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Özet. Talep Belirsizliğinin İki Sınıflı Gelir Yönetimi Modellerinin Karar ve 
Gelirleri Üzerindeki Etkisi

Bu makalede talep belirsizliğinin standart iki sınıflı gelir yönetimi modelini 
üzerindeki etkisi analitik ve sayısal olarak incelenmektedir. Talep belirsizliğinin bu 
modelden elde edilen optimal tahsis kararı, ve iki sınıftan olan ve toplam gelirler 
üzerindeki etkisi stokastik ilişkiler kullanılarak incelenmektedir. Talebin stokastik olarak 
büyümesinin elde edilen optimal gelirleri, ve daha değerli alıcı sınıfına ayrılan kapasite 
miktarını arttırdığı analitik olarak gösterilmektedir. Talebin varyansındaki değişikliklerin 
toplam gelirler, her iki dınıftan elde edilen gelirler, ve tahsis kararları üzerindeki etkisinin 
ise iki alıcı sınıfının satış fiyatları arasındaki ilişkiye bağlı olduğu görülmüştür. Makalede 
sunulan analitik ve sayısal sonuçlar talep varyansındaki olası bir artışın gelirlere etkisinin 
genellikle olumsuz olduğunu göstermektedir.   

Anahtar Kelimeler: Gelir Yönetimi, Üretim Yönetimi.
JEL Sınıflaması: M11.

Abstract. 
We explore the impact of changes in market conditions on optimal allocation decisions and 
revenues, within the standard two-class revenue management framework, using stochastic 
dominance relations. We show that an increase in market size leads to higher revenues, 
and the number of units allocated to the high-end class increases in its market size. The 
direction of the change in optimal allocation and revenues in response to changes in the 
variability of the high-end market depends on the relationship between the high and low-
end prices. Our structural and numerical results suggest higher variability in the market 
is generally detrimental to revenues. 
Keywords: Revenue Management, Production Management.
JEL Classification: M11.
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1. Introduction
In this paper, we study the impact of changing market conditions on the 

firm’s allocation decision and revenues within the standard two-class revenue 
management framework. In this model, a firm sells a fixed resource/capacity 
(such as seats on a flight or rooms in a hotel) to two market segments with 
sequential price levels and uncertain demands. The customers with higher 
willingness to pay arrive later in the sales horizon, and the firm determines the 
protection level, i.e. the number of units to protect for the high-end class, with 
the objective of maximizing revenues. We focus on this model, because it is 
the base model for revenue management and the oldest revenue management 
model still in use. Market factors have been acknowledged as the major 
source of uncertainty in many operations management models (Davis 1993), 
and have considerable impact on how operational processes are managed 
and their results. Hence, it is worthwhile to study how revenue management 
systems behave under changing market conditions. 

We first investigate the impact of a change in the market size (modeled 
with a change in the demand distribution in the sense of first order stochastic 
dominance, see Section 3 for a formal definition) on optimal allocation and 
revenues. Throughout the paper, “optimal” refers to the expected revenue 
maximizing level. We show that it is more profitable for the firm to allocate a 
greater portion of the fixed resource to the customers with higher willingness 
to pay (henceforth referred to as class 1), i.e., increase the protection level, 
when the size of its market increases; a stochastically bigger class 1 market 
also leads to higher class 1 and total revenues if the protection level is chosen 
optimally. 

A change in the size of the low-end market (henceforth referred to as 
class 2), on the other hand, results in an increase in the revenues obtained 
from this class, while its impact on the optimal class 1 and total revenues is 
not clearly determined. Our numerical experiments suggest that although a 
larger class 2 market generally leads to lower revenues from the high-end 
market, this relationship is reversed when (1) the values of class 1 and class 
2 sales are close, (2) class 2 market is stochastically large, and (3) there is 
ample capacity. We also observe that total revenues increase in the size of the 
class 2 market, leading us to conclude that larger markets generally have a 
positive impact on revenues. 

Our analysis of changes in market variability (modeled with a mean 
preserving spread, formalized in Section 4) shows that an increase in the high-
end market variability always leads to lower revenues given an allocation; 
however, the behavior of the firm’s revenues when the protection level is 
chosen optimally is not clearly determined. In particular, when the ratio of the 
class 2 price to the class 1 price is greater than ½ (and hence, the values of class 
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1 and class 2 sales to the firm are close), optimal class 2 revenues increase 
as the class 1 market gets more variable, while the optimal protection level, 
class 1 and total revenues move in the opposite direction. When the price ratio 
is less than ½, on the other hand, the optimal protection level decreases, and 
revenues from class 2 sales increase as class 1 market variability increases, 
while class 1 revenues may increase (because of the increase in the optimal 
protection level) or decrease (because of higher variability). Our numerical 
experiments suggest that the protection level effect dominates, leading to 
higher revenues from class 1 sales, when class 1 sales are more valuable 
compared to class 2 sales, or when class 2 market variability is low. 

We also investigate the impact of a change in the variability of the class 
2 market on optimal revenues. We show that a more variable class 2 market 
leads to lower revenues from this class. Furthermore, although the relationship 
between class 2 market variability and optimal class 1 revenues is not clearly 
determined structurally, we observe via our numerical experiments that total 
and class 1 revenues generally decrease in response to increasing class 2 
market variability, leading us to conclude that higher variability is generally 
detrimental to revenues.

Literature Review. The literature on revenue management is vast; the most 
comprehensive works to date are the books by Talluri and van Ryzin (2004) 
and Phillips (2005). McGill and van Ryzin (1999) review the earlier revenue 
management literature, Elmaghraby and Keskinocak (2003) focus on dynamic 
pricing, and Shen and Su (2007) discuss customer behavior modeling. Papers 
most closely related to the model considered in this work are those that study 
the allocation of a single resource among different customer segments when 
demand classes arrive sequentially - see e.g. Littlewood (1972), Belobaba 
(1989), Curry (1990), Wollmer (1992), Brumelle and McGill (1993), 
Robinson (1995).

There are few papers in the operations management literature that study 
the impact of stochastically changing demand conditions on an operational 
model. In the newsvendor context, Gerchak and Mossman (1992) study the 
magnitude of change in optimal cost and order quantity when there is an 
increase in demand variability. They show that higher variability leads to higher 
costs. Song (1994) focuses on the impact of changing leadtime variability on 
optimal inventory decisions. Ridder et al. (1998) study the behavior of optimal 
cost with respect to changing market risk under different variability orders. 
Li and Atkins (2005) focus on the impact of changing demand variability 
within the price-setting newsvendor problem, and characterize the direction 
of the change on optimal price and order quantity. Song and Zipkin (1996) 
consider a more general inventory system than the newsvendor, and study 
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how increased lead time variability affects the inventory size via numerical 
experiments; while Song et al. (2010) consider the impact of stochastically 
larger and more variable lead time on cost and policy parameters. Federgruen 
and Wang (2012) study when the optimal policy and cost parameters are 
monotone in demand uncertainty for a similar system. Gupta and Cooper 
(2005) study stochastic orderings of yield rates that guarantee a coherent 
ordering of profits. Li and Zheng (2006) compare optimal policies under 
certain and uncertain yield rates, and show that uncertainty leads to higher 
prices and lower expected profits. 

In the revenue management context, Cooper and Gupta (2006) focus 
on how simultaneous changes in demand under various stochastic orders 
impact optimal revenues. Araman and Popescu (2010) show stochastically 
larger or less variable audiences do not necessarily command lower capacity 
allocations in the media broadcasting advertising market. Akcay et al. (2009) 
consider a multi-period revenue management problem where a firm sells a 
fixed inventory to multiple customer classes, and study the impact of varying 
problem parameters, including an increase in the arrival probability. Their 
model can incorporate a set up similar to ours if arrival probabilities are 
chosen such that customer classes with lower valuations arrive earlier in the 
sales horizon.

 
Structure. The rest of the paper is organized as follows. Our model, 
assumptions and notation are presented in Section 2. Section 3 provides 
structural results and numerical experiments that provide insights regarding 
the impact of changing market size on optimal allocation decisions and 
revenues. Similar analysis on changes in market variability is presented in 
Section 4. Section 5 concludes the paper. 

2. The Model
This section sets up our basic model, main assumptions and notation. In 

the standard two-class revenue management model, the firm determines the 
allocation of a fixed resource, denoted by C, between two market segments 
(class 1 and class 2) with sequential price levels ( 1p  and 2p  with 1 2p p>  
without loss of generality), with the objective of maximizing revenues. In 
typical revenue management settings, fixed costs are high and variable costs 
are negligible; hence, earnings are stated in terms of revenues. The firm sets 
the number of units reserved for the higher priced class, called the protection 
level, denoted by x.

The firm faces uncertain demands 1D  and 2D  from the higher priced 
class (class 1), and the lower priced class (class 2), respectively; class 2 
customers arrive before class 1 customers. The allocation decision is made 
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before demand from either class is realized. Letting 1( )r x  and 2 ( )r x  denote 
the revenue obtained from class 1, and class 2, respectively, for a given 
protection level x, the firm’s problem is formally modeled as,

Sales to class 2, 2min( , )D C x− , is constrained by the demand for this 
class, and the booking limit, C-x, i.e., the units available for sale to class 2. 
Similarly, sales to class 1 is the minimum of the demand and available units 
for this class, which may exceed the protection level if class 2 demand falls 
short of the booking limit. Over-allocating to class 1 leaves the firm with 
unused capacity, which brings no revenue. Under-allocating to class 1, on 
the other hand, results in lost class 1 sales; in this case, units that could have 
been sold to class 1 customers were sold to class 2 customers earlier in the 
sales horizon at a lower price. Letting 1 1( ) 1 ( )P D u P D u≥ = − ≤ denote the 
survival function of 1D , the unique optimal protection level is established by 
Littlewood (1972).

Proposition 1. (Littlewood, 1972) The revenue function R(x) is quasi-concave 
in x, and the optimal protection level, x* is given by

From (1.1), the optimal protection level is a function of the ratio of class 
2 price to class 1 price ( 2 1/p p ), and the distribution of class 1 demand 1D . 
Intuitively, the expected revenue loss from over- and under-allocating to class 
1 is matched at the optimal protection level. When the decision maker over-
allocates to class 1, she is left with unused capacity that could have been sold 
to a class 2 customer earlier in the sales horizon and brought 2p , if it had not 
been reserved for class 1. When the decision maker under-allocates to class 
1, on the other hand, she loses 1 1( )p P D x≥ , since she would have earned 1p  
from that unit, if it had not been sold to a class 2 customer, provided there was 
ample demand.

3. The Effect of Larger Demand
This section studies the impact of changes in market size on the firm’s 

optimal allocation decision and revenues. We model an increase in the 
market size by an increase in jD , j=1,2, in the sense of first order stochastic 
dominance, defined below. Throughout the paper, E[ ] denotes the expectation 
operator. 

1

[ ] [ ]1 2 1 1 2 2 2max ( ) ( ) ( ) min( ,max( , ) min( , )x R x r x r x p E D C D x p E D C x= + = − + − .

*
1 2 1( ) /P D x p p≥ = (0.1)

Figure 1. Optimal revenues under varying price ratios with respect to expected class 2 demand
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Definition 1.  A random variable X  dominates another random variable 
Y  in the sense of first order stochastic dominance, denoted FSDX Y , if 

( ) ( )P X u P Y u≥ ≥ ≥ for all u. This is equivalent to [ ] [ ]( ) ( )E h X E h Y≥  for 
all increasing functions h.

Remark that, if FSDX Y , then [ ] [ ]E X E Y≥ . Hence, X is stochastically 
larger than Y . For example, for two distributions X andY , with X Yδ= + , 
where 0δ ≥ , FSDX Y . For more on stochastic orders, the reader is referred 
to Shaked and Shanthikumar (1994), and Müller and Stoyan (2002).

3.1. Larger Class 1 Demand
In this section, we investigate the behavior of the optimal protection 

level and revenues with respect to changes in the size of the high-end market. 
We show that an increase in its market size leads to more resources being 
allocated to class 1, and to higher overall revenues. 

We first study the impact of a change in the size of the class 1 market 
on the optimal allocation decision. Throughout the paper, we use stochastic 
dominance relations to compare optimal protection levels and revenues. 
When '

1 1SDD D where SD is any stochastic order, we denote the revenue 
under '

1D  as [ ]' '
1 1 2 2 2( ) min( ,max( , ) min( , )R x p E D C D x p E D C x = − + −  , 

and the corresponding optimal protection level as 
'*x , i.e. 

'* 'arg max ( )x R x= . 
For the newsvendor problem, Song (1994) establishes that a stochastically 

bigger market (modeled by a shift in the sense of FSD) leads to a higher optimal 
order quantity. The two-class revenue management and the newsvendor 
problems are structurally close; in both cases, the firm tries to find the quantity 
to order/allocate that would minimize the instances of turned away customers 
and unsold units. Hence, we apply Song’s (1994) insight to our problem, and 
obtain the result below. All proofs are provided in the Appendix.

Proposition 2. The optimal protection level increases in the size of the class 
1 market, i.e.,

'* *x x≥ , whenever '
1 1FSDD D .

This result is quite intuitive; a bigger market size requires more units 
allocated to the high-end class in order to compensate for the now-higher 
possibility of turned away customers. Next, we investigate the impact of 
changing market size on revenues. 

Remark 1. An increase in the size of the class 1 market leads to higher total 
revenues, given a protection level x, i.e., ' ( ) ( )R x R x≥  whenever '

1 1FSDD D . 
Next, we show that this property is preserved when the protection level 

is chosen optimally.
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Proposition 3. When there is an increase in the size of the class 1 market 
(

'
1 1FSDD D

), (a) the optimal class 1 revenue increases, i.e.,
'' * *

1 1( ) ( )r x r x≥ , 
(b) the optimal class 2 revenue decreases, i.e., 

'' * *
2 2( ) ( )r x r x≤ , (c) the optimal 

total revenue increases, i.e., 
'* *( ) ( )R x R x≥ .

The impact of the changing market size on the optimal class 2 revenues 
follows from Proposition 2; since class 2 revenue is not a function of the class 
1 demand, it is impacted only through the change in the optimal protection 
level, and class 2 revenues decrease in the number of units allocated to class 
1. The high-end revenue, on the other hand, is affected both by the increase 
in demand (which leads to higher revenues for a given protection level; 
see Remark 1) and the change in the protection level (which increases; see 
Proposition 2); these two effects lead to higher revenues from class 1 under 
the optimal allocation. The increase in optimal class 1 revenues offsets the 
decrease in the class 2 revenues, resulting in higher total revenues.

3.2. Larger Class 2 Demand
This section investigates how the optimal protection level x*, class 2, 

class 1, and total revenues change when there is a shift in the low-end demand 
in the sense of the first order stochastic dominance, i.e., when '

2 2FSDD D . We 
show that the optimal class 2 revenue increases in the size of its market, and 
present numerical insights on the relationship between the size of the class 2 
market, and optimal class 1 and total revenues. 

3.2.1. Structural Results
First, remark that, from the optimality condition (1), the optimal 

protection level is determined by the distribution of class 1 demand and the 
selling prices of the two market segments; hence, the optimal protection level 
is not influenced by changes in the class 2 market, i.e., 

'* *x x= , whenever 
'
2 2FSDD D . This, and the fact that class 2 sales, 2min( , )D C x− is decreasing 

in 2D , leads to the following relationship between the size of the class 2 
market and revenues from this class.

Proposition 4. When there is an increase in the size of the class 2 market
(                  ), the optimal class 2 revenue increases, i.e., 

'' * *
2 2( ) ( )r x r x≥ .

The impact of a change in the size of the low-end market on the optimal 
class 1 revenues, on the other hand, is determined by two, typically opposing, 
effects. Because sales to class 1, 1 2min( ,max( , )D C D x− , is restricted by 
the demand and the number of units available for this class (which might be 
higher than the protection level x, if class 2 demand falls short of the booking 
limit), a larger class 2 demand implies less units available to class 1 because 
there is now a lower possibility of class 2 demand falling short of the booking 

'
2 2FSDD D

'
1 1FSDD D
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limit. This leads to a decrease in revenues obtained from class 1. However, 
an increase in the size of the class 2 demand also decreases the possibility of 
being left with unsold units because overall demand is now larger, which leads 
to higher revenues. The direction of the change in optimal class 1 revenues is 
determined by the stronger effect. This is further explored with our numerical 
experiments, presented in the next section. 

3.2.2. Numerical Experiments
In this section, we evaluate class 2, class 1 and total revenues under the 

optimal allocation in response to changing class 2 market sizes with respect to 
problem parameters such as price, capacity and class 1 demand. We observe 
that, as proved in the previous section, optimal class 2 revenues increase in the 
size of its market. The direction of the change in revenues from class 1, on the 
other hand, depends on the problem environment; in particular, we observe 
that, optimal class 1 revenues increase in the size of the class 2 market when: 
(1) class 1 sales are much more valuable for the firm compared to class 2 
sales, (2) there is ample capacity, and (3) class 1 market is stochastically large. 
We also observe that total revenues increase in response to increases in the 
size of the low-end market. We present numerical results for specific problem 
parameters; extensive numerical experiments with a wide range of parameters 
suggest that the insights illustrated in this section are robust. Throughout this 
section, class 2 demand (distributed Uniform) is varied consistent with a first 
order stochastic shift; in particular, we use the following distributions: 

2D �

Uniform(0,150), Uniform(25,175), Uniform(50,200), Uniform(75,225), and 
Uniform(100,250), corresponding to expected class 2 demands of 75, 100, 
125, 150 and 175 respectively ( [ ]2E D =(a+b)/2 for 

2D �

Uniform(a,b)). 

Results with respect to selling prices. Figure 1 presents the optimal class 2, 
class 1 and total revenues under changing class 2 demands. We kept the class 
1 price at 1p =120, and varied the class 2 price to obtain price ratios 2 1/p p
= {0.25, 0.5, 0.75}. We chose these values because, when 2 1/ 1/ 2p p < , the 
value of class 1 sales to the firm is much higher than the class 2 sales, compared 
to when 2 1/ 1/ 2p p > . Class 1 demand is distributed 

1D �

Uniform(0,80) with 
capacity set at C=150. These particular demand and capacity parameters were 
chosen because revenue management is most relevant when the capacity is 
binding, yet ample enough to serve both segments. Also remark that, from the 
optimality condition (1), when class 1 demand is distributed Uniform(a,b), 
the optimal protection level solves 2 1( / )( )b p p b a− − .  

We observe that the revenues from class 2 increase in the size of its 
market, as proved in Proposition 4. The direction of the change in optimal 

1D Uniform 
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class 1 revenues, however, depends on the problem environment. As argued 
above, an increase in the size of the class 2 market leads to fewer number 
of units being available to class 1 (and hence, to lower revenues from this 
class); however, it also decreases the possibility of unsold units (and hence, 
increases class 1 revenues). When the size of the class 2 market is small (e.g., 
when 

2D �

Uniform(0,150), or Uniform(25,175)), the total expected demand 
is less than the available capacity (e.g., when 

2D �

Uniform(0,150) with 1D �

Uniform(0,80), total expected demand is equal to [ ] [ ]1 2E D E D+ =
40+75=115<150=C), and hence, the possibility of being left with unused 
capacity is higher. Consequently, when there is an increase in the size of the 
class 2 market, the decrease in the possibility of unsold units dominates the 
effect of the available units; hence, revenues from class 1 increase. When the 
size of the class 2 market is larger however, the expected total demand is close 
to, and possibly greater than, the available capacity; hence, the possibility 
of being left with unsold units is already small. In this case, the decrease in 
the number of units available to class 1 dominates. This effect is particularly 
more pronounced when the ratio of class 2 price to class 1 price is higher (e.g., 

2 1/p p =0.75), because in this case, the optimal protection level is low, and 
hence the possibility of being left with unused capacity due to over-allocation 
is smaller for all levels of class 2 demand. 

Results with respect to available capacity. In this section, we vary the 
capacity available, which essentially determines the level of congestion in the 
system. Figure 2 presents class 2, class 1 and total revenues under the optimal 
protection level, for varying sizes of class 2 demand, when capacity is equal 
to C=150, C=200, and C=250. The class 1 and class 2 prices are 1p  =120 and 

2p  =30, and the class 1 demand is distributed 
1D �

Uniform(0,80). Remark 
that, from the optimality condition (1), the number of units available for sale 
does not impact the optimal protection level, x; hence, it is the same (60) for 
all capacity levels. 
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We observe that the optimal class 1 revenues either monotonically increase 
(when C=200, C=250), or first increase, and then decrease (C=150) as the 
size of the class 2 market increases. Having more units for sale increases the 
possibility of unsold units; hence, when there is an increase in the size of the 
class 2 market, its impact on the number of unsold units is stronger than its 
impact on the number of units available to class 1. Optimal class 2 revenues 
increase, as predicted by Proposition 4. We also observe that total revenues 
increase as the size of the class 2 market increases. 

Results with respect to high-end demand. Finally, we vary the class 1 
demand, consistent with a first order stochastic shift; in particular, we calculate 
class 1, class 2 and total optimal revenues under the optimal allocation when 
class 1 demand is distributed  

1D �

Uniform(0,80), Uniform(10,90), and 
Uniform(20,100), corresponding to expected class 1 demands of [ ]1E D =40, 
50, and 60 respectively. Capacity is kept at C=150. The selling prices are 1p
=120 and 2p =90 in Figure 3, and 1p =120 and 2p =30 in Figure 4. We present 
both cases, because we observe different trends with respect to the change in 
optimal class 1 revenues in each case. 

1

[ ] [ ]1 2 1 1 2 2 2max ( ) ( ) ( ) min( ,max( , ) min( , )x R x r x r x p E D C D x p E D C x= + = − + − .

*
1 2 1( ) /P D x p p≥ = (0.1)

Figure 1. Optimal revenues under varying price ratios with respect to expected class 2 demand

                                                         Class 1 revenue         Class 2 revenue 

0

1000

2000

3000

4000

5000

6000

7000

8000

75 100 125 150 175

0

2000

4000

6000

8000

10000

12000

75 100 125 150 175

0

2000

4000

6000

8000

10000

12000

14000

16000

75 100 125 150 175

     
            p1=120 p2=30                                    p1=120 p2=60                                   p1=120 p2=90   

x*= 60                                                 x*= 40               x*= 20 

1D Uniform 

 

 

 

2D Uniform 

İn
di

re
n:

 [B
ilk

en
t Ü

ni
ve

rs
ite

si
], 

IP
: [

13
9.

17
9.

2.
11

6]
, T

ar
ih

: 0
5/

06
/2

01
5 

14
:1

7:
21

 +
03

00

B
 i 

l g
 e

 s
 e

 l

İn
di

re
n:

 [B
ilk

en
t Ü

ni
ve

rs
ite

si]
, IP

: [
13

9.1
79

.2.
11

6]
, T

ar
ih

: 0
5/0

6/2
01

5 1
4:

17
:2

1 +
03

00



105

İktisat İşletme ve Finans   30 (347)  Şubat / February  2015

When the ratio of class 2 price to class 1 price is equal to ¼, i.e., class 
1 sales are much more valuable compared to class 2 sales, class 1 revenues 
increase as the size of the class 2 market gets bigger, when class 1 demand is 
also stochastically large, e.g., 

1D �

Uniform(20,100). This effect is observed 
because the increase in the size of the class 1 market propagates the decrease 
in the possibility of unsold units. It also leads to higher total revenues, as class 
2 revenue is also increasing in its market size. When the ratio of class 2 price 
to class 1 price is ¾, however, class 1 revenues decrease as class 2 market 
gets bigger, regardless of the size of the class 1 market. As discussed above, 
when the selling prices are closer, the optimal protection level is lower, which 
results in lower possibility of unsold units. Hence, the decrease in the number 
of units available to class 1 dominates, and class 1 revenues decrease in the 
size of the class 2 market. 

4. The Effect of More Variable Demand
In this section, we consider the impact of changes in market variability 

on optimal revenues and allocations. In order to model a change in market 
variability, we employ the concept of mean preserving spread, introduced by 
Rothschild and Stiglitz (1970, 1971). 

2

Figure 2. Optimal revenues under varying capacity levels with respect to expected class 2 demand
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Figure 3. Optimal revenues under varying class 1 market sizes with respect to expected class 2 
demand; 2 1/p p =¾
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Definition 2. A random variable X differs from another random variable Y  
by a mean preserving spread ( MPSX Y ), if they have the same finite mean 
and if there is an interval (a,b) such that X  assigns no greater probability 
than Y to any open subinterval of (a,b), and X assigns no smaller probability 
than Y  to any open interval either to the left or the right of (a,b). 

Rothschild and Stiglitz (1970) (and also Landsberger and Meilijson 1990, 
Pratt and Machina 1997) show that this is equivalent to [ ] [ ]( ) ( )E h X E h Y≥  
for all convex functions h . Remark that, if MPSX Y , then                            . 
Furthermore, two distributions that differ by a mean preserving spread 
exhibit single crossing property: if MPSX Y , there exists some k such 
that ( ) ( )P X u P Y u≥ ≤ ≥  for u k≤  and ( ) ( )P X u P Y u≥ ≥ ≥  for u k≥ . 
An example for two distributions that differ by a mean preserving spread is
X Yδ= , where 0δ ≥ , and Y  is a random variable with [ ] 0E Y = . In this 
case MPSX Y .

4.1. More Variable Class 1 Demand
This section investigates how optimal allocation decision and revenues 

behave with respect to changes in the variability of the high-end market. We 
restrict our analysis to symmetric demand distributions; many traditional 
demand densities, such as the Normal, Uniform (see Silver and Peterson 
1985, Tijms 1994) satisfy this property.

2

Figure 2. Optimal revenues under varying capacity levels with respect to expected class 2 demand
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Figure 3. Optimal revenues under varying class 1 market sizes with respect to expected class 2 
demand; 2 1/p p =¾
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4.1.1. Structural Results
For the two class revenue management model, Kocabıyıkoğlu and Göğüş 

(2012) establish the relationship between the optimal protection level and 
high-end demand variability. We present their results below, for completeness. 

Proposition 5. (Kocabıyıkoğlu and Göğüş, 2012) When there is an increase in 
the variability of the class 1 market, (a) the optimal protection level decreases 
if 2 1/ 1/ 2p p ≥ , and (b) the optimal protection level increases if 2 1/ 1/ 2p p ≤ . 

When 2 1/ 1/ 2p p ≤ , class 1 sales are much more valuable compared 
to the class 2 sales than when 2 1/ 1/ 2p p ≥ ; hence, over-allocating to 
class 1 (i.e. being left with unused capacity) is more detrimental to the firm 
when 2 1/ 1/ 2p p ≥ , whereas under-allocating is more detrimental when

2 1/ 1/ 2p p ≤ . Consequently, when 2 1/ 1/ 2p p ≥ , in order to avoid being 
left with unused capacity, which has now a higher probability because of 
the shift of the probability mass from the center to the lower tail of the class 
1 distribution, the firm shifts allocation from class 1 to class 2 customers, 
resulting in lower protection levels. When 2 1/ 1/ 2p p ≤ , optimal protection 
level increases, in order to avoid selling to class 2 customers in the expense 
of the class 1 customers. Note that, in both cases the optimal protection level 
moves away from the mean (see the proof of Proposition 5 in the Appendix).

3

Figure 4. Optimal revenues under varying class 1 market sizes with respect to expected class 2 
demand; 2 1/p p = ¼

                                                           

                                                             Class 1 revenue         Class 2 revenue 

Figure 5. Optimal revenues under varying degrees of class 1 market variability; 2 1/ 3 / 4p p =
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Remark 2. An increase in the variability of the class 1 market leads to lower 
total revenues, given an allocation level x, i.e., 

'* *( ) ( )R x R x≤  whenever 
'
1 1MPSD D .

We establish that the above result is preserved when the protection level 
is chosen optimally, if 2 1/ 1/ 2p p ≥ , with Proposition 6, below. 

Proposition 6. Suppose 2 1/ 1/ 2p p ≥ . When there is an increase in the 
variability of the class 1 market ( '

1 1MPSD D ) (a) the optimal class 1 revenue 
decreases, i.e., 

'' * *
1 1( ) ( )r x r x≤ , (b) the optimal class 2 revenue increases, i.e., 

'' * *
2 2( ) ( )r x r x≥ , and (c) the optimal total revenue decreases, i.e.

'* *( ) ( )R x R x≤ .
Low-end revenue is influenced by changes in class 1 demand only 

through the change in the optimal protection level, which is decreasing in the 
variability of the class 1 market if 2 1/ 1/ 2p p ≥  by Proposition 5(a). Lower 
protection levels lead to more available units for class 2, and consequently 
to higher revenues from this class. Class 1 revenues under the optimal 
allocation decrease because of increasing demand variability (Remark 2) and 
the decrease in the optimal protection level (Proposition 5a). The decrease in 
class 1 revenues dominates the increase in class 2 revenues, resulting in lower 
total revenues. 

The impact a change in the variability of class 1 market on optimal 
revenues when 2 1/ 1/ 2p p ≤ , however, is not clearly determined. The optimal 
class 2 revenues decrease, because it is affected only through the change in 
the optimal protection level, which is higher under more variable demand 
(Proposition 5b). 

Proposition 7. Suppose 2 1/ 1/ 2p p ≤ . When there is an increase in variability 
of the class 1 market ( '

1 1MPSD D ), the optimal class 2 revenue decreases, i.e., 
'' * *

2 2( ) ( )r x r x≤ .	
The optimal class 1 and total revenues may increase or decrease in response 

to changing class 1 market variability, when 2 1/ 1/ 2p p ≤ .  An increase in the 
variability of the class 1 market leads to lower revenues (Remark 2), but it 
also leads to more units being allocated to class 1 (Proposition 5b), and hence 
to higher revenues. With our numerical experiments, presented in the next 
section, we provide further insights on the relationship between changing 
market variability and optimal revenues. 

4.1.2. Numerical Experiments
In this section, we first provide an example that illustrates the structural 

results obtained in Proposition 6. In particular, we evaluate class 1, class 2 
and total revenues under varying degrees of class 1 market variability when

2 1/ 1/ 2p p ≥ . Then, we present the results of numerical experiments that 
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evaluate revenues under changing class 1 market variability with respect 
to several problem parameters. In our numerical experiments, we focus on 
examples where 2 1/ 1/ 2p p ≤ , because, as discussed above, the relationship 
between the variability of the class 1 market and optimal revenues is not 
clearly determined in this case. We observe that optimal class 1 and total 
revenues generally decrease in the face of increasing class 1 variability. 
Throughout this section, class 1 demand is varied in a manner consistent with 
a mean preserving spread. In particular, the high-end demand is distributed 

1D �

 Uniform(50,70), Uniform(40,80), Uniform(30,90), Uniform(20,100), 
Uniform(10,110), Uniform(0,120), corresponding to expected class 1 demand 
[ ]1 60E D =  and demand variances of 33.33, 133.33, 300, 533.33, 833.33 and 

1200, respectively.

Example for Proposition 6. Figure 5 plots the optimal class 1, class 2 and 
total revenues under varying degrees of class 1 demand variability, and price 
levels 1p =120 and 2p =90 (i.e., 2 1/ 3 / 4 1/ 2p p = > ). Class 2 demand is 
distributed 

2D �

Uniform(50,200), with capacity C=150. Remark that, the 
optimal protection level decreases as the class 1 market gets more variable. 
This decrease in the number of units allocated to class 1 leads to higher class 2 
revenues (Proposition 6b).  For example, when the class 1 demand distribution 
changes from 

1D �

 Uniform(40,80) to 

'
1D �

Uniform(30,90) (hence leading 
to higher variability), this change impacts the optimal class 2 revenues 
through the change in the protection level (which decreases from 50 to 45). 
The corresponding class 2 revenue levels are 

'
2 2(45) 8543 8250 (50)r r= > =

. 
The optimal class 1 revenues, on the other hand, are affected by both the 
decrease in the protection level (which leads to a decrease in revenues of 

1 1(50) (45) 6183 5866 317r r− = − = ) and the increase in variability (which 
leads to a decrease in revenues of '

1 1(45) (45) 5866 5713 153r r− = − = ); 
resulting in an overall decrease of 470. 

Results with respect to selling prices when 2 1/ 1/ 2p p ≤ . In this section, 
we keep the class 1 price at 1p =120, and vary the class 2 price to obtain 
price ratios 2 1/p p ={0.125, 0.25, 0.375}. Class 2 demand is distributed 

2D �

Uniform(50,200), with capacity C=150. Figure 6 presents class 1, class 2 and 
total revenues under the optimal allocation (the optimal protection levels for 
each demand and price ratio pair are given in Table 1 in the Appendix). 
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We observe that the optimal class 2 revenue decreases as the class 1 market 
gets more variable, as proved in Proposition 7. The optimal class 1 revenue 
first increases, and then decreases in response to increasing variability in its 
market; the increasing trend lasts longer when the ratio of class 2 price to 
class 1 price is small (e.g., when 2 1/p p  =0.125). This is observed because in 
this case, class 1 sales are much more valuable for the firm than class 2 sales 
and hence the increase in the number of units available to class 1 dominates 
the decrease in revenues due to higher demand variability. Total revenues 
exhibit a similar trend. 

Results with respect to low-end demand when 2 1/ 1/ 2p p ≤ . In this section, 
we vary the class 2 demand consistent with a mean preserving spread. In 
particular, we evaluate class 1, class 2 and total revenues when class 2 demand 
is distributed 

2D �

Uniform(100,150), Uniform(50,200) and Uniform(0,250), 
corresponding to expected class 2 demand [ ]2E D =125, and variances of 
208.33, 1875, and 5208.33, respectively. Capacity is set at C=150, and class 
1 and class 2 selling prices are p1=120 and p2=30. Figure 7 presents our results 
(the optimal protection levels under the demand distributions and price levels 
considered are given in Table 1 in the Appendix). When class 2 variability 
is higher, (e.g., when 

2D �

 Uniform(50,200) and Uniform(0,250)),  class 1 
revenues first increase, and then decrease in class 1 market variability, whereas 
class 1 revenues increase monotonically in the face of increasing variability
in its market, when class 2 market variability is low (e.g., when 

2D �

 

3

Figure 4. Optimal revenues under varying class 1 market sizes with respect to expected class 2 
demand; 2 1/p p = ¼
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Uniform(0,150)); the low variability of class 2 demand absorbs the negative 
impact of higher class 1 market variability on revenues. Total revenues, on 
the other hand, either decrease monotonically, or first increase, then decrease, 
suggesting higher class 1 variability is generally detrimental to revenues.

4.2. More Variable Class 2 Demand
This section presents our results regarding the direction of the change in 

optimal revenues in response to a change in the class 2 market consistent with 
a mean preserving spread, i.e., when '

2 2MPSD D . We show that the optimal 
revenues from class 2 decrease as its market gets more variable. Furthermore, 
our numerical experiments suggest that higher class 2 variability leads to 
lower revenues from the high-end market, except when the number of units 
available for sale is low. Total revenues decrease monotonically in response 
to an increase in the variability of the low-end market.

4

Figure 6. Optimal revenues under varying price ratios with respect to class 1 variance
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Figure 7. Optimal revenues under varying class 2 market variability with respect to class 1 variance
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4.2.1. Structural Results
As argued in Section 3.2, the optimal protection level is not influenced 

by changes in the class 2 demand. Hence, an increase in the variability of the 
class 2 market impacts the revenues from this class only through the change 
in demand. We show that higher variability leads to lower revenues, with 
Proposition 8, below.  

Proposition 8. When there is an increase in the variability of the class 2 market 
( '

2 2MPSD D ), the optimal class 2 revenue decreases, i.e.,
'' * *

2 2( ) ( )r x r x≤ .
The impact of higher class 2 variability on class 1 revenues under the 

optimal allocation, however, is not clearly determined. As noted above, a 
change in class 2 demand impacts the number of units available for class 1 
(                       ), and consequently, class 1 sales. A mean preserving shift in 
the class 2 demand implies a shift of probability mass from the center to the 
tails. The shift to the lower tail might result in more units being available 
to class 1 (and hence, higher revenues), but also in a higher possibility of 
unsold units (and hence, lower revenues). The shift to the upper tail, on the 
other hand, leads to higher class 2 demand, and consequently to fewer units 
being available to class 1 (and lower revenues), and a lower possibility of 
unsold units (and higher revenues). This tradeoff is further explored in the 
next section with numerical experiments.
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Figure 6. Optimal revenues under varying price ratios with respect to class 1 variance
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4.2.2. Numerical Experiments
In this section, we present the results of numerical experiments that 

evaluate class 2, class 1 and total revenues under varying degrees of class 2 
market variability with respect to problem parameters such as capacity and 
class 1 demand. Throughout this section, we consider the following class 
2 demand distributions, obtained through mean preserving shifts: 

2D �

Uniform(75,125), Uniform(50,150), Uniform(25,175), Uniform(0,200), 
corresponding to variances of 208.33, 833.33, 1875 and 3333.33, respectively. 
Note that under all four distributions, expected class 2 demand is equal to 100.

Results with respect to available capacity. In this section, we evaluate 
revenues under the optimal allocation for capacity levels C=100, C=150 and 
C=200. Class 1 demand is distributed 

1D �

Uniform(0,80), and prices are 
given by 1p =120 and 2p =90 (implying an optimal protection level of 20). 
Note that, since class 1 demand remains the same, and the expected class 2 
demand does not change when the distribution shifts by a mean preserving 
spread, lower available capacity implies a busier, more congested system. 
Figure 8 presents our results.  

We observe that the optimal class 2 revenues decrease as the variability 
of its market increases, as predicted by Proposition 8. The optimal class 1 
revenues either monotonically increase (e.g., when C=100), or decrease 
(e.g., C=150, C=200). As argued above, increasing variability is generally 
detrimental to revenues; however, when the number of units available for sale 
is low, the system absorbs the negative impact of the shift of probability mass 
from the center to the tails, leading to higher class 1 revenues. Total revenues 
decrease as class 2 market variability increases. 

Results with respect to high-end demand. In this section, we vary the high-
end demand consistent with a mean preserving spread. In particular, Figure 9 
presents class 2, class 1 and total revenues under the optimal protection level, 
when class 1 demand is distributed 

1D �

Uniform(20,60), Uniform(10,70), 
Uniform(0,80), corresponding to expected class 1 demand [ ]1E D =40, and 
variances 133.33, 300, 533.33, respectively. Capacity is set at C=150, and 
prices are 1p =120 and 1p =90.

From Figure 9, class 2, class 1 and total revenues under the optimal 
allocation decrease as the variability of the class 2 market increases, leading 
us to conclude that higher variance in the low-end market is generally 
detrimental to revenues.
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5

Figure 8. Optimal revenues under varying capacity levels with respect to class 2 variance
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Figure 9. Optimal revenues under varying class 1 market variability with respect to class 2 variance
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Figure 8. Optimal revenues under varying capacity levels with respect to class 2 variance
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Figure 9. Optimal revenues under varying class 1 market variability with respect to class 2 variance

                                                                

                                                                       Class 1 revenue         Class 2 revenue 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0

2000

4000

6000

8000

10000

12000

14000

0

2000

4000

6000

8000

10000

12000

14000

16000

0

2000

4000

6000

8000

10000

12000

14000

16000

0

2000

4000

6000

8000

10000

12000

14000

0

2000

4000

6000

8000

10000

12000

14000

C=100                                               C=150                                            C=200

D1~U(20,60)                                  D1~U(10,70)                                   D1~U(0,80) 
                             x*=20                                              x*=25                                            x*=30

İn
di

re
n:

 [B
ilk

en
t Ü

ni
ve

rs
ite

si
], 

IP
: [

13
9.

17
9.

2.
11

6]
, T

ar
ih

: 0
5/

06
/2

01
5 

14
:1

7:
21

 +
03

00

B
 i 

l g
 e

 s
 e

 l

İn
di

re
n:

 [B
ilk

en
t Ü

ni
ve

rs
ite

si]
, IP

: [
13

9.1
79

.2.
11

6]
, T

ar
ih

: 0
5/0

6/2
01

5 1
4:

17
:2

1 +
03

00



115

İktisat İşletme ve Finans   30 (347)  Şubat / February  2015

5. Conclusion
In this paper, we study the effect of demand uncertainty on optimal 

decisions and revenues within the two class revenue management model. 
We first study the impact of changing market size.  We show that it is more 
profitable for the firm to allocate more to the high-end class as its market gets 
bigger in the sense of first order stochastic dominance; a bigger market also 
leads to higher overall revenues. While an increase in the size of the low-end 
market does not impact optimal decisions, it leads to higher revenues from 
this class, and, as our numerical experiments suggest, higher total revenues, 
leading us to conclude that bigger markets are consistently more beneficial 
for the firm in terms of revenues. 

We also consider changes in market variability; we summarize previous 
results that show it is more profitable to increase protection levels when the 
ratio of prices is less than ½, and decrease protection levels when it is greater 
than ½. Higher class 1 market variability generally leads to lower revenues, 
except when the variability in the class 2 market is low. An increase in the 
variability of the class 2 market, on the other hand, does not impact optimal 
allocations, but, as our numerical experiments suggest, leads to lower total 
revenues, leading us to conclude that higher variability is detrimental to the 
firm’s revenues. 

Many possibilities exist for future work to build on results presented in 
this paper. It would be of potential interest to study the impact of changing 
market factors on multiple-class systems, or settings where the firm jointly 
determines allocation and market prices, as well as an extension of the current 
work to asymmetric distributions. 
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APPENDIX
Proof of Proposition 2. We write ' * *

1 1( ) ( )P D x P D x≥ ≥ ≥ = 2 1/p p , where 
the equality follows from the optimality condition (1), and the inequality 
from the definition of FSD. This relationship, by the quasi-concavity of the 
revenue function, implies

'* *x x≥ .

Proof of Remark 1. Since class 2 revenue is not a function of the high-end 
demand,  an increase in the size of the class 1 market impacts total revenues for a 
given protection level x only through the class 1 revenue 1( )r x . Class 1 revenue 
increases in its market size, because [ ]

2 2( ) min( ,max( , )Dh u E u C D x= −  is 
increasing in u (where YE  denotes that the expectation is taken over the 
random variable Y ), and from the definition FSD, [ ]' 11

'
1 1( ) ( )DD

E h D E h D  ≥  , 
for all increasing functions h, whenever '

1 1FSDD D . This implies '
1 1( ) ( )r x r x≥ . 

Since '
2 2( ) ( )r x r x= , the result follows. 

Proof    of        Proposition 3. (a) We write 
'' *

1 ( )r x ≥ ' *
1 1 2min( ,max( , )p E D C D x − ≥ 

*
1( )r x , where the first inequality follows because 1( )r x  is increasing in x, 

and from Proposition 2, 
'* *x x≥ . The second inequality holds because 

[ ]
2 2( ) min( ,max( , )Dh u E u C D x= −  is increasing in u, and from the definition 

of FSD, [ ]' 11

'
1 1( ) ( )DD

E h D E h D  ≥  , for all increasing functions h, whenever
'
1 1FSDD D . (b) We write 

'' * *
2 2( ) ( )r x r x≤ , where the inequality follows 

because 2 ( )r x  is decreasing in x, and from Proposition 2, 
'* *x x≥ . (c) 

We write 
'* ' * ' * ' * * *

1 2 1 2( ) ( ) ( ) ( ) ( ) ( )R x r x r x r x r x R x≥ + = + ≥ , where the first 
inequality follows because

'* 'arg max ( )x R x= , hence
'' * ' *( ) ( )R x R x≥  for 

any
'* *x x= . The equality follows because 2 ( )r x   is not a function of the 

class 1 demand 1D , hence '
2 2( ) ( )r x r x= . The last inequality follows because 

[ ]
2 2( ) min( ,max( , )Dh u E u C D x= −  is increasing in u, and from the definition 

of FSD, [ ]' 11

'
1 1( ) ( )DD

E h D E h D  ≥  , for all increasing functions h, whenever
'
1 1FSDD D .

Proof of Proposition 4.We write 
' '' * *

2 2 2( ) min( , )r x p E D C x ≥ − 
*

2 ( )r x= , 
where the inequality follows because ( ) min( , )g u u C x= −  is increasing in 
u, and from the definition of FSD, [ ]'

2 2( ) ( )E g D E g D  ≥  , for all increasing 
functions g, whenever '

2 2FSDD D . The equality follows because
'* *x x= .
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Proof of Proposition 5. (a) First remark that for two symmetric distributions, if 
MPSX Y , then [ ] [ ]E X E Y= , and [ ] [ ]( ) ( ) 1/ 2P X E X P Y E Y≥ ≤ ≥ = . This, 

alongside the single crossing property of distributions that differ by a mean 
preserving spread, imply, for [ ] [ ]u E X E Y≤ = , ( ) ( )P X u P Y u≥ ≤ ≥ , and for 

[ ] [ ]u E X E Y≥ = , ( ) ( )P X u P Y u≥ ≥ ≥ . This implies '
1 1( ) ( )P D u P D u≥ ≥ ≥  

whenever '
1 1MPSD D  and [ ] '

1 1u E D E D ≤ =   . When 2 1/ 1/ 2p p ≥ , from 
the optimality condition (1) and the quasi-concavity of ( )R x , [ ]*

1x E D≤  
(because [ ] *

1 1 2 1 1( ) 1/ 2 / ( )P D E D p p P D x≥ = ≤ = ≥ . Hence, we can write 
' * *
1 1( ) ( )P D x P D x≥ ≥ ≥ = 2 1/p p , which from the quasi-concavity of ( )R x  

implies
'* *x x≥ . The second part is proved analogously.

Proof of Remark 2. Since class 2 revenue, 2 ( )r x , is not a function of class 
1 demand, an increase in the variability of the class 1 demand impacts total 
revenues only through the class 1 revenue. This is lower whenever '

1 1MPSD D , 
as [ ]

2 2( ) min( ,max( , )Dh u E u C D x= −  is concave in u, and from the definition 
of MPS, [ ]' 11

'
1 1( ) ( )DD

E h D E h D  ≤   for all concave functions h. This implies 
'

1 1( ) ( )r x r x≤ . Since '
2 2( ) ( )r x r x= , the result follows.

Proof of Proposition 6. (a) We write				                   , 
where the first inequality follows because [ ]1 2min( ,max( , )E D C D u− is 
increasing in u, and from Proposition 5(a), 

'* *x x≤ . The second inequality 
holds because of the same arguments as the proof of Remark 2, above. 
(b) We write 

'' * *
2 2( ) ( )r x r x≥ , where the inequality follows because 2 ( )r x  

is decreasing in x, and from Proposition 5(a), 
'* *x x≤ .   (c) We write 

' ' ' ' '* * ' * * * *
1 2 1 2( ) ( ) ( ) ( ) ( ) ( )R x r x r x r x r x R x≤ + = + ≤ where the first inequality 

follows because 
'* 'arg max ( )x R x= , hence ' ( ) ( )R x R x≤ for any 

'* *x x≠ . 
The equality follows because 2 ( )r x is not a function of the class 1 demand       . 
The last inequality follows because of the same arguments as the proof of 
Remark 2, above.

Proof of Proposition 7. The proof is analogous to the proof of Proposition 6(b).

Proof of Proposition 8. We write 
					             

, 
where the inequality follows because ( ) min( , )g u u C x= −  is concave in 
u, and from the definition of MPS, [ ]'

2 2( ) ( )E g D E g D  ≤  , for all concave 
functions g, whenever '

2 2MPSD D . The equality follows because 
'* *x x= .

'' * ' * *
1 1 1 2 1( ) min( , max( , ) ( )r x p E D C D x r x ≤ − ≤ 

1D

' '' * * *
2 2 2 2( ) min( , ) ( )r x p E D C x r x ≤ − ≤ 
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1

3789 ilk düzeltmeler

Sayfa 72’de 3.2.2 Numerical Experiments kısmında;

Ve sonrasında bütün makalede nerede 

2D  Uniform 1D Uniform

varsa oradaki işaret hep kutucuk olarak görünüyor. Ben sana pdf kopyasını alacağım bütün 

metinde D Uniform olan yerlere yerleşmesi gerekiyor.

Sayfa 88’de “Proof of Remark 1” içinde sondan 3.satırdaki formüllerde iç içe geçme olmuş. Biraz satır 

arası açarsak yerlerine yerleşirler. Son satır başında nokta ile başlıyor, biraz  sıkıştırıp nokta yukarı 

alınmalı.

Sayfa 88’de “Proof of Proposition 3” yazısı birleşik yazılmış, ara boşlukları konacak.

Makalenin son sayfasında (89.sayfa) Proof of proposition 8’den bittikten sonra aşağıdaki tablo yer 

alacak.

Table 1. Optimal protection levels for Figures 6 and 7

Price ratio Price ratio

Class 1 Demand 0.125 0.25 0.375 Class 1 Demand 0.125 0.25 0.375

Uniform(50,70) 67.5 65 62.5 Uniform(20,100) 90 80 70

Uniform(40,80) 75 70 65 Uniform(10,110) 97.5 75 72.5

Uniform(30,90) 82.5 75 67.5 Uniform(0,120) 105 90 75
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