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RINGS OF INVARIANTS FOR MODULAR REPRESENTATIONS

OF THE KLEIN FOUR GROUP

MÜFIT SEZER AND R. JAMES SHANK

Abstract. We study the rings of invariants for the indecomposable modu-
lar representations of the Klein four group. For each such representation we
compute the Noether number and give minimal generating sets for the Hilbert
ideal and the field of fractions. We observe that, with the exception of the
regular representation, the Hilbert ideal for each of these representations is a
complete intersection.

Introduction

The modular representation theory of the Klein four group has long attracted
attention. The group algebra of Klein four over an infinite field of characteristic 2 is
one of the relatively rare examples of a group algebra with domestic representation
type (see, for example, [2, §4.4]). If we work over an algebraically closed field, then
for each even dimension there is a one parameter family of indecomposable repre-
sentations and a finite number of exceptional indecomposable representations. For
each odd dimension (greater than 1) there are only two indecomposable represen-
tations. In this paper we investigate the rings of invariants of the indecomposable
representations of the Klein four group over fields of characteristic 2. For each
such representation we compute the Noether number and give minimal generating
sets for the Hilbert ideal and the field of fractions (definitions are given below).
For an indecomposable representation of the Klein four group, say V , our results
show that the Noether number is at most 2 dim(V )+1 (detailed formulae are given
later in this introduction) and, with the exception of the regular representation, the
Hilbert ideal is generated by a homogeneous system of parameters. We note that
the Hilbert ideals are generated by polynomials of degree at most 4, confirming
Conjecture 3.8.6(b) of [9] for these representations.

We start with a few definitions and some notation. Suppose that V is a finite
dimensional representation of a finite group G over a field F. The induced action on
the dual space V ∗ extends to the symmetric algebra S(V ∗) of polynomial functions
on V which we denote by F[V ]. The action of g ∈ G on f ∈ F[V ] is given by
(gf)(v) = f(g−1v) for v ∈ V . The ring of invariant polynomials

F[V ]G = {f ∈ F[V ] | g(f) = f ∀g ∈ G}
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5656 MÜFIT SEZER AND R. JAMES SHANK

is a graded, finitely generated subalgebra of F[V ]. The maximal degree of a polyno-
mial in a minimal homogeneous generating set for F[V ]G is known as the Noether
number of V . The ideal in F[V ] generated by the homogeneous invariants of pos-
itive degree is the Hilbert ideal of V . If the characteristic of F divides |G|, then
V is called a modular representation. Rings of invariants for non-modular repre-
sentations are reasonably well behaved. For instance, it is well known that if V is
non-modular, then F[V ]G is always Cohen-Macaulay and the Noether number is
less than or equal to |G| (see, for example, [9, §3.4, §3.8]). Both of these properties
can fail in the modular case. Rings of invariants for modular representations are
rarely Cohen-Macaulay, and there is no bound on the degrees of a generating set
which depends only on the group order. Computing rings of invariants for modular
representations can be difficult even in basic cases. Consider a representation of a
cyclic p-group Z/pr over a field of characteristic p. The action is easy to describe:
up to a change of basis, a generator of the group acts by a sum of Jordan blocks each
with eigenvalue 1 and size at most pr. Despite this, even when r = 1, although the
Noether numbers are known [12], an explicit generating set has been constructed
for only a limited number of cases; see [23] for a summary and recent advances.
For r > 1, much less is known; see [20] for the study of a specific case and [17]
for some partial results on degree bounds. This paper is a part of a programme,
initiated in [8], to understand the rings of invariants of modular representations of
elementary abelian p-groups. In [8], the rings of invariants of all two dimensional
representations and all three dimensional representations for groups of rank at most
three were computed; in all cases the rings were shown to be complete intersections.

The results in section 2 apply to an arbitrary group G, but for the rest of
the paper G := 〈σ1, σ2〉 ∼= Z/2 × Z/2 denotes the Klein four group. For F an
algebraically closed field of characteristic 2, the indecomposable representations of
the Klein four group over F are the following:

• the trivial representation F;
• the regular representation Vreg;
• a representation of dimension 2m for each λ ∈ F ∪ {∞}, which we denote
by Vm,λ;

• the representations Ωm(F) and Ω−m(F) of dimension 2m + 1, where Ω
denotes the Heller operator.

See [2, §4.4] for a detailed discussion of this classification. Note that Vm,0, Vm,1

and Vm,∞, while not equivalent representations, are linked by group automor-
phisms. Therefore the invariants can be computed using the same matrix group
and F[Vm,0]

G ∼= F[Vm,1]
G ∼= F[Vm,∞]G. In [10], the depth of F[V ]G was computed

for each of the indecomposable modular representations of the Klein four group.
The only indecomposable representations for which the ring of invariants is Cohen-
Macaulay are the the trivial representation, the regular representation, V1,λ, V2,λ,
Ω−1(F), Ω−2(F) and Ω1(F). Note that, for each of these representations, F[V ]G

is a complete intersection. In [15] separating sets of invariants are given for the
indecomposable modular representations of the Klein four group.

We identify F[V ] with the polynomial algebra on the variables xi and yj . We
use the graded reverse lexicographic order (grevlex) with xi < yj , xi < xi+1 and
yj < yj+1. We adopt the convention that a monomial is a product of variables
and a term is a monomial multiplied by a coefficient. For a polynomial f ∈ F[V ],
we denote the leading monomial by LM(f) and the leading term by LT(f). We
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KLEIN FOUR 5657

make occasional use of SAGBI bases, the Subalgebra Analog of a Gröbner Basis
for Ideals. For a subset B = {h1, . . . , h�} of a subalgebra A ⊂ F[V ] and a sequence

I = (i1, . . . , i�) of non-negative integers, denote
∏�

j=1 h
ij
j by hI . A tête-a-tête for

B is a pair (hI , hJ) with LM(hI) = LM(hJ); we say that a tête-a-tête is non-
trivial if the support of I is disjoint from the support of J . The reduction of an
S-polynomial is a fundamental calculation in the theory of Gröbner bases. The
analogous calculation for SAGBI bases is the subduction of a tête-a-tête. B is a
SAGBI basis for A if every non-trivial tête-a-tête subducts to zero. A SAGBI basis
is a particularly useful generating set for the subalgebra. For background material
on SAGBI bases, see [21, §11] or [19, §3]. For f ∈ F[V ], we define the transfer of f
by Tr(f) :=

∑
σ∈G σ(f) and the norm of f , which we denote by NG(f), to be the

product over the G-orbit of f . If the coefficient of a monomial M in a polynomial
f is non-zero, we say that M appears in f .

We conclude the introduction with a summary of the paper. Section 1 contains
preliminary results on the invariant theory of Z/2. In section 2, we introduce the
concept of a block hsop, a particularly nice homogeneous system of parameters, and
prove a theorem which we use to compute Noether numbers. A recent result of
Peter Symonds [22, Corollary 0.3] is a key ingredient in our proof. The results of
this section are valid for any modular representation of a finite group.

In section 3, we consider the even dimensional representations. We include an
explicit description of the group actions. We show that for m > 1, the Noether
number of Vm,λ is 3m−2
m/2� if λ ∈ F\F2 and 3m−2�m/2 if λ ∈ {0, 1,∞}. We
also show that the Hilbert ideal of Vm,λ is generated by a block hsop and is therefore
a complete intersection. A transcendence basis for the field of fractions is given;
in fact we show F[Vm,λ]

G[x1]
−1 is a “localised polynomial algebra”. For various

small dimensional cases, we give generating sets for the rings of invariants and for
the other cases we give explicit input sets for the SAGBI/Divide-by-x algorithm
introduced in [8, §1].

The odd dimensional representations are considered in sections 4 and 5. We
show that the Noether number for Ω−m(F) is m + 1 (Corollary 4.2), the Noether
number for Ωm(F) is 3m for m > 1 (Corollary 5.2), and that in all cases the Hilbert
ideal is generated by a block hsop. We give generating sets for F[Ω−m(F)]G[x−1

1 ]
and for F[Ωm(F)]G[(x1x2(x1 + x2))

−1]. We also give explicit input sets for the
SAGBI/Divide-by x algorithm.

1. Preliminaries

Let F denote a field of characteristic 2. Suppose 〈σ〉 ∼= Z/2 acts on S :=
F[x1, . . . , xm, y1, . . . , ym] by σ(xj) = xj , σ(yj) = yj + xj . Define Δ := σ − 1 and

ni := y2i + xiyi. We will often write Sσ as shorthand for S〈σ〉.

Proposition 1.1 ([16], [5], [7]). Sσ is generated by

{n1, . . . , nm} ∪ {Δ(β) | β divides y1 · · · ym}.
Corollary 1.2. ΔS = ((x1, . . . , xm)S)

σ
and Sσ/ΔS ∼= F[n1, . . . , nm].

Proof. It is clear from the definition of Δ that ΔS ⊂ (x1, . . . , xm)S. Since Δ2 = 0,
we have ΔS ⊆ ((x1, . . . , xm)S)σ. The result then follows from the definition of ni

and the generating set for Sσ given above. �
Proposition 1.1 and Corollary 1.2 give the following.
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5658 MÜFIT SEZER AND R. JAMES SHANK

Lemma 1.3. Suppose a1, . . . , am are non-negative integers. Let f ∈ Sσ.

(i) If ya1
1 · · · yam

m appears in f , then ai is even for i ∈ {1, . . . ,m}.
(ii) If ya1

1 · · · yam−1

m−1 ymxm appears in f , then ai is even for i ∈ {1, . . . ,m− 1}.

A simple calculation shows that for a, b ∈ S,

Δ(a · b) = Δ(a)b+ aΔ(b) + Δ(a)Δ(b)

and Δ(a2) = Δ(a)2. Therefore, if M = ya1
1 · · · yam

m with ai > 0, then the monomial
xiM/yi appears in Δ(M) with coefficient 1 if ai is odd and coefficient 0 if ai is
even. Note that if a monomial M appears (with non-zero coefficient) in f ∈ Sσ and
a monomial M ′ appears in Δ(M), then there is at least one further monomial, say
M ′′, with M �= M ′′, such that M ′′ appears in f and M ′ appears in ΔM ′′.

Lemma 1.4. Suppose M ′ is a monomial in {y1, . . . , ym} and M = M ′xiyj for
some i, j ∈ {1, . . . ,m} with i �= j. Assume further that the degree of yj in M ′ is
even. If M appears in a polynomial f ∈ Sσ, then the degree of yi in M ′ is even
and M ′xjyi also appears in f . Moreover, the coefficients in f of these monomials
are the same.

Proof. Since the degree of yj in M is odd, M ′xixj appears in Δ(M) with coefficient
1. Note that if the degree of yi in M ′ is odd, then there is no other monomial in
S that produces M ′xixj after applying Δ. Therefore, we may assume that the
degree of yi in M ′ is even. In this case, M ′xixj appears in Δ(M ′yixj) and in
Δ(M ′yiyj). However, the degree of yj in the monomial M ′yiyj is odd, so it follows
from Lemma 1.3 that M ′yiyj does not appear in f . Therefore M ′yixj appears
in f . Since the coefficient of M ′xixi in both Δ(M ′yixj) and Δ(M ′yjxi) is 1, the
coefficients of M ′yixj and M ′yjxi in f must be equal. �

Lemma 1.5. Suppose that M ′ is a monomial in {y1, . . . , ym} \ {yj} for some
j ∈ {1, . . . ,m} and M = M ′yjxj. For f ∈ Sσ, M appears in f if and only if M ′y2j
appears in f . Moreover, the coefficients in f of these monomials are the same.
Finally, M ′y3jxj does not appear in any polynomial in Sσ.

Proof. Note that M ′x2
j appears in both Δ(M) and Δ(M ′y2j ) with coefficient 1.

Since these are the only monomials in S that produce M ′x2
j after applying Δ, the

result follows. The final statement follows from the fact that M ′y3jxj is the only

monomial in S that produces M ′y2jx
2
j after applying Δ. �

2. Block HSOPs

In this section, G is an arbitrary finite group, F is a field of characteristic p for
some prime number p dividing the order of G and V is a finite dimensional FG-
module. Suppose we have a homogeneous system of parameters S = {h1, . . . , hn}
for F[V ]G. Let A denote the algebra generated by S and let I denote the ideal
(h1, . . . , hn)F[V ]. Further suppose that there exists a term order for which S is a
Gröbner basis for I and the reduced monomials are the monomial factors of a given
monomial, say β. Then the monomial factors of β are a basis for F[V ] as a free
A-module; in the language of [6], we have a block basis for F[V ] over A. In this
situation, we will refer to S as a block hsop and β as the top class. Note that if the
elements of {LM(h1), . . . ,LM(hn)} are pair-wise relatively prime, then S is a block
hsop and the top class is the unique maximal reduced monomial.
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Theorem 2.1. Suppose S = {h1, . . . , hn} is a block hsop with top class β. If Tr(β)
is indecomposable in F[V ]G, then

(a) the Noether number for V is deg(β);
(b) the Hilbert ideal of V is generated by S.

Proof. Proof of (a): The indecomposability of Tr(β) gives a lower bound on the
Noether number. The fact that deg(β) is also an upper bound follows from [22,
Corollary 0.3].

Proof of (b): Denote the Hilbert ideal of V by h. Since S ⊂ F[V ]G, we have
I ⊆ h. Suppose, by way of contradiction, that there exists f ∈ h \ I. We may
assume that f is homogeneous and that LM(f) is reduced with respect to I using
the chosen term order. Therefore LM(f) divides β. Reducing β with respect to
S ∪ {f} produces a polynomial of degree d := deg(β) with lead term less than β.
However, F[V ]/I in degree d has dimension one. Thus β ∈ (h1, . . . , hn, f)F[V ] ⊆ h.
Let C be the reduced monomials with respect to h using the chosen term order.
Observe that the elements of C are monomial factors of β with degree less than
d. Since C generates F[V ] as an F[V ]G-module, the transfer ideal, Tr(F[V ]), is
generated by {Tr(γ) | γ ∈ C} as an F[V ]G-module. Therefore,

Tr(β) =
∑
γ∈C

cγ Tr(γ)

for some cγ ∈ F[V ]G. Since the representation is modular, Tr(1) = 0. Furthermore
deg(Tr(γ)) < d. Therefore, the equation above gives a decomposition of Tr(β) in
terms of invariants of degree less than d, contradicting the indecomposability of
Tr(β). �

3. Even dimensional representations

In this section we consider the even dimensional representations Vm,λ. For
completeness, we also include a brief discussion of the regular representation in
subsection 3.14. For λ ∈ F, the action of G = 〈σ1, σ2〉 on S := F[Vm,λ] =
F[x1, . . . , xm, y1, . . . , ym] is given by σi(xj) = xj , σ1(yj) = yj+xj , σ2(y1) = y1+λx1

and σ2(yj) = yj+λxj+xj−1 for j > 1. Define ni := y2i +xiyi and uij = xiyj+xjyi.
Then ni, uij ∈ Sσ1 . A simple calculation gives Δ2(ni) = (λ2+λ)x2

i +x2
i−1+xixi−1

and Δ2(uij) = xixj−1 + xi−1xj (using the convention that x0 = 0). Define
� := 
m/2� and, for i ≤ �, define

Ni := ni + (λ2 + λ)

i∑
j=1

ui−j+1,i+j +

i−1∑
j=1

(ui−j,i+j + ui−j,i+j−1) .

An explicit calculation, exploiting the fact that Δ2(u1j) = x1xj−1, gives Δ2(Ni) =
0. Therefore Ni ∈ SG. Define

H := {x1, . . . , xm} ∪ {Ni | 1 ≤ i ≤ m/2} ∪ {NG(yj) | m/2 < j ≤ m} .

Theorem 3.1. H is a block hsop with top class y1 · · · y�y3�+1 · · · y3m.

Proof. This follows from the fact that LT(Ni) = y2i and LT(NG(yj)) = y4j . �

Corollary 3.2. The image of the transfer, Tr(S), is the ideal in SG generated by{
Tr(β) | β divides y1 · · · y�(y�+1 · · · ym)3

}
.
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5660 MÜFIT SEZER AND R. JAMES SHANK

Theorem 3.3. For λ �∈ F2 and m ≥ 3, Tr(y1 · · · y�y3�+1 · · · y3m) is indecomposable.

See subsection 3.15 for the proof of Theorem 3.3. Combining Theorem 3.3 with
Theorem 2.1 gives the following.

Corollary 3.4. If λ �∈ F2 and m ≥ 3, then the Noether number for Vm,λ is
3m− 2
m/2� and the Hilbert ideal is generated by H.

Descriptions of SG for m ≤ 3 are given in subsection 3.14. The formula given
above for the Noether number is valid for m > 1.

For j > 1, an explicit calculation gives

Tr(y1y2yj) = y1(x2xj−1 + x1xj) + y2x1xj−1 + yjx
2
1

+x1x2

(
(λ2 + λ)xj + xj−1

)
+ x2

1(xj + xj−1)

= u12xj−1 + u1jx1 +Tr(y1y3)
(
(λ2 + λ)xj + xj−1

)
+Tr(y1y2)(xj + xj−1).

Therefore tj := u12xj−1 + u1jx1 ∈ Tr(S).

Theorem 3.5. For m > 3 and λ �∈ F2,

F[Vm,λ]
G[x−1

1 ] = F[x1, . . . , xm, N1, N2, t3, . . . , tm][x−1
1 ].

Proof. We use [4, Theorem 2.4]. F[x1, . . . , xm, y1]
G is the polynomial algebra gen-

erated by {x1, . . . , xm, NG(y1)}. Since N1 = y21 + x1y1 + (λ2 + λ)(x1y2 + x2y1), we
see that N1 ∈ F[x1, x2, y1, y2] is degree 1 in y2 with coefficient (λ2 + λ)x1. Using
the equation above, tj ∈ F[x1, . . . , xm, y1, y2, yj ] is degree 1 in yj with coefficient

x2
1. Thus SG[x−1

1 ] = F[x1, . . . , xm, NG(y1), N1, t3, . . . , tm][x−1
1 ]. To complete the

proof, we need only rewrite NG(y1) in terms of N2 and the other generators. An
explicit calculation gives

NG(y1) = y41 + x2
1y

2
1(λ

2 + λ+ 1) + x3
1y1(λ

2 + λ).

Define c := λ2 + λ. Subduction gives

NG(y1) = N2
1 + ((cx2)

2 + cx2
1)N1 + (cx1)

2N2 + (c3x2 + c2x1)t3 + c3x1t4,

as required. �
Remark 3.6. For m > 3 and λ �∈ F2, it follows from Theorem 3.5 and Theorem 3.1
that SG is the normalisation of the algebra generated by B := H ∪ {t3, . . . , tm}.
Furthermore, applying the SAGBI/Divide-by-x algorithm of [8] with x = x1 to B
computes a SAGBI basis for SG.

Using the familiar formula for the group cohomology of a cyclic group, we have

H1 (〈σ2〉,Δ1S) ∼= (Δ1S)
σ2 /Δ2Δ1S = (Δ1S)

σ2 /TrS

andH1 (〈σ1〉,Δ2S) ∼= (Δ2S)
σ1 /TrS. Note thatH1 (〈σ1〉,Δ2S) andH1 (〈σ2〉,Δ1S)

are both finitely generated SG-modules and, therefore, are also finitely generated
over the algebra generated by H. In the following

√
TrS denotes the radical of the

image of the transfer.

Proposition 3.7. For λ �∈ F2, (Δ2S)
σ1 = (Δ1S)

σ2 = ((x1, . . . , xm)S)
G
=

√
TrS

and √
TrS/TrS ∼= H1(〈σ2〉,Δ1S) ∼= H1(〈σ1〉,Δ2S).

Furthermore SG/
√
TrS ∼= F[N1, . . . , N�, NG(y�+1), . . . , NG(ym)].
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Proof. For λ �∈ F2,

Δ1V
∗
m,λ = Δ2V

∗
m,λ = (σ1σ2 + 1)V ∗

m,λ = SpanF{x1, . . . , xm}.

Using [18, Theorem 2.4] (see also [11, Theorem 2.4]),
√
TrS = ((x1, . . . , xm)S)G.

Applying Proposition 1.1 with σ = σ1 gives Δ1S = ((x1, . . . , xm)S)
σ1 . Thus

(Δ1S)
σ2 = ((x1, . . . , xm)S)

G
. Applying Proposition 1.1 with σ = σ2 gives (Δ2S)

σ1

= ((x1, . . . , xm)S)
G
.

To prove the final statement, first observe that

N := {N1, . . . , N�, NG(y�+1), . . . , NG(ym)}
is algebraically independent modulo

√
TrS. Therefore, there is a subalgebra of

SG/
√
TrS isomorphic to A := F[N1, . . . , N�, NG(y�+1), . . . , NG(ym)]. We will show

that for every f ∈ SG, there exists F ∈ A with f − F ∈
√
TrS. We proceed

with a minimal counterexample. Without loss of generality, we may assume f
is homogeneous of positive degree. Since LM(g(yi)) = yi for all g ∈ G, using
[19, Theorem 3.2], there exists a finite SAGBI basis for SG and therefore a finite

SAGBI-Gröbner basis for the ideal
√
TrS. We may assume that f is reduced, i.e.,

equal to its normal form. Therefore LM(f) =
∏m

i=1 y
ai . Using Lemma 1.3, each ai

is even. It follows from Proposition 3.15.2 that LM(f) does not divide
∏m

i=�+1 y
2
i .

Since LT(Ni) = y2i and LT(NG(yj)) = y4j , there exits N ∈ N with LT(N) = ybkk
dividing LM(f). Note that N = ybkk + Ñ for some Ñ ∈ (x1, . . . , xm)S. Since N
is monic as a polynomial in yk, we can divide f by N to get f = qN + r for
unique q, r ∈ S with degyk

(r) < degyk
(N) = bk. Furthermore, since we are using

grevlex with xi < yk, we have LM(r) < LM(f). Applying g ∈ G gives f = g(f) =
g(q)N + g(r). However, degyk

(g(r)) ≤ degyk
(r). Therefore, by the uniqueness of

the remainder, g(r) = r and g(q) = q. Thus q, r ∈ SG with q < f and r < f . By

the minimality of f , there exists F1, F2 ∈ A with q−F1, r−F2 ∈
√
TrS. Therefore

F := NF1 − F2 ∈ A and f − F ∈
√
TrS, giving the required contradiction. �

While Vm,0 and Vm,1 are not equivalent representations, the automorphism of
G which fixes σ1 and exchanges σ2 and σ1σ2, takes Vm,0 to Vm,1. Therefore
F[Vm,0]

G ∼= F[Vm,1]
G. Hence, to compute F[Vm,λ]

G with λ ∈ F2, it is sufficient to
take λ = 0.

Substituting λ = 0 into the expression for Ni given above gives an element in
F[Vm,0]

G with lead term y2i for i ≤ �m/2. Define �′ := �m/2 and

H′ := {x1, . . . , xm} ∪ {Ni | 1 ≤ i ≤ (m+ 1)/2} ∪ {NG(yj) | (m+ 1)/2 < j ≤ m} .
Looking at lead terms gives the following.

Theorem 3.8. For λ ∈ F2, H′ is a block hsop with top class y1 · · · y�′y3�′+1 · · · y3m.

Theorem 3.9. For λ ∈ F2 and m > 3, Tr(y1 · · · y�′y3�′+1 · · · y3m) is indecomposable.

See subsection 3.16 for the proof of Theorem 3.9. Combining Theorem 3.9 with
Theorem 2.1 gives the following.

Corollary 3.10. For m > 3, the Noether number for Vm,0 is 3m − 2�m/2 and
the Hilbert ideal is generated by H′.

Descriptions of F[Vm,0]
G for m ≤ 3 are given in subsection 3.14. The above

formula for the Noether number is valid for m > 1.
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Theorem 3.11. For m > 2,

F[Vm,0]
G[x−1

1 ] = F[x1, . . . , xm, N1, N2, t3, . . . , tm][x−1
1 ].

Proof. We construct the field of fractions for an upper-triangular action as in [4] or
[14]. From Remark 3.14.3 we see that F[x1, x2, y1, y2]

G[x−1
1 ] = F[x1, x2, N1, w̃][x

−1
1 ],

where w̃ := (x1 + x2)u12 + x1n2. Since tj ∈ F[x1, . . . , xm, y1, . . . , yj ]
G has degree

one as a polynomial in yj with coefficient x2
1, we have

F[Vm,0]
G[x−1

1 ] = F[x1, . . . , xm, N1, w̃, t3, . . . , tm][x−1
1 ].

The result then follows from the relation w̃ = x1N2 + t3. �
Remark 3.12. For m > 2 it follows from Theorem 3.11 and Theorem 3.8 that
F[Vm,0]

G is the normalisation of the algebra generated by B′ := H′ ∪ {t3, . . . , tm}.
Furthermore, applying the SAGBI/Divide-by-x algorithm of [8] with x = x1 to B′

computes a SAGBI basis for F[Vm,0]
G.

Proposition 3.13. For λ = 0:
√
TrS = ((x1, . . . , xm−1)S)

G
,

H1(〈σ1〉,Δ2S) ∼= ((x1, . . . , xm−1)S)
G
/TrS,

H1(〈σ2〉,Δ1S) ∼= ((x1, . . . , xm)S)
G
/TrS,

SG/ ((x1, . . . , xm)S)
G ∼= F[N1, . . . , N�′ , NG(y�′+1), . . . , NG(ym)].

Proof. Direct calculation gives Δ1V
∗
m,0 = (σ1σ2+1)V ∗

m,0 = SpanF{x1, . . . , xm} and
Δ2V

∗
m,0 = SpanF{x1, . . . , xm−1}. Using [18, Theorem 2.4],

√
TrS =

⋂
g∈G, |g|=2

(((g − 1)V ∗
m,0)S)

G = ((x1, . . . , xm−1)S)
G .

The rest of the proof is analogous to the proof of Proposition 3.7. �
3.14. Even dimensional examples.

Remark 3.14.1. It follows from [9, Theorem 3.75] that F[V1,λ]
G is the polynomial

ring generated by x1 and NG(y1).

Define w := Δ2(n2)u12 + x2
1n2. Note that NG(y2) = n2

2 + n2Δ2(n2) and recall
that Δ2(n2) = (λ2 + λ)x2

2 + x1x2 + x2
1. A simple calculation shows that LT(w) =

(λ2 + λ)y1x
3
2. Subduction gives

(3.1) w2 = Δ2(n2)
2x2

2N1 + x4
1NG(y2) + wΔ2(n2)

(
Δ2(n2) + x2

1

)
.

Theorem 3.14.2. If λ �∈ F2, then F[V2,λ]
G is the hypersurface generated by x1,

x2, N1, w and NG(y2), subject to the above relation.

Proof. SinceN1 has degree 1 in y2 with coefficient (λ2+λ)x2
1, using [4, Theorem 2.4],

we have F[V2,λ]
G[x−1

1 ] = F[x1, x2, NG(y1), N1][x
−1
1 ]. Subduction gives

NG(y1) = N2
1 + (λ2 + λ)2(x2

2N1 + w) + x2
1(w

2 + w)N1.

Therefore F[V2,λ]
G[x−1

1 ] = F[x1, x2, N1, w][x
−1
1 ]. Furthermore {x1, x2, N1, NG(y2)}

is a block hsop. Taking B := {x1, x2, N1, w,NG(y2)}, we see that there is a single
non-trivial tête-a-tête, which subducts to 0 using equation (3.1). Therefore, using
[8, Theorem 1.1], B is a SAGBI basis for F[V2,λ]

G. �
It follows from Theorem 3.14.2 that the Noether number for V2,λ is 4 and the

Hilbert ideal is generated by {x1, x2, N1, NG(y2)}.
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Remark 3.14.3. A Magma [3] calculation shows that F[V2,0]
G is a hypersurface

with generators x1, x2, n1, w̃ := (x1 + x2)u12 + x1n2, Ñ2 := n2
2 + n2(x

2
1 + x1x2) and

relation w̃2 + x2
2(x2 + x1)

2n1 + x1x2(x1 + x2)w̃ = x2
1Ñ2. Therefore the Noether

number for V2,0 is 4 and the Hilbert ideal is generated by x1, x2, n1, Ñ2. Using the

relation to eliminate Ñ2 gives F[V2,0]
G[x−1

1 ] = F[x1, x2, n1, w̃][x
−1
1 ].

Define u123 := x1(n2 + u12 + u13) + (λ2 + λ)x2u13. Simple calculations give
LM(u123) = y1x2x3 and Δ2(u123) = 0.

Theorem 3.14.4. If λ �∈ F2, then F[V3,λ]
G[x−1

1 ] = F[x1, x2, x3, N1, u123, t3][x
−1
1 ].

Proof. From the proof of Theorem 3.14.2, F[V2,λ]
G[x−1

1 ] = F[x1, x2, N1, w][x
−1
1 ].

Since t3 is degree 1 in y3 with coefficient x2
1, using [4, Theorem 2.4], we have

F[V3,λ]
G[x−1

1 ] = F[x1, x2, x3, N1, w, t3][x
−1
1 ].

An explicit calculation gives w = (λ2 + λ)x2t3 + x1u123 + x1t3, and the result
follows. �

With c := λ2 + λ, define

n23 := (n2 + u12 + u13) (cx3 + x2 + x1) + c (x1n3 + x2u23 + cx3u23) ,

u133 := x−1
1 (cx3t3 + x2u123), u2333 := x−1

1 ((cx3 + x2)n222 + n23x
2
2 + x2

2(u123 + t3))
and n222 := x−2

1 (t23 +N1(x
4
2 + x2

1x
2
3) + (c(x3

2 + x1x2x3) + x1x
2
2)t3).

A straightforward calculation gives n23, u133, n222, u2333 ∈ F[V3,λ]
G and LT(n23)

= cy22x3, LT(u133) = cy1x
2
3, LT(n222) = y22x

2
2, LT(u2333) = c2y2x

3
3. Define

B3,λ := {x1, x2, x3, N1, t3, u123, u133, n23, n222, u2333, NG(y2), NG(y3)}
∪

{
Tr(y1y2y

3
3),Tr(y1y

3
2y3),Tr(y

3
2y

3
3),Tr(y1y

3
2y

3
3)
}
.

Further calculation gives LT(Tr(y1y2y
3
3)) = cy2y1x

3
3, LT(Tr(y1y

3
2y3)) = y22y1x

2
2,

LT(Tr(y32y
3
3)) = cy32x

3
3, LT(Tr(y1y

3
2y

3
3)) = cy1y

3
2x

3
3.

Remark 3.14.5. Suppose λ �∈ F2, i.e., c �= 0. Applying the SAGBI/Divide-by-
x algorithm to {x1, x2, x3, N1, u123, t3, NG(y2), NG(y3)} produces a SAGBI basis
for F[V3,λ]

G. A Magma calculation over the rational function field F2(λ) shows
that for generic λ, B3,λ is a SAGBI basis for F2(λ)[V3,λ]

G. Since the lead coef-
ficients of the elements of B3,λ lie in {1, c, c2}, the calculations could have been
performed over F2[λ, c

−1]. Therefore B3,λ is a SAGBI basis for F[V3,λ]
G, as long

as c �= 0. It follows from this that, for λ �∈ F2, the Hilbert ideal is generated
by x1, x2, x3, N1, NG(y2), NG(y3). Although a SAGBI basis need not be a mini-
mal generating set, running a SAGBI basis test on B3,λ \ {Tr(y1y32y33)} shows that
Tr(y1y

3
2y

3
3) is indecomposable and hence the Noether number is 7.

Remark 3.14.6. A Magma calculation shows that F[V3,0]
G is generated by

{x1, x2, x3, n1, n2+u13+u12, t3, (x3+x2)u13+n3x1, NG(y3),Tr(y2y
3
3),Tr(y1y2y

3
3)}.

Furthermore, this is a SAGBI basis and Tr(y1y2y
3
3) is indecomposable. Therefore

the Hilbert ideal is generated by {x1, x2, x3, n1, n2 + u13 + u12, NG(y3)} and the
Noether number is 5.

The ring of invariants for the regular representation was computed in [1, Corol-
lary 1.8] and [10, Lemma 5.2]. We include an alternate calculation here for com-
pleteness. Choose a basis {x, y1, y2, z} for V ∗

reg so that Δi(z) = yi and Tr(z) = x.

Define u := y1y2+xz and h := (u2+NG(y1)NG(y2))/x = y21y2+y22y1+x(z2+y1y2).
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Theorem 3.14.7. F[Vreg]
G is the complete intersection generated by

C = {x, u,NG(y1), NG(y2), h,NG(z)}
subject to the relations

u2 = NG(y1)NG(y2) + xh

and

h2 = NG(y1)
2NG(y2)+NG(y1)NG(y2)

2 +x (hNG(y1) + uh+ hNG(y2) + xNG(z)) .

Proof. It follows from [9, Theorem 3.75] that F[x, y1, y2]
G is the polynomial ring

generated by x, NG(y1) andNG(y2). Since u is degree 1 in z with coefficient x, using
[4, Theorem 2.4] we have F[Vreg]

G[x−1] = F[x,NG(y1), NG(y2), u][x
−1]. Using the

graded reverse lexicographic order with z > y1 > y2 > x, there are two non-trivial
tête-a-têtes among the elements of C. These two tête-a-têtes subduct to zero using
the given relations. Therefore C is a SAGBI basis for the subalgebra it generates.
Since {x,NG(y1), NG(y2), NG(z)} is a block hsop, applying [8, Theorem 1.1] shows
that C is a SAGBI basis for F[Vreg]

G. Since all relations come from subducting
tête-a-têtes, the ring of invariants is the given complete intersection. �

It follows from the above theorem that for Vreg the Noether number is 4 and
the Hilbert ideal is generated by {x, u,NG(y1), NG(y2), NG(z)}. We note that Vreg

is the only indecomposable modular representation of G whose Hilbert ideal is not
generated by a block hsop.

3.15. The proof of Theorem 3.3. Suppose, by way of contradiction, that
Tr(y1 · · · y�y3�+1 · · · y3m) is decomposable. Working modulo the G-stable ideal
(x1, . . . , xm−1)S, it is easy to see that

LT(Tr(y1 · · · y�y3�+1 · · · y3m)) = (λ2 + λ)y1 · · · y�y3�+1 · · · y3m−1x
3
m.

Thus there are two monomials of positive degree, say M1 and M2, such that
M1M2 = y1 · · · y�y3�+1 · · · y3m−1x

3
m, and both M1 and M2 appear in G-invariant

polynomials. We use the following results to rule out possible factorisations.

Lemma 3.15.1. Suppose f ∈ SG, M ′ is a monomial in y1, . . . , ym, and i > 1. If
the degree of yi in M ′ is even, then M ′yixm does not appear in f . Further suppose
j < m. Then the degree of yi in M ′ is even and M ′yixj appears in f if and only if
the degree of yj+1 in M ′ is even and M ′yj+1xi−1 appears in f .

Proof. We list the monomials in S that produce M ′xi−1xj after applying Δ2:

(1) M ′yixj if the degree of yi in M ′ is even;
(2) M ′xi−1yj+1 if j < m and the degree of yj+1 in M ′ is even;
(3) M ′xi−1yj if the degree of yj in M ′ is even and λ �= 0;
(4) M ′yi−1xj if the degree of yi−1 in M ′ is even and λ �= 0;
(5) M ′yi−1yj if the degree of yi−1 and yj in M ′ is even and λ �= 0;
(6) M ′yi−1yj+1 if j < m and the degree of yi−1 and yj+1 in M ′ is even and

λ �= 0;
(7) M ′yiyj+1 if j < m and the degree of yi and yj+1 in M ′ is even;
(8) M ′yiyj if i �= j and the degree of yi and yj in M ′ is even and λ �= 0.

Note that the monomials in (5)–(8) do not appear in f by Lemma 1.3 because the
degree of either yi or yi−1 is odd. On the other hand, by Lemma 1.4 the monomials
in (3) and (4) appear in f with the same coefficient (which is possibly zero). Call
this coefficient α. Then the coefficient of M ′xi−1xj in Δ2(αM

′xi−1yj+αM ′yi−1xj)
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is 2λα = 0. It follows that the monomial in (1) appears in f if and only if the
monomial in (2) appears in f . �
Proposition 3.15.2. Let M =

∏
i∈I y

2
i for some non-empty subset I ⊆ {1, . . . ,m}

and assume that M appears in a polynomial f ∈ SG. Let j denote the maximum
integer in I. Then 2j ≤ m+ 1. Furthermore, if λ ∈ F \ F2, then 2j ≤ m.

Proof. If j = 1, then 2j ≤ m + 1 implies m ≥ 1 and 2j ≤ m gives m > 1. For
m = 1, we have SG = F[x1, NG(y)] and, if λ ∈ F \ F2, then LT(NG(y1)) = y41 .
Thus the assertion holds for j = 1.

Suppose j > 1 and assume that M is maximal among all such monomials that
appear in f . Let M ′ denote the monomial

∏
i∈I\{j} y

2
i . Using Lemma 1.5 (with

σ = σ1), we see thatM
′xjyj appears in f . Since j > 1, by Lemma 3.15.1, j < m and

M ′xj−1yj+1 appears in f . Applying Lemma 1.4 shows that M ′xj+1yj−1 appears in
f . If j−1 > 1, then, again using Lemma 3.15.1, we have j+1 < m and M ′xj−2yj+2

appears in f . In this case, by applying Lemma 1.4, we see that M ′xj+2yj−2 appears
in f . Continue alternating Lemma 3.15.1 and Lemma 1.4 until j − k = 1. This
shows that M ′yj−kxj+k = M ′y1x2j−1 appears in f . Thus 2j − 1 ≤ m, as required.

Suppose that λ ∈ F \ F2. Note that M ′x2
j appears in Δ2(M + M ′xjyj) with

coefficient λ+ λ2 �= 0. Since Δ2(f) = 0, there must be other monomials in f that
produce M ′x2

j after applying Δ2. The monomials M ′yjyj+1, M
′xjyj+1 and M ′y2j+1

are the only such monomials. However, M ′yjyj+1 does not appear in f by Lemma
1.3, and the maximality of j implies that M ′y2j+1 does not appear in f either.
It follows that M ′xjyj+1 appears in f . Applying Lemma 1.4 and Lemma 3.15.1
repeatedly we see that M ′x1y2j appears in f . Hence 2j ≤ m. �

Write M1 = ya1
1 · · · yam−1

m−1 xam
m and M2 = yb11 · · · ybm−1

m−1 x
bm
m , where ai and bi are

non-negative integers. We have ai + bi = 1 for i ≤ � and ai + bi = 3 for i > �.
Suppose am = 0. Then, using Lemma 1.3 (with σ = σ1), ai is even for all

i. Thus ai = 0 for i ≤ �. Hence Proposition 3.15.2 applies, forcing ai = 0 for
i > � ≥ m/2. Therefore, if am = 0, we have M1 = 1 and the factorisation is trivial.
Hence am > 0. Similarly, bm > 0. Without loss of generality, we assume am = 1
and bm = 2.

Lemma 3.15.3. If m ≥ 3, then am−1 is even. If m ≥ 4, then am−2 is even.

Proof. Both statements follow from Lemma 3.15.1. �
Lemma 3.15.4. If m ≥ 3, then bm−1 and bm−2 are not both odd.

Proof. Assume on the contrary that both bm−1 and bm−2 are odd and that M2

appears in f2 ∈ SG. Define M = yb11 · · · ybm−3

m−3 y
bm−2−1
m−2 y

bm−1−1
m−1 so that M2 =

Mym−2ym−1x
2
m. Then Mxm−2ym−1x

2
m appears in Δ1(Mym−2ym−1x

2
m). Since

Δ1(f2) = 0, there must be other monomials in f2 that produce Mxm−2ym−1x
2
m

after applying Δ1. The only monomials with this property are Mym−2ym−1y
2
m,

Mym−2ym−1xmym, Mxm−2ym−1y
2
m and Mxm−2ym−1xmym. However

Mym−2ym−1y
2
m does not appear in f2 by Lemma 1.3 because the degree of ym−1

in this monomial is odd. Also, Mym−2ym−1xmym does not appear in f2 by Lemma
3.15.1. IfMxm−2ym−1y

2
m appears in f2, then, since the degree of ym−2 in this mono-

mial is odd, Mx2
m−2y

2
m appears in Δ2(Mxm−2ym−1y

2
m). So there must be another

monomial in f2 that produces Mx2
m−2y

2
m after applying Δ2. The only monomi-

als in S with this property are My2m−1y
2
m if bm−1 = 1, My2m−2y

2
m if bm−2 = 1,
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Mym−2ym−1y
2
m andMxm−2ym−2y

2
m. The first three monomials do not appear in f2

by Lemma 1.3 and Proposition 3.15.2. On the other hand Mxm−2ym−2y
2
m does not

appear in f2 if bm−2 = 3 by Lemma 3.15.1. If bm−2 = 1, then Mxm−2ym−2y
2
m ap-

pears in f2 if and only ifMy2m−2y
2
m appears in f2. However the latter monomial does

not appear in f2 by Lemma 1.3 and Proposition 3.15.2. Therefore Mxm−2ym−1y
2
m

does not appear in f2.
We finish the proof by showing that Mxm−2ym−1xmym does not appear in f2.

Note that Mx2
m−2xmym appears in Δ2(Mxm−2ym−1xmym). The other monomi-

als that produce Mx2
m−2xmym after applying Δ2 are My2m−1xmym if bm−1 = 1,

My2m−2xmym if bm−2 = 1, Mym−2ym−1xmym and Mxm−2ym−2xmym. The first
two monomials appear in f2 if and only if My2m−1y

2
m and My2m−2y

2
m appear in f2,

respectively, by Lemma 1.5. However neither of the latter monomials appear in
f2 by Lemma 1.3 and Proposition 3.15.2. The third monomial does not appear
in f2 by Lemma 3.15.1. Finally, Mxm−2ym−2xmym appears in f2 if and only if
My2m−2xmym appears in f2 because these are the only monomials in S that pro-
duce Mx2

m−2xmym after applying Δ1. However My2m−2xmym appears in f2 if and
only if My2m−2y

2
m appears in f2 by Lemma 1.5, and the latter monomial does not

appear in f2 by Proposition 3.15.2. �
Returning to the proof of Theorem 3.3, first assume that m ≥ 4. Then by

Lemma 3.15.3, am−2 and am−1 are both even. Therefore bm−2 and bm−1 are both
odd, contradicting Lemma 3.15.4.

Suppose m = 3 and M1 appears in f1 ∈ SG. By Lemma 3.15.3, a2 is even.
Thus b2 is odd and, by Lemma 3.15.4, b1 is even. Therefore b1 = 0, a1 = 1
and M1 = y1y

a2
2 x3. By Lemma 1.4, x1y

a2
2 y3 also appears in f1. Thus ya2+1

2 x2

appears in f1 as well by Lemma 3.15.1. This contradicts Lemma 1.5 if a2 = 2 and
Proposition 3.15.2 if a2 = 0.

3.16. The proof of Theorem 3.9. Suppose, by way of contradiction, that
Tr(y1 · · · y�′y3�′+1 · · · y3m) is decomposable. Working modulo the G-stable ideal

(x1, . . . , xm−2, x
2
m−1)S, a straightforward calculation gives

LT(Tr(y1 · · · y�′y3�′+1 · · · y3m)) = y1 · · · y�′y3�′+1 · · · y3m−1xm−1x
2
m.

Thus there are two monomials of positive degree, say M1 and M2, such that
M1M2=y1 · · · y�′y3�′+1 · · · y3m−1xm−1x

2
m, and bothM1 andM2 appear inG-invariant

polynomials, say f1 and f2. Without loss of generality, we may assume M1 =

ya1
1 · · · yam−1

m−1 xm−1x
am
m and M2 = yb11 · · · ybm−1

m−1 x
bm
m . It follows from Lemma 1.3 and

Proposition 3.15.2 that bm > 0.

Lemma 3.16.1. If m > i > 1, then bi is even and ai is odd.

Proof. Note that V ∗
m,0 and (m−1)V2⊕2V1 are isomorphic σ2-modules, where the two

copies of V1 are generated by xm and y1 and where each pair xi−1, yi for 2 ≤ i ≤ m
generate a copy of V2. Therefore we have Sσ2 ∼= F[x1, . . . , xm−1, y2, . . . , ym]σ2 ⊗
F[xm, y1]. Hence the fact that bi is even follows from Lemma 1.3 (with σ = σ2).
Since bi is even and ai + bi is odd, ai is odd. �

We have bm > 0 and am + bm = 2. Therefore, there are two cases, am = 0 and
am = 1. First assume that am = 0. If am−1 = 3, then M1 does not appear in f1 by

Lemma 1.5. On the other hand, if am−1 = 1, then by Lemma 1.5, ya1
1 · · · yam−1+1

m−1

appears in f1, contradicting Lemma 1.3 because am−2 is odd.
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Suppose that am = 1. Set M = ya1
1 · · · yam−1−1

m−1 so that M1 = Mym−1xm−1xm.
Then Mxm−2xm−1xm appears in Δ2(M1). The only other monomials in S that
produce Mxm−2xm−1xm after applying Δ2 are Mym−2ymxm and Mxm−2ymxm.
However by Lemma 1.5 Mym−2ymxm appears in f1 if and only if Mym−2y

2
m does,

but the latter monomial does not appear in f1 by Lemma 1.3 and Proposition 3.15.2.
Finally, if Mxm−2ymxm appears in f1, there must be another monomial in f1 that
produces Mxm−2x

2
m after applying Δ1. Since am−2 is odd, Mxm−2y

2
m is the only

such monomial. However if am−2 = 3, then Mxm−2y
2
m does not appear in f1. If

am−2 = 1, then again by Lemma 1.5, Mym−2y
2
m also appears in f1, contradicting

Proposition 3.15.2.

4. The easy odd case

In this section we consider the odd dimensional representations Ω−m(F). The
action of G on S := F[Ω−m(F)] = F[x1, . . . , xm, y1, . . . , ym+1] is given by σi(xj) =
xj , σ1(yj) = yj + xj and σ2(yj) = yj + xj−1, using the convention that x0 = 0 and
xm+1 = 0. As in section 3, define ni := y2i + xiyi and uij = xiyj + xjyi. Then
ni, uij ∈ Sσ1 . A simple calculation gives Δ2(ni) = x2

i−1 + xixi−1 and Δ2(uij) =
xixj−1 + xi−1xj . For i ∈ {1, . . . ,m+ 1} define

Ni := ni +
i−1∑
j=1

(ui−j,i+j + ui−j,i+j−1)

so that N1 = n1 and N2 = n2 + u12 + u13. An explicit calculation, exploiting
the fact that Δ2(u1j) = x1xj−1, gives Δ2(Ni) = 0. Therefore Ni ∈ SG. Define
H−m := {x1, . . . , xm, N1, . . . , Nm+1}. Since LM(Ni) = y2i , H−m is a block hsop
with top class y1 · · · ym+1, and the image of the transfer is generated by Tr(β) for
β dividing y1 · · · ym+1.

Theorem 4.1. For m > 3, Tr(y1 · · · ym+1) is indecomposable.

See subsection 4.8 for the proof of Theorem 4.1. Combining Theorem 4.1 with
Theorem 2.1 gives the following.

Corollary 4.2. If m > 3, then the Noether number for Ω−m(F) is m+ 1 and the
Hilbert ideal is generated by H−m.

Remarks 4.4 and 4.6 show that the above formula for the Noether number is
valid for m ≥ 1.

As in section 3, define tj := u12xj−1 + u1jx1.

Theorem 4.3. For m > 2,

F[Ω−m(F)]G[x−1
1 ] = F[x1, . . . , xm, N1, N2, t3, . . . , tm+1][x

−1
1 ].

Proof. We construct the field of fractions for an upper-triangular action as in [4]
or [14]. The restriction of the action of G to the span of {x1, x2, y1, y2} is V ∗

2,0.

Therefore, using Remark 3.14.3, F[x1, x2, y1, y2]
G[x−1

1 ] = F[x1, x2, n1, w̃]
G[x−1

1 ].
Since tj ∈ F[x1, . . . , xm, y1, . . . , yj ]

G has degree one as a polynomial in yj with

coefficient x2
1, we have F[Ω−m(F)]G[x−1

1 ] = F[x1, . . . , xm, n1, w̃, t3, . . . , tm+1][x
−1
1 ].

The result then follows from the fact that w̃ = x1N2 + t3 and N1 = n1. �
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5668 MÜFIT SEZER AND R. JAMES SHANK

Remark 4.4. It is easy to see that F[Ω−1(F)]G = F[x1, n1, y
2
2 + x1y2]. A Magma

calculation shows that F[Ω−2(F)]G is the hypersurface with generators x1, x2, N1,
N2, N3, t3 and relation t23 + x4

2N1 + x1x2(x1 + x2)t3 + x2
1x

2
2N2 = x4

1N3. Therefore,
the Noether number for this representation is m+ 1 = 3.

Remark 4.5. It follows from Theorem 4.3 that applying the SAGBI/Divide-by-x
algorithm of [8] with x = x1 to

{x1, . . . , xm, N1, N2, . . . , Nm+1, t3, . . . , tm+1}
produces a SAGBI basis for F[Ω−m(F)]G.

Remark 4.6. A Magma calculation shows that F[Ω−3(F)]G is generated by

{x1, x2, x3, n1, N2, N3, n4, t3, t4, u233, u133,Tr(y1y2y3y4)} ,
where u133 := x3u13 + x1u24 and u233 := x3u23 + x2u24 + x3u14. Furthermore,
this set is a SAGBI basis, and running a SAGBI test with Tr(y1y2y3y4) omitted
shows that Tr(y1y2y3y4) is indecomposable. Therefore the Noether number for this
representation is m + 1 = 4 and the Hilbert ideal is generated by the block hsop
x1, x2, x3, n1, N2, N3, n4. From [10], we know depth(F[Ω−3(F)]G) = 6. The relation
x2t4 + x3t3 + x1u133 = 0 shows that the partial hsop {x1, x2, x3} is not a regular
sequence, giving an alternate proof of the fact that the ring is not Cohen-Macaulay.

Proposition 4.7. For S = F[Ω−m], (Δ2S)
σ1 = (Δ1S)

σ2 = ((x1, . . . , xm)S)
G

=√
TrS and √

TrS/TrS ∼= H1(〈σ2〉,Δ1S) = H1(〈σ1〉,Δ2S).

Furthermore SG/
√
TrS ∼= F[N1, . . . , Nm].

Proof. The proof is analogous to the proof of Proposition 3.7. (Note that LT(Ni) =
y2i and so an analogue of Proposition 3.15.2 is unnecessary.) �
4.8. Proof of Theorem 4.1. Suppose by way of contradiction that Tr(y1 · · · ym+1)
is decomposable. Working modulo the G-stable ideal (x1, . . . , xm−1)S, it is easy to
see that

LT(Tr(y1 · · · ym+1)) = y1 · · · ym−1x
2
m.

Thus there are two monomials, say M1 and M2, such that M1M2 = y1 · · · ym−1x
2
m,

deg(M2) ≤ deg(M1) < m+ 1 and both M1 and M2 appear in G-invariant polyno-
mials. Since a G-invariant is also a σ1-invariant, it follows from Lemma 1.3 that
both M1 and M2 are divisible by xm. Since m+ 1 ≥ 5, we have deg(M1) ≥ 3. The
required contradiction is then a consequence of the following lemma.

Lemma 4.8.1. Let M = (
∏

j∈J yj)xk for some k ≤ m and set J ⊆ {1, . . . , k − 1}
with |J | > 1. Then M does not appear with a non-zero coefficient in a G-invariant
polynomial.

Proof. Let d denote the maximum integer in J . We proceed by induction on k− d.
Assume on the contrary that M appears in a G-invariant polynomial f . Set M ′ =∏

j∈J, j �=d yj . Then we have M = M ′ydxk. From Lemma 1.4 we get that M ′xdyk
also appears in f . Furthermore, since M ′xdxk−1 appears in Δ2(M

′xdyk), there
must be another monomial in f that produces M ′xdxk−1 after applying Δ2. If
k − d = 1, then the only other monomial that produces M ′xdxk−1 = M ′x2

d after
applying Δ2 is M ′y2k. However, this monomial cannot appear in f by Lemma 1.3.
This establishes the basis case for the induction. If k − d > 1, the only monomials
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(other than M ′xdyk) that produce M ′xdxk−1 after applying Δ2 are M ′yd+1yk and
M ′yd+1xk−1. Again by Lemma 1.3, M ′yd+1yk cannot appear in f . Moreover, if
d+ 1 < k − 1, then M ′yd+1xk−1 does not appear in f by induction. On the other
hand, if d+ 1 = k − 1, then M ′yd+1xk−1 does not appear in f by Lemma 1.3. �

5. The hard odd case

In this section we consider the odd dimensional representations Ωm(F). The
action ofG on S := F[Ωm(F)] = F[x1, . . . , xm+1, y1, . . . , ym] is given by σi(xj) = xj ,
σ1(yj) = yj + xj and σ2(yj) = yj + xj+1. Define

Hm := {x1, . . . , xm+1, NG(y1), . . . , NG(ym)}.
Since LM(NG(yi)) = y4i , Hm is a block hsop with top class (y1 · · · ym)3 and the

image of the transfer is generated by Tr(β) for β dividing (y1 · · · ym)3.

Theorem 5.1. For m > 2, Tr(y31 · · · y3m) is indecomposable.

See subsection 5.8 for the proof of Theorem 5.1. Combining Theorem 5.1 with
Theorem 2.1 gives the following.

Corollary 5.2. If m > 2, then the Noether number for Ωm(F) is 3m and the
Hilbert ideal is generated by Hm.

From Remark 5.4, the Noether number for Ω2(F) is 6.
For j > 1, define vj := u1j(x

2
2 + x1x2) + n1(xjx2 + x1xj+1).

Theorem 5.3. For m > 1,

F[Ωm]G[(x1x2(x1+x2))
−1]=F[x1, . . . , xm+1, NG(y1), v2, . . . , vm][(x1x2(x1+x2))

−1].

Proof. We use [4, Theorem 2.4]. F[x1, . . . , xm, y1]
G is the polynomial algebra gen-

erated by {x1, . . . , xm, NG(y1)}. The invariant vj ∈ F[x1, x2, xj , xj+1, y1, yj ] has
degree one as a polynomial in yj and the coefficient of yj is x1x2(x1 + x2). �

It is easy to see that F[Ω1(F)]G = F[x1, x2, NG(y1)], and, therefore, the Noether
number is 4.

Remark 5.4. A Magma calculation shows that F[Ω2(F)]G is generated by

B2 := {x1, x2, x3, NG(y1), NG(y2), v2, n13, u1233,Tr(y
3
1y

3
2)},

where n13 = x3n1 + x3u12 + x1n2 and u1233 = (x2
3 + x2x3)u12 + (x2

2 + x1x3)n2.
Therefore the Hilbert ideal for Ω2(F) is generated by x1, x2, x3, NG(y1), NG(y2). In
fact, B2 is a SAGBI basis using grevlex with y2 > y1 > x3 > x2 > x1. Although
a SAGBI basis need not be a minimal generating set, running a SAGBI basis test
on B2 \ {Tr(y32y33)} shows that Tr(y32y

3
3) is indecomposable and hence the Noether

number is 6. From [10], we know depth(F[Ω2(F)]G) = 4. The relation x3v2+
(x2

2 + x1x3)n13 + x1u1233 = 0 shows that the partial hsop {x1, x2, x3} is not a
regular sequence, giving an alternate proof of the fact that the ring is not Cohen-
Macaulay.

Remark 5.5. We have been unable to find “polynomial generators” for the ring
F[Ωm(F)]G[x−1

1 ]. We note that x1 is not in the radical of the image of the transfer
for these representations but that x1x2(x1 + x2) is. Furthermore, x1 is in the
radical of the image of the transfer for Ω−m(F) and Vm,λ. Hence F[Ω−m]G[x−1

1 ]

and F[Vm,λ]
G[x−1

1 ] are “trace-surjective” in the sense of [13].
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Proposition 5.6. For S = F[Ωm(F)] and m ≥ 3,
√
TrS = ((x2xm+1 + x2x1, x1xm+1 + x1x2, x

2
2 + x2x1, x3 + x2, . . . , xm + x2)S)

G.

Proof. Direct calculation gives Δ1(Ω
m(F )∗) = SpanF{x1, . . . , xm}, Δ2(Ω

m(F )∗) =
SpanF{x2, . . . , xm+1}, and (σ1σ2+1)(Ωm(F )∗) = SpanF{x1+x2, . . . , xm+xm+1}.
Using [18, Theorem 2.4] and computing intersections of ideals gives
√
TrS =

⋂
g∈G, |g|=2

(((g − 1)Ωm(F)∗)S)G

= ((x2xm+1 + x2x1, x1xm+1 + x2x1, x
2
2 + x2x1, x3 + x2, . . . , xm + x2)S)

G.

�

Remark 5.7. The above shows that for m ≥ 3, we have x2 + x3 ∈
√
TrS. In fact,

for

α := (x1+x2+x3)y2y3+(x1+x2+x3+x4)y1y3+(x2+x3+x4)y1y2+y21y3+y1y
2
3 ,

Tr(α) = (x2 + x3)
3. Define x := x2 + x3 and use the variables x < x1 <

x3 < x4 < · · · < xm+1 < y1 < · · · < ym with the grevlex order. Define
ρ : F[Ωm(F)][x−1] → F[Ωm(F)]G[x−1] by ρ(f) = x−3 Tr(fα). Then ρ restricts
to the identity on F[Ωm(F)]G and F[Ωm(F)]G[x−1] is “trace-surjective”. Define

Bm := Hm ∪ {Tr(β) | β divides (y1 · · · ym)3}.
Since {β | β divides (y1 · · · ym)3} generates F[Ωm(F)][x−1] as a module over the ring
F[Hm][x−1] and ρ is surjective, we see that Bm∪{x−1} generates F[Ωm(F)]G[x−1].
Thus, since Hm is an hsop, applying the SAGBI/Divide-by-x algorithm to Bm

produces a generating set, in fact a SAGBI basis, for F[Ωm(F)]G.

5.8. Proof of Theorem 5.1. Suppose, by way of contradiction, that Tr(y31 · · · y3m)
is decomposable. Working modulo the G-stable ideal (x1, . . . , xm−1)S, it is not
difficult to see that

LT(Tr(y31 · · · y3m)) = y31 · · · y3m−1xmx2
m+1.

Write y31 · · · y3m−1xmx2
m+1 = M1M2, where M1 and M2 are monomials of positive

degree which appear in G-invariant polynomials. We use the following results to
eliminate possible factorisations.

Lemma 5.8.1. Suppose 1 ≤ i ≤ m, 2 ≤ k ≤ m + 1, k �= i + 1 and M is a
monomial in y1, . . . , ym. Further suppose that the degree of yi in M is even and
yixkM appears in a G-invariant polynomial f . Then the degree of yk−1 in M is
even and xi+1yk−1M appears in f .

Proof. Since the degree of yi in M is even, xi+1xkM appears in Δ2(yixkM). Since
Δ2(f) = 0, f must contain another monomial that produces xi+1xkM after apply-
ing Δ2. If the degree of yk−1 in M is odd, then there is no such monomial. Thus
the degree of yk−1 in M is even and applying Δ2 to either yiyk−1M or xi+1yk−1M
produces xi+1xkM . However, by Lemma 1.3, yiyk−1M does not appear in f . Thus
xi+1yk−1M appears in f . �

Proposition 5.8.2. Suppose M = ye11 · · · yemm . If k is a positive integer and Mxk
1

or Mxk
m+1 appears in a G-invariant polynomial, then ej is even for 1 ≤ j ≤ m.
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Proof. Note that Sσ1 ∼= F[xi, yi | i ≤ m]σ1 ⊗ F[xm+1] and Sσ2 ∼= F[xi+1, yi | i ≤
m]σ2 ⊗F[x1]. If Mxk

m+1 appears in a G-invariant polynomial, then M appears in a
σ1-invariant polynomial, and the result follows from applying Lemma 1.3 with σ =
σ1. If Mxk

1 appears in a G-invariant polynomial, then M appears in a σ2-invariant
polynomial, and the result follows from applying Lemma 1.3 with σ = σ2. �

Proposition 5.8.3. Suppose M =
∏

j∈J y2j for a non-empty index set J ⊆
{1, . . . ,m}. Then M does not appear in a G-invariant polynomial.

Proof. Suppose, by way of contradiction, that M appears in a G-invariant poly-
nomial f . Let � denote the largest integer in J and set M ′ = M/y2� . Note that
M ′x2

�+1 appears in Δ2(M), and since Δ2(f) = 0, there must be another monomial

in f that produces M ′x2
�+1 after applying Δ2. The only other monomial in S with

this property is M ′y�x�+1. Therefore, this monomial also appears in f . If � = m,
then the degree of ym in M ′y�x�+1 = M ′ymxm+1 is odd, and we have a contra-
diction by Proposition 5.8.2. Otherwise, using Lemma 1.4, M ′x�y�+1 appears in
f . If � = 1, this also gives a contradiction using Proposition 5.8.2. Otherwise,
we apply Lemma 5.8.1 and conclude that M ′y�−1x�+2 appears in f . This gives
a contradiction if � + 1 = m. Continuing in this fashion, the process terminates
with either M ′y2�−mxm+1 or M ′y2�x1 appearing in f , again contradicting Propo-
sition 5.8.2. �

Returning to the proof of Theorem 5.1, first suppose that M1 is a factor of
y31 · · · y3m−1. Since M1 appears in a σ1-invariant, we have from Lemma 1.3 that
the degree of each yi in M1 is even. However, since these degrees are at most
two, we get a contradiction using Proposition 5.8.3. Similarly, M2 is a not fac-
tor of y31 · · · y3m−1. Therefore we may assume xm divides M1 and xm+1 divides
M2. By Proposition 5.8.2, the degrees of the variables y1, . . . , ym−1 in M2 are
even. Hence the degrees of these variables in M1 are odd. Therefore we have
either M1 = ya1

1 · · · yam−1

m−1 xm or M1 = ya1
1 · · · yam−1

m−1 xmxm+1, where a1, . . . , am−1

are odd. Let f denote the G-invariant polynomial in which M1 appears. Sup-

pose that M1 = ya1
1 · · · yam−1

m−1 xm. Since ya1
1 · · · yam−1−1

m−1 x2
m appears in Δ2(M1) and

Δ2(f) = 0, there must be another monomial in f that produces ya1
1 · · · yam−1−1

m−1 x2
m

after applying Δ2. However, ya1
1 · · · yam−1+1

m−1 is the only other monomial in S with
this property. Since f is also σ1-invariant and a1 is odd, we get a contradic-
tion by Lemma 1.3. Therefore, we may assume that M1 = ya1

1 · · · yam−1

m−1 xmxm+1.

Then ya1
1 · · · yam−1−1

m−1 x2
mxm+1 appears in Δ2(M1). Since Δ2(f) = 0, there must be

another monomial in f that produces ya1
1 · · · yam−1−1

m−1 x2
mxm+1 after applying Δ2.

The monomials in S with this property are ya1
1 · · · yam−1+1

m−1 ym, ya1
1 · · · yam−1

m−1 xmym,

ya1
1 · · · yam−1+1

m−1 xm+1, ya1
1 · · · yam−1−1

m−1 x2
mym. The first two monomials do not ap-

pear in f by Lemma 1.3 because the degree of y1 is odd. For the same rea-
son the third monomial does not appear in f by Proposition 5.8.2. Finally, if

ya1
1 · · · yam−1−1

m−1 x2
mym appears in f , then there must be another monomial in f that

produces ya1−1
1 x1 · · · yam−1−1

m−1 x2
mym after applying Δ1. However, ya1

1 · · · yam−1−1
m−1 y3m

and ya1−1
1 x1 · · · yam−1−1

m−1 y3m are the only monomials in S with this property. Since
neither of these monomials can appear in f , by Lemma 1.3 and Proposition 5.8.2
respectively, we have ruled out all possible factorisations, proving Theorem 5.1.
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[21] Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, Amer-
ican Mathematical Society, Providence, RI, 1996. MR1363949 (97b:13034)

[22] Peter Symonds, On the Castelnuovo-Mumford regularity of rings of polynomial invariants,

Ann. of Math. (2) 174 (2011), no. 1, 499–517, DOI 10.4007/annals.2011.174.1.14. MR2811606
(2012j:13006)

[23] David L. Wehlau, Invariants for the modular cyclic group of prime order via classical invari-
ant theory, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 775–803, DOI 10.4171/JEMS/376.
MR3085091

Department of Mathematics, Bilkent University, 06800 Ankara, Turkey

E-mail address: sezer@fen.bilkent.edu.tr

School of Mathematics, Statistics and Actuarial Science, University of Kent, Can-

terbury, CT2 7NF, United Kingdom

E-mail address: R.J.Shank@kent.ac.uk

Licensed to Bilkent University. Prepared on Thu Nov 24 07:41:48 EST 2016 for download from IP 139.179.100.62.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2562628
http://www.ams.org/mathscinet-getitem?mr=2562628
http://www.ams.org/mathscinet-getitem?mr=1363949
http://www.ams.org/mathscinet-getitem?mr=1363949
http://www.ams.org/mathscinet-getitem?mr=2811606
http://www.ams.org/mathscinet-getitem?mr=2811606
http://www.ams.org/mathscinet-getitem?mr=3085091

	Introduction
	1. Preliminaries
	2. Block HSOPs
	3. Even dimensional representations
	3.14. Even dimensional examples
	3.15. The proof of Theorem 3.3
	3.16. The proof of Theorem 3.9

	4. The easy odd case
	4.8. Proof of Theorem 4.1

	5. The hard odd case
	5.8. Proof of Theorem 5.1

	Acknowledgements
	References

