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We consider an assemble-to-order generalized M -system with multiple components and multiple products,

batch ordering of components, random lead times, and lost sales. We model the system as an infinite-horizon

Markov decision process and seek an optimal control policy, which specifies when a batch of components

should be produced and whether an arriving demand for each product should be satisfied. To facilitate

our analysis, we introduce new functional characterizations for convexity and submodularity with respect to

certain non-unitary directions. These help us characterize optimal inventory replenishment and allocation

policies under a mild condition on component batch sizes via a new type of policy: lattice-dependent base-stock

and lattice-dependent rationing.
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1. Introduction

Assemble-to-order (ATO) production is a popular strategy among manufacturing firms. ATO not

only allows companies to reduce their response window by stocking components, but also gives them

the flexibility of postponing final assembly until demand is realized (Benjaafar and ElHafsi 2006).

Many high-tech firms, facing shorter product life cycles and higher demand for product varieties,

use ATO to extend customized product offerings, lower inventory cost, and mitigate the effect of

product obsolescence. Besides manufacturing, ATO systems can be observed when customer orders

include several items in different quantities (Song 2000). Despite its popularity, however, little is

known about the forms of optimal policies for ATO systems. Much of this owes to the considerable

difficulty in identifying optimal policies, as ATO systems build upon the features of both assembly

and distribution systems (Song and Zipkin 2003). (An assembly system has only one product and

aims to coordinate components optimally. A distribution system has only one component and seeks

to allocate the component optimally among different products.) Hence, one needs to address both

coordination and allocation issues in an ATO system, making them notoriously difficult to analyze.

ATO systems can be categorized according to their product structures (Lu et al. 2010). Figure 1
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Figure 1 Specific types of ATO product structures: (a) N -system, (b) M -system, (c) W -system, and (d) Nested

system with three products.

depicts four such specific types: (a) An N -system, the simplest of the ATO product structures, has

two components and two products. One product uses both components while the other product

uses only one component. (b) An M -system has two components and three products. One product

uses both components while the other two products use different components. (c) A W -system has

three components and two products. There is one product-specific component and one common

component to each product. (d) A nested system has multiple components and products, where

the set of components required by one product is a subset of the set of components needed for the

next larger product. Figure 1(d) depicts a nested system with three components.

Several authors have managed to partially or fully characterize optimal policies for specific ATO

systems: Dogru et al. (2010) consider a W -system with backordering and identical component lead

times. They establish the optimality of a base-stock replenishment policy and a priority-based

backorder clearing rule (without reservation) when the “balanced capacity” condition holds, or

when both products have the same unit inventory costs. Lu et al. (2010) obtain a similar result

for W -systems with backordering, a base-stock replenishment policy, and general component lead
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times. Specifically, they show that no-holdback component allocation rules are optimal when the

“symmetric cost” condition holds. Lu et al. (2010) also extend this optimality result to N -systems

and generalized W -systems. Lu et al. (2012) prove the optimality of coordinated base-stock policies

and no-holdback rules for N -systems with backordering and symmetric costs, and extend this result

to the case with high demand volume and asymmetric costs. The optimal allocation rules in all

these papers have the following property: a component is allocated to a demand only if it enables

immediate fulfillment of that demand. (Such a property implies a first-come-first-served, FCFS,

allocation rule in a lost sales environment, but a non-FCFS rule in a backordering environment.)

Lastly, ElHafsi et al. (2008) consider a Markovian nested system with lost sales, proving the

optimality of state-dependent base-stock and state-dependent rationing policies. (Stock rationing

is a non-FCFS rule; a demand for a particular product is satisfied if and only if the inventory level

is higher than a certain threshold.) To our knowledge, there is no extant characterization of the

optimal policy for the M -system.

In this paper, we consider the inventory control of a generalized version of the M -system in

continuous time. The system involves a single “master” product which requires multiple units from

each component, and multiple “individual” products each of which consumes multiple units from

a different component. There may be an arbitrary number of individual products; our product

structure takes the form of M -system when there are two individual products, cf. Figure 1(b), and

includes as a special case the N -system in Figure 1(a) when there is a single individual product.

We formulate the problem as an infinite-horizon Markov decision process (MDP) under the total

expected discounted cost criterion. We assume each component is produced in batches of a fixed

size in a make-to-stock fashion; production times are independent and exponentially distributed.

Demand for each end-product arrives as an independent Poisson process and is lost if not satisfied

immediately upon arrival. A control policy specifies when to produce a batch of any component

and whether or not to satisfy a demand (upon arrival) from inventory when sufficient inventory

exists.

A standard approach for studying the optimal policies of MDPs is to explore the first- and/or

second-order properties of the optimal cost function (see Koole 2006). Optimal cost functions for

multivariate MDPs (like ours) are typically shown to be convex in each dimension of the state

space. For examples of such results, see Benjaafar and ElHafsi (2006), ElHafsi et al. (2008), ElHafsi

(2009), and Benjaafar et al. (2011). See also Smith and McCardle (2002) for sufficient conditions
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ensuring convexity in a multivariate Markovian inventory model. However, the existence of counter-

examples proves that convexity need not hold for our model (see Nadar et al. 2012). Taking an

alternative route, we define new functional characterizations of convexity and submodularity with

respect to certain non-unitary directions.

With these new definitions, we characterize the optimal inventory replenishment and allocation

policies under a mild condition: If the replenishment batch size for any component equals the

number of units needed to make that component’s corresponding individual product (Assumption

1), the optimal inventory replenishment policy is a lattice-dependent base-stock production policy

and the optimal inventory allocation policy is a lattice-dependent rationing policy (Theorem 1).

This implies that the state space of the problem can be partitioned into disjoint lattices such that

on each lattice, (a) it is optimal to produce a batch of a particular component if and only if the

state vector is less than the base-stock level associated with that component, and (b) it is optimal

to fulfill a demand of a particular product if and only if the state vector is greater than or equal to

the rationing level associated with that product. Furthermore, upon replenishment of a particular

component, (i) the base-stock level of any other component increases, (ii) the rationing level for

any individual product not using that component increases, and (iii) the rationing level for the

master product decreases, in a non-strict sense.

Although the optimal policy for the general ATO problem is still unknown, literature on ATO

systems is extensive. Song and Zipkin (2003) provide a comprehensive survey of this literature. The

paper that is most closely related to ours is Benjaafar and ElHafsi (2006). They consider an ATO

assembly system with a single end-product which uses one unit of multiple components. The end-

product is demanded by multiple customer classes. At any time, there is at most one outstanding

order for one unit of each component. They show that, under Markovian assumptions on production

and demand, the optimal replenishment is a state-dependent base-stock policy, and the optimal

allocation is a state-dependent rationing policy. We extend the model of Benjaafar and ElHafsi

(2006) in several directions: (i) We allow our components to be demanded individually as well; (ii)

unlike their end-product, our master product may use multiple units from each component; and

furthermore (iii) our master product and each of our individual products may require the same

component in different quantities. As a result, the state-dependent base-stock and state-dependent

rationing (SBSR) policy in Benjaafar and ElHafsi (2006) can be shown to be a special case of our

lattice-dependent base-stock and lattice-dependent rationing (LBLR) policy, implying that LBLR

is analytically no worse than SBSR for general ATO systems (see Nadar et al. 2012).
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We contribute to the ATO literature in several important ways: First, to our knowledge, our

study is the first attempt to characterize the optimal replenishment and allocation policies for

the generalized M -system. Second, unlike all previous research dealing with the optimal policy

characterization for ATO systems, we are the first to allow different products to use the same

component in different quantities. Third, we define new functional characterizations for convexity

and submodularity with respect to certain non-unitary directions. Fourth, we introduce the notion of

a lattice-dependent policy, which represents a significant step towards understanding ATO problems,

and may aid researchers in developing near-optimal heuristic solutions for general ATO systems.

The rest of this paper is organized as follows: Section 2 formulates the model under the discounted

cost criterion. Section 3 introduces our new functional characterizations, establishes the optimal

replenishment and allocation policies, and extends our structural results to the average cost case.

Section 4 offers several other extensions and Section 5 concludes.

2. Problem Formulation

We consider an ATO system with n components (j = 1,2, .., n) and n+1 products (i= 1,2, .., n+1),

where each component j is consumed by one individual product i= j and also by the master product

i= n+1. Notice that the ATO system we consider reduces to an “M -system” when n= 2, cf. Figure

1(b). Define a= (a1, a2, .., an) as the vector of component requirements for product n+ 1; aj is the

number of units of component j needed to assemble one unit of the master product n+ 1. Define

b= (b1, b2, .., bn) as the vector of component requirements for all the other products; bj is the number

of units of component j required to make one unit of individual product i= j. Each component

j is produced in batches of a fixed size qj in a make-to-stock fashion. Define q = (q1, q2, .., qn)

as the vector of production batch sizes. Production time for component j is independent of the

system state and the number of outstanding orders of any type, and exponentially distributed with

finite mean 1/µj. Assembly times are negligible so that assembly operations can be postponed

until demand is realized. Demand for each product i arrives as an independent Poisson process

with finite rate λi. Demand for product i can be fulfilled only if all the required components are

available; otherwise, the demand is lost, incurring a unit lost sale cost ci. Demand may also be

rejected in the presence of all the necessary components, again incurring the unit lost sale cost.

The state of the system at time t is the vector X(t) = (X1(t), ..,Xn(t)), where Xj(t) is a non-

negative integer denoting the on-hand inventory for component j at time t. Component j held in

stock has a holding cost per unit time hj(Xj(t)), which is convex and strictly increasing in the
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number of available units of component j. Denote by h(X(t)) =
∑

j hj(Xj(t)) the total inventory

holding cost rate at state X(t). Since both demand interarrival and production times are exponen-

tially distributed, the system retains no memory, and decision epochs can be restricted to times

when the state changes. Using the memoryless property, we can formulate the problem as an MDP

and confine our analysis to Markovian policies for which actions at each decision epoch depend

solely on the current state. A control policy π specifies, for each state x = (x1, .., xn), the action

uπ(x) = (u(1), .., u(n), u1, .., un+1) where u(j) = 1 means produce component j, u(j) = 0 means do

not produce component j, ui = 1 means satisfy demand for product i, and ui = 0 means reject

demand for product i. Denote by U(x) the set of admissible actions at state x. Thus, for any action

u= (u(1), .., u(n), u1, .., un+1)∈U(x), the following must hold:

• u(j) ∈ {0,1}, ∀j;

• ui = 0 if xi < bi, and ui ∈ {0,1} otherwise, ∀i∈ {1,2, .., n}; and

• un+1 = 0 if ∃i such that xi <ai, and un+1 ∈ {0,1} otherwise.

As each ordering decision u(j) specifies only whether or not to produce component j, there is at

most one outstanding order for each component at any time. Also, as component orders are not

part of our system state, these can in effect be cancelled upon transition to a new state. Both of

these assumptions are standard in the literature (see, for example, Ha 1997, Benjaafar and ElHafsi

2006, and ElHafsi et al. 2008).

Let v denote a real-valued function defined on Nn0 (N0 is the set of nonnegative integers and Nn0

is its n-dimensional cross product). Also define 0<α< 1 as the discount rate. For a given policy

π= π̃ and a starting state X(0) = x, the expected discounted cost over an infinite planning horizon

vπ̃(x) can be written as

vπ̃(x) =E

[∫ ∞
0

e−αth(X(t))dt+
n+1∑
i=1

∫ ∞
0

e−αtcidNi(t)

∣∣∣∣∣ X(0) = x, π= π̃

]
(1)

where Ni(t) is the cumulative number of demands for product i that have not been fulfilled from

on-hand inventory up to time t.

The time between the transition to state x and the transition to the next state is exponentially

distributed with rate νx(u) if action u= (u(1), .., u(n), u1, .., un+1)∈U(x) is selected in state x. Define

tk as the time of occurrence of the kth transition. Also let t0 = 0. The state of the system stays

constant between transitions, i.e., X(t) = X(tk) = (X1(tk), ..,Xn(tk)) for tk ≤ t < tk+1. Following

Lippman (1975), we consider a uniformized version of the problem where the rate of transition ν is

an upper bound for all states and controls, i.e., ν ≥ νx(u), ∀x,u. Specifically, we will formulate the



Nadar, Akan, and Scheller-Wolf: Optimal Structural Results for Generalized M-Systems 7

problem for the choice ν =
∑

j µj +
∑

i λi. Therefore, the kth transition time interval (tk+1− tk) is

exponentially distributed with rate ν, ∀k. The introduction of the uniform transition rate enables us

to transform the continuous-time control problem into an equivalent discrete-time control problem.

If action u = (u(1), .., u(n), u1, .., un+1) ∈ U(x) is selected in state x, the next state is y with

probability px,y(u). Thus:

px,y(u) =



µju
(j)

ν
if y = x+ qjej,

λiui
ν

if y = x− biei,
λn+1un+1

ν
if y = x−a,

ν−
∑n

j=1 µju
(j)−

∑n+1
i=1 λiui

ν
if y = x, and

0 otherwise,

where ej is the jth unit vector of dimension n. In this discrete-time framework, Ni(tk) is the

cumulative number of unsatisfied demands for product i at the time of the kth transition, and

h(X(tk)) is the total inventory holding cost rate during the time interval [tk, tk+1). Then, vπ̃(x) in

(1) can be rewritten as

vπ̃(x) =E

[
∞∑
k=0

(
ν

α+ ν

)k
h(X(tk))

α+ ν
+
∞∑
k=1

(
ν

α+ ν

)k
·
n+1∑
i=1

ci(Ni(tk)−Ni(tk−1))

∣∣∣∣∣ X(0) = x, π= π̃

]
.

(2)

Our objective is to identify a policy π∗ that minimizes the expected discounted cost. We below

formulate the optimality equation that holds for the optimal cost function v∗ = vπ
∗
:

v∗(x) = min
u∈U(x)

{
h(x)

α+ ν
+

(
ν

α+ ν

) n+1∑
i=1

λici(1−ui)
ν

+

(
ν

α+ ν

)∑
y

px,y(u)v∗(y)

}
. (3)

Therefore, our continuous-time control problem is equivalent to a discrete-time control problem

with discount factor ν/(α+ ν) and cost per stage given by

h(x)

α+ ν
+

(
ν

α+ ν

) n+1∑
i=1

λici(1−ui)
ν

.

As it is always possible to redefine the time scale, without loss of generality we assume α+ν = 1.

Then the optimality equation in (3) can be simplified as follows:

v∗(x) = h(x) +
∑
j

µjT
(j)v∗(x) +

∑
i

λiTiv
∗(x), (4)

where the operator T (j) for component j is defined as

T (j)v(x) = min{v(x+ qjej), v(x)},
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the operator Ti for individual product i≤ n is given by

Tiv(x) =

{
min{v(x) + ci, v(x− biei)} if xi ≥ bi,
v(x) + ci otherwise,

and the operator Tn+1 for the master product n+ 1 is defined as

Tn+1v(x) =

{
min{v(x) + cn+1, v(x−a)} if x≥ a,
v(x) + cn+1 otherwise.

For a given state x, the operator T (j) specifies whether or not to produce a batch of component j;

and the operator Ti specifies, upon arrival of a demand for product i, whether or not to fulfill it

from inventory, if sufficient inventory exits.

3. Characterization of the Optimal Policy

Define f as a real-valued function on Nn0 , and p = (p1, p2, .., pn) and r = (r1, r2, .., rn) as vectors of

nonnegative integers. Also let ∆pf = f(x+p)− f(x).

We introduce the notion of “submodularity (or supermodularity) in the direction of pjej and

pkek,” for distinct j and k, to describe the class of functions f for which ∆pjejf is nonincreasing

(or nondecreasing) with an increase of pk in the kth dimension. We also introduce the notion of

“convexity (or concavity) in the direction of p and r” to describe the class of functions f for which

∆pf is nondecreasing (or nonincreasing) with an increase of r on Nn0 . We provide a more detailed

discussion of our functional characterizations including their relationship to similar concepts in the

literature (Veatch and Wein 1982, and Topkis 1978, 1998) in the online appendix.

Denote by Sub(p) the class of functions satisfying the property of “submodularity in the direction

of pjej and pkek,” ∀j 6= k. Also, denote by Cx(p,r) the class of functions satisfying the property

of “convexity in the direction of p and r.” Thus:

Definition 1 (Second-Order Properties). Let f be a real-valued function on Nn0 . Also let

p,r∈Nn0 .

(a) f ∈ Sub(p), if f(x+ pjej)− f(x)≥ f(x+ pjej + pkek)− f(x+ pkek), ∀x∈Nn0 , ∀j, and ∀k 6= j.

(b) f ∈Cx(p,r), if f(x+p+ r)− f(x+p)≥ f(x+ r)− f(x), ∀x∈Nn0 .

We are able to show, in Lemma 1, that our optimal cost function satisfies the properties of

Sub(b), Cx(a, bjej), ∀j, and Cx(a,b) under the following assumption.

Assumption 1. qj = bj, ∀j.
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Although we make the above assumption for analytical tractability, this corresponds to systems

with replenishment batch sizes which are, reasonably, determined by individual product sizes. Many

papers dealing with the optimal policy characterization for Markovian inventory systems assume

unitary component usage rates for products and unitary replenishment quantities for components,

and therefore Assumption 1 is satisfied in these papers. See, for instance, Ha (1997), Ha (2000), de

Véricourt el al. (2002), Benjaafar and ElHafsi (2006), ElHafsi et al. (2008), ElHafsi (2009), Gayon

et al. (2009a), and Gayon et al. (2009b). Even when replenishment batch sizes are different from

individual product sizes, we believe that batch sizes can still be adjusted to be individual product

sizes by negotiating with suppliers. Such adjustments might improve the firm’s profitability as we

know the optimal policy form in this case (cf. Theorem 1).

Lemma 1 establishes the structural properties of our optimal cost function under Assumption 1.

(The proofs of Lemma 1 and all other subsequent results appear in the online appendix.)

Lemma 1. Let V ∗ be the set of real-valued functions satisfying Sub(b), Cx(a, bjej), ∀j, and

Cx(a,b). Under Assumption 1, if v ∈ V ∗, then Tv ∈ V ∗, where Tv(x) = h(x) +
∑

j µjT
(j)v(x) +∑

i λiTiv(x). Furthermore, the optimal cost function v∗ is an element of V ∗.

The structural properties of our optimal cost function allow the form of the optimal policy to

be specified via certain lattices of the state space, as we show below.

Theorem 1. Let L(p,r) = {p+kr : k ∈N0} be an n-dimensional lattice with initial vector p∈Nn0

and common difference r ∈ Nn0 , where ∃j such that pj < rj. Under Assumption 1, there exists an

optimal stationary policy that can be specified as follows:

(1) The optimal inventory replenishment policy for each component j is a lattice-dependent

base-stock policy with lattice-dependent base-stock levels S∗j (p) ∈ L(p,a), ∀p: It is optimal to

produce a batch of component j if and only if x∈L(p,a) is less than S∗j (p).

(2) The optimal inventory allocation policy for each individual product i ≤ n is a

lattice-dependent rationing policy with lattice-dependent rationing levels R∗i (p) ∈ L(p,a), ∀p:

It is optimal to fulfill a demand for product i≤ n if and only if x∈L(p,a) is greater than or

equal to R∗i (p).

(3) The optimal inventory allocation policy for the master product n + 1 is a

lattice-dependent rationing policy with lattice-dependent rationing levels R∗n+1(p) ∈ L(p,b),

∀p: It is optimal to fulfill a demand for product n+ 1 if and only if x ∈ L(p,b) is greater

than or equal to R∗n+1(p).
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The optimal policy has the following additional properties:

i. As the system moves to a difference lattice with an increment of bk in the inventory level of

component k, both the optimal base-stock level of component j 6= k and the optimal rationing

level for individual product i /∈ {k,n+ 1} increase in a non-strict sense, ∀k.

ii. As the system moves to a difference lattice with an increment of bk in the inventory level of

component k, the optimal rationing level for the master product n+1 decreases in a non-strict

sense, ∀k.

iii. It is optimal to fulfill a demand of the master product n+ 1 if xj ≥ aj + bj

⌊
xj
bj

⌋
, ∀j.

Theorem 1 builds upon the properties of Cx(a, bjej), ∀j, Cx(a,b), and Sub(b): Cx(a, bjej)

implies that, as the system moves to a higher inventory level on the lattice L(p,a), the desirability

of producing a batch of component j decreases in a non-strict sense (optimality of base-stock

policies, point 1), and the desirability of satisfying a demand for any individual product j increases

in a non-strict sense (optimality of rationing policies for each product j ≤ n, point 2). Cx(a,b)

implies that, as the system moves to a higher inventory level on the lattice L(p,b), the incentive

to fulfill a demand for the master product n+ 1 increases in a non-strict sense (optimality of a

rationing policy for product n+ 1, point 3).

Notice that the rationing policy for each product i≤ n in point 2 is defined over lattices with

common difference a, while the rationing policy for product n+1 in point 3 is defined over lattices

with common difference b. The intuition behind these results is as follows: Demands of each product

i≤ n compete with those of product n+ 1 for the same component. For a given product i≤ n, an

increment of a in the inventory level increases the total demand for its competitor product that

can be satisfied, thereby mitigating the competition. Hence, the incentive to fulfill a demand of

product i≤ n increases in a non-strict sense (point 2). Likewise, for product n+ 1, an increment of

b in the inventory level mitigates the competition as the total demand for each of its competitors

that can be satisfied increases. Hence, the incentive to fulfill a demand of product n+ 1 increases

in a non-strict sense (point 3). Note that under the rationing policy described in Theorem 1, for

a given product, an increment in the inventory level that does not increase the total demand for

any of its competitors that can be satisfied, may actually reduce the incentive to fulfill a demand

of this product (in a non-strict sense).

Theorem 1, using the properties of Sub(b) and Cx(a, bjej), ∀j, proves the following additional

properties of the optimal policy: Point (i) says that, based on the property of Sub(b), upon replen-

ishment of a batch of a component k, the desirability of producing a batch of component j 6= k
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increases while the desirability of satisfying a demand for product i /∈ {k,n+ 1} decreases, in a

non-strict sense. Therefore, both the base-stock level of component j 6= k and the rationing level

for product i /∈ {k,n+ 1} increase in a non-strict sense. The intuition is that the presence of the

master product n+ 1 requires us to coordinate inventory replenishment and fulfillment decisions

across components; it is less beneficial to produce or hold a batch of one component when the

inventory level of any other component is significantly smaller. Point (ii) states that, based on the

property of Cx(a, bjej), upon replenishment of a batch of any component j, the incentive to fulfill

a demand for product n+ 1 increases in a non-strict sense since the total demand for one of its

competitors that can be satisfied increases. Lastly, point (iii) shows that it is optimal to fulfill a

demand of product n+ 1 as long as the total demand for any other product that can be satisfied

stays the same.

As far as we aware, we are the first to characterize the optimal policy for the generalized M -

system. We refer to this optimal policy as a lattice-dependent base-stock and lattice-dependent

rationing (LBLR) policy. In Section 4.2, we will generalize our optimality results by allowing our

products to be requested by multiple demand classes.

Benjaafar and ElHafsi (2006) study an assembly system, which is a special case of our generalized

M -system, and show the optimality of a state-dependent base-stock and state-dependent rationing

(SBSR) policy. An LBLR policy differs from an SBSR policy in the following ways: There may be

inventory levels x1 ∈L(p1,a) and x2 ∈L(p2,a), x1 ≥ x2, p1 6= p2, such that an LBLR policy allows

a particular component to be produced at x1 even if it is not produced at x2, but an SBSR policy

does not. Likewise, there may be inventory levels x1 ∈L(p1,b) and x2 ∈L(p2,b), x1 ≥ x2, p1 6= p2,

such that an LBLR policy allows a demand for product n+ 1 to be rejected at x1 even if it is

satisfied at x2, but again an SBSR policy does not. Conversely, if a 6=
∑

j zej for z ∈N0, then there

also may exist inventory levels x1 ≥ x2, such that an SBSR policy allows a particular component

to be produced at x1 even if it is not produced at x2, but an LBLR policy does not. But if a is

chosen optimally, then it can be shown that an SBSR policy is a subclass of LBLR policies (see

Nadar et al. 2012).

To our knowledge, we are also the first to establish the optimal policy for an ATO system in

which different products use different quantities of the same component. For the simplest example

of such a system, consider a single-component model with two products (denoted by 1 and 2). This

is a special case of our generalized M -system; products 1 and 2 can be viewed as the individual and
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master products of the M -system, respectively. Suppose that products 1 and 2 consume 1 and 2

units of the component, respectively, and the replenishment batch size is 1, satisfying Assumption

1. (Products 1 and 2 can also be viewed as the master and individual products, respectively; if

the replenishment batch size is 2, Assumption 1 is again satisfied.) As far as we know, there is no

optimality result in the literature for such a system. (If both products required one unit from the

component, the optimal policy would be a fixed base-stock and fixed rationing, FBFR, policy with

single base-stock level for the component and single rationing level for each product; see Ha 1997.)

Theorem 1 establishes the optimality of an LBLR policy for this problem.

Now, suppose that µ= 1, λ1 = 1, λ2 = 10, c1 = 20, c2 = 100, h= 40, and α= 0.5. (We assumed

linear holding cost rates, i.e., h(x) = hx.) Then:

• A base-stock policy is optimal on each of the following two lattices: {0,2,4, ..} and {1,3,5, ..}.

The base-stock levels are 18 and 21, respectively.

• For product 1, a rationing policy is optimal on each of the following two lattices: {0,2,4, ..}

and {1,3,5, ..}. The rationing levels for product 1 are 14 and 1, respectively.

• For product 2, however, a rationing policy is optimal on the entire state space, i.e., {0,1,2, ..},

since product 1 uses one unit of the component. The rationing level for product 2 is 2.

Notice that base-stock levels and/or rationing levels on different lattices in general need not be

adjacent. When they are, an LBLR policy reduces to an FBFR policy.

The Case of Average Cost. As our optimization criterion, we now take the average cost per

unit time over an infinite planning horizon. Given a policy π= π̃, the average cost rate is given by

vπ̃(x) = limsup
T→∞

1

T

{∫ T

0

h(X(t))dt+
n+1∑
i=1

∫ T

0

cidNi(t)

}
. (5)

The objective is to identify a policy π∗ that yields v∗(x) = infπ v
π(x) for all states x. The following

proposition shows that our structural results carry over to the average cost case:

Proposition 1. Suppose that Assumption 1 holds and the Markov chain governing the system is

irreducible. Then there exists a stationary policy that is optimal under the average cost criterion.

This policy retains all the properties of the optimal policy under the discounted cost criterion, as

introduced in Theorem 1. Also, the optimal average cost is finite and independent of the initial

state; there exists a finite constant v∗ such that v∗(x) = v∗, ∀x.

4. Extensions

In this section we discuss several extensions of the optimality results in Section 3.
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4.1. Generalized N-Systems

Our analysis can be extended to systems in which a nonempty subset of the components is not

demanded individually. Define A1 as the set of components used by product n+ 1 only, and A2 as

the set of components j used by products i= j and i= n+ 1. Thus, A1 = {1,2, .., n}\A2. We label

such systems as generalized N -systems, since the product structure in this case takes the form of

N -system when n= 2 and A2 = {1}, or n= 2 and A2 = {2}, cf. Figure 1(a). Generalized N -systems

are a special case of our generalized M -systems when the demand rate for each individual product

i ∈ A1 is zero, and therefore an LBLR policy is optimal for these systems under Assumption 1.

However, Assumption 1 is no longer restrictive for the replenishment batch size of component

j ∈A1: As the demand rate for individual product i ∈A1 is zero, qj may be chosen arbitrarily for

component j = i, ∀i∈A1.

We are the first to show the optimality of an LBLR policy for such general N -systems. Different

more restricted versions of the N -system have been studied in the literature: Lu et al. (2010) prove

that no-holdback rules are optimal among all allocation rules for N -systems with backordering, a

base-stock replenishment policy, and a symmetric cost structure. In a recent paper, Lu et al. (2012)

establish the optimality of coordinated base-stock policies and no-holdback rules for N -systems

with backordering and symmetric costs. Lu et al. (2012) also extend this result to the case with

high demand volume and asymmetric costs. Lastly, in a lost sales environment, ElHafsi et al. (2008)

consider a nested product structure with unitary component usage rates and unitary replenishment

quantities. The nested system of ElHafsi et al. (2008) reduces to an N -system when there are two

components. Under Markovian assumptions on production and demand, ElHafsi et al. (2008) show

the optimality of an SBSR policy.

4.2. The Case with Multiple Demand Classes

In this subsection, we extend our generalized M -system by allowing each product to be requested

by multiple demand classes with different lost sale costs. Denote by D(i) the number of different

demand classes for product i, and let d(i) = 1,2, ..,D(i). A demand for one unit of product i from

class d(i) arrives as an independent Poisson process with rate λi,d(i) and has a lost sale cost ci,d(i) ,

∀i. Without loss of generality, we assume ci,1 ≥ ci,2 ≥ · · · ≥ ci,D(i) , ∀i. We therefore modify our

optimality equation in (4) as follows:

v∗(x) = h(x) +
n∑
j=1

µjT
(j)v∗(x) +

n+1∑
i=1

D(i)∑
d(i)=1

λi,d(i)Ti,d(i)v
∗(x),



14 Nadar, Akan, and Scheller-Wolf: Optimal Structural Results for Generalized M-Systems

where the replenishment operator T (j) for component j stays the same as in (4), the operator Ti,d(i)

for demand class d(i) of individual product i is defined as

Ti,d(i)v(x) =

{
min{v(x) + ci,d(i) , v(x− biei)} if xi ≥ bi,
v(x) + ci,d(i) otherwise,

and the operator Tn+1,d(n+1) for demand class d(n+1) of the master product n+ 1 is defined as

Tn+1,d(n+1)v(x) =

{
min{v(x) + cn+1,d(n+1) , v(x−a)} if x≥ a,
v(x) + cn+1,d(n+1) otherwise.

The operator Ti,d(i) is associated with the decision to fulfill a demand for individual product i≤ n

from class d(i). Likewise, the operator Tn+1 is associated with the decision to fulfill a demand for

the master product n+ 1 from class d(n+1).

In this case, if Assumption 1 holds, it can be shown that an LBLR policy is optimal under

the following modifications: (i) The optimal inventory allocation for demand class d(i) of each

product i≤ n is a lattice-dependent rationing policy with rationing levels R∗
i,d(i)

(p) ∈ L(p,a), ∀p,

(ii) the optimal inventory allocation for demand class d(n+1) of product n+1 is a lattice-dependent

rationing policy with rationing levels R∗
n+1,d(n+1)(p)∈L(p,b), ∀p, and (iii) it is optimal to fulfill a

demand of product n+ 1 from class 1 as long as the total demand for any other product that can

be satisfied stays the same. Furthermore, R∗i,1(p)≤R∗i,2(p)≤ · · · ≤R∗
i,D(i)(p), ∀p, ∀i.

4.3. The Case with Variable Replenishment Quantities

We next allow the replenishment quantity of each component j to be integral multiples of the batch

size qj. For this extension, we modify the replenishment control operator T (j) in (4) as follows:

T (j)v(x) = min
z∈N0

{v(x+ zqjej)}.

The operator T (j) is associated with the decision to produce z batches of component j. (If z is

restricted to be either one or zero at each of these control operators, the problem reduces to the

one described in Section 2.)

Under this modification, again if qj = bj, ∀j, it can be shown that our propagation results

continue to hold: The optimal cost function satisfies the properties of Sub(b), Cx(a, bjej), ∀j,

and Cx(a,b). Thus the optimal allocation policy is a lattice-dependent rationing policy. But the

optimal replenishment policy has no clear structure: Consider two different system states x1 and

x2 such that x1,x2 ∈L(p,a). The original system, where z ∈ {0,1} at each replenishment operator,

moves from the lattice L(p,a) to the lattice L(p+ qjej,a) upon replenishment of component j at
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both states x1 and x2. Such transitions are governed by the structural properties of the optimal cost

function, implying the optimality of a lattice-dependent base-stock policy. However, the revised

system, where z ∈N0, may move from the lattice L(p,a) to different lattices upon replenishment

of component j since different replenishment quantities might be chosen at states x1 and x2. But

then the structural properties of the optimal cost function may not apply.

Nevertheless, we can characterize the optimal replenishment policy for generalized M -systems

with unitary component usage rates for products (i.e., a= e and b= e) and unitary replenishment

batch sizes for components (i.e., q = e) (as is standard in the ATO literature). In this special

case of generalized M -systems, the optimal cost function satisfies the properties of Sub(e) and

Cx(e, ej), ∀j. Then, it can be shown that the optimal cost function is convex in the inventory level

of each component, and the optimal replenishment policy is a state-dependent base-stock policy

with state-dependent base-stock levels at each component.

4.4. The Case with Compound Poisson Demand

Lastly, we allow customer orders for each product to arrive according to an independent compound

Poisson process. Specifically, in this case, customers for product i arrive as an independent Poisson

process with a finite rate λi, but an arriving customer for product i requests δi units from product

i. We assume the random variables δi are independent across different products and across different

customers for the same product. The requested amounts are bounded above for each product i

by the quantity Di. The probability that the size of a customer order for product i will be d is

Pr{δi = d}= pi(d), i= 1,2, .., n+ 1 and d= 1,2, ..,Di. Any unsatisfied part of the demand for each

product i is lost, incurring a unit lost sale cost ci. Thus our optimality equation in (4) can be

modified as follows:

v∗(x) = h(x) +
∑
j

µjT
(j)v∗(x) +

∑
i

λi

(
Di∑
d=1

pi(d)Ti,dv
∗(x)

)
,

where the replenishment operator T (j) for component j stays the same as in (4), the operator Ti,d

for a customer order for d units of individual product i≤ n is defined as

Ti,dv(x) = min
z∈{0,1,..,d} s.t. xi≥zbi

{v(x− zbiei) + (d− z)ci},

and the operator Tn+1,d for a customer order for d units of the master product n+ 1 is defined as

Tn+1,dv(x) = min
z∈{0,1,..,d} s.t. x≥za

{v(x− za) + (d− z)cn+1}.
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The operator Ti,d is associated with the decision to fulfill z units (if sufficient inventory exists)

out of d requested units for individual product i≤ n. Likewise, the operator Tn+1,d is associated

with the decision to fulfill z units (if sufficient inventory exists) out of d requested units for the

master product n+1. (The problem reduces to the one described in Section 2 when Pr{δi = 1}= 1,

∀i∈ {1,2, .., n+ 1}.)

In this case, once again if qj = bj, ∀j, it can be shown that the structural properties of our optimal

cost function in (4) continue to hold: The optimal replenishment policy is a lattice-dependent base-

stock policy. But the optimal allocation policy has no clear structure. Consider two different system

states x1 and x2 such that x1,x2 ∈L(p,a). The original system with unitary Poisson demand moves

from the lattice L(p,a) to the lattice L(p− biei,a) if a demand for individual product i is satisfied

at both states x1 and x2. Such transitions are governed by the structural properties of the optimal

cost function, implying the optimality of a lattice-dependent rationing policy. However, the revised

system with compound Poisson demand may move from the lattice L(p,a) to different lattices

upon arrival of a customer order for d units of individual product i, since different quantities from

the d requested units might be satisfied at states x1 and x2. (A similar argument can be made for

the master product.) But then the structural properties of the optimal cost function do not apply.

Again, we can characterize the optimal allocation policy for generalized M -systems with com-

pound Poisson demand, unitary component usage rates for products, and unitary replenishment

batch sizes for components. In this case, since the optimal cost function is convex in the inven-

tory level of each component, the optimal allocation policy is a state-dependent rationing policy

with state-dependent rationing levels for each product. Furthermore, our generalized M -systems

with unitary component requirements, unitary replenishment batch sizes, and compound Poisson

demand become equivalent to the assembly system in ElHafsi (2009) when the demand rates for our

individual products are zero. ElHafsi (2009) proves the optimality of a state-dependent rationing

policy for the end-product. Thus we extend the optimality result in ElHafsi (2009) by allowing the

components to also be demanded individually.

5. Concluding Remarks

We have studied the inventory replenishment and allocation problem for generalized ATO M -

systems. We significantly extend the existing literature by characterizing the optimal policy when

different products use different quantities of the same component. When replenishment batch
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sizes are determined by the individual product sizes, a lattice-dependent base-stock and lattice-

dependent rationing (LBLR) policy is optimal for both the discounted cost and average cost cases.

An LBLR policy is optimal also when (i) some components are not demanded individually and

their replenishment batch sizes are chosen arbitrarily, and/or (ii) each product is requested by

multiple demand classes. A lattice-dependent rationing policy remains optimal when the possible

replenishment quantities for any component are integral multiples of the size of the corresponding

individual product. A lattice-dependent base-stock policy remains optimal when customer orders

for any product arrive as an independent compound Poisson process.

In a companion paper (Nadar et al. 2012), we conduct numerical experiments to evaluate the

use of an LBLR policy as a heuristic for general ATO systems (which may not satisfy Assumption

1, or even our generalized M -system product structure), comparing it with two other heuristics:

a state-dependent base-stock and rationing policy (SBSR), and a fixed base-stock and rationing

policy (FBFR), both adapted from Benjaafar and ElHafsi (2006). In the average cost case, we

numerically show that LBLR always yields the optimal cost in over 1800 examples, while SBSR

(or FBFR) provides solutions within 2.7% (or 4.8%) of the optimal cost. We are also able to show

analytically that LBLR outperforms the other heuristics. Based on these results, future research

could investigate whether an LBLR policy is indeed optimal for general ATO systems and if so,

how the state space should be partitioned into disjoint lattices. However, one may need a different

methodology to prove the optimality of LBLR, because in Nadar et al. (2012) we also provide

counter-examples which show that the second-order properties of our optimal cost function, which

are sufficient to ensure the optimality of LBLR, may fail to hold for general ATO systems.

Future extensions of the current paper could also consider ATO systems with backorders. In this

case, one needs to include the number of backordered demands for each product in the state space,

and investigate the optimal backorder clearing mechanism upon replenishment of any component.

However, both the state and action spaces become extremely large as a result. Also, as our products

will differ in their both backordering costs and component requirements, it is unclear which products

will have fulfillment priority at different inventory levels, adding significant complexity to the

backorder clearing problem. Another direction for future research is to extend our model to phase-

type or even general component production and demand interarrival times. Also, it would be more

realistic to allow for dependent demand across products and over time. Lastly, extending our model

to include nonzero assembly times is an interesting problem to pursue. However, with today’s
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manufacturing technology, assembly times are usually small and our model is likely to provide a

good approximation in general.
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Online Technical Appendix

EC.1. New Functional Characterizations

Define f as a real-valued function on Nn0 , and p = (p1, p2, .., pn) and r = (r1, r2, .., rn) as vectors of

nonnegative integers. Also let ∆pf = f(x+p)− f(x).

Section 3 introduces the notion of “submodularity (or supermodularity) in the direction of pjej

and pkek,” for distinct j and k, to describe the class of functions f for which ∆pjejf is nonincreasing

(or nondecreasing) with an increase of pk in the kth dimension. This terminology is inspired by

that of Veatch and Wein (1982), who define submodularity of a function with respect to control

directions in its domain. However, unlike the examples in Veatch and Wein (1982), our direction

sets may involve non-unitary vectors.

Our notion of submodularity (or supermodularity) concurs with the theory of submodular (or

supermodular) functions on a lattice developed by Topkis (1978, 1998), with some adjustments. It

can be shown that if a function on Nn0 is “submodular in the direction of pjej and pkek,” ∀j 6= k,

then it satisfies Topkis’ submodularity property on the lattice{
r+

n∑
i=1

zipiei : zi ∈N0

}
,

∀r such that ri < pi, ∀i∈ {1,2, .., n}, and vice versa. Notice that if ∃i such that pi > 1, then r can be

chosen in multiple ways, and thus “submodularity in the direction of pjej and pkek,” ∀j 6= k, implies

Topkis’ submodularity concept on multiple disjoint subspaces of Nn0 which is, strictly speaking, a

generalization of Topkis’ submodularity. But, if a function on Nn0 is “submodular in the direction

of ej and ek,” ∀j 6= k (i.e., pi = 1, ∀i), then it is submodular on the lattice Nn0 , and vice versa. In

this case our definition is equivalent to that in Topkis. (The same arguments can be extended to

our notion of supermodularity.)

Consider the M -system depicted in Figure 1(b). Suppose that products 1 and 2 use 2 units

from components 1 and 2, respectively, and product 3 uses 1 unit from each component. Also,

suppose that the replenishment batch sizes are 2, satisfying Assumption 1. Assume that the system

is initially on the lattice L0 , {z1(2,0) + z2(0,2) : z1, z2 ∈N0}. If the demand rate for product 3 is

zero, then the state space of the problem can be restricted to this lattice without loss of generality.

In this case, Topkis’ submodularity property is equivalent to our notion of submodularity (satisfied

by the optimal cost function). But if the demand rate for product 3 is nonzero, the system moves

to the lattice L1 , {(1,1) + z1(2,0) + z2(0,2) : z1, z2 ∈N0} when a demand for product 3 occurs and
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is satisfied. The system stays on L1 until fulfillment of a future demand for product 3, at which

time it returns to L0. Topkis’ submodularity property need not hold on the join of the two lattices,

while ours does. However, in view of our notion of submodularity, Topkis’ submodularity property

holds on either lattice individually.

Several authors dealing with the optimal policy characterization for Markovian inventory systems

prove that the optimal cost function is “submodular in the direction of ej and ek,” enabling them

to explore the comparative statics of the optimal policy parameters with respect to the state space.

See, for instance, Benjaafar and ElHafsi (2006), ElHafsi et al. (2008), ElHafsi (2009), and Gayon

et al. (2009). Unlike these authors, through our notion of “submodularity in the direction pjej and

pkek,” we provide the comparative statics of the optimal policy parameters with respect to certain

subspaces of the state space; see point (i) of Theorem 1. This specialization (along with our notion

of convexity) enables us to prove structural properties for ATO problems that have non-unitary

component demands for the first time in the literature.

Section 3 also introduces the notion of “convexity (or concavity) in the direction of p and r”

to describe the class of functions f for which ∆pf is nondecreasing (or nonincreasing) with an

increase of r in the domain. This terminology is again inspired by that of Veatch and Wein (1982),

who use the term “convexity in the direction p” to describe the class of functions f with ∆pf

nondecreasing with an increase of p in the domain. Thus, our notion of convexity reduces to that

of Veatch and Wein (1982) when p= r. It further reduces to convexity in the jth dimension when

p= r= ej.

Our notion of convexity might be usefully employed in determining the optimal policy for complex

inventory models in which the optimal cost function need not be convex. In the literature on

optimal policy characterization for inventory systems with batch ordering, several authors use the

property of “convexity in the direction of p and 1,” where p is a positive integer, to establish the

optimality of a threshold ordering policy. See, for instance, Gallego and Toktay (2004), and Huh

and Janakiraman (2012). Apart from this literature, Ha (2000) uses the same property for a single-

item inventory system with lost sales, Erlang replenishment lead times, and Poisson demand. Ha

(2000) then proves that the optimal replenishment policy is a critical work level policy. (All of

these papers use different terminologies to describe what we refer to as “convexity in the direction

of p and 1.”) In our study, however, we show that the optimal cost function is “convex in the

direction of p = a and r = b,” (which is weaker than “convexity in the direction of p and 1”
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in one dimensional problems) for generalized M -systems. This result continues to hold even for

(i) generalized N -systems, (ii) the case with multiple demand classes, (iii) the case with variable

replenishment quantities, and (iv) the case with compound Poisson demand.

EC.2. Proofs of the Results in Section 3

We need the following two auxiliary lemmas in the proof of Lemma 1.

Lemma EC.1. Cx(p, r1e1)∩ · · · ∩Cx(p, rnen)⊆Cx(p,r), ∀p,r∈Nn0 .

Proof of Lemma EC.1. f ∈Cx(p, rjej), ∀j, implies the following inequalities:

f(x+p+ r1e1)− f(x+ r1e1) ≥ f(x+p)− f(x),

f(x+p+ r1e1 + r2e2)− f(x+ r1e1 + r2e2) ≥ f(x+p+ r1e1)− f(x+ r1e1),

...

f(x+p+
∑
j≤n

rjej)− f(x+
∑
j≤n

rjej) ≥ f(x+p+
∑
j<n

rjej)− f(x+
∑
j<n

rjej)

Summation of these inequalities implies f(x+p+r)−f(x+r)≥ f(x+p)−f(x), i.e., f ∈Cx(p,r).

�

Lemma EC.2. For operators T (j) and Ti, and holding cost rate h, it holds that

(a) T (j) : Sub(q)∩Cx(a, q1e1)∩ · · · ∩Cx(a, qnen)→ Sub(q)∩Cx(a, q1e1)∩ · · · ∩Cx(a, qnen), ∀j,

(b) Ti : Sub(b)∩Cx(a, b1e1)∩ · · · ∩Cx(a, bnen)→ Sub(b)∩Cx(a, b1e1)∩ · · · ∩Cx(a, bnen), ∀i, and

(c) h∈ Sub(q)∩Cx(a, q1e1)∩ · · · ∩Cx(a, qnen)∩Sub(b)∩Cx(a, b1e1)∩ · · · ∩Cx(a, bnen).

Proof of Lemma EC.2. Recall that T (j)v(x) = min{v(x + qjej), v(x)}, Tiv(x) = min{v(x) +

ci, v(x− biei)} if xi ≥ bi, and Tiv(x) = v(x) + ci otherwise, for i≤ n; and Tn+1v(x) = min{v(x) +

cn+1, v(x−a)} if xj ≥ aj for all j, and Tn+1v(x) = v(x) + cn+1 otherwise.

(a) Assume that v ∈ Sub(q) ∩ Cx(a, q1e1) ∩ · · · ∩ Cx(a, qnen). We will show T (j)v ∈ Sub(q) ∩

Cx(a, q1e1)∩ · · · ∩Cx(a, qnen).

• First we show T (j)v ∈ Sub(q), i.e., T (j)v(x+qiei)−T (j)v(x)≥ T (j)v(x+qiei+qkek)−T (j)v(x+

qkek), ∀k 6= i. Pick arbitrary k ∈ {1,2, .., n}. There are four different scenarios we need to

consider depending on the optimal actions at T (j)v(x + qiei) and T (j)v(x + qkek) (if this

inequality holds under suboptimal actions of T (j)v(x) and/or T (j)v(x + qiei + qkek), it also

holds under optimal actions of these operators, and thus we do not enforce the optimal actions

at these operators). These four scenarios are as follows:
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(1) Suppose that T (j)v(x+ qiei) = v(x+ qiei)< v(x+ qjej + qiei) and T (j)v(x+ qkek) = v(x+

qkek)< v(x+ qjej + qkek). As we assume v ∈ Sub(q), the following inequalities hold:

T (j)v(x+ qiei)−T (j)v(x) ≥ v(x+ qiei)− v(x)

≥ v(x+ qiei + qkek)− v(x+ qkek)

≥ T (j)v(x+ qiei + qkek)−T (j)v(x+ qkek)

(2) Suppose that T (j)v(x+ qiei) = v(x+ qjej + qiei)< v(x+ qiei) and T (j)v(x+ qkek) = v(x+

qkek)< v(x+ qjej + qkek). If j = k, then it is easy to verify that

T (j)v(x+ qiei)−T (j)v(x) ≥ v(x+ qiei + qjej)− v(x+ qjej)

≥ T (j)v(x+ qiei + qjej)−T (j)v(x+ qjej)

If j 6= k, as we assume v ∈ Sub(q), the following inequalities hold:

T (j)v(x+ qiei)−T (j)v(x) ≥ v(x+ qjej + qiei)− v(x)

≥ v(x+ qjej)− v(x+ qjej + qkek)

+v(x+ qjej + qiei + qkek)− v(x)

≥ v(x+ qjej + qiei + qkek)− v(x+ qkek)

≥ T (j)v(x+ qiei + qkek)−T (j)v(x+ qkek)

(3) Suppose that T (j)v(x+ qiei) = v(x+ qiei)< v(x+ qjej + qiei) and T (j)v(x+ qkek) = v(x+

qjej + qkek)< v(x+ qkek). If j = i, then it is easy to verify that

T (j)v(x+ qjej)−T (j)v(x) ≥ v(x+ qjej)− v(x+ qjej)

= v(x+ qjej + qkek)− v(x+ qjej + qkek)

≥ T (j)v(x+ qjej + qkek)−T (j)v(x+ qkek)

If j 6= i, as we assume v ∈ Sub(q), the following inequalities hold:

T (j)v(x+ qiei)−T (j)v(x) ≥ v(x+ qiei)− v(x)

≥ v(x+ qjej + qiei)− v(x+ qjej)

≥ v(x+ qjej + qiei + qkek)− v(x+ qjej + qkek)

≥ T (j)v(x+ qiei + qkek)−T (j)v(x+ qkek)
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(4) Suppose that T (j)v(x+ qiei) = v(x+ qjej + qiei)< v(x+ qiei) and T (j)v(x+ qkek) = v(x+

qjej + qkek)< v(x+ qkek). As we assume v ∈ Sub(q), the following inequalities hold:

T (j)v(x+ qiei)−T (j)v(x) ≥ v(x+ qjej + qiei)− v(x+ qjej)

≥ v(x+ qjej + qiei + qkek)− v(x+ qjej + qkek)

≥ T (j)v(x+ qiei + qkek)−T (j)v(x+ qkek)

Hence our inequality holds in each of the possible scenarios. Therefore, T (j)v ∈ Sub(q).

• Next we show T (j)v ∈ Cx(a, qiei), ∀i ∈ {1,2, .., n}, i.e., T (j)v(x + qiei + a) − T (j)v(x + a) ≥

T (j)v(x+qiei)−T (j)v(x), ∀i. Again, there are four different scenarios depending on the optimal

actions at T (j)v(x+ qiei +a) and T (j)v(x):

(1) Suppose that T (j)v(x+ qiei + a) = v(x+ qiei + a)< v(x+ qjej + qiei + a) and T (j)v(x) =

v(x)< v(x+ qjej). As we assume v ∈Cx(a, qiei), the following inequalities hold:

T (j)v(x+ qiei +a)−T (j)v(x+a) ≥ v(x+ qiei +a)− v(x+a)

≥ v(x+ qiei)− v(x)

≥ T (j)v(x+ qiei)−T (j)v(x)

(2) Suppose that T (j)v(x+ qiei + a) = v(x+ qjej + qiei + a)< v(x+ qiei + a) and T (j)v(x) =

v(x)< v(x+qjej). As we assume v ∈Cx(a, qiei) and v ∈Cx(a, qjej), the following inequal-

ities hold:

T (j)v(x+ qiei +a)−T (j)v(x+a) ≥ v(x+ qjej + qiei +a)− v(x+a)

≥ v(x+ qjej + qiei) + v(x+ qjej +a)

−v(x+ qjej)− v(x+a)

≥ v(x+ qjej + qiei)− v(x)

≥ T (j)v(x+ qiei)−T (j)v(x)

(3) Suppose that T (j)v(x+ qiei + a) = v(x+ qiei + a)< v(x+ qjej + qiei + a) and T (j)v(x) =

v(x+ qjej)< v(x). If j = i, then it is easy to verify that

T (j)v(x+ qjej +a)−T (j)v(x+a) ≥ v(x+ qjej +a)− v(x+ qjej +a)

= v(x+ qjej)− v(x+ qjej)

≥ T (j)v(x+ qjej)−T (j)v(x)
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If j 6= i, as we assume v ∈Cx(a, qiei) and v ∈ Sub(q), the following inequalities hold:

T (j)v(x+ qiei +a)−T (j)v(x+a) ≥ v(x+ qiei +a)− v(x+a)

≥ v(x+ qiei)− v(x)

≥ v(x+ qjej + qiei)− v(x+ qjej)

≥ T (j)v(x+ qiei)−T (j)v(x)

(4) Suppose that T (j)v(x+ qiei + a) = v(x+ qjej + qiei + a)< v(x+ qiei + a) and T (j)v(x) =

v(x+ qjej)< v(x). As we assume v ∈Cx(a, qiei), the following inequalities hold:

T (j)v(x+ qiei +a)−T (j)v(x+a) ≥ v(x+ qjej + qiei +a)− v(x+ qjej +a)

≥ v(x+ qjej + qiei)− v(x+ qjej)

≥ T (j)v(x+ qiei)−T (j)v(x)

Hence our inequality holds in all the possible scenarios. Therefore, T (j)v ∈Cx(a, qiei), ∀i.

(b) Assume that v ∈ Sub(b) ∩ Cx(a, b1e1) ∩ · · · ∩ Cx(a, bnen). We will show Tiv ∈ Sub(b) ∩

Cx(a, b1e1)∩ · · · ∩Cx(a, bnen).

Case I: Suppose that i≤ n.

• First we show Tiv ∈ Sub(b), i.e., Tiv(x+ bjej)−Tiv(x)≥ Tiv(x+ bjej + bkek)−Tiv(x+ bkek),

∀k 6= j. Pick arbitrary k ∈ {1,2, .., n}. There are four different scenarios we need to consider

depending on the optimal actions at Tiv(x+ bjej) and Tiv(x+ bkek) (if this inequality holds

under suboptimal actions of Tiv(x) and/or Tiv(x + bjej + bkek), it also holds under optimal

actions of these operators, and thus we do not enforce the optimal actions at these operators).

These four scenarios are as follows:

(1) Suppose that Tiv(x+ bjej) = v(x+ bjej) + ci and Tiv(x+ bkek) = v(x+ bkek) + ci. As we

assume v ∈ Sub(b), the following inequalities hold:

Tiv(x+ bjej)−Tiv(x) ≥ v(x+ bjej) + ci− v(x)− ci

≥ v(x+ bjej + bkek) + ci− v(x+ bkek)− ci

≥ Tiv(x+ bjej + bkek)−Tiv(x+ bkek)

(2) Suppose that xi ≥ bi, Tiv(x+bjej) = v(x+bjej)+ci and Tiv(x+bkek) = v(x+bkek−biei).

If i= k, then it is easy to verify that

Tiv(x+ bjej)−Tiv(x) ≥ v(x+ bjej) + ci− v(x)− ci
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≥ Tiv(x+ bjej + biei)−Tiv(x+ biei)

If i 6= k, as we assume v ∈ Sub(b), the following inequalities hold:

Tiv(x+ bjej)−Tiv(x) ≥ v(x+ bjej) + ci− v(x− biei)

≥ v(x)− v(x+ bkek)

+v(x+ bjej + bkek) + ci− v(x− biei)

≥ v(x+ bjej + bkek) + ci− v(x+ bkek− biei)

≥ Tiv(x+ bjej + bkek)−Tiv(x+ bkek)

(3) Suppose that xi ≥ bi if i 6= j, Tiv(x+ bjej) = v(x+ bjej − biei) and Tiv(x+ bkek) = v(x+

bkek) + ci. If i= j, then it is easy to verify that

Tiv(x+ biei)−Tiv(x) ≥ v(x)− v(x)− ci

= v(x+ bkek)− v(x+ bkek)− ci

≥ Tiv(x+ biei + bkek)−Tiv(x+ bkek)

If i 6= j, as we assume v ∈ Sub(b), the following inequalities hold:

Tiv(x+ bjej)−Tiv(x) ≥ v(x+ bjej − biei)− v(x− biei)

≥ v(x+ bjej)− v(x)

≥ v(x+ bjej + bkek) + ci− v(x+ bkek)− ci

≥ Tiv(x+ bjej + bkek)−Tiv(x+ bkek)

(4) Suppose that xi ≥ bi, Tiv(x+bjej) = v(x+bjej−biei) and Tiv(x+bkek) = v(x+bkek−biei).

As we assume v ∈ Sub(b), the following inequalities hold:

Tiv(x+ bjej)−Tiv(x) ≥ v(x+ bjej − biei)− v(x− biei)

≥ v(x+ bjej + bkek− biei)− v(x+ bkek− biei)

≥ Tiv(x+ bjej + bkek)−Tiv(x+ bkek)

Hence our inequality holds in all the possible scenarios. Therefore, Tiv ∈ Sub(b).

• Next we show Tiv ∈Cx(a, bjej), ∀j ∈ {1,2, .., n}, i.e., Tiv(x+ bjej + a)−Tiv(x+ a)≥ Tiv(x+

bjej)−Tiv(x), ∀j. Again, there are four different scenarios depending on the optimal actions

at Tiv(x+ bjej +a) and Tiv(x):
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(1) Suppose that xi ≥ bi, Tiv(x + bjej + a) = v(x + bjej + a− biei) and Tiv(x) = v(x− biei).

As we assume v ∈Cx(a, bjej), the following inequalities hold:

Tiv(x+ bjej +a)−Tiv(x+a) ≥ v(x+ bjej +a− biei)− v(x+a− biei)

≥ v(x+ bjej − biei)− v(x− biei)

≥ Tiv(x+ bjej)−Tiv(x)

(2) Suppose that xi ≥ bi, Tiv(x+ bjej + a) = v(x+ bjej + a) + ci and Tiv(x) = v(x− biei). As

we assume v ∈Cx(a, bjej) and v ∈Cx(a, biei), the following inequalities hold:

Tiv(x+ bjej +a)−Tiv(x+a) ≥ v(x+ bjej +a) + ci− v(x+a− biei)

≥ v(x+ bjej) + v(x+a)

−v(x) + ci− v(x+a− biei)

≥ v(x+ bjej) + ci− v(x− biei)

≥ Tiv(x+ bjej)−Tiv(x)

(3) Suppose that xi + ai ≥ bi if i 6= j, Tiv(x+ bjej + a) = v(x+ bjej + a− biei) and Tiv(x) =

v(x) + ci. If i= j, it is easy to verify that

Tiv(x+ biei +a)−Tiv(x+a) ≥ v(x+a)− v(x+a)− ci

= v(x)− v(x)− ci

≥ Tiv(x+ biei)−Tiv(x)

If i 6= j, as we assume v ∈ Sub(b) and v ∈Cx(a, bjej), the following inequalities hold:

Tiv(x+ bjej +a)−Tiv(x+a) ≥ v(x+ bjej +a− biei)− v(x+a− biei)

≥ v(x+ bjej +a)− v(x+a)

≥ v(x+ bjej) + ci− v(x)− ci

≥ Tiv(x+ bjej)−Tiv(x)

(4) Suppose that Tiv(x+ bjej +a) = v(x+ bjej +a) + ci and Tiv(x) = v(x) + ci. As we assume

v ∈Cx(a, bjej), the following inequalities hold:

Tiv(x+ bjej +a)−Tiv(x+a) ≥ v(x+ bjej +a) + ci− v(x+a)− ci

≥ v(x+ bjej) + ci− v(x)− ci

≥ Tiv(x+ bjej)−Tiv(x)
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Hence our inequality holds in all the possible scenarios. Therefore, Tiv ∈Cx(a, bjej), ∀j.

Case II: Suppose that i= n+ 1.

• First we show Tn+1v ∈ Sub(b), i.e., Tn+1v(x + bjej) − Tn+1v(x) ≥ Tn+1v(x + bjej + bkek) −

Tn+1v(x + bkek), ∀k 6= j. Pick arbitrary k, j ∈ {1,2, .., n}. There are four possible scenarios

depending on the optimal actions at Tn+1v(x+ bjej) and Tn+1v(x+ bkek):

(1) Suppose that Tn+1v(x+bjej) = v(x+bjej)+cn+1 and Tn+1v(x+bkek) = v(x+bkek)+cn+1.

As we assume v ∈ Sub(b), the following inequalities hold:

Tn+1v(x+ bjej)−Tn+1v(x) ≥ v(x+ bjej) + cn+1− v(x)− cn+1

≥ v(x+ bjej + bkek) + cn+1− v(x+ bkek)− cn+1

≥ Tn+1v(x+ bjej + bkek)−Tn+1v(x+ bkek)

(2) Suppose that x + bkek ≥ a, Tn+1v(x + bjej) = v(x + bjej) + cn+1 and Tn+1v(x + bkek) =

v(x+ bkek − a). As we assume v ∈ Sub(b) and v ∈ Cx(a, bjej), the following inequalities

hold:

Tn+1v(x+ bjej)−Tn+1v(x) ≥ v(x+ bjej) + cn+1− v(x)− cn+1

≥ v(x+ bjej + bkek)− v(x+ bkek)

≥ v(x+ bjej + bkek−a)− v(x+ bkek−a)

≥ Tn+1v(x+ bjej + bkek)−Tn+1v(x+ bkek)

(3) Suppose that x+ bjej ≥ a, Tn+1v(x+ bjej) = v(x+ bjej − a) and Tn+1v(x+ bkek) = v(x+

bkek)+cn+1. As we assume v ∈Cx(a, bkek) and v ∈ Sub(b), the following inequalities hold:

Tn+1v(x+ bjej)−Tn+1v(x) ≥ v(x+ bjej −a)− v(x)− cn+1

≥ v(x+ bjej)− v(x+ bjej + bkek)

+v(x+ bjej + bkek−a)− v(x)− cn+1

≥ v(x+ bjej + bkek−a)− v(x+ bkek)− cn+1

≥ Tn+1v(x+ bjej + bkek)−Tn+1v(x+ bkek)

(4) Suppose that x+ bjej ≥ a, x+ bkek ≥ a, Tn+1v(x+ bjej) = v(x+ bjej − a) and Tn+1v(x+

bkek) = v(x + bkek − a). Notice that, for j 6= k, x + bjej ≥ a and x + bkek ≥ a imply,
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respectively, xt ≥ at for all t 6= j and xt ≥ at for all t 6= k, and therefore x ≥ a. As we

assume v ∈ Sub(b), the following inequalities hold:

Tn+1v(x+ bjej)−Tn+1v(x) ≥ v(x+ bjej −a)− v(x−a)

≥ v(x+ bjej + bkek−a)− v(x+ bkek−a)

≥ Tn+1v(x+ bjej + bkek)−Tn+1v(x+ bkek)

Hence our inequality holds in all the possible scenarios. Therefore, Tn+1v ∈ Sub(b).

• Next we show Tn+1v ∈Cx(a, bjej), ∀j ∈ {1,2, .., n}, i.e., Tn+1v(x+ bjej + a)− Tn+1v(x+ a)≥

Tn+1v(x + bjej) − Tn+1v(x), ∀j. Again, there are four different scenarios depending on the

optimal actions at Tn+1v(x+ bjej +a) and Tn+1v(x):

(1) Suppose that x ≥ a, Tn+1v(x + bjej + a) = v(x + bjej) and Tn+1v(x) = v(x− a). As we

assume v ∈Cx(a, bjej), the following inequalities hold:

Tn+1v(x+ bjej +a)−Tn+1v(x+a) ≥ v(x+ bjej)− v(x)

≥ v(x+ bjej −a)− v(x−a)

≥ Tn+1v(x+ bjej)−Tn+1v(x)

(2) Suppose that x≥ a, Tn+1v(x+ bjej +a) = v(x+ bjej +a) + cn+1 and Tn+1v(x) = v(x−a).

As we assume v ∈Cx(a, bjej), the following inequalities hold:

Tn+1v(x+ bjej +a)−Tn+1v(x+a) ≥ v(x+ bjej +a) + cn+1− v(x+a)− cn+1

≥ v(x+ bjej)− v(x)

≥ v(x+ bjej −a)− v(x−a)

≥ Tn+1v(x+ bjej)−Tn+1v(x)

(3) Suppose that Tn+1v(x+bjej +a) = v(x+bjej) and Tn+1v(x) = v(x)+cn+1. Then it is easy

to verify that

Tn+1v(x+ bjej +a)−Tn+1v(x+a) ≥ v(x+ bjej)− v(x)

= v(x+ bjej) + cn+1− v(x)− cn+1

≥ Tn+1v(x+ bjej)−Tn+1v(x)
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(4) Suppose that Tn+1v(x+ bjej +a) = v(x+ bjej +a) + cn+1 and Tn+1v(x) = v(x) + cn+1. As

we assume v ∈Cx(a, bjej), the following inequalities hold:

Tn+1v(x+ bjej +a)−Tn+1v(x+a) ≥ v(x+ bjej +a) + cn+1− v(x+a)− cn+1

≥ v(x+ bjej) + cn+1− v(x)− cn+1

≥ Tn+1v(x+ bjej)−Tn+1v(x)

Hence our inequality holds in all the possible scenarios. Therefore, Tn+1v ∈Cx(a, bjej), ∀j.

(c) We below show h∈ Sub(p)∩Cx(r, p1e1)∩ · · · ∩Cx(r, pnen), for any r and p.

• First we prove h∈ Sub(p) (i.e., h(x+ pjej)−h(x)≥ h(x+ pjej + pkek)−h(x+ pkek), ∀k 6= j):

h(x+ pjej)− h(x) =
∑

i6=j hi(xi) + hj(xj + pj)−
∑

i 6=j hi(xi)− hj(xj) = hj(xj + pj)− hj(xj) =∑
i/∈{j,k} hi(xi)+hj(xj +pj)+hk(xk+pk)−

∑
i/∈{j,k} hi(xi)−hj(xj)−hk(xk+pk) = h(x+pjej +

pkek)−h(x+ pkek), ∀k 6= j.

• Second we prove h ∈ Cx(r, pjej) (i.e., h(x + pjej + r) − h(x + r) ≥ h(x + pjej) − h(x), ∀j):

h(x+pjej +r)−h(x+r) =
∑

i6=j hi(xi + ri)+hj(xj +pj +rj)−
∑

i 6=j hi(xi + ri)−hj(xj +rj) =

hj(xj + pj + rj)−hj(xj + rj)≥ hj(xj + pj)−hj(xj) =
∑

i6=j hi(xi) +hj(xj + pj)−
∑

i6=j hi(xi)−

hj(xj) = h(x+ pjej)− h(x), ∀j. The inequality above follows from the assumption that hj is

a convex function, ∀j.

Since h∈ Sub(p)∩Cx(r, p1e1)∩· · ·∩Cx(r, pnen), for any r and p, we have h∈ Sub(q)∩Cx(a, q1e1)∩

· · · ∩Cx(a, qnen)∩Sub(b)∩Cx(a, b1e1)∩ · · · ∩Cx(a, bnen).

�

We are now ready to prove Lemma 1.

Proof of Lemma 1. Define V ∗ as the set of functions satisfying the properties of Sub(b),

Cx(a, bjej), ∀j, and Cx(a,b). Also, define the operator T on the set of real-valued functions

v: Tv(x) = h(x) +
∑

j µjT
(j)v(x) +

∑
i λiTiv(x). First we show T : V ∗ → V ∗. By Lemma EC.1,

Cx(r, p1e1)∩ · · · ∩Cx(r, pnen)⊆Cx(r,p), and therefore Sub(p)∩Cx(r, p1e1)∩ · · · ∩Cx(r, pnen)⊆

Cx(r,p). This, combined with Lemma EC.2, yields T (j) : Sub(q)∩Cx(a, q1e1)∩ · · · ∩Cx(a, qnen)∩

Cx(a,q) → Sub(q) ∩ Cx(a, q1e1) ∩ · · · ∩ Cx(a, qnen) ∩ Cx(a,q), and Ti : Sub(b) ∩ Cx(a, b1e1) ∩

· · · ∩Cx(a, bnen)∩Cx(a,b)→ Sub(b)∩Cx(a, b1e1)∩ · · · ∩Cx(a, bnen)∩Cx(a,b). By Assumption

1, q = b; and therefore T (j), Ti : Sub(b) ∩ Cx(a, b1e1) ∩ · · · ∩ Cx(a, bnen) ∩ Cx(a,b)→ Sub(b) ∩

Cx(a, b1e1) ∩ · · · ∩Cx(a, bnen) ∩Cx(a,b). That is, T (j) : V ∗→ V ∗ and Ti : V ∗→ V ∗. By Lemmas

EC.1 and EC.2, we also know h∈ V ∗. Now let v ∈ V ∗. Since T (j)v ∈ V ∗, Tiv ∈ V ∗, and h∈ V ∗, and
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our second-order properties are preserved by linear transformations, Tv ∈ V ∗. Hence, T : V ∗→ V ∗.

Following Propositions 3.1.5 and 3.1.6 in Bertsekas (2007), we verify that limk→∞(T kv0)(x) = v∗(x)

where v0 is the zero function, v∗ is the optimal cost function, and T k refers to k compositions of

operator T . Since v0 ∈ V ∗ and T : V ∗→ V ∗, we have T kv0 ∈ V ∗, and therefore v∗ ∈ V ∗.

�

Proof of Theorem 1. By Lemma 1, we know v∗ ∈ V ∗. Define, for v∗ ∈ V ∗,

S∗j (p) = min{p+ za : v∗(p+ za+ qjej)− v∗(p+ za)> 0, z ∈N0}, ∀j,

R∗i (p) = min{p+ za : v∗(p+ za)− v∗(p+ za− biei)>−ci, z ∈N0, and pi + zai ≥ bi}, ∀i≤ n,

R∗n+1(p) = min{p+ zb : v∗(p+ zb)− v∗(p+ zb−a)>−cn+1, z ∈N0, and p+ zb≥ a}.

(1) Since v∗ ∈ Cx(a, bjej) and q = b, v∗(p + za + qjej) − v∗(p + za) is increasing in z. As z

increases, since the holding cost rate h is strictly increasing, this difference will eventually

cross 0. Therefore, the lattice-dependent base-stock policy is optimal.

(2) Since v∗ ∈Cx(a, biei), ∀i≤ n, v∗(p+ za)− v∗(p+ za− biei) is increasing in z. We know that,

as z increases, this difference will eventually cross 0. Therefore, as z increases, this difference

should also cross −ci. Hence, the lattice-dependent rationing policy is optimal.

(3) Since v∗ ∈ Cx(a,b), v∗(p+ zb)− v∗(p+ zb− a) is increasing in z. As z increases, since the

holding cost rate h is strictly increasing, this difference will eventually cross −cn+1. Therefore,

the lattice-dependent rationing policy is optimal.

Next we will prove properties (i)-(iii):

i. To prove property (i), first, we show that the optimal base-stock levels for each component j

obey S∗j (p+bkek)≥ S∗j (p)+bkek, ∀k 6= j. Let S∗j (p) = p+z1a and S∗j (p+bkek) = p+bkek+z2a.

Then, it is not optimal to produce a batch of component j at x= p+z1a and x= p+bkek+z2a.

Since v∗ ∈ Sub(b), it is not optimal to produce a batch of component j at x= p+z2a, implying

z2 ≥ z1. Therefore, we must have S∗j (p+ bkek)≥ S∗j (p) + bkek.

Second, we show that the optimal rationing levels for each product i≤ n obey R∗i (p+bkek)≥

R∗i (p)+bkek, ∀k 6= i. Let R∗i (p) = p+z1a and R∗i (p+bkek) = p+bkek+z2a. Then, it is optimal

to fulfill a demand for product i at x = p+ z1a and x = p+ bkek + z2a. Since v∗ ∈ Sub(b), it

is also optimal to fulfill a demand for product i at x = p+ z2a, implying z2 ≥ z1. Therefore,

we must have R∗i (p+ bkek)≥R∗i (p) + bkek.
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ii. To prove (ii), we will show that the optimal rationing levels for product n+ 1 obey R∗n+1(p+

bkek)≤R∗n+1(p)+ bkek, ∀k. Let R∗n+1(p) = p+z1b and R∗n+1(p+ bkek) = p+ bkek +z2b. Then,

it is optimal to fulfill a demand for product n+ 1 at x= p+ z1b and x= p+ bkek + z2b. Since

v∗ ∈Cx(a, bkek), it is also optimal to fulfill a demand for product n+ 1 at x= p+ z1b+ bkek,

implying z1 ≥ z2. Therefore, we must have R∗n+1(p) + bkek ≥R∗n+1(p+ bkek).

iii. Lastly, we will prove that it is optimal to fulfill a demand of product n+1 if xj ≥ aj + bj

⌊
xj
bj

⌋
,

∀j. Define Ṽ as the set of real-valued functions f defined on Nn0 such that f(x)− f(x− a) +

cn+1 ≥ 0, for xj ≥ aj + bj

⌊
xj
bj

⌋
, ∀j. Recall Tv(x) = h(x) +

∑
j µjT

(j)v(x) +
∑

i λiTiv(x). We

show below T : Ṽ → Ṽ .

Assume that v ∈ Ṽ . We want to prove Tv ∈ Ṽ . Since h is an increasing convex function and∑
j µj +

∑
i λi ≤ 1, the following inequality holds:

Tv(x)−Tv(x−a) + cn+1

= h(x)−h(x−a) +
∑
j

µj(T
(j)v(x)−T (j)v(x−a)) +

∑
i

λi(Tiv(x)−Tiv(x−a)) + cn+1

≥
∑
j

µj(T
(j)v(x)−T (j)v(x−a) + cn+1) +

∑
i

λi(Tiv(x)−Tiv(x−a) + cn+1)

To prove Tv ∈ Ṽ , it suffices to show T (j)v(x)−T (j)v(x−a)+cn+1 ≥ 0, ∀j, and Tiv(x)−Tiv(x−

a) + cn+1 ≥ 0, ∀i, where xk ≥ ak + bk

⌊
xk
bk

⌋
, ∀k. We prove these inequalities as follows:

• First we show T (j)v(x)−T (j)v(x−a)+cn+1 ≥ 0. There are two possible scenarios depend-

ing on the optimal action at T (j)v(x):

(1) Suppose that T (j)v(x) = v(x + qjej) < v(x): T (j)v(x)− T (j)v(x− a) + cn+1 ≥ v(x +

qjej)− v(x + qjej − a) + cn+1 ≥ 0. The second inequality follows from the fact that

v ∈ Ṽ and xj + qj ≥ aj + bj

⌊
xj
bj

⌋
+ qj = aj + bj

⌊
xj+qj
bj

⌋
. (By Assumption 1, qj = bj.)

(2) Suppose that T (j)v(x) = v(x)≤ v(x+ qjej): T
(j)v(x)− T (j)v(x− a) + cn+1 ≥ v(x)−

v(x−a) + cn+1 ≥ 0. The second inequality follows from the assumption of v ∈ Ṽ .

• Second we show Tiv(x)−Tiv(x−a) + cn+1 ≥ 0, for i≤ n. There are two possible scenarios

depending on the optimal action at Tiv(x):

(1) Suppose that Tiv(x) = v(x) + ci: Tiv(x)− Tiv(x− a) + cn+1 ≥ v(x) + ci− v(x− a)−

ci + cn+1 ≥ 0. The second inequality follows from the assumption of v ∈ Ṽ .

(2) Suppose that xi ≥ bi and Tiv(x) = v(x − biei): Tiv(x) − Tiv(x − a) + cn+1 ≥ v(x −

biei)− v(x− a− biei) + cn+1 ≥ 0. The second inequality follows from the fact that

v ∈ Ṽ and xi− bi ≥ ai + bi

⌊
xi
bi

⌋
− bi = ai + bi

⌊
xi−bi
bi

⌋
. Here notice that, as we assume

xi ≥ ai + bi

⌊
xi
bi

⌋
and xi ≥ bi, we should have xi ≥ ai + bi, implying x≥ a+ biei.
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• Lastly we show Tn+1v(x) − Tn+1v(x − a) + cn+1 ≥ 0. There are two possible scenarios

depending on the optimal action at Tn+1v(x):

(1) Suppose that Tn+1v(x) = v(x) + cn+1 < v(x− a): Tn+1v(x)− Tn+1v(x− a) + cn+1 ≥

v(x) + cn+1 − v(x − a) − cn+1 + cn+1 ≥ 0. The second inequality follows from the

assumption of v ∈ Ṽ .

(2) Suppose that Tn+1v(x) = v(x− a) ≤ v(x) + cn+1: Tn+1v(x)− Tn+1v(x− a) + cn+1 ≥

v(x−a)− v(x−a)− cn+1 + cn+1 = 0.

Since
∑

j µj(T
(j)v(x)−T (j)v(x−a) + cn+1) +

∑
i λi(Tiv(x)−Tiv(x−a) + cn+1) ≥ 0, we

have Tv(x)− Tv(x− aj) + cj ≥ 0. Hence, T : Ṽ → Ṽ . Following Propositions 3.1.5 and 3.1.6

in Bertsekas (2007), we verify that limk→∞(T kv0)(x) = v∗(x) where v0 is the zero function, v∗

is the optimal cost function, and T k refers to k compositions of operator T . Since v0 ∈ Ṽ and

T : Ṽ → Ṽ , we have T kv0 ∈ Ṽ , and therefore v∗ ∈ Ṽ . Since v∗(x)− v∗(x− a) + cn+1 ≥ 0, for

xj ≥ aj + bj

⌊
xj
bj

⌋
, ∀j, it is optimal to fulfill a demand of product n+ 1 if xj ≥ aj + bj

⌊
xj
bj

⌋
, ∀j.

�

Proof of Proposition 1. We first prove the following conditions: (i) There exists a stationary

policy π that induces an irreducible positive recurrent Markov chain with finite average cost vπ,

and (ii) the number of states for which h(x)≤ vπ is finite. To prove condition (i), consider a policy

where the production of each component is controlled by a base-stock policy with an independent

and fixed critical level, and inventory allocation follows a first-come-first-served policy. Notice that

we have a finite-state Markov chain under this policy. Hence, this policy yields a finite average

cost. It is easy to prove condition (ii) as the inventory holding cost rate for each component is

increasing convex in its inventory level. Thus, for any positive value γ, the number of states for

which h(x) ≤ γ is always finite. Under conditions (i) and (ii), there exists a constant v∗ and a

function f(x) such that f(x)+v∗ = inf{h(x)+
∑

j µjT
(j)f(x)+

∑
i λiTif(x)} (Weber and Stidham

1987). The stationary policy that minimizes the righthand side of the above equation for each state

x is an optimal policy for the average cost criterion and yields a constant average cost v∗. Hence,

properties of the optimal policy for the average cost are determined through the function f(x).

Recall that properties of the optimal policy for the discounted costs are determined through v∗(x).

Since the same event operators are applied to f(x), the optimal policy for the average cost retains

the same structure as in the discounted cost case.

�
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