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ON THE TOP DEGREE OF COINVARIANTS

MARTIN KOHLS AND MÜFİT SEZER

Abstract. For a finite group G acting faithfully on a finite dimensional F -
vector space V , we show that in the modular case, the top degree of the
vector coinvariants grows unboundedly: limm→∞ topdeg F [Vm]G = ∞. In
contrast, in the non-modular case we identify a situation where the top degree
of the vector coinvariants remains constant. Furthermore, we present a more
elementary proof of Steinberg’s theorem which says that the group order is a
lower bound for the dimension of the coinvariants which is sharp if and only
if the invariant ring is polynomial.

1. Introduction

A central problem in invariant theory is to compute the generators of the in-
variants of a group action. One crucial element in this task is determining the
degrees of the generators as the knowledge of these degrees reduces this problem
to a problem in a finite dimensional vector space. This gives obtaining efficient
degree bounds a big computational significance and research in this direction has
always been fashionable since the days of Noether to our days, with some recent
spectacular break-throughs, e.g. [25]. Before we go into more details, we fix our
setup. For a shorthand notion, we will call a finite dimensional representation V
of a finite group G over a field F a G-module. The action of G on V induces an
action on the symmetric algebra F [V ] = S(V ∗) that is given by σ(f) = f ◦ σ−1

for σ ∈ G and f ∈ F [V ]. Let F [V ]G denote the corresponding ring of invariants.
By a classical theorem of Noether, it is a finitely generated algebra, and β(F [V ]G),
the Noether number of the representation, denotes the maximal possible degree of
an indecomposable element, that is, the smallest number b such that invariants of
degree ≤ b generate the invariant ring. We also define β(G) = supV β(F [V ]G).
Another central object is the Hilbert ideal I := F [V ]G+F [V ], the ideal in F [V ]
generated by invariants of positive degree. In this paper, we study the algebra of
coinvariants, which is the quotient ring F [V ]G := F [V ]/I. This finite dimensional,
graded algebra encodes several interesting properties of the invariant ring and there
has been a fair amount of research on it, see [2, 3, 8, 9, 14, 15, 20–24] and the refer-
ences there. The top degree of the coinvariants, denoted topdegF [V ]G, is defined
to be the largest degree in which F [V ]G is non-zero. This number shares a similar
interest for coinvariants as the Noether number does for invariants.
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Equivalently, the top degree can be defined as the smallest number d such that
every monomial m ∈ F [V ] of degree > d is contained in the Hilbert ideal. Note
that this also implies that the Hilbert ideal is generated by elements of degree at
most d + 1, a fact which played an important role in the proof of the Noether
bound in the non-modular case. However, it is conjectured [5, Conjecture 3.8.6]
that even in the modular case the group order is an upper bound for the degrees
of the generators of the Hilbert ideal, which as we will see, may be much smaller
than the top degree.

Another natural interpretation comes from regarding F [V ] as a (finite) F [V ]G-
module. Take a minimal set of homogeneous module generators gi of F [V ] over

F [V ]G, so F [V ] =
∑t

i=1 F [V ]Ggi. From the graded Nakayama lemma, it follows
that the top degree d equals the maximum of the degrees of the generators, and the
number of generators equals the dimension of the coinvariants as a vector space.

Recall that the transfer of f ∈ F [V ] is defined by Tr(f) =
∑

σ∈G σ(f). Another
important application of the top degree is that in the modular case, it yields an
upper bound for the maximal degree of an indecomposable transfer: Take f ∈ F [V ]

homogeneous. Then we can write f =
∑t

i=1 higi with homogeneous invariants hi

and module generators gi as above. Therefore, Tr(f) =
∑t

i=1 hiTr(gi). Assume
deg(f) is bigger than the top degree of F [V ]G. Then all hi’s are zero or of positive
degree. We are done if also all Tr(gi)’s are zero or of positive degree. Note that
one of the module generators, say g1, is a constant. Since we are in the modular
case we have Tr(1) = |G| · 1 = 0, so we are done. Knowing the maximal degree
of an indecomposable transfer has been very critical so far, since in almost all
modular cases where the Noether number is known, there is an indecomposable
transfer of degree equal to the Noether number, see [9]. In the non-modular case
(i.e. the characteristic of F does not divide the group order |G|), the invariant
ring is generated by transfers and so a bound for the degree of an indecomposable
transfer is a bound for the Noether number. Since Tr(1) 6= 0, the argument above
does not carry over to this characteristic. Nevertheless, in the non-modular case,
the top degree plus one is an upper bound for the Noether number and this bound is
sharp: The Noether number corresponding to the natural action of S2 on F [x1, x2]
is two while the top degree of the coinvariants is one.

We now give an outline of the paper. Section 2 is mainly concerned with the
non-modular case, where we collect some consequences of previous work on the top
degree of coinvariants. Most notably, a quite recent result of Cziszter and Domokos
implies that for a given non-modular group G, the maximal possible top degree
equals the maximal possible Noether number minus one. In particular, |G| − 1
gives an upper bound for the top degree.

In contrast, we show in section 3 that for a given faithful modular representation
V , the top degree of the vector coinvariants F [V m]G grows unboundedly with m.
This also fits nicely with a result of Richman [18] which asserts the similar behavior
for the Noether number of the vector invariants F [Vm]G.

In the following section 4 we consider a non-modular situation where the lead
term ideal of F [V ]G+F [V ] is generated by pure powers of the variables. In this case
we show that the top degree of the vector coinvariants F [V m]G is constant. This
way, for the natural action of the symmetric group Sn on a polynomial ring with n
variables we get a new proof that the top degree of any of the vector coinvariants
of this action is

(

n
2

)

.
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In section 5 we will give a new elementary proof of Steinberg’s celebrated the-
orem which states that the group order is a lower bound for the dimension of the
coinvariants with equality holding if and only if the invariant ring is polynomial.

2. Top degree in the non-modular case

In this section we note several facts about the top degree of coinvariants in
the non-modular case, which are a bit spread out in the literature. Although these
statements follow rather quickly from previous results, it seems that the statements
themselves have not been formulated in terms of coinvariants before. Using a
very recent result of Cziszter and Domokos [4] we obtain in Theorem 1 that the
supremum of the top degrees of coinvariants is one less than the Noether number of
the group. Since the Noether number is bounded by the group order, we establish
|G| − 1 as an upper bound for the top degree of coinvariants of any non-modular
representation. This upper bound also follows directly from Fogarty’s proof of the
Noether bound. We take the crucial part of this proof here as Lemma 2. Using
this lemma we also obtain a relative bound for the top degree of coinvariants, see
Proposition 3. We end this section with a brief discussion of the relation between
the Davenport constant and the top degree in the abelian group case.

Theorem 1. Assume that the characteristic of F does not divide the group order

|G|. Then for any G-module V , we have

β(F [V ]G) ≤ topdegF [V ]G + 1 ≤ β(G) ≤ |G|.

In particular, we have that

topdeg(G) + 1 := sup
V

topdegF [V ]G + 1 = β(G).

Proof. Let I denote the Hilbert ideal of F [V ]G and d denote the top degree of
F [V ]G. As mentioned in the introduction I is generated by elements of degree
at most d + 1. As we are in the non-modular case, this implies that F [V ]G is
generated by invariants of degree at most d + 1, which proves the first inequality.
By [4, Lemma 3.1], for any G-module V there exists an irreducible G-module U
such that topdegF [V ]G + 1 ≤ β(F [V ⊕ U ]G), which proves the second inequality.
Finally, the Noether number is at most the group order in the non-modular case,
see [10, 12]. Now the last statement follows from choosing a G-module V with
β(F [V ]G) = β(G). �

There are many bounds on β(G) in invariant theory literature. By this theorem,
they translate into bounds for topdeg(G) + 1. For example, if H is a normal
subgroup of G, in the non-modular case we have β(G) ≤ β(H)β(G/H) [11, (3.1)].
So we get topdeg(G) + 1 ≤ (topdeg(G/H) + 1)(topdeg(H) + 1).

However, for a given module V , its Noether number can be much smaller than
the top degree. For example, for the natural action of the symmetric group on
n variables, the invariants have Noether number n, while the top degree of the
coinvariants is

(

n
2

)

.
A key step in Fogarty’s proof of β(G) ≤ |G| in the non-modular case is the

following lemma [12].

Lemma 2 (See [5, Lemma 3.8.1]). Let A be a commutative ring with identity, G a

finite group of automorphisms of A, and J ⊆ A a G-stable ideal. If the order of G
is invertible in A, then J |G| ⊆ JGA.
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This lemma also yields a relative bound for the top degree of coinvariants.

Proposition 3. Assume H is a normal subgroup of G and the characteristic of F
does not divide the index (G : H). Then we have the inequality

topdeg(F [V ]G) + 1 ≤ (G : H)(topdeg(F [V ]H) + 1).

Proof. Let m denote the top degree of F [V ]H , and d denote the index (G : H).
Then all monomials of degree m+1 of F [V ] lie in I := F [V ]H+ ·F [V ]. Therefore all
monomials of degree d(m+ 1) lie in

Id = (F [V ]H+ · F [V ])d = (F [V ]H+ )d · F [V ].

By the previous lemma, applied to the group (G/H) acting on A = F [V ]H and the
G/H-stable ideal J = F [V ]H+ , we have

(F [V ]H+ )d ⊆ (F [V ]H+ )G/HF [V ]H = F [V ]G+F [V ]H ⊆ F [V ]G+F [V ].

Therefore, all monomials of degree d(m+ 1) lie in F [V ]G+F [V ]. �

For abelian groups, the top degree of the coinvariants has another interpretation
in terms of the Davenport constant of the group. We conclude with a discussion
on this relation. For the rest of this section assume that G is an abelian group
with |G| ∈ F ∗. Since extending the ground field does not change the top degree of
coinvariants we assume that F is algebraically closed. In this case the action is di-
agonalizable so we may as well assume that F [V ] = F [x1, . . . , xn], where x1, . . . , xn

is a basis of V ∗ on which G acts diagonally. For each 1 ≤ i ≤ n, let κi denote
the character corresponding to the action on xi. Then a monomial xa1

1 · · ·xan
n is in

F [V ]G if
∑

1≤i≤n aiκi = 0. Moreover, a monomial xa1

1 · · ·xan
n is in the Hilbert ideal

I if it is divisible by an invariant monomial, that is there exist integers 0 ≤ bi ≤ ai
such that

∑

1≤i≤n biκi = 0. For an abelian group G, let S(G) denote the mini-

mal integer such that every set of elements, with repetitions allowed, of size S(G)
in G has a subsequence that sums up to zero. It also equals the length of the
longest non-shortenable zero sum of elements (with repetitions) of G. This number
is called the Davenport constant of G. Since the character group of G is isomorphic
to G it follows that every monomial in F [V ] of degree S(G) lies in I. This gives
topdeg(G) + 1 ≤ S(G). On the other hand by constructing an action using the
characters in the longest sequence of elements with no subsequence summing up to
zero we get a G module V with topdegF [V ]G + 1 = S(G). Similarly one can show
that β(G) = S(G), see also [19, Proposition 2.2]. So it follows that

S(G) = topdeg(G) + 1 = β(G).

Results on the Davenport constant therefore apply to the top degree of the
coinvariants, and vice versa. See [13] for a survey on the Davenport constant. Here
we just quote two famous results due to Olson [16, 17]: If Zn denotes the cyclic
group of order n, then if a|b, we have S(Za ×Zb) = a+ b− 1. If p is a prime, then
S(Zpd1 × · · · × Zpdr ) = 1 +

∑r
i=1(p

di − 1).

3. The unboundedness of the top degree for modular coinvariants

In this section we specialize to the modular case and show that, in contrast
to the non-modular case, the top degree of the coinvariants of a given group can
become arbitrarily large. We start with a collection of observations which despite
their simplicity give useful upper and lower bounds.
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Lemma 4. Let H be a subgroup of G and V be a G-module. Then

topdegF [V ]H ≤ topdegF [V ]G and dimF [V ]H ≤ dimF [V ]G.

Proof. The inclusion F [V ]G+ ⊆ F [V ]H+ induces a degree preserving surjection

F [V ]G = F [V ]/F [V ]G+F [V ] ։ F [V ]/F [V ]H+F [V ] = F [V ]H ,

which immediately establishes the claim. �

Lemma 5. Let U be a G-submodule of V . Then

topdegF [U ]G ≤ topdegF [V ]G and dimF [U ]G ≤ dimF [V ]G.

Proof. The inclusion U ⊆ V induces the epimorphism

ϕ : F [V ] ։ F [U ], f 7→ f |U ,

which restricts to a (generally non-surjective) morphism F [V ]G → F [U ]G. We
therefore get a degree preserving epimorphism

ϕ : F [V ]G = F [V ]/F [V ]G+F [V ] ։ F [U ]/F [U ]G+F [U ] = F [U ]G,

which yields both inequalities. �

For a G-module V , let V m denote the m-fold direct sum of V .

Lemma 6. For any two G-modules V and W we have,

topdegF [V ⊕W ]G ≤ topdegF [V ]G + topdegF [W ]G.

In particular, we have topdegF [V m]G ≤ m topdegF [V ]G for all m ∈ N.

Proof. Assume that M ∈ F [V ⊕W ] is a monomial of degree at least topdegF [V ]G+
topdegF [W ]G + 1. Write M = M ′M ′′ with M ′ ∈ F [V ] and M ′′ ∈ F [W ]. Then we
have either degM ′ > topdegF [V ]G or degM ′′ > topdegF [W ]G. Without loss of
generality we assume the former inequality. Then M ′ ∈ F [V ]G+F [V ], which implies

M ∈ F [V ]G+F [V ⊕W ] ⊆ F [V ⊕W ]G+F [V ⊕W ]. �

Let Vreg := FG denote the regular representation of G. For any G-module V ,

we have an embedding V →֒ V
dimF (V )
reg . Thus we get the following as a corollary to

the preceding lemmas.

Corollary 7. For any G-module V , we have

topdegF [V ]G ≤ dimF (V ) topdegF [Vreg]G.

In view of Theorem 1, the main result of this section nicely separates the modular
coinvariants from the non-modular ones.

Theorem 8. Let V be a faithful G-module and assume that the characteristic p > 0
of F divides the group order |G|. Then

lim
m→∞

topdegF [Vm]G = ∞.

Proof. Pick a subgroup H of G of size p. It is well known that the indecomposable
H-modules consist of modules Vk for 1 ≤ k ≤ p, where Vk is a k-dimensional vector
space on which a generator of H acts via a single Jordan block with ones on the
diagonal. Therefore, as an H-module, V decomposes in a direct sum V =

⊕q
i=1 Vki

.
Note that V is also faithful as an H-module, so without loss of generality we assume
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k1 ≥ 2. Notice that we have an H-module inclusion Vk ⊆ Vl for any pair of integers
1 ≤ k ≤ l ≤ p. In particular, we have the H-module inclusions

V2 ⊆ Vk1
⊆

q
⊕

i=1

Vki
= V.

Therefore for any m ∈ N we have V m
2 ⊆ V m as H-modules. We now get

topdegF [V m]G ≥ topdegF [Vm]H

by Lemma 4, and furthermore

topdegF [V m]H ≥ topdegF [V m
2 ]H

by Lemma 5. On the other hand from [21, Theorem 2.1] we get topdegF [V m
2 ]H =

m(p− 1). So it follows that

topdegF [V m]G ≥ m(p− 1) for all m ∈ N.

�

We will show next that the dimensions of the vector coinvariants always grow
unboundedly as well, even in the non-modular case. We start again with a simple
but useful observation:

Lemma 9. For any G-module V , we have

dimF [V ]G ≥ topdegF [V ]G + 1.

Proof. If d is the top degree of F [V ]G, then there exists a monomial m of degree d
which is not in the Hilbert ideal I. Then every divisor of m is also not contained
in I, which means that F [V ]G contains a non-zero class in each degree ≤ d. As
elements of different degrees are linearly independent, this finishes the proof. �

Proposition 10. For any non-trivial G-module V , we have

lim
m→∞

dimF [V m]G = ∞.

Proof. We can assume the action of G is faithful. In the modular case, the result
follows from Lemma 9 and Theorem 8. In the non-modular case, choose a subgroup
H = 〈σ〉 of G of prime order q, which is coprime to the characteristic of F . Choose
a basis x1, . . . , xn of V ∗ on which σ acts diagonally. Since V is a faithful H-module
as well, we may assume that the action of σ on x1 is given by multiplication with
a primitive qth root of unity. Let x1,1, . . . , x1,m denote the copies of x1 in F [V m].
Then none of the linear combinations of these variables lie in the Hilbert ideal
F [Vm]H+F [Vm], so they form an independent set of classes in F [V m]H . Therefore
by Lemma 4 we have

dimF [V m]G ≥ dimF [V m]H ≥ m,

which clearly establishes the claim. �
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4. Top degree of vector coinvariants in the non-modular case

In this section we study vector copies of an action of a group in the non-modular
case. Obtaining generating invariants for these actions is generally a difficult prob-
lem nevertheless the degrees of polynomials in minimal generating sets do not
change in many cases, see [7, Example 3.10] for a rare example. Our computer
aided search of examples indicate that many classes of coinvariants enjoy a similar
type of saturation. We note this as a problem for future study.

Problem 11. Assume that V is a non-modular G-module. Prove or disprove that

topdegF [V m]G = topdegF [V ]G

for any positive integer m. Find classes of groups and modules for which the equality

is true.

We prove the equality above for a certain special case. First, we review the
concept of polarization as we use polarized polynomials in our computations. Let
V be a non-modular G-module and set A := F [V ] = F [x1, . . . , xn] and B :=
F [Vm] = F [x1,1, . . . , xn,1, . . . , x1,m, . . . , xn,m]. We use the lexicographic order on
B such that

x1,1 > x1,2 > . . . > x1,m > . . . > xn,1 > . . . > xn,m

and the order on A is obtained by setting m = 1. For an ideal I in A or B we
denote the lead term ideal of I with L(I). Also L(f) denotes the lead term of a
polynomial f in these rings. We introduce additional variables t1, . . . , tm and define
an algebra homomorphism

φ : A → B[t1, . . . , tm], xi 7→ xi,1t1 + . . .+ xi,mtm.

Then for any f ∈ A, write

φ(f) =
∑

i1,...,im

fi1,...,imti11 . . . timm ,

where fi1,...,im ∈ B. This process is called polarization and we let Pol(f) denote
the set of coefficients φi1,...,im(f) := fi1,...,im of φ(f). Restricting to invariants, it
is well known that we get a map Pol : AG → P(BG), where P(BG) denotes the
power set of BG. Let IA := AG

+A denote the Hilbert ideal of A, and similarly IB
denote the Hilbert ideal of B. We show that polarization of a polynomial in IA
gives polynomials in IB.

Lemma 12. Let f ∈ IA. Then Pol(f) ∈ P(IB).

Proof. Since each φi1,...,im is a linear map, we may take f = hg with h ∈ AG
+ and g ∈

A. Write φ(h) =
∑

j1,...,jm
hj1,...,jm tj11 . . . tjmm and φ(g) =

∑

q1,...,qm
gq1,...,qmtq11 . . . tqmm .

Note that we have hj1,...,jm ∈ BG
+ since polarization preserves degrees. It follows

that

fi1,...,im =
∑

jk+qk=ik, 1≤k≤m

hj1,...,jmgq1,...,qm ∈ BG
+B,

which proves the lemma. �

We now identify a situation where the equality in Problem 11 holds.
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Theorem 13. Let F be a field of characteristic p and V a G-module. Assume that

there exist integers a1, . . . , an, strictly smaller than p in case of positive character-

istic, such that L(IA) = (xa1

1 , . . . , xan
n ). Then we have

topdegF [V m]G = topdegF [V ]G =
n
∑

i=1

(ai − 1) for all m ∈ N.

Proof. Since the monomials in A that do not lie in L(IA) form a vector space basis
for F [V ]G, we have topdegF [V ]G =

∑n
i=1(ai − 1). From Lemma 5 we also have

topdegF [V ]G ≤ topdegF [V m]G. Therefore, to prove the theorem it suffices to
show topdegF [V m]G ≤

∑n
i=1(ai − 1). To this end we demonstrate that the lead

term ideal L(IB) contains the set

S := {x
ai,1

i,1 x
ai,2

i,2 · . . . · x
ai,m

i,m | i = 1, . . . , n, ai,1 + . . .+ ai,m = ai}.

Take a homogeneous element f ∈ IA with L(f) = xai

i . So f = xai

i + h where
each term in h is strictly lex-smaller than xai

i . Then each term of h is of the form

xbi
i x

bi+1

i+1 . . . xbn
n with bi < ai. Considering

φ(xai

i ) = (t1xi,1 + . . .+ tmxi,m)ai

and

φ(xbi
i x

bi+1

i+1 . . . xbn
n ) = (t1xi,1 + . . .+ tmxi,m)bi . . . (t1xn,1 + . . .+ tmxn,m)bn ,

we get by the choice of our order that, for any sequence ai,1, . . . , ai,m ∈ N0 satisfying
ai,1 + . . .+ ai,m = ai we have

L(φai,1,...,ai,m
(f)) = L(φai,1,...,ai,m

(xai

i )) =
ai!

ai,1! . . . ai,m!
x
ai,1

i,1 x
ai,2

i,2 · . . . · x
ai,m

i,m .

As for positive characteristic p, ai is strictly smaller than p by hypothesis, so the
coefficient is nonzero. Moreover, φai,1,...,ai,m

(f) ∈ IB by the previous lemma. This
finishes the proof. �

Consider the natural action of the symmetric group Sn on F [V ]. It is well known
that L(IA) = (x1, x

2
2, . . . , x

n
n), see for example [26, Proposition 1.1]. So the theorem

applies and we get the following corollary, which also appears as the special case
q = 1 in [6, Lemma 3.1].

Corollary 14. Let F be a field of characteristic p and V be the natural Sn-module.

If p = 0 or p > n, then for any positive integer m we have

topdegF [V m]Sn
=

(

n

2

)

.

We want to emphasize here again the sharp contrast to the case 0 < p ≤ n,
where by Theorem 8 we have limm→∞ topdegF [V m]Sn

= ∞.

5. A new proof for Steinberg’s Theorem

The following might be one of the most celebrated results on coinvariants.

Theorem 15 (Steinberg). For any faithful G-module V , we have

|G| ≤ dimF [V ]G

with equality if and only if F [V ]G is polynomial.
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Note that by the famous Chevalley-Shephard-Todd-Serre-Theorem, F [V ]G be-
ing polynomial always implies G is a reflection group, and in the non-modular case
the converse is also true. Steinberg [24] proves the theorem above for the complex
numbers using analysis. More recently, Smith [22] generalized the theorem to arbi-
trary fields, using some heavy machinery from homological algebra. We now give
an almost elementary proof.

Proof. The group G acts naturally on the quotient field F (V ), hence by Galois
theory we have dimF (V )G F (V ) = |G|. Let S be a minimal generating set for

F [V ] as a module over F [V ]G. Then by the graded Nakayama lemma, S projects
injectively onto a vector space basis for F [V ]G. Moreover, from Proposition 16 we
get that S also generates F (V ) as an F (V )G-vector space. So we have

dimF [V ]G = |S| ≥ dimF (G)G F (V ) = |G|.

If equality holds, then S is a basis for F (V ) over F (V )G, so it is F (V )G- and
hence F [V ]G-linearly independent. This implies that F [V ] is a free F [V ]G-module.
Now by [1, Corollary 6.2.3], we get that F [V ]G is polynomial. The reverse implica-
tion is straightforward: If F [V ]G is polynomially generated by invariants of degree
d1, . . . , dn, the Cohen-Macaulayness of F [V ] implies that F [V ] is freely generated
over F [V ]G by d1 · . . . · dn many generators, and it is well known that this product
equals |G|, see Smith’s proof [22] for the details. �

Above we used the following well-known proposition. We give a proof here due
to lack of reference. Let Quot(D) denote the quotient field of an integral domain D.

Proposition 16. Assume A ⊆ R is an integral extension of integral domains.

Then

Quot(R) =
{ r

a
| r ∈ R, a ∈ A \ {0}

}

= (A \ {0})−1R.

In particular, if S ⊆ R generates R as an A-module, then S generates Quot(R) as
a Quot(A)-vector space.

Proof. Assume f
g ∈ Quot(R) with f, g ∈ R and g 6= 0. Let

gt + at−1gt−1 + . . .+ a1g + a0 = 0

be a monic equation of minimal degree satisfied by g. Then a0 6= 0 and dividing
this equation by g shows a0

g ∈ R. Therefore f
g = f

a0
· a0

g ∈ (A \ {0})−1R. �

References

[1] D. J. Benson. Polynomial invariants of finite groups, volume 190 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 1993.

[2] Abraham Broer, Victor Reiner, Larry Smith, and Peter Webb. Extending the coinvariant
theorems of Chevalley, Shephard-Todd, Mitchell, and Springer. Proc. Lond. Math. Soc. (3),
103(5):747–785, 2011.

[3] H. E. A. Campbell, I. P. Hughes, R. J. Shank, and D. L. Wehlau. Bases for rings of coinvari-
ants. Transform. Groups, 1(4):307–336, 1996.
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