suitable
choices of M and N . In the rest of the section we prove Theorem 1.1 which says that this
is also true for the relative cohomology of a group.

Let R denote the RΓ -module which takes the value R(H) = R for every H ∈ F and
such that for every f : G/K → G/H, the induced map R(f) : R(H) → R(K) is the
identity map. Given RΓ -modules M and N , the tensor product of M and N over R is
defined as the RΓ -module such that for all H ∈ F ,

(M ⊗R N)(H) = M(H)⊗R N(H)

and the induced map is (M ⊗R N)(f) = M(f) ⊗R N(f) for every f : G/K → G/H.
Note that the module R is the identity element with respect to tensoring over R, i.e,
M ⊗R R = R⊗RM = M for every RΓ -module M . We also have the following:

Lemma 3.4. If P and Q are projective RΓ -modules, then P ⊗R Q is also projective.

Proof. Since every projective module is a direct summand of a free module ⊕iR[G/Hi
? ],

it is enough to prove this statement for module of type R[G/H ? ]. Since

R[G/H ? ]⊗R R[G/K ? ] =
⊕

HgK∈H\G/K

R[G/(H ∩ gK) ? ]

and since F is closed under conjugations and taking subgroups, this tensor product is
also projective. �

This is used in the proof of the following proposition.

Proposition 3.5 (Theorem 3.2, [12]). Let P∗ be a projective resolution of R as an RΓ -
module. Then, P∗(1) is a relative F-projective resolution of the trivial RG-module R.

Proof. If we apply −⊗R R[G/H ? ] to the resolution P∗ → R, then we get

· · · → Pn⊗RR[G/H ? ]
∂n⊗id−→ Pn−1⊗RR[G/H ? ]→ · · · → P0⊗RR[G/H ? ]

∂0⊗id−→ R[G/H ? ]→ 0.

By Lemma 3.4, all the modules in this sequence are projective. So, the sequence splits.
This means that for every n ≥ 0, the short exact sequence

0→ ker(∂n ⊗ id)→ Pn ⊗R R[G/H ? ]→ im(∂n ⊗ id)→ 0

splits. If we evaluate this sequence at 1, we get a split sequence of RG-modules. This
implies that the sequence

0→ ker ∂n → Pn(1)→ im ∂n → 0

is F -split for all n ≥ 0. Note also that Pn(1) is a direct summand of F (1) for some free
RΓ -module F . So, by Proposition 2.5, the RG-module Pn(1) is F -projective. Hence, the
resolution

· · · → Pn(1)
∂n−→Pn−1(1)→ · · · → P1(1)

∂1−→P0(1)
∂0−→R→ 0
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is a relative F -projective resolution of R. �

Now, recall that for every RG-module M , there is an RΓ -module denoted by M ? which
takes the value MH for every H ∈ F where MH denotes the R-submodule

MH = {m ∈M | hm = m for all h ∈ H}
of M . Note that MH ∼= HomR(R[G/H],M). In fact, we can choose a canonical iso-
morphism and we can think of the element m ∈ MH as an R-module homomorphisms
R[G/H] → M which takes H to m. For each G-map f : G/K → G/H, the induced
map M(f) : MH → MK is defined as the composition of corresponding homomorphisms
with the linearization of f which is Rf : R[G/K] → R[G/H]. The module M ? has the
following important property:

Lemma 3.6. Let M be an RG-module and M ? be the RΓ -module defined above. For any
projective RΓ -module P , we have

HomRΓ (P,M ?) ∼= HomRG(P (1),M).

Proof. It is enough to prove the statement for P = R[G/H ? ] for some H ∈ F . Note that
we have

HomRΓ (R[G/H ? ],M ?) ∼= MH ∼= HomRG(R[G/H],M),

so the statement holds in this case. �

Now, we are ready to prove the main theorem of this section.

Proof of Theorem 1.1. Let P∗ → R be a projective resolution of R as an RΓ -module.
The ext-group ExtnRΓ (R,M ?) is defined as the n-th cohomology of the cochain complex
HomRΓ (P∗,M

?). By Lemma 3.6, we have

HomRΓ (P∗,M
?) ∼= HomRG(P∗(1),M)

as cochain complexes. By Proposition 3.5, the chain complex P∗(1) is a relative F -
projective resolution. So, by the definition of relative group cohomology, we get

ExtnRΓ (R,M ?) ∼= FHn(G,M)

as desired. �

4. Periodicity of relative cohomology

In this section, we consider the following question: Let G be a finite group of rank r
and F be the family of all subgroups H of G such that rkH ≤ r − 1. Then, does there
exist an F -split exact sequence of the form

0→ Z→ ZXn → · · · → ZX2 → ZX1 → ZX0 → Z→ 0

where each Xi is a G-set with isotropy in F ? The existence of such a sequence came
up as question in the process of constructing group actions on finite complexes homotopy
equivalent to a sphere with a given set of isotropy subgroups. Note that the F -split
condition, in fact, is not necessary for realizing a permutation complex as above by a
group action, but having this condition guarantees the existence of a weaker condition
that is necessary for the realization of such periodic resolutions by group actions. Note
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also that for constructions of group actions, algebraic models over the orbit category
are more useful than chain complexes of permutation modules. For more details on the
construction of group actions on homotopy spheres, see [6] and [13].

The main aim of this section is to show that the answer to the above question is negative.
For this, we consider the group G = Z/2 × Z/2 = 〈a1, a2〉 and take F = {1, H1, H2, H3}
where H1 = 〈a1〉, H2 = 〈a1a2〉, and H3 = 〈a2〉. Note that if there is an exact sequence
of the above form, then by splicing the sequence with itself infinitely many times, we
obtain a periodic relative F -projective resolution of Z as a ZG-module. But, then the
relative cohomology FH∗(G,F2) would be periodic. We explicitly calculate this relative
cohomology and show that it is not periodic, hence prove Theorem 1.2.

From now on, let G and F be as above and let R = F2. By Theorem 1.1, we have

FH∗(G,R) ∼= Ext∗RΓ (R,R?).

Note that R? = R, so we need to calculate the ext-groups ExtnRΓ (R,R) for each n ≥ 0. To
calculate these ext-groups, we consider some long exact sequences of ext-groups coming
from short exact sequences of RΓ -modules.

Let R0 denote the RΓ -module where R0(1) = R and R0(Hi) = 0 for i = 1, 2, 3.
Also consider, for each i = 1, 2, 3, the module RHi

which is defined as follows: We have
RHi

(1) = RHi
(Hi) = R with the identity map between them and RHi

(Hj) = 0 if i 6= j.
For each i = 1, 2, 3, there is an RΓ -homomorphism γi : R0 → RHi

which is the identity
map at 1 and the zero map at other subgroups. We can give a picture of these modules
using the following diagrams:

R =

R R R

R

R0 =

0 0 0

R

RH1 =

R 0 0

R

RH2 =

0 R 0

R

RH3 =

0 0 R

R

where each line denotes the identity map id : R→ R if it is from R to R and denotes the
zero map otherwise.

Now consider the short exact sequence

(2) 0→ R0 ⊕R0
γ−→RH1 ⊕RH2 ⊕RH3

π−→R→ 0

where π is the identity map at each Hi and at 1, it is defined by π(1)(r, s, t) = r+s+ t for
every r, s, t ∈ R. The map γ is the zero map at every Hi and at 1 it is the map defined
by

γ(1)(u, v) = (−u, u+ v, −v).

In fact, over the ring R = F2, we can ignore the negative signs but we keep them through-
out the calculations to give an idea how one can write these maps for an arbitrary ring
R as well. Now note that with respect to the direct sum decomposition above, we can
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express γ with the matrix

γ =

−γ1 0
γ2 γ2
0 −γ3


where γi : R0 → RHi

are the maps defined above. We will be using the short exact
sequence given in (2) in our computations. We start our computations with an easy
observation:

Lemma 4.1. For every n ≥ 0, we have ExtnRΓ (R0, R) ∼= Hn(G,R).

Proof. By definition ExtnRΓ (R0, R) = Hn(HomRΓ (P∗, R)) where P∗ → R0 is a projective
resolution of R0 as an RΓ -module. Since the definition is independent from the projective
resolution that is used, we can pick a specific resolution. Let F∗ be a free resolution of
R as an RG-module. Take P∗ as the resolution where P∗(1) = F∗ and P∗(Hi) = 0 for

i = 1, 2, 3. If Fk = ⊕nk
RG, then Pk = ⊕nk

R[G/1 ? ], so P∗ is a projective resolution of R0.
Since HomRΓ (P∗, R) ∼= HomRG(F∗, R), the result follows. �

Lemma 4.2. If H = Hi for some i ∈ {1, 2, 3}, then ExtnRΓ (RH , R) ∼= Hn(G/H,R) for
every n ≥ 0.

Proof. Take a free resolution of R as an R[G/H]-module

F∗ : · · · → ⊕m2R[G/H]→ ⊕m1R[G/H]→ ⊕m0R[G/H]→ R→ 0.

We can consider the same resolution a resolution of R as an RG-module via the quotient
map G → G/H. The resolution we obtain is the inflation of F∗ denoted by infGG/H F∗.
Define a projective resolution P∗ of RH as an RΓ -module by taking P∗(H) = F∗, P∗(1) =
infGG/H F∗, and P∗(K) = 0 for other subgroups K ∈ F . There is only one nonzero
restriction map P∗(H) → P∗(1). Assume that this map is given by the inflation map.

For each n ≥ 0, the RΓ -module Pn is isomorphic to ⊕mnR[G/H ? ], so P∗ is a projective
resolution of RH as an RΓ -module. Note that

HomRΓ (R[G/H ? ], R) ∼= HomR[G/H](R[G/H], R).

So, applying HomRΓ (−, R) to P∗, we get

HomRΓ (P∗, R) ∼= HomR[G/H](F∗, R)

as cochain complexes. So, the result follows. �

Lemma 4.3. For every i ∈ {1, 2, 3}, let γ∗i : ExtnRΓ (RHi
, R) → ExtnRΓ (R0, R) denote the

map induced by γi : R0 → RHi
defined above. Then, γ∗i is the same as the inflation map

infGG/Hi
: Hn(G/Hi, R) → Hn(G,R) in group cohomology under the isomorphisms given

in the previous two lemmas.

Proof. Let P∗ and Q∗ be projective resolutions of R0 and RHi
, respectively. We can

assume that they are in the form as in the proofs of the above lemmas. In particular, we
can assume P∗(1) is a free resolution of R as an RG-module and Q∗(1) is the inflation
of a free resolution of R as an R[G/Hi]-module. The identity map on R lifts to a chain
map f ′∗ : P∗(1) → Q∗(1) since P∗(1) is a projective resolution and Q∗(1) is acyclic. This
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chain map can be completed (by taking the zero map at other subgroups) to a chain
map f∗ : P∗ → Q∗ of RΓ -modules. The map γ∗i between the ext-groups is the map
induced by this chain map. But the map induced by f ′∗ on cohomology is the inflation
map infGG/Hi

: Hn(G/Hi, R) → Hn(G,R) by the definition of the inflation map in group
cohomology. So, the result follows. �

Now, we are ready to prove the main result of this section.

Proof of Theorem 1.2. Consider the following long exact sequence of ext-groups coming
from the short exact sequence given in (2):

· · · → Extn−1RΓ (⊕iRHi
, R)

γ∗−→ Extn−1RΓ (⊕2R0, R)
δ−→ ExtnRΓ (R,R)

π∗−→ ExtnRΓ (⊕iRHi
, R)

γ∗−→ ExtnRΓ (⊕2R0, R)→ · · ·

By Lemma 4.1 and 4.2, we have

ExtnRΓ (⊕iRHi
, R) ∼= ⊕iHn(G/Hi, R) and ExtnRΓ (⊕2R0, R) ∼= ⊕2H

n(G,R)

for all n ≥ 0. It is well-known that H∗(C2, R) ∼= R[t] for some one-dimensional class
t ∈ H1(G,R). Let t1, t2, t3 be the generators of cohomology rings H∗(G/Hi, R) for i =
1, 2, 3, respectively. By Kunneth’s theorem H∗(G,R) ∼= R[x, y] for some x, y ∈ H1(G,R).
Let us choose x and y so that x = infGG/H1

(t1) and y = infGG/H3
(t3). Then, we have

infGG/H2
(t2) = x+ y. Note that

γ∗ =

[
−γ∗1 γ∗2 0

0 γ∗2 −γ∗3

]
and by Lemma 4.3, we have γ∗i = infGG/Hi

for all i = 1, 2, 3. Therefore, we obtain

γ∗(t1) = (−x, 0), γ∗(t2) = (x+ y, x+ y), and γ∗(t3) = (0,−y).

From this it is easy to see that

γ∗ : ExtnRΓ (⊕iRHi
, R)→ ExtnRΓ (⊕2R0, R)

is injective for n ≥ 1, so we get short exact sequences of the form

0→ ⊕iHn−1(G/Hi, R)
γ∗−→ ⊕2 H

n−1(G,R)
δ−→ ExtnRΓ (R,R)→ 0

for every n ≥ 2. This gives that

dn = dimR ExtnRΓ (R,R) = 2n− 3

for n ≥ 2. Looking at the dimensions n = 0, 1 more closely we obtain that

dn = (1, 0, 1, 3, 5, 7, 9, . . . ).

So, FHn(G,R) = ExtnRΓ (R,R) is not periodic. �
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5. Limit functor between two families of subgroups

Let G be a finite group and F be a family of subgroups closed under conjugation
and taking subgroups. Let Γ denote the orbit category OrF G. An RΓ -module M is a
contravariant functor from Γ to category of R-modules, so we can talk about the inverse
limit of M in the usual sense. Recall that the inverse limit of M denoted by

lim
←−
H∈F

M

is defined as the R-module of tuples (mH)H∈F ∈
∏

H∈FM(H) satisfying the condition
M(f)mH = mK for every G-map f : G/K → G/H. To simplify the notation, from now on
we will denote the inverse limit of M with limFM. Our first observation is the following:

Lemma 5.1. Let M be an RΓ -module. Then, limFM ∼= HomRΓ (R,M).

Proof. This follows from the definition of Hom functor in RΓ -module category (see [15,
Proposition 5.1] for more details). �

Now we define a version of inverse limit for two families. Relative limit functors are
also considered in [14] and some of the results that we prove below are already proved in
the appendix of [14] but we give more details here.

Definition 5.2. Let V ⊆ W be two families of subgroups of G which are closed under
conjugation and taking subgroups. Let ΓV = OrV(G) and ΓW = OrW(G). Then define

limWV : RΓV → RΓW

as the functor which takes the value

(limWV M)(H) = HomRΓV (R[G/H?],M)

at every H ∈ W and the induced maps by G-maps f : G/K → G/H are given by usual
composition of homomorphisms with the linearization of f .

The description of (limWV M)(H) given above comes from the desire to make it right
adjoint to the restriction functor

ResWV : RΓW → RΓV

which is defined by restricting the values of an RΓW-module to the smaller family V . Note
that the adjointness gives

(limWV M)(H) ∼= HomRΓW (R[G/H?], limWV M) ∼= HomRΓV (ResWV R[G/H?],M),

and that is why limWV M is defined as above. We also have the following natural description
in terms of the usual meaning of inverse limits.

Proposition 5.3. Let W and V be as above and H ∈ W. Then, (limWV M)(H) is iso-
morphic to the R-module of all tuples

(mK)K∈V|H ∈
∏

K∈V|H

M(K) where V|H = {K ∈ V |K ≤ H}

satisfying the compatibility conditions coming from inclusions and conjugations in H.
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Proof. Let us denote the R-module of tuples (mK)K∈V|H by limV|H M . We will prove the
proposition by constructing an explicit isomorphism

ϕ : HomRΓV (R[G/H?],M)→ limV|HM.

The RΓV-module R[G/H?] takes the value R[(G/H)K ] = R{gH | Kg ≤ H} at every
subgroup K ∈ V with Kg ≤ H and takes the value zero at all other subgroups. Given
a homomorphism f = (fK)K∈V in HomRΓV (R[G/H?],M), we define ϕ(f) as the tuple
(fK(H))K∈V|H where H denotes the trivial coset. Note that we have H ∈ (G/H)K since

K ≤ H. If L ≤ K ≤ H, then it is clear that ResKL mK = mL since

ResKL : R[(G/H)K ]→ R[(G/H)L]

is defined by inclusion so it takes H to H. Similarly, for every h ∈ H, we have ch(mK) =
mhK since cx : R[(G/H)K ] → R[(G/H)

xK ], which is defined by H → xH, is the identity
map when x ∈ H. Here xK denotes the conjugate subgroup xKx−1. Therefore, the tuple
(fK(H))K∈V|H satisfies the compatibility conditions, so ϕ(f) is in limV|H M .

To show that ϕ is an isomorphism, we will prove that for every tuple (mK)K∈V|H in
limV|H M there is a unique family of homomorphisms fL : R[(G/H)L] → M(L) which
satisfy fL(H) = mL for all L ≤ H, and which are also compatible in the usual sense of
the compatibility of homomorphisms in HomRΓV (R[G/H?],M). Let L ∈ V be such that
(G/H)L 6= ∅. We define the R-homomorphism fL : R[(G/H)L]→ M(L) in the following
way: Let gH be a coset in (G/H)L. Then we have Lg ≤ H. Let K = Lg. Since K ≤ H,
we have a given element mK ∈ M(K). Set fL(gH) = cg(mK). Since we can do this for
all gH ∈ (G/H)L, this defines fL completely for all L with (G/H)L 6= ∅. We take fL = 0
for other subgroups.

Now note that under these definitions, we have a commuting diagram

R[(G/H)K ]

cg

��

fK // M(K)

cg

��
R[(G/H)L]

fL // M(L)

since the map on the left takes H to gH. It is also clear that the maps fL are compatible
under restrictions since the restriction maps on R[G/H?] are given by inclusions. So,
the family f = (fL)L∈V defines a homomorphism of RΓV-modules. Since the values of f
at each K are defined in a unique way using the tuple (mK)K∈V|H , this shows that the
homomorphism ϕ is an isomorphism. �

We now prove the adjointness property mentioned above.

Proposition 5.4 (Proposition 12.2, [14]). Let M be an RΓW-module and N be an RΓV-
module. Then, we have

HomRΓW (M, limWV N) ∼= HomRΓV (ResWV M, N).

Proof. Note that for K ∈ V , we have

(limWV N)(K) = HomRΓV (R[G/K?], N) ∼= N(K),
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so we can easily define an R-homomorphism

ϕ : HomRΓW (M, limWV N)→ HomRΓV (ResWV M, N)

as the homomorphism which takes an RΓW-module homomorphism α : M → limWV N to
an RΓV-homomorphism by restricting its values to the subgroups in V . For the homo-
morphism in the other direction, note that for every H ∈ W ,

(limWV N)(H) ∼= limV|HN

by Propositions 5.3, so an element of (limWV N)(H) can be thought of as a tuple (nK)K∈V|H
with nK ∈ N(K). So, given a homomorphism f ∈ HomRΓV (ResWV M,N), we can define a
unique homomorphism f ′ in HomRΓW (M, limWV N) by defining

f ′H(m) = (fK(ResHKm))K∈V|H

for every m ∈ M(H) and for every H ∈ W . It is clear that f ′ is uniquely defined by f
and that ϕ(f ′) = f . So, ϕ is an isomorphism. �

As a consequence of this adjointness we can conclude the following:

Corollary 5.5. The limit functor limWV takes injective modules to injective modules.

Proof. This follows from the adjointness property given in Proposition 5.4 and the fact
that ResWV takes exact sequences of RΓW-modules to exact sequences of RΓV-modules. �

Now we discuss some special cases of the limit functor limWV .

Example 5.6. Let V = {1} be the family formed by a single subgroup which is the trivial
subgroup and W = F be an arbitrary family of subgroups of G closed under conjugation
and taking subgroups. Modules over RΓ{1} are the same as RG-modules. Let M be an
RG-module. Then,

(lim F
{1}M)(H) ∼= HomRΓ{1}(R[G/H?],M) ∼= HomRG(R[G/H],M) ∼= MH .

It is easy to check that these isomorphisms commute with restrictions and conjugations,
so lim F

{1}M
∼= M ? as RΓ -modules where Γ = OrF G. Hence

limF{1} : RG-Mod→ RΓ -Mod

is the same as the invariant functor mapping M 7→M ?.

Another special case is the following:

Example 5.7. Let V = F be an arbitrary family of subgroups of G closed under con-
jugation and taking subgroups, and let W = {all} be the family of all subgroups of G.
Then for every RΓV-module M we have

(lim
{all}
F M)(G) ∼= HomRΓ (R[G/G?],M) ∼= HomRΓ (R,M) ∼= limFM.

So, we can write the usual limit functor as the composition

limFM = evG ◦ lim
{all}
F

where evG : RΓ{all} → R-Mod is the functor defined by evG(M) = M(G).
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We have the following easy observation for the composition of limit functors.

Lemma 5.8. Let G be a finite group and U ⊆ V ⊆ W be three families of subgroups of
G which are closed under conjugation and taking subgroups. Then we have

limWU = limWV ◦ limVU .

In particular, for any family F the composition limF ◦ limF{1} is the same as the functor

RG-Mod→ R-Mod which takes M →MG.

Proof. The first statement follows from the fact that ResWU = ResVU ResWV and the adjoint-
ness of limit and restriction functors. The second statement is clear since lim{1}M ∼= MG

for every RG-module M . �

Recall that the cohomology of group Hn(G,R) is defined as the n-th derived functor
of the G-invariant functor M → MG. So, it makes sense to look at the derived functors
of the limit functor as a generalization of group cohomology.

6. Higher Limits and relative group cohomology

Let G be a finite group and F be a family of subgroups of G closed under conju-
gation and taking subgroups. Let R be a commutative ring and Γ denote the orbit
category OrF G. For an RΓ -module M , the usual inverse limit limFM is isomorphic
to HomRΓ (R,M). Since the Hom functor is a left exact functor, the limit functor
M → limFM is also left exact. So we can define its right derived functors in the usual
way by taking an injective resolution of M → I∗ in the RΓ -module category and then
defining the n-th derived functor of the inverse limit functor as

limn
FM := Hn(limFI

∗).

This cohomology group is called the n-th higher limit of M . As a consequence of the
isomorphism in Lemma 5.1, we have limn

FM
∼= ExtnRΓ (R,M) so higher limits can be

calculated also by using a projective resolution of R (see Proposition 3.3). Higher limits
have been studied extensively since they play an important role in the calculation of
homotopy groups of homotopy colimits. For more details on this we refer the reader to
[5] and [14].

The situation with limF can be extended easily to the limit functor with two fam-
ilies. Let V ⊆ W be two families of subgroups of G which are closed under conju-
gation and taking subgroups. Note that for each H ∈ W , we have (limWV M)(H) =
HomRΓV (R[G/H]?,M), so limWV is left exact at each H, hence it is left exact as a functor
RΓV-Mod→ RΓW-Mod. This leads to the following definition.

Definition 6.1. For each n ≥ 0, the n-th higher limit (limWV )n is defined as the n-th
derived functor of the limit functor limWV . So, for every RΓV-module M and for every
n ≥ 0, we have

(limWV )n(M) := Hn(limWV I
∗)

where I∗ is an injective resolution of M as an RΓV-module.
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The special cases of the limit functor that were considered above in Examples 5.6 and
5.7 have higher limits which correspond to some known cohomology groups.

Proposition 6.2. Let G be a finite group, F be a family of subgroups of G closed under
conjugation and taking subgroups, and let M be an RG-module. Then, for every n ≥ 0,
the functor (limF{1})

n(M) is isomorphic to the group cohomology functor

Hn(?,M) : RG-Mod→ RΓ -Mod

which has the value Hn(H,M) for every subgroup H ∈ F .

Proof. By the definition given above, we have

(limF{1})
n(M) = Hn(limF{1}I

∗) = Hn((I∗)?).

So, for each H ∈ F , the n-th higher limit has the value Hn((I∗)H) = Hn(H,M). The
fact that these two functors are isomorphic as RΓ -modules follows from the definition of
restriction and conjugation maps in group cohomology. �

We also have the following:

Proposition 6.3. Let G and F be as above and let M be an RG-module. Then, for
every n ≥ 0, the higher limit limn

F(M ?) is isomorphic to the relative cohomology group
FHn(G,M).

Proof. We already observed that limn
F(M ?) ∼= ExtnRΓ (R,M ?). So, the result follows from

Theorem 1.1. �

Now, we will construct a spectral sequence that converges to the cohomology of a given
group G and which has the horizontal line isomorphic to the relative group cohomology
of G. For this we first recall the following general construction of a spectral sequence,
called the Grothendieck spectral sequence.

Theorem 6.4 (Theorem 12.10, [10]). Let C1, C2, C3 be abelian categories and F : C1 → C2
and G : C2 → C3 be covariant functors. Suppose G is left exact and F takes injective
objects in C1 to G-acyclic objects in C2. Then there is a spectral sequence with

Ep,q
2
∼= (RpG)(RqF (A))

and converging to Rp+q(G ◦ F )(A) for A ∈ C1.

Here RnF denotes the n-th right derived functor of a functor F . Also recall that an
object B in C2 is called G-acyclic if

RnG(B) =

{
G(B), n = 0
0, n ≥ 1.

Now we will apply this theorem to the following situation: Let U ⊆ V ⊆ W be three
families of subgroups of G which are closed under conjugation and taking subgroups.
Consider the composition

limW
V ◦ lim V

U : RΓU → RΓW .

By Lemma 5.8, this composition is equal to limWU . We also know from the discussion
at the beginning of the section that the limit functor is left exact and by Corollary 5.5
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we know that it takes injectives to injectives. So, we can apply the theorem above and
conclude the following:

Theorem 6.5. Let G be a finite group and U ⊆ V ⊆ W be three families of subgroups of G
which are closed under conjugation and taking subgroups. Then, there is a first quadrant
spectral sequence

Ep,q
2 = (limWV )p(limVU)q(M)⇒ (limWU )p+q(M).

The spectral sequence given in Theorem 1.3 is a special case of the spectral sequence
given above. To obtain the spectral sequence in Theorem 1.3, we takeW = {all}, V = F ,
and U = {1} and evaluate everything at G. Then, the spectral sequence in Theorem 6.5
becomes

Ep,q
2 = (limF)p(limF{1})

q(M)⇒ (lim{1})
p+q(M).

Using Propositions 6.2 and 6.3, we can replace all the higher limits above with more
familiar cohomology groups. As a result we obtain a spectral sequence

Ep,q
2 = ExtpRΓ (R,Hq(?,M))⇒ Hp+q(G,M).

Note that for q = 0, we have Ep,0
2 = ExtpRΓ (R,M ?) ∼= FHq(G,M) by Theorem 1.1. So,

the proof of Theorem 1.3 is complete.

Remark 6.6. The spectral sequence in Theorem 1.3 can also be obtained as a special case
of a Bousfield-Kan cohomology spectral sequence of a homotopy colimit. Note that since
the subgroup families that we take always include the trivial subgroup, they are ample
collections, and hence the cohomology of the homotopy colimit of classifying spaces of
subgroups in the family is isomorphic to the cohomology of the group. More details on
this can be found in [3].

Note that if we consider Ep,q
2 with p = 0, then we get

E0,q
2 = Ext0RΓ (R,Hq(?,M)) = HomRΓ (R,Hq(?,M)) = lim

←−
H∈F

Hq(H,M).

This suggests the following proposition:

Proposition 6.7. The edge homomorphism

H∗(G,M) � E0,∗
∞ � E0,∗

2
∼= lim
←−
H∈F

H∗(H,M)

of the spectral sequence in Theorem 1.3 is given by the map u→ (ResGH u)H∈F .

Proof. Note that for every H ∈ F , we can define ΓH = OrF H as the restriction of the
orbit category ΓG = OrF G to H. The spectral sequence in Theorem 1.3 for H is of the
form

Ep,q
2 = ExtpRΓH

(R,Hq(?,M))⇒ Hp+q(H,M).

Since R = R[H/H?] is a projective RΓH-module, we have Ep,q
2 = 0 for all p > 0, so the

edge homomorphism to the vertical line is an isomorphism. Now the result follows from
the comparison theorem for spectral sequences. �
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For the other edge homomorphism first observe that there is a natural homomorphism
from relative group cohomology to the usual group cohomology

ϕ : FHn(G,M)→ Hn(G,M)

defined as follows: Let P∗ be a projective resolution of R as an RG-module and Q∗
be a relative F -projective resolution of R. Since P∗ is a projective resolution and Q∗
is acyclic, by the fundamental theorem of homological algebra, there is a chain map
f∗ : P∗ → Q∗. This chain map induces a chain map HomRG(Q∗,M) → HomRG(P∗,M)
of cochain complexes and hence a group homomorphism ϕ : FHn(G,M) → Hn(G,M).
The chain map f∗ is unique up to chain homotopy so the induced map ϕ does not depend
on the choices we make.

Alternatively, one can take an injective resolution I∗ of M as an RG-module and an
injective resolution J∗ of M ? as an RΓ -module. Since (I∗)? is still an injective resolution
(but not exact anymore), we have a chain map J∗ → (I∗)? of RΓ -modules which induces
the identity map on M ?. Applying the functor HomRΓ (R,−) to this map, we get a map
FHn(G,M) → Hn(G,M). Note that this map is the same as the map ϕ defined above.
One can see this easily as a consequence of the balancing theorem in homological algebra
which allows us to calculate ext-groups using projective or injective resolutions. Now we
can prove the following:

Proposition 6.8. The edge homomorphism

FH∗(G,M) ∼= E∗,02 � E∗,0∞ � H∗(G,M)

of the spectral sequence in Theorem 1.3 is given by the map ϕ defined above.

Proof. Let M → I∗ be an injective resolution of M as an RG-module. Applying the
limit functor limF{1} to I∗, we get a cochain complex (I∗)? of RΓ -modules. Note that by

construction there is a chain map M ? → (I∗)? where M ? is a chain complex concentrated
at zero. In the construction of Grothendieck spectral sequence, one takes a injective
resolution of the cochain complex (I∗)? to obtain a double complex C∗,∗ where for each q,

0→ (Iq)? → C0,q → C1,q → · · ·

is an injective resolution of (Iq)?. Let M ? → J∗ be an injective resolution of M ? as an
RΓ -module. By the fundamental theorem of homological algebra, there is chain map
J∗ → C∗,∗ which comes from a chain map towards the bottom line of the double complex.
When we apply limF to this chain map, we obtain a map of cochain complexes limF J

∗ →
limF C

∗,∗ and the edge homomorphism is the map induced by this chain map. Since the
total complex of the double complex C∗,∗ is chain homotopy equivalent to (I∗)?, we obtain
that the edge homomorphism is induced by a chain map limF J

∗ → limF(I∗)? = (I∗)G

where I∗ is an injective resolution of M as an RG-module and J∗ is an injective resolution
of M ? as an RΓ -module. Note that this chain map is defined in the same way as the chain
map that induces the map ϕ. Since any two chain maps J∗ → (I∗)? are chain homotopy
equivalent, the edge homomorphism is the same as the map ϕ. �
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Corollary 6.9. Let R0 denote the RΓ -module with the value R at 1 and the value zero
at every other subgroup. Then the edge homomorphism

Eq,0
2 = ExtqRΓ (R,M ?)→ Hq(G,M) ∼= ExtqRΓ (R0,M

?)

is the same as the map induced by the RΓ -homomorphism R0 → R which is defined as
the identity map at the trivial subgroup and the zero map at every other subgroup.

Proof. We already showed above that the edge homomorphism is the same as the map
ϕ which is a map ExtqRΓ (R,M ?) → ExtqRΓ (R0,M) under natural identifications. In the
definition of ϕ we take an F -projective resolution Q∗ and a projective resolution P∗ of R
and define ϕ as the map induced by a chain map f∗ : P∗ → Q∗. Note that we can consider
P∗ also as a projective resolution of R0 as an RΓ -module and we can take Q∗ as S∗(1) for
some projective resolution S∗ of R as an RΓ module. So, the chain map f∗ can be taken
as g∗(1) for a chain map g∗ : P∗ → S∗ of RΓ -modules which cover the map R0 → R. So
the proof follows from this observation. �

The spectral sequence given in Theorem 1.3 has some interesting connections to essential
cohomology which is defined as follows: Let G be a finite group and F denote the family
of all proper subgroups (including the trivial group but not the group G itself). Then the
kernel of the edge homomorphism∏

H∈F

ResGH : H∗(G,H) −→ lim
←−
H∈F

H∗(H,M)

is called the essential cohomology of G and it is denoted by Ess∗(G). We see that the
essential cohomology classes are exactly the cohomology classes coming from Ep,q

∞ with
p > 0. Essential cohomology classes coming from the vertical line Ep,0

∞ with p > 0 are
called relative essential cohomology classes and the subring generated by these cohomology
classes is called the relative essential cohomology. Note that relative essential cohomology
classes are the essential cohomology classes can be described as extension classes of F -
split extensions. It is interesting to ask how much of the essential cohomology comes from
relative essential cohomology classes. This was a question that was raised in [16]. The
spectral sequence given in Theorem 1.1 can be used to study these types of questions. We
only discuss a simple case here.

Example 6.10. Let G = Z/2×Z/2 and F = {1, H1, H2, H3} be the family of all proper
subgroups. Let R = F2. Then, the spectral sequence of Theorem 1.3 with M equal to the
trivial module R has the values

Ep,q
2 = ExtpRΓ (R,Hq(?, R)) ∼= ⊕3R

for all q > 0 and p ≥ 0. At q = 0, the dimensions of Ep,q
2 are given by the sequence

(1, 0, 1, 3, 5, 7, . . . ) by the computation in Section 4. We claim that in this spectral se-
quence the horizontal edge homomorphism is the zero map, i.e., all the relative group
cohomology on the horizontal line dies at some page of the spectral sequence. To see this,
first observe that by Corollary 6.9, the horizontal edge homomorphism is given by the
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map ϕ : ExtqRΓ (R,R)→ ExtqRΓ (R0, R). Note that for some i ∈ {1, 2, 3}, the map R0 → R
can be written as a composition

R0
γi−→RHi

τi−→R

where γi is the map we defined in Section 4 and τi : RHi
→ R is the RΓ -module ho-

momorphism which is defined as the identity map at subgroups Hi and 1 and the zero
map at other subgroups. From this we can see that the map ϕ factors through the map
τ ∗i : ExtqRΓ (R,R) → ExtqRΓ (RHi

, R). In the computation in Section 4, we have seen that
the map

π∗ : ExtqRΓ (R,R)→ ExtqRΓ (⊕RHi
, R)

is the zero map for q ≥ 1. So, τ ∗i is also the zero map for all i ∈ {1, 2, 3}. This gives that
the horizontal edge homomorphism is zero. This shows in particular that for this group
the relative essential cohomology is zero.
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