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Electromagnetic scattering from a cylindrical reflector surface having an arbitrary
conic section profile is studied. We assumed an electrically thin layer antenna
illuminated by a complex line source in E-polarization mode. Our boundary value
formulation, without loss of generality, involves an integral equation approach
having impedance-type thin-layer boundary conditions. For simplicity, we also
considered both faces of the reflector of the same uniform impedance value. Our
computation employs the Method of Analytical Regularization (MAR) technique:
the integral equations are converted into the discrete Fourier transform domain
yielding two coupled dual series equations, which are then solved by the Fourier
inversion and Riemann Hilbert Problem techniques. We demonstrate the accuracy
and the convergence behaviors of our numerically solved MAR results that can
serve as an accurate benchmark for comparison with widely used results obtained
by approximate boundary conditions.

Keywords: reflector surface; numerical modeling; regularization; scattering

1. Introduction

Reflectors with impedance surfaces have important applications in electromagnetics and
optics. These structures cannot be simulated using the perfect electric conductor (PEC)
boundary condition. Also imperfect micro-mirrors have important usage in the optical
systems because the PEC conditions are not valid at optical wavelengths, so suitable
boundary conditions have to be defined. Thus, modeling the effect of imperfect metal
on the radiation performance is critical.

Many single and dual reflector antenna systems are studied in the literature,[1,2]
such as Cassegrain and Gregorian dual systems of various shaped reflector antennas.
The main dishes of reflector antennas are generally electrically large. Even at frequen-
cies where the PEC condition for a metal reflector is valid, the regions close to the rim
of the reflector should be loaded with the material of proper impedance [3] as to raise
the overall radiation performance. If the metal reflector surface has a low conductivity,
then the impedance boundary conditions should be imposed. Hence, the impedance
boundary conditions are also imposed if there is rust or a thin ice layer on the PEC
reflector.
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In the full-wave modeling of electromagnetic scattering problems, the finite-difference
time-domain method,[4] and finite element method [5] are commonly used. But
especially for larger reflectors, one needs huge number of unknowns to discretize all
physical domains around the reflector and has a problem of satisfying the radiation
condition. Another formulation is the singular integral equation (SIE) with proper
boundary conditions such that the radiation condition is automatically satisfied and the
number of unknowns is reduced. Another useful technique is so-called method of
moments (MoM) with local or global basis and testing functions. The MoM is already
applied to analyze the PEC reflector antennas as in [6,7]. A slightly modified MoM
procedure can be applied to the impedance-type boundaries of surfaces.[8] Yet, the MoM
convergence is not guaranteed for electrically large structures and also there is a strong
dependence on the implementation as such non-realistic computation time may occur.
Thus, this modified method is more convenient for small/medium size reflectors.

The exact formulation and the studies of its asymptotic behavior of the impedance
reflector problems can also be carried on such as scattering from a 2D circularly curved
strip with impedance surfaces.[9,10] It was shown in [11] that if the region close to the
reflector rim is loaded by an impedance surface, then overall radiation pattern is
improved. The geometrical theory of diffraction is also used for canonical problems of
impedance half planes and wedges.[12,13] These studies utilized the plane wave
excitation, but the Gaussian beam excitation is also employed for an impedance
half-plane problem.[14] Further improvement is obtained by considering the scattering
from a cylindrical parabolic impedance surface.[15] Nevertheless, the results of all
these studies on impedance surfaces are approximate. Consequently, the beam scattering
from the impedance reflector is indeed an important problem and an accurate solution
can be useful for generating accurate benchmark data.

A remarkable numerical approach is the analytical regularization (MAR) via SIE’s
[16], wherein the kernel of the SIE is separated into two parts, the singular part
(usually static) and the remainder. Hence, the choice of the global basis functions that
are orthogonal eigenfunctions of the singular part enables us to perform analytical
inversion using special methods like Riemann Hilbert problem (RHP) technique or
Fourier inversion procedure. The remainder leads to the Fredholm second-kind matrix
equation system resulting in a convergent numerical solution. This technique is
combined with the dual series equation approach that was presented in [17] for a 2D
circular screen. A similar approach can be applied to 2D non-circular reflector antenna
system or more complicated near-field problems.[18–24] The complex source point
(CSP) feed was used to simulate antenna excitation.

Imperfect reflector problem can be analyzed with the SIE-MAR technique. A
circular 2-D reflector with a uniform resistivity illuminated by plane waves was studied
in [25]. Also non-uniform resistivity version of the same geometry [26] was modeled
under the CSP-beam illumination. 2D scattering problem with a non-circular contour
with uniform and non-uniform resistive surfaces is studied in [27]. This study is
targeted to simulate a parabolic reflector surface excited by a CSP-type directive beam.
Then, the H-polarization case of the similar problem is solved in [28] for the
non-uniform resistive reflector surface. However unlike,[27] a numerical solution of the
elliptic-profile reflectors has been obtained. In the optical frequency range, this study
has already an application in the design of micro-size metallic mirrors used in the
pump-radiation focusers for the semiconductor lasers.

The MAR technique with dual series equations is also used in the accurate numerical
simulation of the resistive or impedance-type flat periodic strip gratings.[29,30] Thanks to
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these studies that some reference data are provided as such assessment of the accuracy of
any solution can be made. In [31], a similar MAR approach is applied to the light
scattering and absorption by a flat infinite grating of thin silver nanostrip.

In this study, 2D non-circular reflector with the impedance surface fed by a CSP
directive beam is numerically simulated using SIE-MAR technique together with the
dual series formulation. A thin layer boundary conditions presented in [32] is applied
using the electrical and magnetic resistivity. With this approach, two systems of dual
series equations are obtained. The first one is regularized by the Fourier inversion
procedure and the second one by the RHP technique. Then, overall Fredholm
second-kind nature is constituted by the remaining parts. Also, we get coupled
algebraic equations different from that of a flat case due to the curvature of the reflector
surface. We get a convergent solution with a controlled accuracy. We also compared
our results with the MoM solutions for a circular profile. We observed that the
presented regularized solution has higher accuracy and convergent nature when
compared to that of the ordinary MoM and a faster running time is achieved.

We have investigated numerically various radiation characteristics. Here, we used
only a single frequency incident wave with suppressed e−iωt time convention.
Dispersive effects, if any, in the permittivity and permeability of the reflector material
can be included by considering the solution in a band of frequencies. Mainly
impenetrable-type surface is considered here like a homogeneous good conductor and it
almost totally reflects the whole incident power. In the case of dispersion, the
reflectivity should change, but then the layer becomes penetrable. This occurs for
metals beyond a certain frequency i.e. plasma frequency. In such frequency region, the
reflectivity reduces and thin metal layer becomes transparent like a dielectric material
with frequency-depended permittivity. In practice, this plasma frequency is very high
close to the optical range for all good metals. However, some semiconductors present
plasma behavior in the terahertz band which can be realized with today’s technology.
These semiconductor reflectors are micrometer size which belong to the quasi optical
range. Present formulation is capable of solving for reflectors with arbitrary material
properties under the thin layer approximation though we concentrated here only on the
impenetrable surfaces.

2. Formulation

The 2D reflector surface M can be an arbitrary conic section with a front-fed symmetrical
orientation (Figure 1). Both sides of the reflector surface are assumed to have the same
uniform impedance. The overall thickness of the reflector is h and it is electrically small
i.e. h << λ. Reflector conic section can be elliptic (0 < e < 1), parabolic (e = 1) or
hyperbolic (1 < e < ∞) depending on its eccentricity. In making out our formulation, the
open arc of the reflector contour M is extended to a complete closed contour C via
complementary circular arc S of radius a.

The requirements for a unique solution are the satisfaction of Helmholtz equation,
Sommerfeld radiation condition far from the reflector and the source, the impedance
boundary condition on M and edge condition. These conditions warrant uniqueness of
the solution.[33]

The total tangential electric and magnetic fields on both sides of the thin layer can
be stated as

E�
T ðr~Þ ¼ Esc�

T ðr~Þ þ Ein
T ðr~Þ (1)

362 F. Kuyucuoglu et al.
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H�
T ðr~Þ ¼ Hsc�

T ðr~Þ þ Hin
T ðr~Þ (2)

where Esc�
T and Hsc�

T represent scattered partial fields and Ein
T , H

in
T represent incident

fields. Also, the superscripts “±” indicate the front (+) and back (−) reflector faces. The
subscript “T” denotes the tangential field. Here, we will try to solve the electric
polarization case as such the E-field is taken along the z-direction.

The general impedance boundary conditions for a thin surface can be written as
[32];

½E~þ
T ðr~Þ þ E~

�
T ðr~Þ�=2 ¼ RTJ~Zðr~Þ þ W ½E~þ

T ðr~Þ � E~
�
T ðr~Þ� (3)

½H~þ
T ðr~Þ þ H~

�
T ðr~Þ�=2 ¼ STM~T ðr~Þ � W ½H~þ

T ðr~Þ � H~
�
T ðr~Þ� (4)

where RT and ST are defined as RT = RZ0 and ST = S/Z0. The properties of the thin
layer are characterized by the electrical resistivity RT, the magnetic resistivity ST, and
the cross resistivity W. The free space intrinsic impedance is denoted as Z0. Also, the
electric and magnetic surface currents are given by

J~Zðr~Þ ¼ n̂ðr~Þ � ½H~�
T ðr~Þ � H~

þ
T ðr~Þ� (5)

M~T ðr~Þ ¼ �n̂ðr~Þ � ½E~�
T ðr~Þ � E~

þ
T ðr~Þ� (6)

where n̂ is the unit normal vector. The above boundary conditions are derived for infinite
slab geometries and then they can approximately be used for any smoothly curved
surfaces. The aforementioned boundary conditions represent both the penetrable and
impenetrable thin layers, yet we consider only the impenetrable case. The general thin
layer boundary conditions are also equivalent to the two-sided Leontovich boundary
conditions [32] with the surface impedances Z+ and Z−. Hence, we can obtain that

RT ¼ ZþZ�

Zþ þ Z� ; ST ¼ 1

Zþ þ Z� ; W ¼ 1

2

Zþ � Z�

Zþ þ Z� ; Zþ þ Z� 6¼ 0: (7)

Figure 1. Problem geometry.
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When the surface impedance of the both sides is equal i.e. Z+ = Z− = Z, then the cross
resistivity W reduces to zero. We used this simplified case for our numerical simulation;
a uniform and equal impedance on both sides of the reflector surface. The impedance
of the thin reflector surface has been modeled in two different ways in our formulation.
First, we assumed a thin layer consisting of a homogeneous and a good conducting
metal having a thickness “h” greater than skin depth “δ”. The surface impedance is
given by Z ¼ ð1þ jÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xl=2r
p

where µ is the permeability and σ is the conductance.
The thickness is in between d � h � k.

For a general homogeneous material, the permittivity can also be given by
ɛ = ɛ0(1 + σ/iωɛ0) and also the conductivity σ may depend on the frequency as
σ = σ0/(1 − iωτ) where τ is the relaxation time and σ0 is the dc conductance. For the
frequency range satisfying the high-frequency assumption denoted as ωτ >> 1, the
permittivity ε is obtained as e ¼ e0ð1� x2

p=x
2Þ where ωp is the plasma frequency.[34]

When ω < ωp, the incident-wave is strongly reflected by the material and the
transmitted wave is attenuated rapidly. But if ω > ωp, then the wave inside the material
becomes propagating. This dispersion relation is only valid if our high-frequency
assumption is satisfied in the neighborhood of ω = ωp. Therefore, one can say that
good metals present a plasma behavior beyond some frequencies in the optical range.
This plasma frequency is directly related to the volume electron density of the material.
Therefore, some materials like a semiconductor having lower electron density than that
of a metal may have plasma frequency in the terahertz band. For this reason, semicon-
ductors can be used in quasi-optical systems like micrometer size transparent mirrors.

Except for the homogeneous material case, another application is an infinitely thin
PEC surface, both faces coated with the same magneto-dielectric thin layer. Thus, the
surface impedance of the grounded material layer is given as follows:

Z ¼ �i Z0

ffiffiffiffiffi
lr
2r

r
tanð ffiffiffiffiffiffiffiffiffiffiffi2r lr

p
k0hÞ (8)

where k0 is the free space wavenumber, h is the thickness of the coating, and ∊r and μr
are the relative permittivity and permeability, respectively. This formula is valid for a
thin and high contrast coatings (k0 h << 1, |∊rµr| >> 1). The incident electric field and
the magnetic field will be taken as the beam-like form generated by the CSP method
given by

Ein
Z ðr~Þ ¼ H ð1Þ

0 ðk0jr~� r~sjÞ Hin
T ðr~Þ ¼

1

ik0Z0

@Ein
Z ðr~Þ
@n

(9)

where r~ is the observation vector and r~s is the complex source position vector obtained
from the real source position vector r~0ðx0; y0Þ according to the CSP method. Also in this
case, the real position coordinates are defined as (x0 = L, y0 = 0) i.e. feed on-focus case.
The complex source position vector is defined as r~s ¼ r~0 þ ib~ that can be written as
r~s ¼ ðx0 þ ib cos b; y0 þ ib sin bÞ expression where b and β are aperture width and beam-
aiming angle, respectively. This incident field expression has two branch points; which
dictates that a proper branch cut should be selected. Note that the magnitude of the
position vector of the CSP feed is complex-valued, as such rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � b2 þ i2Lb cos b

p
but, only Re (rs)>0 branch should be chosen for a physically meaningful case. Also, the
complex angle of the CSP feed is given as θs = cos−1((L + ib cos β)/rs). The maximum
radiation is along φ = β direction. This field produces a directive beam and it is almost
Gaussian near this direction.
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3. Derivation of equations

The scattered tangential electric and magnetic fields just on the front and back side of
the reflector can be written using the radiation integrals. These radiation integrals are
obtained using the auxiliary vector potential-based formulation as given in [18,19]. The
overall effects of the electric and magnetic surface currents are seen in these radiation
fields given below:

Esc�
z ðr~Þ ¼ � 1

2
MT ðr~Þ þ ik0Z0

Z
M
JZðr~0ÞGðk0jr~� r~0jÞdl0 �

Z
M
MT ðr~0Þ @

@n0
Gðk0jr~� r~0jÞdl0 (10)

Hsc�
T ðr~Þ ¼ � 1

2
JZðr~Þ þ

Z
M
JZðr~0Þ @

@n
G0ðk0jr~� r~0jÞdl0 þ ik0

Z0

Z
M
MT ðr~0Þ cosðnðr~Þ

� nðr~0ÞÞGðk0jr~� r~0jÞdl0 þ 1

ik0Z0

Z
M
MT ðr~0Þ @2

@l@l0
Gðk0jr~� r~0jÞdl0 ð11Þ

where the free space Green’s function is Gðk0jr~� r~0jÞ ¼ i=4H ð1Þ
0 ðk0jr~� r~0jÞ. When the

observation point approach to the surface of the reflector from inner and outer region,
terms ±1/2Jz and ±1/2MT indicate the vicinity of singularity in the radiation integrals.
Then, applying the initially defined boundary conditions with the total fields for both
sides, one can obtain the following electric-field integral equations (EFIE).

ik0Z0

Z
M
JZðr~0ÞGðk0jr~� r~0jÞdl0 �

Z
M
MT ðr~0Þ @

@n0
Gðk0jr~� r~0jÞdl0 þ Ein

z ðr~Þ ¼ RTJZðr~Þ; r~ 2 M ð12Þ

Z
M
JZðr~0Þ @

@n
Gðk0jr~� r~0jÞdl0 þ ik0

Z0

Z
M
MT ðr~0Þ cosðnðr~Þ � nðr~0ÞÞGðk0jr~� r~0jÞdl0

þ 1

ik0Z0

Z
M
MT ðr~0Þ @2

@l@l0
Gðk0jr~� r~0jÞdl0 þ H inc

T ðr~Þ ¼ STMT ðr~Þ; r~ 2 M ð13Þ

In the above EFIEs, the formulation has more complicated form for a curved layer than
that of a flat case because the curved layer constitutes a coupled integral equation
system. The flat periodic impedance grating problem is treated in [29,30] using Floquet
series-based mode matching approach to get an accurate solution.

We made a regularized numerical solution different from the conventional MoM
discretization solution. The MoM algorithm is not usually fast enough when we solve
large reflector surfaces with high accuracy. In our computation, to obtain a convergent,
accurate, and faster algorithm, we used two different MAR regularization procedure for
the first and the second integral equations together with the Fourier inversion procedure
and the RHP technique, respectively.

Suppose, now that the arbitrary conic section profile can be characterized by
parametric equations in terms of the polar angle x = x(φ), y = y(φ) on M where
�ha\u\ha. We denote the differential lengths in the tangential direction as
@l ¼ abðuÞ @u. Here, β(φ) = r(φ)/(a cos γ(φ)), r(φ) is the length of the position vector
defined on M (metal part) starting from the origin, ξ(φ) is the angle between the normal
and the x-direction, γ(φ) is the angle between the normal and the radial direction, and a is
the radius of the auxiliary circle. We set surface-current densities ~JZ and ~MT to zero on S
(slot). Thus, we can modify the above EFIEs on the complete contour C made of M and S
as such the corresponding angle φ spans the whole period that is φ ∊ [0, 2π]. Multiplying
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each term with β(φ) in both the integral equations in (12) and (13) and defining
X ðuÞ ¼ ~JZðuÞbðuÞ, we can obtain the following dual equation system from the first one

ik0aZ0

Z 2p

0
X ðu 0ÞGðk0jr~ðuÞ � r~0ðu 0ÞjÞbðuÞdu0 �

Z 2p

0

~MT ðu0Þ @

@n0
Gðk0jr~ðuÞ

� r~0ðu0ÞjÞabðuÞbðu0Þdu 0 þ Ein
z ðuÞbðuÞ ¼ RTX ðuÞ; u 2 M ð14Þ

0 ¼ X ðuÞ u 2 S (15)

The second one produces the following dual equation system,Z 2p

0
X ðu0Þ @

@n
Gðk0jr~ðuÞ � r~0ðu0ÞjÞabðuÞdu0 þ ik0a

Z0

Z 2p

0

~MT ðu0Þ cosðnðuÞ

� nðu0ÞÞGðk0jr~ðuÞ � r~0ðu0ÞjÞbðuÞbðu0Þdu0 þ a

ik0Z0

Z 2p

0

~MT ðu0Þ @2

@l@l0
Gðk0jr~ðuÞ

� r~0ðu0ÞjÞbðuÞbðu0Þdu0 þ H inc
T ðuÞbðuÞ ¼ ST ~MT ðuÞbðuÞ; u 2 M ð16Þ

0 ¼ ~MT ðuÞ u 2 S (17)

To discretize the set of dual equation systems given in (14), (15) and (16), (17), the entire
domain exponents are used. The surface current densities are expanded as follows

X ðuÞ ¼ 2

ipZ0

X1
n¼�1

xne
inu; ~MT ðuÞ ¼ 2

ip

X1
n¼�1

mne
inu u 2 C: (18)

The incident electric and magnetic field expressions Ein
z bðuÞ and H inc

T bðuÞ on C can be
represented by Fourier series (FS) coefficients feincn g1n¼�1 and fzincn g1n¼�1, respectively,
where “e” is not to be mixed with the Euler number e. Kernel functions in the integral
equation systems given above should be expanded into double FS whose coefficients
calculated numerically. To perform more economic and easier computation, we extract
out singularities. So we add to and subtract from original kernels similar functions of
well behaved in singularity that are given at the full auxiliary circle having the radius
a. The subtracted function forms can be written as

H1ðu;u0Þ ¼ H ð1Þ
0 ðk0RÞ � H ð1Þ

0 ð2k0a sin jðu� u0Þ=2jÞ (19)

H2ðu;u0Þ ¼ @H ð1Þ
0 ðk0RÞ
@n0

abðu0Þ � k0a sinðjðu� u0Þ=2jÞH ð1Þ
1 ð2k0a sin jðu� u0Þ=2jÞ (20)

H3ðu;u0Þ ¼ @H ð1Þ
0 ðk0RÞ
@n

abðuÞ þ k0a sinðjðu� u0Þ=2jÞH ð1Þ
1 ð2k0a sin jðu� u0Þ=2jÞ (21)

H4ðu;u0Þ ¼ bðu0ÞbðuÞ cos½nðuÞ � nðu0Þ�H ð1Þ
0 ðk0RÞ � b2ðuÞH ð1Þ

0 2k0a sin
ju� u0j

2

� �
: (22)

These new functions show regular behavior as φ′ → φ. The double FS coefficients of
these functions can be written h1nm; h

2
nm; h

3
nm; and h

4
nm in the same order. Also the
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curvatures of M and S are matched at the connection points so the functions H1(φ, φ′),
H4(φ, φ′), and their first derivatives with respect to φ and φ′ are continuous functions
on the whole C. Their second derivatives with respect to φ and φ′ have only
logarithmic singularity and hence belong to L2. Therefore, their FS coefficients decay
as O(|n|-1/5−ɛ|m|-1/5−ɛ) on the curve C. The other two functions H2(φ, φ′) and H3(φ, φ’),
and their derivatives have no singularity. So, we expect them to decay faster. The
corresponding FS coefficients can be computed by FFT algorithm efficiently and this
provides us to solve reasonably larger geometries.

After substituting all the above functions in the Fourier series form into the integral
equation (14) and (15) system and then evaluating the integrals, we obtain

xmþ k0a

RT

pZ0
2

X
n

xn
X
p

Q1
p�mh

1
pð�nÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}P

n
xnA1

mn

þ k0a

RT

pZ0
2

X
n

xnJnðk0aÞH ð1Þ
n ðk0aÞQ1

n�m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}P
n
xnA2

mn

þ i

RT

pZ0
2

X
n

mn

X
p

Q1
p�mh

2
pð�nÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}P

n
mnB1

mn

þ k0a

RT

ipZ0
2

X
n

mnðJ 0nðk0aÞH ð1Þ
n ðk0aÞ þ Jnðk0aÞH ð1Þ0

n ðk0aÞÞQ1
n�m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}P

n
mnB2

mn

¼ i

RT

pZ0
2

� �X
n

eincn Q1
n�m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Tm

ð23Þ

where Q1
n�m ¼ 1

2p

R ha
�ha

bðuÞeiðn�mÞudu. The IE system given in (14) and (15) are
transformed to the dual-series form and it can be readily inverted by Fourier inversion
technique as shown previously for decoupled single equation.[27] Here, RT is the
regularization parameter that should not be zero to form the Fredholm second-kind
behavior of the equation.

Thus, the IE system given in (16) and (17) is also converted to the dual-series form
using the FS expansions of all functions. Using the asymptotic behavior of cylindrical
functions, we can reduce this dual series equation to a well-known canonical form as
presented in Appendix. The obtained canonical dual series equation can be written asX
n

mnjnjeinu ¼�
X
p

mp ½ipjpj2Jpðk0aÞH ð1Þ
p ðk0aÞ � jpj�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dp

eipu � ip
X
p

eipup
X
n

mnnh
1
pð�nÞ

þ ipðk0aÞ2
X
p

eipu
X
n

�bp�nmnJnðk0aÞH ð1Þ
n ðk0aÞ

þ ipðk0aÞ2
X
p

eipu
X
n

mnh
4
pð�nÞ þ pðk0aÞ

X
p

eipu
X
n

xnh
3
pð�nÞ

� ðk0aÞ2p
X
p

xpðJ 0pðk0aÞH ð1Þ
p ðk0aÞ þ Jpðk0aÞH ð10Þ

p ðk0aÞÞeipu

þ pk0aZ0
X
p

zincp eipu þ ik0a2Z0ST
X
p

eipu
X
n

mnQ
2
p�n; u 2 M ð24Þ
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X
n

mne
inu ¼ 0; u 2 S (25)

Then, the resultant matrix equation is written as explained in Appendix:

mm þ
X
n

mnDn~Tmn|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}P
n
mnC1

mn

þ ip
X
n

mn n
X
p

ph1pð�nÞ~Tmp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}P
n
mnC2

mn

� ipðk0aÞ2
X
n

mnJnðk0aÞH ð1Þ
n ðk0aÞ

X
p

�bp�n
~Tmp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}P

n
mnC3

mn

� iðk0aÞ2p
X
n

mn

X
p

~Tmph
4
pð�nÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}P

n
mnC4

mn

þ pðk0aÞ2
X
n

xn~TmnððJ 0nðk0aÞH ð1Þ
n ðk0aÞ þ Jnðk0aÞH ð1Þ0

n ðk0aÞÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}P
n
xnD1

mn

� pk0a
X
n

xn
X
p

~Tmph
3
pð�nÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}P

n
xnD2

mn

� ik0a2Z0ST
X
n

mn

X
p

~TmpQ
2
p�n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}P

n
mnC5

mn

¼ ðpk0aÞZ0
X
n

~Tmnz
inc
n|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Em

ð26Þ
where β2(φ) and β(φ) are represented by FS coefficients �bt’s and Q2

t in FS form with
the sub-indices “t”. In equation (26), the MAR method is used for the regularization.
The DSE given in equations (24) and (25) are solved by the RHP technique. This is
equivalent to the inversion of the more singular part of the original operator by
semi-inversion procedure. Finally, an algebraic equation system is also obtained with
the other remaining parts.

The algebraic equations in (23) and (26) can be considered as the coupled equation
system. Then, combining them leads the following matrix equation:

xm
mm

� �
|fflfflffl{zfflfflffl}

ym

þ A1
mn þ A2

mn B1
mn þ B2

mn
D1

mn þ D2
mn C1

mn þ C2
mn þ C3

mn þ C4
nm þ C5

mn

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Zmn

xn
mn

� �
|fflffl{zfflffl}

yn

¼ Tm
Em

� �
|fflffl{zfflffl}

Pm

: (27)

Large index assumptions for cylindrical functions enable us to prove thatP1
m;n¼�1 jZmnj2\1. By the similar treatment, we can find that

P1
m¼�1 jPmj2\1

provided that the branch cut associated with the CSP aperture does not cross the reflec-
tor contour M. In this case, the matrix equation system given in (27) is of the Fredholm
second kind. Hence, the Fredholm theorems guarantee the existence of the unique exact
solution and the convergence of approximate numerical solution can be obtained with
progressively larger sizes Ntr.

4. Radiation characteristics

The scattering characteristics of an impedance reflector illuminated by the E-polarized
CSP feed are determined by the far-zone field radiation pattern. Since the CSP satisfies
the radiation condition, we can conveniently include its radiation pattern in the total field,

Ezðr~Þ ¼ ½/inðuÞ þ /scðuÞ�
2

ipkr

� �1=2

eikr (28)
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/inðuÞ ¼ ekb cosðu�bÞ (29)

/scðuÞ ¼ � k0a

4

� ��
Z0

Z 2p

0
X ðu0Þe�ikr0 cosðu�u0Þdu0

�
Z 2p

0

~Mtanðu0Þ cosð�uþ u0 � c0Þe�ikr0 cosðu�u0Þbðu0Þdu0
	

ð30Þ

It is assumed that the feed is located at the focus point and the surface current densities
X(φ) and ~MtanðuÞ are expanded as the FS form given in the Equation (18). The total
power radiated by the CSP feed in the presence of reflector is

PradðRT ; ST Þ ¼ 1

Z0pk0

Z 2p

0
j/inðuÞ þ /scðuÞj2du: (31)

The total radiated power is a function of the reflector resistivities RT and ST as well as
the geometric parameters of the source and the reflector. Then, the overall directivity
function can be obtained as

DðuÞ ¼ 2p
j/inðuÞ þ /scðuÞj2R 2p

0 j/inðuÞ þ /scðuÞj2du
(32)

The forward directivity value can be obtained from this function by choosing as φ = π.

5. Numerical results

We checked our formulation against various parameters when reproducing the radiation
characteristics. To compare our results, we have also calculated the fields using MoM.
The MoM for a circular profile is applied here using the volume equivalence theorem-
based approach. The thin circular reflector layer is discretized by circular volumetric
meshes and then point-wise collocation is used. The MoM is in fact slower in our cir-
cular profile and even slower for an arbitrary profile. When we compute the Fourier
coefficients of our defined functions, we used Fast Fourier Transform (FFT) algorithm
with 2048-points. The FFT approach enables us to solve electrically large reflectors
within a reasonable time. To generate all our numerical results we have used a desktop
PC core i-5 computer with 4 GB RAM and Windows 7 operating system.

The accuracy and convergence of our formulation can be checked using the norm
expression of the relative error in the directivity of an overall reflector antenna as
DD ¼ ðjDNtrþ1 � DNtr jÞ:ðDNtÞ�1 where Ntr is the truncated value of the matrix equation
system. Figure 2(a) demonstrates the directivity variation with respect to Ntr for the
MAR and the MOM cases. This figure is obtained for a highly conductive surface close
to the PEC one. The directivity for both cases converges to the same value as
truncation number increases. Figure 2(b) shows relative error in directivity i.e. ΔD vs.
truncation number. Even if we expect the worse convergence case in the MAR due to
the a very small surface impedance making the first IE system badly-conditioned, we
obtain that the MAR-based results converge better than the MOM results as such we
get two-digit differences in the accuracy.

Figure 3 presents the variation of the directivity and its relative error vs. Ntr for
different eccentricities (e). In Figure 3(a), the directivity becomes larger for parabola and
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Figure 2. (a) Directivity, (b) directivity error comparisons as functions of truncation number for
the MAR and the MOM cases; the other parameters are f = 20λ, d = 25λ, e = 0(circle), kb = 5,
σ = 1.03 × 107 S/m, RT/Z0 = (2.6 − 2.6i) × 10−5, and STZ0 = (4.8 + 4.8i) × 103.

Figure 3. (a) Directivity, (b) directivity error comparisons as functions of truncation number
with different eccentricity factors for the MAR cases. The problem parameters are given as
Z = −i × 0.25 Z0, f = 10λ, d = 20λ, and kb = 5.
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it converges for various e values. In Figure 3(b), the relative error variation in directivity
with the truncation number Ntr is given for three different eccentricities. We obtain
numerical convergence for all eccentricities for sufficiently large truncation number.

The relative error in electric current density (J ) and magnetic current density (M )
are demonstrated in Figure 4(a) and (b), respectively. The relative errors for J and M
imply the following maximum norm expressions that can be written as
DJ ¼ max jxNtþ1

n � xNtr
n jðmax jxNtr

n Þ�1 and DM ¼ max jmNtrþ1
n � mNtr

n jðmax jmNtr
n jÞ�1. The

relative errors exhibit a decaying nature for each eccentricity and we notice that the
larger eccentricity converges more slowly. This is due to the overall scale of our
geometry becoming larger when completing the circular parts.

Figure 5(a) shows the radiation pattern comparison results of a highly conductive
surface obtained by the method: the MAR, the MOM, and the PEC. We clearly see that
while the MAR solution almost overlaps with the PEC result, the MOM result deviates
in the backside region. Yet, by decreasing the mesh size in the MoM, backside pattern
of the MOM converges very slowly to the PEC result not shown in the figure. In
Figure 5(b), we computed the physical optics (PO) for the impedance surface and while
it is an asymptotic technique, compared to our MAR calculation, it yields consistent
results. We show the radiation patterns in Figure 5(c) obtained by our MAR for
homogeneous material-type reflector surfaces. The results show that obtained patterns
do not change appreciably by varying realistic material conductivities, besides we can
see a small deviation only for a very low conductivity at the back side lobes.

The radiation patterns with different eccentricities are shown in Figure 6 for various
surface impedances. We can see that the parabola has the lowest main beam width as
expected. Also, as the surface impedance increases from –i0.025Z0 to –i0.5Z0,

Figure 4. Relative error in (a) electric current density (J) and (b) magnetic current density (M)
as functions of truncation number with different eccentricity factors for the MAR case. The
problem parameters are given as Z = −i × 0.25 Z0, f = 10λ, d = 20λ, and kb = 5.
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deviations occur from the PEC case especially at the back side lobe region. This type
of impedance physically means that the coated PEC surfaces are lossless dielectric
material and support surface waves. Hence, we say that the increasing surface waves
produces higher edge diffraction mechanism leading to an increasing radiation level for
larger impedances.

We also computed another type of electrically and magnetically coated PEC
reflector with lossy surfaces. For example in Figure 7, we show radiation patterns for
different electric-type materials with various thicknesses and the deviations from the
PEC case increase with the increasing thickness. And this deviation is higher for the
electric material having er ¼ 20� 3i than that of er ¼ 3� 20i.

Similar radiation plots are given in Figure 8 for magnetic materials of different
thicknesses. The deviations from the PEC case can be distinguished even better when
compared to that of shown in Figure 7, covering almost all radiation regions. Also,
deviations from the PEC increase as thickness is increased. The magnetic material
having complex permeability μr, we get larger deviation for the larger imaginary part.

Figure 9(a) shows directivity vs. eccentricity for altered impedance values. We
obtain clearly a maximum directivity in the parabolic case (e = 1) for each curve.
Directivity reduces as impedance increases. Figure 9(b) shows the directivity vs. η
factor for different d values under the fixed f/d ratio. Let us define Z = −iηZ0 where

Figure 5. Normalized electric field magnitude pattern comparisons (a) the MAR and the MOM
solution for a metal with σ = 1.03 × 107 S/m and the PEC, the other parameters are f = 20λ,
d = 25λ, e = 0 (circle), kb = 5, RT/Z0 = (2.6 − 2.6i) × 10−5, and STZ0 = (4.8 + 4.8i) × 103 (b)
Pattern comparison between the MAR and the PO for the problem parameters given as
Z = −i × 0.25 Z0, f = 10λ, d = 20λ, and kb = 3 and e = 1(parabola) (c) Pattern comparison for
various surface conductivity for the MAR method. The problem parameters given as f = 20λ,
d = 30λ, and kb = 5 and e = 1 (parabola).
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Figure 6. Normalized electric field magnitude pattern comparisons of the PEC and impedance
sheets with different impedance values for different eccentricity values (a) e = 0.7, (b) e = 1, and
e = 1.3, other parameters are f = 20λ, d = 30λ, and kb = 5.

Figure 7. Normalized electric field magnitude pattern comparisons of the PEC coated with
different electric-type material for thicknesses (a) 0.03λ, (b) 0.04λ, and (c) 0.05λ. Solid curve is
for the PEC, dashed curve is for εr = 20–3i, and dotted curve is for εr = 3–20i, the other
parameters are f = 20λ, d = 30λ, e = 1 (parabola), and kb = 5.
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Figure 8. Normalized electric field magnitude pattern comparisons of the PEC coated with
different magnetic-type material for thicknesses (a) 0.001λ, (b) 0.005λ, and (c) 0.01λ. Solid curve
is for the PEC, dashed curve is for μr =20–3i and dotted curve is for μr = 3–20i, other parameters
are f = 20λ, d = 30λ, e = 1 (parabola), and kb = 5.

Figure 9. (a) Forward directivity comparisons of the PEC and different impedance sheets with
different Z values vs. eccentricity. The other parameters are kb = 3, f/d = 0.5, and d = 20λ (b)
Forward directivity comparisons vs. η. The other parameters are e = 1, kb = 3,d = 20λ, and f/d = 0.5.
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η = 0 describes the PEC case as marked on the plots. It is seen from the graphs that as
η → 0, two curves converge to two marked points. The PEC case gives the maximum
directivity as expected but if we increase η, the directivity decreases.

6. Conclusions

We have studied wave scattering from the 2-D arbitrary-profile impedance reflector
surface using the SIE. Two different systems of dual series equations are obtained for
thin layer boundary conditions; afterwards they are solved by analytical regularization
techniques. Hence, obtained results can provide accurate data to compare with that of
the other approximate techniques. The reflector surface is illuminated by a directive
beam created by a complex source. The effect of the impedance of the reflector surface
on the radiation performance of an overall reflector antenna system is analyzed and we
obtain excellent agreement against other available numerical results.
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Appendix

(1) The 2D Green’s function for the free space and its first-order normal derivatives are
given as follows,

Gðr~; r~0Þ ¼ i

4
H ð1Þ

0 ðk0RÞ (A1)

@Gðr~; r~0Þ
@n0

¼ r0G: ân0 (A2)

where ∇′G and ân0 parameters are defined as

r0Gðr~; r~0Þ ¼ � i

4
k0H

ð1Þ
1 ðk0RÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

@G=@R

@R

@x0
âx þ @R

@y0
ây

� �
: (A3)
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ân0 ¼
@xðu0 Þ
@u0 ây � @yðu0Þ

@u0 âx

qðu0Þ ; (A4)

Then the first-order normal derivatives with respect to the source and observation coordinates
are:

@G

@n0
¼ ik0

4
H ð1Þ

1 ðk0RÞ
� @yðu0Þ

@u0 ðxðuÞ � xðu0ÞÞ þ ðyðuÞ � yðu0ÞÞ @xðu0Þ
@u0

qðu0ÞR

" #
; (A5)

@G

@n
¼ � ik0

4
H ð1Þ

1 ðk0RÞ
� @yðuÞ

@u ðxðuÞ � xðu0ÞÞ þ ðyðuÞ � yðu0ÞÞ @xðuÞ@u

qðuÞR

" #
: (A6)

Here k0 ¼ x
ffiffiffiffiffiffiffiffiffi
e0l0

p
; H ð1Þ

0ð1Þð � Þ is the zero- (first-) order Hankel function of the first kind; r~ and r~0

are the vectors from origin to the observation and source points, respectively; R ¼ jr~� r~0j; and
ρ(φ′) is the Jacobian of the contour C defined as ρ(φ′) = aβ(φ′).

(2) The following dual series equations are in a special form called the canonical form.

X1
p¼�1

mpjpjeipu ¼
X1
p¼�1

fpe
ipu; hap\ju� u0j � p; (A7)

X1
p¼�1

mpe
ipu ¼0; ju� u0j\hap: (A8)

Here, there is a circular contour in the complex plane which has an aperture. The second series
are defined on this aperture with respect to the central direction φ0 and the aperture width 2θap.
The first one is defined on the remaining region. By applying the RHP technique to this dual ser-
ies equation on the circular contour, one can find the following solution

mm ¼
X1
p¼�1

fp ð�1Þmþp eiðp�mÞu0 Tmpð� cos hapÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~Tmp

(A9)

where Tmpð � Þ functions are special functions of Legendre polynomials. The detailed solution is
given in [16]. In our front fed case, θap = π − θa and φ0 = π. Here, the fp coefficients are
obtained by comparing the right-hand side of (24). The fp coefficients have the additional serial
expansions and a change in the order of the summations is required to find the final serial result.
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