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Abstract MicroRNAs (miRNAs) are 20–22 nucleotides long
small non-coding RNAs that regulate gene expression post-
transcriptionally. Last decade has witnessed emerging evi-
dences of active roles of miRNAs in tumor development,
progression, metastasis, and drug resistance. Many factors
contribute to their dysregulation in cancer, such as chromo-
somal aberrations, differential methylation of their own or
host genes’ promoters and alterations in miRNA biogenesis
pathways. miRNAs have been shown to act as tumor suppres-
sors or oncogenes depending on the targets they regulate and
the tissue where they are expressed. Because miRNAs can
regulate dozens of genes simultaneously and they can function
as tumor suppressors or oncogenes, they have been proposed
as promising targets for cancer therapy. In this review, we
focus on the role of miRNAs in driving drug resistance and
metastasis which are associated with stem cell properties of
cancer cells. Furthermore, we discuss systems biology ap-
proaches to combine experimental and computational
methods to study effects of miRNAs on gene or protein
networks regulating these processes. Finally, we describe
methods to target oncogenic or replace tumor suppressor
miRNAs and current delivery strategies to sensitize refractory

cells and to prevent metastasis. A holistic understanding of
miRNAs’ functions in drug resistance and metastasis, which
are major causes of cancer-related deaths, and the develop-
ment of novel strategies to target them efficiently will pave the
way towards better translation of miRNAs into clinics and
management of cancer therapy.
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Introduction

miRNAs are a large family of small regulatory RNAs, acting
mostly in post-transcriptional gene silencing. They are 20–22
nucleotides long and recognize their target mRNAs by com-
plementary base pairing. They control gene expression by
mRNA cleavage, mRNA destabilization, or inhibition of
translation [1]. Almost half of miRNAs reside in clusters
and transcribed as polycistronic precursor miRNAs [2].
Other miRNAs, located in intergenic regions, are transcribed
by their own promoters, and those present in intronic regions
are likely under the control of the host genes’ promoters [3].
Currently, it has been reported that there are around 2,600
unique mature miRNAs in human (miRBase version 20) [4].
Most miRNAs are transcribed by RNA polymerase II as
primary transcripts (pri-miRNAs), usually several kilobases
long, which fold into hairpin structures containing imperfectly
base-paired stem–loop structures [5]. RNase III endonuclease
Drosha then cleaves primary miRNAs (pri-miRNAs) into
~70 nt long precursor miRNAs (pre-miRNAs), which are later
transported to cytoplasm by RanGTP-dependent dsRNA-
binding protein exportin-5 (XPO5) [6]. In cytoplasm, RNase
III endonuclease Dicer cleaves pre-miRNAs into mature
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miRNAs which are loaded to RNA-induced silencing com-
plexes. Along with Argonaute (Ago) proteins (mainly Ago1
and Ago2 in mammals) of the complex, miRNAs downregu-
late gene expression by binding to target mRNAs. Although
miRNA binding sites have also been found in 5′-UTR [7] and
coding sequence [8] of mRNAs, they preferentially interact
with seed-matching sequences in the 3′-UTR of mRNA. One
miRNA can downregulate multiple genes due to the short
sequence required for mRNA recognition, which is known
as the “seed region” spanning between the 2nd and the 7th (or
8th) nucleotide of mature miRNAs. Taking both direct and
indirect regulations together, it is not rare that a single miRNA
can regulate the expression of tens or hundreds of genes.

Considering the enormous regulatory potential of
miRNAs, it is not surprising that they play crucial roles in
cancer development, progression, metastasis and drug resis-
tance. Out of around 2,600 identified human miRNAs, almost
50 % are located at fragile sites on chromosomes known for
having common alterations (i.e., amplification, deletion, and
rearrangements) in cancer [9]. Roles of miRNAs in cellular
processes like cell cycle progression, proliferation, metabo-
lism, apoptosis, and stress resistance [10] also cannot be
overlooked as more than 60% of human protein coding genes
are predicted to be under selective pressure to be regulated by
miRNAs [11]. Along with these facts, altered miRNA profiles
(up/down regulated) in different cancer types suggest that
these tiny molecules may have a role in cancer (therefore,
the name oncomirs), and they can be classified either as tumor
suppressor or oncogenic depending upon the tissue in which
they are expressed and the targets they regulate [12]. Among
oncogenic miRNAs, miR-17∽92, miR-21, miR-155, miR-
221, and miR-222 are well-studied, and their overexpression
has been found in various human cancers. During lymphoma-
genesis, elevated miR-17∽92 (a cluster of 6 miRNAs) expres-
sion has been reported which allows continuous activation of
oncogenic PI3K and NF-kB signaling by suppressing nega-
tive regulators of these pathways [13]. Another oncogenic
miRNA, miR-21, is upregulated in lung, prostate, breast,
and pancreatic cancers compared to normal tissues [14].
miR-21 has been shown to be involved in the onset of inflam-
matory bowel disease (IBD)-associated colorectal carcinoma
[15]. Similarly, in breast cancer, knockdown of miR-21
inhibited tumor growth and enhanced apoptosis by downreg-
ulating anti-apoptotic protein Bcl-2 [16]. Importantly, a trans-
genic mouse model has demonstrated that miR-21 overex-
pression has a causal role in tumor initiation and progression
of pre-B malignant lymphoid-like tumors [17]. miR-155 is
overexpressed in pancreatic cancer where it promotes tumor
development by repressing the expression of tumor suppres-
sor Tp53INP1, and oligonucleotide-mediated inhibition of
miR-155 restored Tp53INP1 levels along with significant
increase in apoptotic cell death [18]. Among tumor suppressor
miRNAs, the most studied ones are the let-7 family miRNAs,

whose expression is downregulated in different cancer types.
In addition to negative regulation of Ras oncogene [19], let-7
family miRNAs target a network of cell cycle-associated
genes, including E2F5, CCNA2, and CDK8, hence playing
important roles in regulating multiple proliferation pathways
and controlling tumor growth [20]. miR-34 is another well-
studied tumor-suppressor miRNAwhich is directly regulated
by p53 and controls p53-mediated cell death. Low miR-34
expression attenuates p53-mediated apoptosis and contributes
to tumor development [21]. Other tumor suppressor miRNAs
include miR-15, miR-16, miR-29, miR-124a, miR-127, miR-
143, miR-145, and miR-181 [22]. Taken together, their func-
tion as negative regulators of multiple targets in biological
networks and their common dysregulation in cancer make
miRNAs attractive targets for cancer therapy.

This review focuses on the role of miRNAs in drug resis-
tance, metastasis, stemness, and the interplay of these factors
in tumor progression, and describes the recent developments
in studying miRNA–protein interaction networks and
targeting approaches in cancer. We first review recent litera-
ture with respect to the role of miRNAs in conferring resis-
tance or sensitizing tumor cells to chemo- or targeted-therapy
agents. Next, we focus on how miRNAs regulate different
steps of metastasis and stemness properties of cancer cells.We
then give an overview of recent studies which link miRNAs
with epithelial–mesenchymal transition (EMT), stemness, and
drug resistance. Finally, we focus on network-level studies to
elucidate the role of miRNAs in all these cancer-relevant
processes and discuss the recent developments with respect
to targeting miRNAs efficiently and advance in delivery of
these molecules to target tumor cells.

The role of miRNAs in drug resistance

Chemotherapy is the treatment of cancer with single or mul-
tiple cytotoxic drugs which mostly work by inhibiting the
proliferation of actively dividing cells. These drugs include
alkylating agents, platinum agents, nitrogenmustards, antime-
tabolites, anthracyclins, alkaloids, taxanes, etc. [23]. Non-
specific cell targeting and late stage side effects of chemother-
apy has led the way towards designing targeted therapy agents
which specifically target the cancer cells by blocking the
function of dysregulated proteins in oncogenic pathways.
Small molecule inhibitors (mostly tyrosine kinase inhibitors,
TKIs) and monoclonal antibodies are the two major classes of
targeted therapy agents [24]. While monoclonal antibodies
target cell-surface proteins, small molecule inhibitors can
inhibit their targets inside the cell in a reversible or irreversible
manner. Recently, antibody-conjugated chemotherapy agents
combining targeted therapy with chemotherapy on one mole-
cule (e.g., trastuzumab-emtansine or T-DM1 [25]) have also
been developed as next-generation treatment agents and
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approved for clinical use. Unfortunately, resistance to both
chemotherapy and targeted therapy agents has been found
inevitable and reoccurring in cancer treatment. Resistance
can be divided into two groups: intrinsic (de novo) or ac-
quired. Intrinsic resistance is an in-built, pre-existing pheno-
type, whereas the acquired resistance develops due to repeated
use of the same drug. They both result in non-responsive
treatment [26]. Possible mechanisms include decreased drug
uptake, activation of detoxifying systems and DNA repair
mechanisms, increased drug efflux, dodging drug-induced
apoptosis, inducing secondary mutations, and activation of
alternative survival pathways [27–29].

miRNAs have been associated with drug resistance to both
chemo- and targeted-therapies (Table 1). Inhibition of miR-21
has been reported to increase gemcitabine sensitivity in chol-
angiocarcinoma and to inhibit the growth of topotecan-treated
MCF7 cells [30]. Let-7e was found to be downregulated in

cisplatin-resistant ovarian cancer cells due to the hypermethy-
lation of its adjacent CpG islands compared with parental
cells, and its re-expression has been shown to increase cisplat-
in sensitivity by reducing the levels of EZH2 and Cyclin D1
[31]. In medulloblastoma, miR-34a has been demonstrated to
sensitize cancer cells to mitomycin C and cisplatin by directly
targeting the oncogenic gene MAGE-A, and to induce apo-
ptotic cell death by modulating tumor suppressor p53 levels in
a positive feedback loop [32]. In another study, miR-137 has
been shown to target constitutive androstane receptor (CAR),
which is an important regulator of multi-drug resistance
(MDR), and its overexpression sensitized neuroblastoma, he-
patocellular carcinoma (HCC), and colon cancer cells to
doxorubicin [33]. Notably, silencing of both Dicer and
TRPB2, two key components of miRNA biosynthesis, in
cisplatin-resistant adenocarcinoma cells led to reversal of
cisplatin resistance without affecting the cell viability in the

Table 1 List of chemo- or targeted therapy agents which modulate the expression of given miRNAs associated with resistance to these drugs

Drugs Downregulated
miRNAs

Upregulated miRNAs Cancer type References

5-Fluorouracil let-7g, miR-181b Colon [162]

Camptothecin miR-506 Colon [163]

miR-203 Chronic myeloid leukemia [37]

Cetuximab let-7b, let-7e miR-17* Colon [164]

Cisplatin let-7e Ovarian [31]

miR-302 Head and neck squamous CSCs [87]

miR-203 Breast [165]

Doxorubicin miR-451 Breast [166]

miR-137 Hepatocellular, colon [33]

Erlotinib miR-7 Head and neck [167]

Fulvestrant miR-221/222 Breast [42]

Gefitinib miR-146a Non-small cell lung [168]

Gemcitabine miR-21 Cholangiocarcinoma [30]

miR-200 miR-21 Pancreatic CSCs [89]

Irinotecan miR-451 Colon CSCs [88]

Letrozole miR-128a Breast [169]

Mitomycin C miR-34a Medulloblastoma [32]

Mitoxantrone miR-328 Breast [170]

Paclitaxel let-7e miR-130a, miR-30c,
miR-335, miR-125b

Ovarian [171]

Sunitinib miR-21 Glioblastoma [172]

miR-141 Renal cell [173]

Tamoxifen miR-221/222 Breast [40, 41]

miR-375 Breast [43]

Temozolomide miR-145 Glioblastoma [158]

Topotecan miR-21 Breast [30]

Trastuzumab miR-21 Breast [38]

miR-210 Breast [39]

Vinblastin miR-27a, miR-451 Ovarian [174]
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absence of the drug, highlighting the general effect of
the miRNA biogenesis pathway in chemotherapy resis-
tance [34].

Similarly, miRNAs have also been shown to regulate re-
sistance to targeted therapies. TKI imatinib is one of the iconic
examples of targeted therapy agents which successfully in-
hibits the fusion gene BCR-ABL in patients with chronic
myelogenous leukemia (CML) [35]. miR-138, a tumor sup-
pressor that is downregulated in thyroid cancer and head and
neck squamous cell carcinoma (HNSCC), was found to be
upregulated upon treatment of CML cells with imatinib which
resulted in an increase in imatinib-induced apoptosis and
increased sensitivity to the drug [36]. This effect was mediated
mainly by targeting the open reading frame (ORF) of ABL
fragment in the BCR-ABL fusion protein. Similarly, Li et al.
have shown that miR-203 targets the 3′-UTR of ABL and
leads to sensitization of cells to imatinib in CML cells [37].
Trastuzumab is another iconic drug targeting overexpressed
ErbB2 on the cell surface and has been approved by Food and
Drug Administration (FDA) for breast cancer since 1998.
However, development of resistance is a major problem and
involvement of miRNAs in trastuzumab resistance is recently
realized. Gong et al. observed overexpression of a well-known
oncogenic miRNA, miR-21, in acquired trastuzumab resistant
breast cancer cell lines, which confers trastuzumab resistance
in both in vitro and in vivo settings. Furthermore, they dem-
onstrated that upregulation of miR-21 is associated with poor
response of patients receiving preoperative trastuzumab
therapy [38]. Another study reveals that the level of
miR-210 was higher in the plasma of breast cancer
patients with residual disease when compared to the
patients with pathological complete response under neo-
adjuvant trastuzumab-based chemotherapy [39].
Tamoxifen, an estrogen receptor (ER) antagonist, has
been used for treating ER-positive breast cancer for
decades. While it has an impressive clinical record, de
novo or acquired resistance is very common. Two inde-
pendent studies have associated miR-221/222 with resis-
tance to tamoxifen, by establishing miR-221/222 down-
regulating the expression of ER alpha [40] and p27/Kip1
[41]. Furthermore, it has been shown that miR-221/222
also confers resistance to fulvestrant, a selective ER
downregulator (SERD), by modulating both Wnt/β-
catenin and TGF-β pathways [42]. We have recently
demonstrated that miR-375 is downregulated in tamox-
ifen resistant MCF-7 cells compared with parental ones
and re-expression of miR-375 sensitized resistant cells to
tamoxifen partially by downregulating the oncogene
metadherin (MTDH) [43]. Altogether, these reports clearly
indicate the involvement of miRNAs in resistance to
both chemotherapy and targeted therapy, and these miRNAs
may be therapeutically modulated to sensitize tumor cells
again to the drugs.

Multiple level regulation of metastasis by miRNAs

The majority of cancer deaths are not caused by primary
tumors, but rather by the dissemination of the disease, i.e.,
the development of distant metastases. Metastasis is accom-
plished in two major steps: dissemination and colonization.
Dissemination phase includes local invasion, intravasation
into the systemic circulation, survival in the circulatory system
and extravasation. Colonization phase includes the adaptation
of these cells to a foreign microenvironment where the
microscopic cells turn into macroscopic tumors [44].
The whole process is outcome of the interplay between
genetic and epigenetic modifications in tumor as well as
in the tumor microenvironment. miRNAs have recently
been discovered as the key molecules regulating almost
all the steps of metastasis by targeting key genes. They
can either promote metastasis (in the case of, e.g., miR-
373, miR-151, miR-520, miR-143, or miR-10b) or sup-
press the process (in the case of, e.g., miR-9, miR-139,
miR-335, miR-125, or miR-206) [45, 46].

As an initial step of the metastatic cascade, cancer cells
need to break away from the primary tumor, migrate and
invade the surrounding tissue. In cancers of epithelial origin,
increasing evidence has amounted suggesting a developmen-
tal program known as EMTwhich is indispensable for cancer
cells to acquire properties favoring migration and invasion.
During EMT, cells lose epithelial characteristics, such as
apical-basal polarity and tight cell–cell adhesion, and adopt a
mesenchymal phenotype characterized by extension forma-
tion, reorganization of actin cytoskeleton and decreased cell–
cell adhesion, all of which contribute to the increased motility
and invasiveness (reviewed in [47]). EMT is driven by a group
of transcription factors that act as transcriptional repressors of
E-Cadherin, including Snail (SNAI1), Slug, ZEB (ZEB1 and
ZEB2/SIP1), and basic helix–loop–helix families (Twist1 and
E47). miRNAs substantially contribute to EMT by regulating
expression of several transcription factors and actin cytoskel-
eton modulators (Table 2). A subset of these miRNAs, the
miR-200 family, is downregulated in metastases compared to
primary tumors [48, 49] and plays a central role in the inhibi-
tion of metastasis by forming a double-negative feedback loop
with ZEB1 and ZEB2, both of which are the transcriptional
repressors of cell–cell contact protein E-Cadherin [50, 51].
Similarly, p53 activation leads to downregulation of EMT-
inducing transcription factor Snail in different cancer types by
recruiting miR-34a/b/c which directly targets the 3′-UTR of
the Snail gene. The promoters of these miRNA genes are
bound by Snail and ZEB1 to inhibit the expression of miR-
34a/b/c, thus completing a double-negative feedback loop [52,
53]. In addition to targeting essential transcription factors
regulating EMT, we and others have shown that the miR-
200 family also target actin regulatory proteins such as
FHOD1, PPM1F and moesin to inhibit EMT [54, 55].
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Besides regulating EMT to drive cancer cells more motile
and invasive, miRNAs also regulate cell intravasation to the
circulatory system as well as the post-intravasation steps in-
cluding extravasation and initial survival at the distant tissue.
Asangani et al. have shown that inhibition of miR-21 in
colorectal cancer cells reduced intravasation and lung metas-
tasis in a chicken embryo metastasis assay by upregulating the
expression of its target Pdcd4, a tumor suppressor gene [56].
miR-31 has been demonstrated to regulate several post-
intravasation steps including intraluminal viability, extravasa-
tion, and survival at distal tissue in addition to the invasion and
metastatic colonization steps by simultaneous targeting of
three key genes: integrin α5 (ITGA5), radixin (RDX), and
RhoA (RHOA) [57]. Recently, Okamoto et al. identified miR-
493 as an inhibitor of the settlement of colon cancer cells to
the liver parenchyma in a functional miRNA screen. They
demonstrated that miR-493 directly targets the receptor tyro-
sine kinase IGF-1R and this in turn leads to the apoptosis of
metastasized cells [58]. Very recently, it is reported that miR-
148b regulates both extravasation and survival of breast can-
cer cells in circulation in both in vitro (apoptosis assay) and
in vivo (tail-vein injection for extravasation to the lungs)
experiments. Data indicated that miR-148b reduced both ex-
travasation and survival by regulating metastatic

dissemination in several steps [59]. Recently, we have shown
that miR-520/373 family inhibits both in vitro cell invasion
and in vivo intravasation of highly invasive ER (−) breast
cancer cells. Decreased expression of miR-520c was found to
be correlated with the lymph node metastasis of ER (−) breast
cancer patients [60].

The final step of metastasis is successful colonization of
tumor cells at a distal organ site. Different tumors have differ-
ent preferences for the site of metastasis. This observation
forms the basis of century-long seed-and-soil hypothesis
where “seed” represents the “cancer cells” and the “soil”
stands for the “tumor microenvironment” [44]. Consistent
with this hypothesis, breast cancer cells metastasize frequently
in bone, lungs, liver, and brain, while pancreatic cancers
preferentially metastasizes to liver and lungs (reviewed in
[61]). Few studies have focused on the roles of miRNAs in
the colonization step. Korpal et al. demonstrated that miR-200
promotes the colonization of breast cancer cells by directly
targeting the Sec23a gene which is involved in the secretion of
metastasis-suppressive proteins. This study is also a good
example of dichotomous function of miRNAs in the initiation
(i.e., inhibiting EMT) and final colonization (i.e., promoting
colonization) steps of metastasis [62]. Recently, miR-612 is
suggested to suppress the colonization of HCC cells to the

Table 2 List of miRNAs and their targets involved in regulation of different stages of metastasis in different cancer types

miRNA Target (Direct/Indirecta) Suppress/promote Cancer type Metastasis stage References

miR-200c BMI1 Suppress Head and neck EMT [91]

miR-34 Snail Suppress Breast, lung, colon EMT [52, 53, 96]

miR-29b ANGPTL4, LOX, MMP2,
MMP9, VEGFA, PDGF

Suppress Prostate/hepatocellular EMT [175, 176]

miR-30a Snail Suppress Non-small cell lung EMT [177]

miR-200 family TGFβ2, ZEB1, ZEB2 Suppress Pancreatic, colorectal,
breast, lung

EMT, invasion [48, 50, 51]

miR-22 TET family members Promote Breast EMT, invasion [95]

miR-200b Moesin Suppress Breast EMT, invasion [55]

miR-200c FHOD1, PPM1F Suppress Breast EMT, invasion, migration [54]

miR-7 KLF4 Suppress Breast Invasion [93]

miR-135b LATS2, β-TrCP, NDR2, LZTS1 Promote Non-small cell lung Invasion, migration [178]

miR-10b HOXD10 Promote Breast Invasion, migration [179]

miR-34a CD44 Suppress Prostate CSCs Invasion, migration [94]

miR-21 Pdcd4 Promote Lung Invasion, intravasation [56]

miR-520/373
family

TGFBR2 (NF-κB and TGF-β
pathways)

Suppress Breast Invasion, intravasation [60]

miR-493 IGF1R Suppress Colon Extravasation [58]

miR-148b ITGA5, ROCK1, PIK3CA/p110α,
NRAS, CSF1

Suppress Breast Invasion, extravasation,
survival to anoikis

[59]

miR-214 TFAP2 Promote Melanoma Extravasation [180]

miR-31 Integrin α5, Radixin, RhoA Suppress Breast Extravasation, colonization [57]

miR-200 family Sec23a Promote Breast Colonization [62]

miR-612 Akt2 Suppress Hepatocellular Colonization [46]

a Denotes that indirect targets in the given study are shown in italics
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lungs [46]. Finally, as discussed above, miR-31 regulates
colonization by targeting ITGA5, RDX and RHOA protein
network.

Several recent studies demonstrated that miRNAs can sen-
sitize cells to given drugs by modulating the EMT step of
metastasis, implying an intriguing link betweenmetastasis and
drug resistance (Fig. 1, Supplementary Table 1). miR-200c, a
downregulated miRNA in melanocytes, targets BMI-1 when
overexpressed, leading to increased E-cadherin levels and
thereby inhibiting metastatic potential of cancer cells. In the
same study, it was also shown that overexpression of miR-200
inhibits cell proliferation and resistance to cisplatin, PLX4720
and U0126 [63]. Re-expression of miR-200c in non-small cell
lung cancer (NSCLC) inhibited invasion by maintaining epi-
thelial phenotype and improved the sensitivity of cancer cells
to cetuximab and cisplatin [64]. Treatment of gemcitabine
resistant pancreatic cancer cells with natural agents (DIM
and isoflavone) induces miRNAs of both miR-200 and let-7
families, which restore the epithelial state and improve the
sensitivity to gemcitabine [65]. As previously discussed, we
have recently demonstrated that re-expression of miR-375 in
tamoxifen resistant MCF-7 cells sensitized resistant cells to
tamoxifen by reversing the mesenchymal phenotype of resis-
tant cells to more epithelial one [43]. miR-23, an oncogenic
miRNA, has been shown to be upregulated in lung adenocar-
cinoma cells driving EMT. Downregulation of this miRNA in

A549 lung cancer cells restored epithelial phenotype along
with enhancing sensitivity for gefitinib [66]. miR-216a/217
target PTEN and SMAD7, antagonists of PI3K and TGF-β
signaling pathways, respectively, and assist in maintaining
drug resistance and high metastatic potential in HCC.
Inhibiting miR-216/217 or overexpressing their targets res-
cued EMT and sensitized cancer cells to sorafenib [67].
Altogether, these findings suggest that miRNAs regulate me-
tastasis at multiple steps by modulating different components
of the cellular networks and modulation of EMT by miRNAs
can sensitize the cells to chemo- or targeted-therapy agents.

miRNA regulation of stemness, EMT, and drug resistance
in cancer

Stemness is the ability of a cell to differentiate into any other
cell type (potency) while maintaining an undifferentiated state
(self-renewal) [68]. Adult stem cells have been found in
almost every tissue type and organ maintaining tissue homeo-
stasis and in regenerating tissues after injury or damage [69,
70]. The connection between stemness and tumor initiation
was first shown when a population of leukemic cells express-
ing surface markers identical to hematopoietic stem cell
(HSC) markers (CD34+/CD38−) was found to initiate acute
myeloid leukaemia tumors in NOD/SCIDmice [71]. Later on,

Metastasis
Cancer

Stemness

Drug
Resistance

Colon

miR-34a, 
-126, -200

miR-200c
miR-203

Pancreatic

miR-145
miR-296

LungProstate

miR-34a
miR-145

Breast

miR-7
miR-205

Cancer

miR-21, -22
-221, -222miR-143

Fig. 1 MicroRNAs play master role in the interplay of drug resistance,
metastasis and cancer stemness. A brief outlook of miRNAs reported to
co-regulate any two of these mechanisms in a specific cancer type are
shown [43, 63–67, 79, 86–89, 92–96, 150–161] where oncogenic

(upregulated) miRNAs are marked with red and tumor suppressor
(downregulated) miRNAs are marked with green background. OSCC
oral squamous cell carcinoma, NSCLC non-small cell lung carcinoma,
HNSCC head and neck squamous cell carcinoma, GBM glioblastoma
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cancer stem cells (CSCs), also known as tumor initiating cells
(TICs), were identified in a number of solid tumors including
breast, brain, colon, prostate and pancreatic cancer [72–76].
Although involving similar pathways (e.g. Wnt, Notch and
TGF-β signaling), CSCs distinguish themselves from normal
stem cells by altered molecular profiles. For example, leuke-
mic stem cells require loss of tumor suppressor PTEN to be
distinguished from HSCs [77]. CSCs represent small popula-
tion in tumor [78], but in addition to maintaining stemness,
they also take part in driving tumor growth, metastasis, and
drug resistance [79]. Several miRNAs have been shown to
regulate stemness of different cancer types. For instance, three
miRNA clusters (miR-200c-141, miR-200b-200a-429, and
miR-183-96-182) have been found downregulated in both
normal and CSCs to overexpress Bmi1 which plays a role in
stem cell renewal [80]. Recently, a comparative expression
analysis of CD44+ (a marker for CSCs) and CD44− colorectal
cancer cell lines revealed association between miR-203 down-
regulation and cancer stemness. In CD44+ cells, hyluranon
(HA) signaling (HA/CD44 interaction) triggers c-Src kinase
mediated nuclear accumulation of Snail, an inhibitor of miR-
203, resulting in enhanced stemness [81]. Increased expres-
sion of miR-21 and miR-302 and decreased levels of let-7a,
miR-372, miR-373, and miR-520c-5p were observed in CSCs
when compared with cancer cells in a human gastric cancer
cell line, suggesting differential expression of miRNAs in
CSC and other cancer cell populations [82]. Ji et al. identified
higher expression of miR-181 in EpCAM+/AFP+ stem cell
population of HCC. Its inhibition resulted in a decrease in this
population and tumor initiating capacity of the cells [83]. The
oncogenic miR-21 enhanced stem-like properties in colorectal
cancer by downregulating transforming growth factor beta
receptor-2 (TGFβR-2) along with activating the oncogenic
Wnt signaling pathway [84].

CSCs are thought to be responsible for the observed resis-
tance to therapy and metastasis. Several miRNAs have been
reported to regulate stem cell properties and drug resistance
concomitantly (Fig. 1, Supplementary Table 2). CD133 is a
well-established CSC marker in brain tumors including glio-
blastoma (GBM) [85]. Ectopic expression of miR-145 in
GBM-CD133+ cells resulted in their differentiation into
CD133- non-CSCs and thereby reduced resistance to
temozolamide [86]. Due to the Hyaluronan (HA) activation
of CD44v3 (an HA receptor) leading to nuclear accumulation
of oncogenic transcription factors (Nanog, Oct4, Sox2), CSCs
in HNSCC display upregulated miR-302 expression which, in
turn, upregulates several survival proteins responsible for
clonal formation, self-renewal and cisplatin resistance [87].
miR-451 has been shown to be downregulated in drug resis-
tant colon CSCs, and its restoration antagonized irinotecan
resistance and the self-renewal capacity via indirect targeting
of COX-2-mediated Wnt-signaling [88]. Decreased miR-200
and increased miR-21 levels have been observed in

gemcitabine-resistant pancreatic CSCs, and the treatment of
these CSCs with synthetic compound-CDF resulted in tumor
inhibition through reversing miR-200 and miR-21 expression,
which modulates stemness-related pathways [89]. miR-26a
has been demonstrated to be lost in pancreatic CSCs and its
re-expression decreased expression of CSCmarkers (EpCAM
and EZH2) in pancreatic cancer. In this respect, it was an
interesting observation that pancreatic CSCs treated with met-
formin showed increased expression of six miRNAs including
miR-26a and decreased expression of different CSC markers
[90].

Similar to the critical role of miRNAs in the interplay of
stemness and drug resistance, miRNAs also co-regulate
stemness and metastatic capabilities of the cells, especially
by regulating the EMT process (Fig. 1, Supplementary
Table 3). It has been shown that the expression of miR-200c
was downregulated, while its target Bmi1 was upregulated in
ALDH1+/CD44+ HNSCC cells compared with other cell
populations. Notably, overexpression of miR-200c in these
CSC populations inhibited CSC-like properties, decreased the
expression of EMT-associated ZEB1 and Snail, and inhibited
the lung metastasis capability of the cells [91]. Importantly,
ZEB1 has been shown to work in a feedback loop with miR-
200 and also to play a role in repression of stemness inhibiting
miRNAs (e.g. miR-203). This way ZEB1 controls both EMT-
activation and cancer stemness maintenance [92]. In another
study, CSC population (CD24−/CD44+/ESA+) isolated from
highly metastatic breast cancer cells were found more capable
of metastasis than the non-CSC population. miR-7 was shown
to be downregulated in bone and brain metastases derived
from these CSCs and its re-expression in breast CSCs sup-
pressed brain metastasis by downregulating KLF4, a stemness
related gene [93]. miR-34a has been shown to be downregu-
lated in CD44+ prostate CSCs and its re-expression or
knocking down of its direct target CD44 suppressed both
tumor growth and metastatic capacity in prostate cancer
[94]. Very recently, Song et al. demonstrated that miR-22
promotes EMT and increases stem cell population of mam-
mary tumors, resulting in increased metastasis potential of
d i f f e r en t t r an sgen i c mammary tumor mode l s .
Mechanistically, miR-22 exerts its metastatic properties by
directly targeting the TET family of methylcytosine
dioxygenases, leading to reduced expression of anti-
metastatic miRNAs, particularly the miR-200 family [95].
Finally, another recent study demonstrated that disruption of
Dicer in colorectal cancer cells resulted in decreased expres-
sion of key tumor suppressor miRNAs, miR-200 family and
miR-34a, which, in turn, led to the enrichment of stemness
properties and the induction of EMT with increased liver
metastasis of colorectal cells [96]. In conclusion, miRNAs
play crucial roles in maintaining cancer stemness,
associated-drug resistance and metastasis, and targeting
miRNAs regulating the interplay of stemness with metastasis
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and drug resistance might be more effective in preventing
metastasis or overcoming resistance to both chemo- and
targeted-therapy.

Systems biology approaches to identify miRNA–protein
interaction networks regulating drug resistance
and metastasis

Our understanding of miRNAs and their functions in drug
resistance, metastasis, and cancer stemness is continuously
amounting but still limited. The observation that each miRNA
can have many targets and that each gene can be regulated by
multiple miRNAs implies that studies designed with “one
miRNA vs. one target” concept are likely to be flawed.
Therefore, cancer researchers have long embraced the concept
of systems biology and combined wet-lab experiments with
bioinformatics analysis in order to elucidate how miRNAs op-
erate on the network level by regulating many targets at a time.

The necessity and usefulness of studying miRNA regula-
tion of genes or proteins at network level have been demon-
strated by several groups. Pencheva and Tavazoie reported in
a recent review that a number of different miRNAs promote or
suppress metastasis by forming functional networks with their
targets in three fashions: cell-autonomous, cell-non-
autonomous, or a mixed of the two [97]. The more than one-
hundred studies on miRNA–protein networks that were
reviewed do not only offer novel insights into their roles in
metastasis, but also stimulate and accelerate the discovery of
genes and pathways that control various aspects of the bio-
logical process. In another study focusing on general princi-
ples of systems biology approaches to study miRNAs in
cancer, Vera et al. promoted the idea that systems biology
and molecular biology approaches must be integrated. To
support this idea, they demonstrated the feasibility of using a
mathematical tool (ordinary differential equations, ODE) to
predict functions of miRNA bymodeling and simulation [98].
Another study by Aguda et al. demonstrated the feasibility of
using mathematical models to elucidate a miRNA regulated
cancer network where a miRNA cluster, miR-17-92, inhibited
the expression of MYC and E2F transcription factors which,
in turn, induced the expression ofmiR-17-92 cluster providing
a negative feedback loop. In this study, the generated model
predicted that miR-17-92 plays an important role in regulating
the expression levels of these proteins [99]. Furthermore, a
recent study generated a kinetic model using the knowledge
on E2F, p73 and miR-205 and proposed that high E2F1, low
miR-205 and high ErbB3 levels make the cancer cells resistant
to both genotoxic and cytotoxic drugs [100].

To study microRNAs’ roles in the context of biological
networks experimentally, either forward-engineering or reverse-
engineering approaches have been used (Fig. 2). Forward-
engineering approaches are forward-genetics experiments where

one or more miRNAs (or genes) are either inhibited or over-
expressed by genomic integration [101], chemical inhibitors or
mimics [102], expression constructs [103] or other tools. To
identify target genes and study the regulatory effects (amplitude,
dynamics, etc.), expression profiles of genes or miRNAs are
measured. Omics technologies, such as gene/miRNA microar-
rays [104], next-generation sequencing [105], protein arrays
[106], and mass spectrometry [107], are often used to identify
potential targets, since they can cover a large number of genes in
an almost unbiased way. The obvious challenge is that except for
special cases, it is difficult to dissect direct from indirect effects in
such experiments. Therefore, computationally predicted
microRNA/gene target pairs are often used to filter large number
of potential hits (reviewed in [108, 109]). Furthermore, down-
stream experiments are usually required, often in a low-
throughput manner, to validate the findings. For instance, to
validate direct miRNA–gene regulations, one possibility is to
couple point mutation of miRNA-binding regions in 3′-UTR of
target genes with luciferase assays [43] [54]. It is expected that
technological development will strongly boost the forward infer-
ence approaches. Future experiments may bringmore power and
insight by becoming more multiplex [110] and by integrating
multilayer and heterogeneous data [111]. Increasing throughput
and lower costs will allow more data generated to fine-map
expression of miRNAs and their targets in different tumor types
and disease stages [112, 113]. New technologies such as next
generation sequencing [114] and high-throughput mass spec-
trometry [115] and other quantification methods [106] are push-
ing the fronts of forward-engineering approaches.

In contrast to forward-engineering approaches, reverse-
engineering approaches often deal with expression profiles
that were not generated by specific perturbation of genes or
miRNAs. A typical example is paired expression profiling of
mRNA and miRNA in drug-sensitive and drug-resistant cell
lines. In such settings, the primary goal is to recover miRNA-
gene, gene-gene and though less commonly, miRNA-miRNA
regulatory relationships. Various network-inference algo-
rithms such as correlation-based methods [116], Bayesian
network methods [117], regression-based methods [118],
and modeling-based approaches [119] have been applied to
infer the structure of miRNA–protein networks.

Finally, combining forward and reverse engineering ap-
proaches allows biologists to construct comprehensive regulatory
networks incorporating transcription factors (TFs), target genes,
miRNAs, and chemical compounds. Many algorithms and tools
that are available to study both global and local properties of
networks (reviewed in [120, 121]) have been applied to miRNA-
protein interaction networks. For instance, it has been observed
that miRNAs and TFs are often involved in network motifs,
namely local network structures that are more abundant than a
random network model would have predicted, such as feedback
loops and feed-forward loops [122, 123]. Applications exploiting
these properties are emerging to improve therapeutic regimens
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and to enable new therapeutics against cancer. For instance,
Zhang et al. reported the blockage of a miR-21/EGFR regulatory
feedback loop by combining nimotuzumab (an EGFR targeting
antibody) and a miR-21 inhibitor augments anti-EGFR therapy
in GBM [124]. In another study, disruption of the MYC-miR-
26a-EZH2 feed-forward loop with small-molecule compounds
was found to suppress lymphoma growth and clonogenicity in
aggressive lymphoma cells [125]. Both integrative basic research
and translational studies are further called to elucidate miRNA
regulatory networks and to transform knowledge in network
biology of miRNAs into biomarkers and therapies. Researchers
can benefit from evolving technologies, amounting data shared

in public databases such as Pharmaco-miR [126], miR2Disease
[127], and OncomiRDB (http://bioinfo.au.tsinghua.edu.cn/
member/jgu/oncomirdb), novel bioinformatics algorithms and
new experimental systems such as high-throughput in vivo
screening [128].

Promises and challenges in targeting miRNAs in cancer

Dysregulated miRNA expression and their roles as oncogenes
or tumor suppressors by targeting protein networks make
miRNAs a promising option to sensitize cancer cells to

Fig. 2 Workflow diagrams of forward-engineering (a) and reverse-
engineering (b) approaches to identify the “wiring-diagram” of
microRNA-protein networks. Forward-engineering methods generally
begin with targeted perturbation of microRNA (illustrated here as exam-
ple) or gene expression. Omics technologies such as mRNA and protein
expression profiling are coupled with in silico methods to detect targets or
regulators of microRNAs. In contrast, reverse-engineering methods at-
tempt to make inference about the network structure by applyingmachine

learning algorithms to paired expression data of microRNA and mRNAs
(or proteins). In either case, prior knowledge can be integrated to the
analysis pipeline, and often downstream experiments are required to
validate the findings. The aim of both types of approaches is to build a
comprehensive microRNA-protein network. Its local and global proper-
ties provide insights to the network-level mechanism of microRNA
regulation, and create opportunity for novel therapeutic interventions
against cancer
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therapy or to prevent metastasis. The notion of modulating
miRNAs in cancer comes from the analogy of killing two
birds (drug resistance and metastasis) with one stone
(miRNA). As we have discussed above, inhibition of onco-
genic miRNAs or replacement of downregulated miRNAs by
exogenous expression in different experimental models sup-
pressed tumor growth and metastasis, and even sensitized
refractory tumors to different chemotherapy or targeted ther-
apy agents.

There are several strategies being evaluated to target
miRNAs or use them as targeting agents in cancer, such as
(a) inhibition of oncogenic miRNAs by antisense DNA oli-
gonucleotides, antagomirs, locked nucleic acids (LNAs),
RNA sponges, or miR-masking; (b) exogenous expression
of tumor suppressor miRNAs; and (c) targeting miRNAs by
using small molecules (reviewed in [129]). Early experiments
in C. elegans demonstrated the ineffectiveness of using un-
modified antisense DNA oligonucleotides. However, 2′-O-
methyl or 2′-O-methoxyethyl conjugated oligonucleotides
significantly improved binding specificity and affinity for
RNA [130]. Later on, “antagomirs” with 2′-O-methyl modi-
fications were developed against miR-122, an abundant
miRNA in liver. In vivo injection efficiently downregulated
miR-122 expression in mouse liver after 24 h [131]. This
method is specific, efficient, and long-lasting, and has led to
more antogomirs that are being tested. Another approach to
inhibit miRNAs uses LNAs which are oligonucleotides with
ribose ring “locked” by methylene bridge between 2′-O and
4′-C atoms. It improves target specificity and affinity towards
complementary miRNA sequences. Recently, LNA-mediated
downregulation of miR-155 has been shown to decrease tu-
mor growth in chronic lymphocytic leukemia (CLL) [132].
Complementarily, expression of tumor suppressor miRNAs
can be restored by direct or vector-based transfection of
miRNA mimics. For example, intranasal administration of
let-7 has been shown to reduce the tumor formation in lungs
of animals expressing G12D-mutated K-Ras oncogene [133].
Similarly, re-expression of miR-29, a miRNAwhich sensitizes
HCC cells to doxorubicin, attenuated the ability of HCC cells
to form tumors in mice [134]. Furthermore, systemic
(intravenous) delivery of miR-141 or miR-219 inhibits
osteolytic bone metastasis in vivo [135]. Last but not least,
small molecule inhibitors are being searched for to target
miRNAs. A luciferase-based screening with a library of more
than 1,000 compounds, for instance identified azobenzene as a
potent inhibitor of oncogenic miR-21 expression in HeLa cells
[136].

In addition to the development of diverse strategies to
target or replace miRNAs, there have been a number of studies
aiming to improve the delivery of miRNAs in an efficient and
specific manner to target tumor tissues. Initially, vector-based
delivery approaches including both adenoviral- and lentiviral-
based delivery approaches were proposed to replace the tumor

suppressor miRNAs such as, miR-26a [137] and let-7 g [138].
However, they are associated with increased toxicity and
induction of immune response, which limit the translation into
clinics [139]. As an alternative approach, non-viral delivery
approaches e.g. lipid-based nanoparticles containing miRNAs
have been developed. Piao et al. demonstrated that lipid-based
delivery of miR-107 precursors led to efficient reduction of
multiple targets’ expression and tumor growth in HNSCC
[140]. Furthermore, several other nanoparticle-based miRNA
delivery approaches have been reported. For example, Babar
et al. reported that PLGA nanoparticles conjugated to a cell-
penetrating peptide efficiently delivered the anti-miR-155 into
tumor cells and inhibited the growth of pre-B-cell tumors
in vivo [141]. In addition to nanoparticles for miRNA deliv-
ery, very recently, Ohno et al. demonstrated that EGF-like
peptide containing exosomes delivered let-7a to EGFR-
overexpressing breast tumors in vivo [142]. Compared with
vector-based delivery methods, these synthetic delivery sys-
tems are more favorable due to simplicity, allowing more
control over the size of particles and the distribution of mol-
ecules, while eliciting less immunogenicity, However, cur-
rently, these synthetic systems have relatively low efficiency
(reviewed in [139]), and it lacks long-time studies with regard
to their toxicity. Overall, specific inhibition or replacement of
miRNAs and efficient delivery to target sites may hold the
promise to sensitize cancer cells to therapy and to prevent
metastasis; however, much work has yet to be done to prove
their efficacy, safety and clinical applicability.

Conclusion and perspectives

We have reviewed here the role of miRNAs in drug resistance
and metastasis, both of which are the major causes of cancer-
related deaths, and their interplay with cancer stemness. As
miRNAs can have a huge impact on the gene expression at the
global scale and they are dysregulated in cancer, targeting or
replacing miRNAs have great promise for sensitizing cancer
cells to therapy agents and for preventing the metastasis.
However, before translation of pre-clinical findings into
clinics, there need to be significant improvements in several
aspects of studying the miRNAs. First, clinically-relevant
models and scenarios could be prioritized when studying the
role of miRNAs in drug resistance. Most of the studies exam-
ining the sensitizer role of miRNAs have been using two
dimensional cell culture systems. There established cancer
cell lines are continuously cultured in the presence of drug
and resistance develops after several months. Such models
miss the contribution of tumor microenvironment and over-
simplify the therapy regimens used in the clinics. For this
purpose, transgenic mouse models or syngeneic tumor trans-
plantation models with intact tumor microenvironment [143]
can be used to develop drug resistant animal models. In these
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models miRNAs can be modulated stably and/or inducibly,
and the sensitizer effects of miRNAs can be studied.
Alternatively, patient-derived xenografts with known therapy
history [144] can be used to deliver miRNAs into tissues and
to study whether miRNAs can sensitize refractory tumors to
the therapy. Secondly, although the role of miRNAs has been
relatively well-studied in the initial phase of metastasis, par-
ticularly the EMT process [145], how different tumor micro-
environment orchestrates the organ-specific metastasis by se-
creting different miRNAs and whether these miRNAs are
really effective in blocking the colonization of cancer cells
are still under-studied. Another area where studying the role of
miRNAs is limited is cancer stemness which has been ham-
pered by the low number of stem-like cells in heterogeneous
tumor population [146]. This may be circumvented by newer
technologies such as high-content screening and single-cell
sequencing.

Systems biology approaches to integrate miRNAs into
gene or protein networks have been developed and being
utilized in recent studies [110, 125, 147]. In order to predict
the outcome of miRNA modulation in a cell system, models
integrating miRNAs into gene or protein networks have to be
developed and loss-of-function or gain-of-function simula-
tions should be performed similar to the ones done for
protein-coding genes. These models will help understand the
mechanism of miRNA regulation at the global scale, and
eventually predict efficacy and potential side effects of mod-
ulation of miRNAs. Furthermore, more research on the tumor
tissue-specific delivery methods for targeting tumors with
miRNAs using specific tumor markers on the carriers [142]
are needed to reduce the side-effects of treatments. Although
we did not focus on the biomarker aspect in this review,
miRNAs have a good potential to predict therapy response
and outcome due to their stability and ubiquitous presence in
body fluids [148, 149]. There are currently more than dozens
of clinical trials using miRNAs or proteins in miRNA biogen-
esis as biomarkers of tumor progression, metastasis and re-
sponse to chemotherapy or targeted therapy agents (www.
clinicaltrials.gov). More research with larger cohorts and
comprehensive designs should be carried out to establish
miRNAs as clinically useable biomarkers.

In conclusion, considering the complexities intrinsic to
cancer genome, miRNA regulation, and many aspects of fight
against cancer—especially the ones we discuss in this review,
drug resistance, metastasis, and stemness—we believe that the
research community urgently needs better understanding of
miRNA–protein interaction networks. We therefore propose
that multi-disciplinary systems approaches integrating geno-
mics, genetics, proteomics, and bioinformatics may hold the
key.
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