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Abstract

We give an example of Cantor-type set for which its equilibrium measure and the corresponding Haus-
dorff measure are mutually absolutely continuous. Also we show that these two measures are regular in the
Stahl–Totik sense.
c⃝ 2014 Elsevier Inc. All rights reserved.
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1. Introduction

The relation between the α dimensional Hausdorff measure Λα and the harmonic measure ω

on a finitely connected domain Ω is understood well. Due to Makarov [5], we know that, for a
simply connected domain, dim ω = 1 where dim ω := inf{α : ω ⊥ Λα}. Pommerenke [9] gives a
full characterization of parts of ∂Ω where ω is absolutely continuous or singular with respect to
a linear Hausdorff measure. Later similar facts were obtained for finitely connected domains. In
the infinitely connected case there are only particular results. Model example here is Ω = C \ K
for a Cantor-type set K . For all such cases we have ΛαK ⊥ ω on K , because of the strict inequal-
ity dim ω < αK (see, e.g. [1,6,7,12,14]), where αK stands for the Hausdorff dimension of K .
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These results motivate the problem to find a Cantor set for which its harmonic measure and the
corresponding Hausdorff measure are not mutually singular.

Recall that, for a dimension function h, a set E ⊂ C is an h-set if 0 < Λh(E) < ∞ where Λh
is the Hausdorff measure corresponding to the function h. We consider Cantor-type sets K (γ )

introduced in [3]. In Section 2 we present a function h that makes K (γ ) an h-set. In Section 3 we
show that Λh and ω are mutually absolutely continuous for K (γ ). In the last section we prove
that these two measures are regular in the Stahl–Totik sense.

We will denote by log the natural logarithm, and Cap(·) stands for the logarithmic capacity.

2. Dimension function of K (γ )

A function h : R+ → R+ is called a dimension function if it is increasing, continuous and
h(0) = 0. Given set E ⊂ C, its h-Hausdorff measure is defined as

Λh(E) = lim
δ→0

inf


h(r j ) : E ⊂


B(z j , r j ) with r j ≤ δ


, (2.1)

where B(z, r) is the open ball of radius r centered at z.
For the convenience of the reader we repeat the relevant material from [3]. Given sequence

γ = (γs)
∞

s=1 with 0 < γs ≤
1

32 , let r0 = 1 and rs = γsr2
s−1 for s ∈ N. Define P2(x) = x(x − 1)

and P2s+1 = P2s · (P2s + rs) for s ∈ N. Consider the set

Es := {x ∈ R : P2s+1(x) ≤ 0} = ∪
2s

j=1 I j,s .

The sth level basic intervals I j,s with lengths l j,s are disjoint and max1≤ j≤2s l j,s → 0 as s → ∞.
Since Es+1 ⊂ Es , we have a Cantor-type set K (γ ) := ∩

∞

s=0 Es . The set K (γ ) is non-polar if
and only if


∞

s=1 2−s log 1
γs

< ∞. In this paper we make the assumption

∞
s=1

γs < ∞. (2.2)

Let M := 1 + exp

16


∞

s=1 γs

, so M > 2, and δs := γ1γ2 . . . γs . By Lemma 6 in [3],

δs < l j,s < M · δs for 1 ≤ j ≤ 2s . (2.3)

We construct a dimension function for K (γ ), following Nevanlinna [8]. Let η(δs) = s for
s ∈ Z+ with δ0 := 1. We define η(t) for (δs+1, δs) by

η(t) = s +
log δs

t

log δs
δs+1

.

This makes η continuous and monotonically decreasing on (0, 1]. In addition, we have limt→0
η(t) = ∞. Also observe that, for the derivative of η on (δs+1, δs), we have

dη

dt
=

−1

t log 1
γs+1

≥
−1

t log 32
and

dη

d log t
≥

−1
log 32

.

Define h(t) = 2−η(t) for 0 < t ≤ 1 and h(t) = 1 for t > 1. Then h is a dimension function
with h(δs) = 2−s and

d log h

d log t
<

log 2
log 32

< 1.
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Therefore if m > 1 and r ≤ 1 we get the following inequality:

log
h(r)

h
 r

m

 <

 r

r/m
d log t = log m.

Finally, we obtain

h(r) < m · h
 r

m


for m > 1 and 0 < r ≤ 1. (2.4)

Let us show that K (γ ) is an h-set for the given function h.

Theorem 2.1. Let γ satisfy (2.2). Then 1/8 ≤ Λh(K (γ )) ≤ M/2.

Proof. First, observe that, by (2.3), for each s ∈ N the set K (γ ) can be covered by 2s intervals
of length M · δs . Since M/2 > 1, we have by (2.4),

Λh(K (γ )) ≤ lim sup
s→∞

(2s
· h(M/2 · δs)) ≤ lim sup

s→∞

(2s
· M/2 · h(δs)) = M/2.

We proceed to show the lower bound. Let (Jν) be an open cover of K (γ ). Then, by com-
pactness, there are finitely many intervals (Jν)

m
ν=1 that cover K (γ ). Since K (γ ) is totally dis-

connected, we can assume that these intervals are disjoint. Each Jν contains a closed subinterval
J ′
ν = [aν, bν] whose endpoints belong to K (γ ) and covers all points of K (γ ) in Jν . Since the

intervals (J ′
ν)

m
ν=1 are disjoint, all aν, bν are endpoints of some basic intervals. Let n be the min-

imal number such that all (aν)
m
ν=1, (bν)

m
ν=1 are the endpoints of nth level. Thus, each I j,n for

1 ≤ j ≤ 2n is contained in some J ′
ν . Let Nν be the number of nth level intervals in J ′

ν . Clearly,m
ν=1 Nν = 2n .

For a fixed ν ∈ {1, 2, . . . , m}, let qν be the smallest number such that J ′
ν contains at least

one basic interval I j,qν . Clearly, qν ≤ n and l j,qν ≤ dν where dν is the length of Jν . Therefore,
by (2.3),

h(dν) ≥ h(l j,qν ) ≥ h(δqν ) = 2−qν .

Let us cover J ′
ν by the smallest set Gν which is a finite union of adjacent intervals of the level

qν . Observe that Gν consists of at least one and at most four such intervals. Each interval of the
qν th level contains 2n−qν subintervals of the nth level. This gives at most 2n−qν+2 intervals of
level n in the set Gν . Hence

Nν ≤ 2n−qν+2.

Therefore,
m

ν=1

h(dν) ≥

m
ν=1

2−qν ≥ 2−n−2
m

ν=1

Nν = 1/4.

Since h(d) < 2 · h(d/2) from (2.4), finally we obtain the desired bound. �

Similar arguments apply to the case of a part of K (γ ) on any basic interval.

Corollary 2.2. Let γ satisfy (2.2). Then 2−s−3
≤ Λh(K (γ ) ∩ I j,s) ≤ M · 2−s−1 for each s ∈ N

and 1 ≤ j ≤ 2s .

Remark. A set E is called dimensional if there is at least one dimension function h that makes
E an h−set. It should be noted that not all sets are dimensional. If we replace the condition
h(0) = 0 by h(0) ≥ 0, then any sequence gives a trivial example of a dimensionless set.
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Best in [2] presented an example of a dimensionless Cantor set provided h(0) = 0. The author
considered dimension functions with the additional condition of concavity, but did not used it in
his construction.

3. Harmonic measure and Hausdorff measure for K (γ )

Suppose we are given a non-polar compact set K that coincides with its exterior boundary.
Then for the equilibrium measure µK on K we have the representation µK (·) = ω(∞, ·, C \ K )

in terms of the value of the harmonic measure at infinity (see e.g. [10], T.4.3.14). Moreover, since
measures ω(z1, ·, C \ K ) and ω(z2, ·, C \ K ) are mutually absolutely continuous (see e.g. [10]
Cor. 4.3.5), our main result is valid even if, instead of µK (γ ), we take the measure corresponding
to the value of the harmonic measure at any other point.

The set K (γ ) is weakly equilibrium in the following sense. Given s ∈ N, we uniformly
distribute the mass 2−s on each I j,s for 1 ≤ j ≤ 2−s . Let us denote by λs the normalized in this
sense Lebesgue measure on Es , so dλs = (2sl j,s)

−1dt on I j,s .

Theorem 3.1 ([3], T.4). Suppose K (γ ) is not polar. Then λs is weak star convergent to the
equilibrium measure µK (γ ).

Corollary 3.2. Suppose K (γ ) is not polar. Then µK (γ )(I j,s) = 2−s for each s ∈ N and
1 ≤ j ≤ 2s .

Proof. Indeed, the characteristic function χI j,s is continuous on En for n ≥ s, where En is given
in the construction of K (γ ). Therefore, µK (γ )(I j,s) =


χI j,s dµK (γ ) = limn→∞


χI j,s dλn =

2−s . �

In order to compare measures on Cantor-type sets, we use a standard technique.

Lemma 3.3. Suppose µ and ν are finite Borel measures on a Cantor-type set K . Let C1 µ(I ) ≤

ν(I ) ≤ C2 µ(I ) for each basic interval I with some positive constants C1, C2. Then C1 µ(E) ≤

ν(E) ≤ C2 µ(E) for each Borel set E.

By assumption, the measures µ, ν are comparable with the same constants on any interval, then
on open sets and, by regularity, on Borel sets.

Corollaries 2.2 and 3.2 with Lemma 3.3 imply the next theorem, where (and below) by Λh we
mean restricted to the compact set K (γ ) the Hausdorff measure corresponding to the constructed
function h.

Theorem 3.4. Let γ satisfy (2.2) and K (γ ) be non-polar. Then measures µK (γ ) and Λh are
mutually absolutely continuous.

4. Regularity of µK (γ ) and Λh in the Stahl–Totik sense

One of active directions of the theory of general orthogonal polynomials is the exploration of
the case of non-discrete measures that are singular with respect to the Lebesgue measure. Impor-
tant class of regular in the Stahl–Totik sense measures was introduced in [11] in the following
way. Let µ be a finite Borel measure with compact support Sµ on C. Then we can uniquely define
a sequence of orthonormal polynomials pn(µ; z) = anzn

+· · · with a positive leading coefficient

an . By definition, µ ∈ Reg if limn→∞ an
−

1
n = Cap(Sµ). One of sufficient conditions of regular-

ity was suggested in [11] by means of the set Aµ = {z ∈ Sµ : lim supr→0+
log 1/µ(B(z,r))

log 1/r < ∞}.
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Theorem 4.1 (T.4.2.1 in [11]). If Cap(Aµ) = Cap(Sµ) then µ ∈ Reg.

Let us show that, in our case, Aµ = Sµ for both measures µK (γ ) and Λh . Compare this
with [13].

Theorem 4.2. Let K (γ ) satisfy the conditions of Theorem 3.4. Then µK (γ ) and Λh are regular
in the Stahl–Totik sense.

Proof. Since Λh(E) ≥ µK (γ )(E)/8 for any Borel subset E of K (γ ), we only check the
equilibrium measure. Let z ∈ K (γ ) and r > 0 be given. Fix s such that z ∈ Ii, s ⊂ I j, s−1

with li, s ≤ r < l j, s−1. Then Ii, s ⊂ B(z, r). By Corollary 3.2, µ(B(z, r)) ≥ µ(Ii, s) = 2−s . On
the other hand, r < M δs−1 ≤ M 321−s as γk ≤ 1/32. Since s → ∞ as r → 0+, we see that

lim sup
r→0+

log 1/µ(B(z, r))

log 1/r
≤ 1/5,

which completes the proof. �

It should be mentioned that regularity of a certain class of singular continuous measures,
including the Cantor–Lebesgue measure for the classical ternary set, was proven in the recent
paper [4].
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