
LINES GENERATE THE PICARD GROUPS

OF CERTAIN FERMAT SURFACES

ALEX DEGTYAREV

Abstract. We answer a question of T. Shioda and show that, for any positive

integer m prime to 6, the Picard group of the Fermat surface Φm is generated
by the classes of lines contained in Φm. A few other classes of surfaces are also

considered.

1. Introduction

1.1. Principal results. All algebraic varieties in the paper are over C. Let m be
a positive integer, and let

Φm := {zm0 + zm1 + zm2 + zm3 = 0} ⊂ P3

be the Fermat surface. If m = 1 (plane) or m = 2 (quadric), then Φm contains
infinitely many lines (meaning true straight lines in P3); otherwise, Φm is known
to contain exactly 3m2 lines.

Since Φm is simply connected, one can identify its Picard group Pic Φm and its
Néron–Severi lattice NS(Φm). Citing [1], the Néron–Severi group “. . . is a rather
delicate invariant of arithmetic nature. Perhaps for this reason it usually requires
some nontrivial work before one can determine the Picard number of a given variety,
let alone the full structure of its Néron–Severi group.” The Picard groups of Fermat
surfaces are related to those of the more general Delsarte surfaces (see [14]; they
fit into the framework outlined in §2.4). Furthermore, continuing the citation,
“Combined with the method based on the inductive structure of Fermat varieties,
this might lead to the verification of the Hodge conjecture for all Fermat varieties.”

Let Sm ⊂ Pic Φm be the subgroup generated by the classes of the lines contained
in Φm. Then, according to [13], one has

(1.1) Sm ⊗Q = (Pic Φm)⊗Q if and only if m 6 4 or g.c.d.(m, 6) = 1.

This statement is proved by comparing the dimensions of the two spaces, which
are computed independently. In other words, the classes of lines generate Pic Φm
rationally, and a natural question, raised in [1], is whether they also generate the
Picard group over the integers. A partial answer to this question was given in [11],
almost 30 years later: the equality Pic Φm = Sm holds for all integers m prime
to 6 in the range 5 6 m 6 100. This fact is proved by supersingular reduction and
a computer aided computation of the discriminants of the lattices involved. (The
case m = 3 is classical: any nonsingular cubic contains 27 lines, which generate
its Picard group. The case m = 4, i.e., that of K3-surfaces, was settled in [10],
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see also [3] for a slight generalization. The proof suggested below works for both
cases.)

The principal result of the present paper is the following theorem, answering the
above question in the affirmative in the general case.

Theorem 1.2. Let m > 1 be an integer such that either m 6 4 or g.c.d.(m, 6) = 1.
Then Pic Φm = Sm, i.e., Pic Φm is generated by the classes of lines.

Since the 3m2 lines in Φm admit a very explicit description (cf. §2.4) and one
can easily see how they intersect (see, e.g., Equation (6) in [11]), Theorem 1.2 gives
us a complete description of Pic Φm = NS(Φm), including the intersection form and
the action of the automorphism group of Φm.

In view of (1.1), Theorem 1.2 is an immediate consequence of the following
statement, which is actually proved in the paper, see §4.2. (Throughout the paper,
we use TorsA for the Z-torsion of an abelian group/module A.)

Theorem 1.3. For any integer m > 1, one has Tors(Pic Φm/Sm) = 0.

In the mean time, an interesting generalization, approaching the problem from
a different angle, was suggested in [12]. Briefly, Φm can be represented as an m3-
fold ramified covering of the plane, and one can try to study other multiple planes
with the same ramification locus (see §2.4 and Problem 2.6 for details). Considered
in [12] are cyclic coverings of degree at most 50, and, similar to [11], the proof is
also based on comparing the discriminants of the two lattices.

The approach developed in the present paper, including the computation of the
Alexander module A[α] (see §3.3), which is crucial for the proof, apply to Delsarte
surfaces as well. Here, we make a few first steps towards this generalized problem
and work out another special case, see Theorem 4.18. In the forthcoming paper [5],
we close the case of cyclic Delsarte surfaces started in [12] and modify part of
the proof of Theorem 1.3 (see §4.2) to adapt it to slightly more general diagonal
Delsarte surfaces. On the other hand, numeric experiments show that Theorem 1.3
does not extend literally to all Delsarte surfaces: sometimes, the quotient does have
torsion. Next special classes to be studied in more details would probably be the
nonsingular Delsarte surfaces and those with A–D–E singularities.

As yet another application, we consider another class of surfaces whose Picard
group is rationally generated by lines, see [3]. Let p and q be two square free
bivariate homogeneous polynomials of degree m, and denote

Σp,q := {p(z0, z1) = q(z2, z3)} ⊂ P3.

This nonsingular surface contains an obvious set of m2 lines, viz. those connecting
the points [z0 : z1 : 0 : 0] and [0 : 0 : z2 : z3], where p(z0, z1) = q(z2, z3) = 0, and
we denote by Sp,q ⊂ Pic Σp,q the subgroup generated by the classes of these lines.

Theorem 1.4 (see §4.4). For any pair p, q as above, Tors(Pic Σp,q/Sp,q) = 0.

Corollary 1.5 (see §4.4). If m is prime and p, q as above are sufficiently generic,
then Pic Σp,q is generated by the classes of the m2 lines contained in Σp,q.

1.2. An outline of the proof. In §2, we reduce the question to the computation
of the torsion of the 1-homology of a certain space, see Theorem 2.2. We also recall
the classical description of the lines in Φm by means of a ramified covering of the
plane and, following [12], describe a generalization of the problem to a wider class
of surfaces. In §3, we compute the so-called Alexander module (or rather Alexander
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complex) A[m] of the above covering and its reduced version Ā[m]. The heart of
the proof is a tedious computation of the length `(Ā[m]), see Lemma 4.4 in §4;
then, Theorem 1.3 follows from comparing the result to the expected value given
by [1, 13], see §4.2. In §4.3, we work out a toy example, illustrating the suggested
line of attack to the generalized problem.

1.3. Acknowledgements. I would like to express my gratitude to I. Shimada for
bringing the problem to my attention and for many fruitful discussions; it was he
who eventually persuaded me to publish these observations. I would also like to
thank the anonymous referee of this paper for the elegant proof of (4.12).

2. Preliminaries

2.1. Prerequisites. For the reader’s convenience, we recall, with references to [7],
a few necessary facts from algebraic topology. An ultimate reference would be [8];
unfortunately it is only available in Russian.

By definition, for any topological pair (X,A) we have the following short exact
sequence of singular chain complexes:

0 −→ S∗(A) −→ S∗(X) −→ S∗(X,A) −→ 0.

All complexes are free; hence, applying ⊗G or Hom(·, G), we also have short exact
sequences of (co-)chain complexes with any coefficient group G. The associated long
exact sequences in (co-)homology are called the (co-)homology exact sequences of
pair (X,A), cf. (3.2) in [7, Chapter III].

Unless specified otherwise, all (co-)homology are with coefficients in Z. The other
groups can be computed using the so-called universal coefficient formulas (see, e.g.,
(7.9) and (7.10) in [7, Chapter VI]): for any topological space X, abelian group G,
and integer n, there are natural split (not naturally) exact sequences

0 −→ Hn(X)⊗G −→ Hn(X;G) −→ Tor(Hn−1(X), G) −→ 0,

0 −→ Ext(Hn−1(X), G) −→ Hn(X;G) −→ Hom(Hn(X), G) −→ 0.

(Here, Tor = Tor1 and Ext = Ext1 are the derived functors in the category of Z-
modules.) Similar statements hold for the relative groups of pairs (X,A). Assuming
all groups finitely generated (e.g., X is a finite CW-complex), a consequence of
the second exact sequence is the assertion that Hn(X) is free if and only if so is
Hn−1(X); in this case, Hn(X) = Hom(Hn(X),Z).

We use the following terminology for various duality isomorphisms in topology
of manifolds. Let M be an oriented compact manifold, dimM = n, and A ⊂ M a
‘sufficiently good’ (see the end of this paragraph) closed subset. If ∂M = ∅, the
multiplication by the fundamental class [M ] establishes canonical isomorphisms

• Hp(M) = Hn−p(M) (Poincaré duality) and
• Hp(M,A) = Hn−p(M rA) (Poincaré–Lefschetz duality).

In general, the multiplication by [M,∂M ] is an isomorphism

• Hp(M) = Hn−p(M,∂M) (Lefschetz duality).

All statements are classical and well known. For example, they can be derived as
special cases of Proposition 7.2 in [7, Chapter VIII], with an extra observation that,
in all cases considered in the paper, M and A are at worst compact semialgebraic
sets, thus admitting finite triangulations (see, e.g., [9]); hence, they are absolute
neighborhood retracts and the Čech cohomology in [7] can be replaced with singular
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ones. As another consequence of [9], all (co-)homology groups involved are finitely
generated.

2.2. Divisors. Consider a smooth projective algebraic surface X. By Poincaré
duality H2(X) = H2(X), we can regard the Néron–Severi lattice NS(X) as a sub-
group of the intersection index lattice H2(X)/Tors, representing a divisor D ⊂ X
by its fundamental class [D], see §2.3 below. (The Néron–Severi lattice is the
group of divisors modulo numeric equivalence; thus, we ignore the torsion.) Since
PicX = H1(X;O∗X) and H2(X;OX) is a C-vector space, the exponential exact
sequence

(2.1) H1(X;OX) −→ H1(X;O∗X) −→ H2(X) −→ H2(X;OX)

implies that NS(X) is a primitive subgroup in H2(X)/Tors.
If H1(X) = 0, then H2(X) = Hom(H2(X),Z) is torsion free (the universal

coefficient formula), and so is H2(X) = H2(X). Since also H1(X;OX) = H0,1(X)
is trivial in this case, from (2.1) we have PicX = NS(X), i.e., we do not need to
distinguish between linear, algebraic, or numeric equivalence of divisors.

Consider a reduced curve D ⊂ X. Topologically, the normalization D̃ of D is a
closed surface, and the projection σ : D̃ → D is a homeomorphism outside a finite
subset S ⊂ D̃. Hence,

H2(D) = H2(D,σ(S)) = H2(D̃, S) = H2(D̃) =
⊕

Z · [Di]

is the free abelian group generated by the fundamental classes [Di] of the irreducible

components Di of D (or, equivalently, the fundamental classes [D̃i] of the connected

components D̃i of D̃). A similar computation in cohomology shows that the group

H2(D) = H2(D̃) = Hom(H2(D),Z) =
⊕

Z · [Di]
∗

is also free (the last identification uses the canonical basis {[Di]}) and, by the
universal coefficient formula, H1(D) is free. (Essentially, we only use the fact that
the singular locus has real codimension at least two.)

2.3. Imprimitivity via homology. As above, let D ⊂ X be a reduced curve in
a smooth projective surface X. Denoting by ι : D ↪→ X the inclusion, let

S〈D〉 = Im[ι∗ : H2(D)→ H2(X)/Tors].

As explained in §2.2, S〈D〉 ⊂ NS(X) is the subgroup generated by the irreducible
components of D. For convenience, we retain the notation ι : D ↪→ X and S〈D〉 in
the case when D =

∑
niDi, ni 6= 0, is a divisor in X (thus identifying D with its

support
⋃
Di). The fundamental class of a divisor D is [D] :=

∑
ni[Di].

Theorem 2.2. Let ι : D ↪→ X be as above, and assume that H1(X) = 0. Then
there are canonical isomorphisms

TorsH1(X rD) = Hom(T〈D〉,Q/Z), H1(X rD)/Tors = Hom(K〈D〉,Z),

where T〈D〉 := Tors(NS(X)/S〈D〉) and K〈D〉 := Ker[ι∗ : H2(D)→ H2(X)].

Proof. By Poincaré–Lefschetz duality, we have H1(X rD) = H3(X,D). Consider
the following fragment of the cohomology exact sequence of pair (X,D):

H2(X)
ι∗−→ H2(D)

δ−→ H3(X,D) −→ H3(X).
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Since H3(X) = H1(X) = 0 (Poincaré duality), we have a canonical isomorphism

(2.3) H1(X rD) = Coker ι∗.

As explained above, both H2(X) and H2(D) are free abelian groups and, for
both spaces, we have H2(·) = Hom(H2(·),Z); hence, ι∗ = Hom(ι∗, idZ). The exact
sequence

0 −→ K〈D〉 in−→ H2(D)
ι∗−→ H2(X)

can be regarded as a free resolution of Q := H2(X)/S〈D〉. Applying Hom(·,Z), we
obtain a cochain complex

0 −→ H2(X)
ι∗−→ H2(D)

in∗

−→ Hom(K〈D〉,Z) −→ 0

computing the derived functors: H0 = Hom(Q,Z), H1 = Ext(Q,Z), Hi = 0 for
i > 2. By the definition of H1 and H2, this gives us a short exact sequence

0 −→ Ext(Q,Z) −→ Coker ι∗ −→ Hom(K〈D〉,Z) −→ 0.

Here, the first group is finite and the last one is free. Hence,

Ext(Q,Z) = Tors Coker ι∗ and Hom(K〈D〉,Z) = Coker ι∗/Tors .

In view of (2.3), these two isomorphisms prove the two statements of the theorem.
For the first statement, one should also observe that Ext(Q,Z) = Ext(TorsQ,Z)
(a property of finitely generated abelian groups), TorsQ = T〈D〉 (using the fact
that NS(X) is primitive in H2(S)), and Ext(T〈D〉,Z) = Hom(T〈D〉,Q/Z) (apply
Hom(T〈D〉, ·) to the exact sequence 0→ Z→ Q→ Q/Z→ 0.) �

2.4. The covering Φm → Φ1. We make extensive use of the ramified covering
prm : Φm → Φ := Φ1 given by

prm : [z0 : z1 : z2 : z3] 7→ [zm0 : zm1 : zm2 : zm3 ].

Clearly, Φ is the plane {z0 + z1 + z2 + z3 = 0}, and prm is ramified over the union
of four lines Ri := Φ ∩ {zi = 0}, i = 0, 1, 2, 3. The Galois group of prm is (Z/m)3.
Assuming that m > 3, the 3m2 lines in Φm are the irreducible components of the
preimage of the three lines Li := Φ ∩ {z0 + zi = 0}, i = 1, 2, 3. Introduce the
divisors L := L1 + L2 + L3, R := R0 +R1 +R2 +R3, and V := L+R in Φ.

With a further generalization in mind, redenote Φ[m] := Φm and consider the
pull-backs L∗[m] := pr−1

m (L∗), R∗[m] := pr−1
m (R∗), and V [m] := pr−1

m (V ), where ∗
is an appropriate subscript, possibly empty. Each Rj [m] is a plane section of Φ[m],
irreducible and reduced: it is the Fermat curve cut off Φ[m] by the plane {zj = 0}.
On the other hand, L[m] also contains a number of plane sections, e.g., those cut
off by {zi = ξzj}, i 6= j, ξm = −1. Thus, for any subset J ⊂ {0, 1, 2, 3}, one has

(2.4) S〈V [m]〉 = S〈L[m] +RJ [m]〉 = S〈L[m]〉 = Sm,

where RJ [m] :=
∑
j∈J Rj [m].

Since R is a generic configuration of four lines in the plane Φ, the fundamental
group G := π1(Φ rR) equals Z3, see [16, lemma in the proof of Theorem 8]. Since
G is abelian, from the Hurewicz theorem we have G = H1(ΦrR) = Hom(K〈R〉,Z),
see Theorem 2.2. This group has four canonical generators gj , j = 0, 1, 2, 3, viz. the
restrictions to K〈R〉 of the four generators of the group H2(R) =

⊕
j Z · [Rj ]∗. We

have g0 + g1 + g2 + g3 = 0, and G is freely generated by g1, g2, g3, cf., e.g., (2.3).
An interesting generalization of the original question was suggested in [12]. Given

an epimorphism α : G� G to a finite abelian group G, denote by pr: Φ[α]→ Φ the
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minimal resolution of singularities of the ramified covering of Φ defined by α. Let
L∗[α], R∗[α], and V [α] be the pull-backs in Φ[α] of L∗, R∗, and V , respectively. To
be consistent with the previous notation, we regard an integer m as the quotient
projection m : G � G/mG. The components of V [α] (including the exceptional
divisors) represent some ‘obvious’ elements of NS(Φ[α]). Using (1.1) and the finite
degree map Φ[m] 99K Φ[α] defined by the inclusion Kerα ⊂ mG, m := |G|, one has

(2.5) S〈V [α]〉 ⊗Q = (Pic Φ[α])⊗Q whenever g.c.d.(|G|, 6) = 1.

Thus, it is natural to ask whether S〈V [α]〉 = Pic Φ[α], or, not assuming that |G| is
prime to 6, whether S〈V [α]〉 ⊂ Pic Φ[α] is a primitive subgroup.

Problem 2.6 (Shimada–Takahashi [12]). When does one have T〈V [α]〉 = 0?

According to [12], the answer to this question is in the affirmative if the image G
of α is a cyclic group of order |G| 6 50. Another example is worked out in §4.3, see
Theorem 4.18: the answer is also in the affirmative if α(gi) = 0 for at least one of
the standard generators gi, i = 0, 1, 2, 3.

3. The Alexander module

3.1. The fundamental group. The line arrangement L+R ⊂ P2 is well known;
sometimes it is referred to as Ceva-7. Its fundamental group has been computed
in many ways and in many places; however, since we will work with a particular
presentation of this group, we repeat the computation here.

We will use the affine coordinates x := −z1/z0, y := −z3/z0 in the plane Φ.
In these coordinates, R0 becomes the line at infinity, and the other components of
V are the lines of the form {rxx + ryy = r} with rx, ry, r ∈ {0, 1}, see Figure 1.
The fundamental group π1 := π1(Φ r V ) is easily computed by the Zariski–van
Kampen method [16, 15]. Since we use a modified (or rather intermediate) version
of this approach, we outline briefly its proof, using V as a model. (In full detail, the
computation using the projection from a singular point is explained, e.g., in [4].)
Consider the projection p : Φ 99K P1, (x, y) 7→ x. This projection has four special
fibers Fa, viz. those over the points a ∈ ∆ := {−1, 0, 1,∞}. (Three of these fibers
are components of V , but this fact is irrelevant for the moment.) Let F∗ :=

⋃
Fa,

a ∈ ∆. Then the restriction p : Φ r (V ∪ F∗)→ P1 r ∆ is a locally trivial fibration
and, since π2(P1 r ∆) = 0 and the fiber is connected, Serre’s exact sequence (aka
long exact sequence of a fibration) gives us a short exact sequence of fundamental
groups

{1} −→ π1(F r V ) −→ π1(Φ r (V ∪ F∗)) −→ π1(P1 r ∆) −→ {1},
where F is a typical fiber of p, e.g., the one over x = 1

2 . Choosing (1
2 ,−

3
2 ) for the

basepoint, we have π1(F rV ) = 〈v1, v2, v3, v4〉, see Figure 1. The group π1(P1r∆)
is free, and the exact sequence splits. A splitting can be constructed geometrically,
identifying π1(P1 r ∆) with π1(S r F∗) = 〈h1, h2, h3〉, where S ⊂ Φ is the section
y = − 3

2 , the generators h1, h2 are as shown in Figure 1, and h3 is a similar loop
about the fiber F−1, not shown in the figure. Thus, one arrives at the presentation

π1(Φ r (V ∪ F∗)) =
〈
v1, v2, v3, v4, h1, h2, h3

∣∣ h−1
i vjhi = βi(vj)

〉
,

where i = 1, 2, 3, j = 1, 2, 3, 4, and βi ∈ Aut〈v1, v2, v3, v4〉 is the so-called braid
monodromy, i.e., the automorphism of the fundamental group obtained by dragging
the fiber along hi while keeping the basepoint in S. (The formal definition is in
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v4

v3

v2

v1

h2h1

R1 L1

L3

R3

R2

L2

x = 1x = 0x = −1

Figure 1. The divisor V := L+R ⊂ Φ

terms of a trivialization of the induced fibration (p ◦ hi)∗p over the segment [0, 1],
where p ◦ hi is regarded as a map [0, 1]→ P1 r ∆; for all details, see [16, 15].)

Now, in order to pass to π1(Φ r V ), one needs to patch in the only special fiber
F−1 that is not a component of V . This is done using the Seifert–van Kampen
theorem [15]. In fact, the principal application of the theorem in [15] is the following
simple observation, which we state in a slightly generalized form.

Lemma 3.1. Let X be a smooth quasi-projective surface and D ⊂ X a closed
smooth irreducible curve. Then the inclusion homomorphism π1(X rD)→ π1(X)
is an epimorphism; its kernel is normally generated by the class [∂Γ], where Γ is
an analytic disc transversal to D at its center and disjoint from D otherwise. C

Since D is assumed irreducible, the conjugacy class of [∂Γ] in the statement does
not depend on the choice of Γ or path connecting ∂Γ to the basepoint. The proof
of the lemma is literally the same as in [15], using a tubular neighborhood of D.

Applying Lemma 3.1 to the curve F−1 rV in ΦrV , we obtain an extra relation
h3 = 1. In other words, we disregard the generator h3 and convert the four relations
h−1

3 vjh3 = β3(vj) into vj = β3(vj), j = 1, 2, 3, 4.
The computation of the braid monodromy is straightforward and well known,

e.g., using equations of the lines; it is left to the reader. (Essentially, it is the braid
monodromy of the nodal arrangement L1 + L2 +R2 +R3 of four lines.) Denoting
by σ1, σ2, σ3 the Artin generators [2] of the braid group B4 acting on 〈v1, v2, v3, v4〉,
we have β1 = σ2

1σ
2
3 , β2 = σ2

2 , and β3 = σ−1
1 σ−1

3 σ2
2σ3σ1. (It is worth recalling that,

assuming the left action of the automorphism group, the braid monodromy is an
anti -homomorphism π1(P1r∆)→ B4.) Indeed, β1 and β2 are essentially computed
in the very first paper on the subject, viz. [16]: each is the local monodromy about
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a simple node (one full twist of a pair of points about their barycenter) or a pair
of disjoint nodes. The remaining braid β3 is the local monodromy about another
node, which is translated to the common reference fiber along the real axis; when
circumventing the singular fiber at the origin, it gets conjugated by ‘one half’ of β1,
which is σ1σ3.

Putting everything together, after a slight simplification the nontrivial relations
for the fundamental group π1(Φ r V ) take the form

[h2, v1] = [h2, v4] = 1,(3.2)

h2v2v3 = v2v3h2 = v3h2v2(3.3)

(the relations h−1
2 vjh2 = β2(vj) from the fiber x = 1),

h1v1v2 = v1v2h1 = v2h1v1,(3.4)

h1v3v4 = v3v4h1 = v4h1v3(3.5)

(the relations h−1
1 vjh1 = β1(vj) from the fiber x = 0), and

(3.6) [v−1
2 v1v2, v4] = 1

(the relations vj = β3(vj) from the fiber x = −1).
By Lemma 3.1, the inclusion in: Φ r V ↪→ Φ rR induces the map

in∗ : π1 � G : h1 7→ g1, v2 7→ g2, v3 7→ g3, h2, v1, v4 7→ 0.

3.2. The ‘universal’ covering. Throughout the paper we use freely the following
well-known fact, often referred to as theory of covering spaces: for any connected,
locally path connected, and micro-simply connected topological space X (e.g., for
any connected simplicial complex) with a basepoint x0 ∈ X, there is a natural

equivalence between the category of coverings (X̃, x̃0)→ (X,x0) and covering maps
(identical on X) and that of subgroups of π1(X,x0) and inclusions. If the subgroup
is normal (regular, or Galois coverings), it can be described as the kernel of an
epimorphism α : π1(X,x0)� G; the image G serves then as the group of the deck
translations of the covering.

Consider an epimorphism α : G� G. In this section, we do not assume G finite;
in fact, we start with a study of the ‘universal’ G-covering, corresponding to the
identity map 0: G� G/0G = G. (Admittedly awkward, this notation is compliant
with m : G� G/mG introduced earlier.)

Consider the composition

α̃ : π1

in∗−� π1(Φ rR) = G
α
−� G

and denote by Φ◦[α] the G-covering of Φ r V defined by α̃. By the Hurewicz
theorem, H1(Φ◦[α]) is the abelianization of π1(Φ◦[α]) = Ker α̃. The action of the
deck translations of the covering makes this group a Z[G]-module; regarded as such,
it is often referred to as the Alexander module of α̃.

The construction of the Alexander module fits into a more general framework
and admits a purely algebraic description. Consider a group π and an epimorphism
α̃ : π � G to an abelian group G. Then the Alexander module of α̃ is the abelian
groupA := Ker α̃/[Ker α̃,Ker α̃] regarded as a Z[G]-module via theG-action defined
as follows: given a ∈ A and g ∈ G, the image g(a) is the class in A of the element
g̃ãg̃−1 ∈ Ker α̃, where ã, g̃ ∈ π are some lifts of a, g, respectively. This class does
not depend on the choice of the lifts, and the action is well defined.
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Crucial is the fact that H1(Φ◦[α]) depends on the epimorphism α̃ : π1 � G only.
Hence, we can replace Φ r V with any CW-complex X with π1(X) = π1. We take
for X a space with a single 0-cell e0, one 1-cell e1

i ∈ {a1, a2, a3, c1, c2, c3} for each of
the six generators h1, v2, v3, h2, v4, v1 of π1 (in the order listed), and one 2-cell e2

j

for each relation (3.2)–(3.6). In the G-covering X[0], each cell e gives rise to a
whole G-orbit {g ⊗ e | g ∈ G}. (For the moment, the symbols g ⊗ e are merely cell
labels; we only assume that the labelling is compatible with the G-action, i.e., for
any cell e in X and pair h, g ∈ G we have h(g ⊗ e) = (h+ g)⊗ e.)

Following the tradition, let us identify Z[G] with the ring

Λ := Z[t±1
1 , t±1

2 , t±1
3 ]

of Laurent polynomials, where the variables t1, t2, t3 correspond to the generators
h1 7→ g1, v2 7→ g2, v3 7→ g3 about R1, R2, R3, respectively. In other words, we
identify G with the multiplicative abelian group generated by t1, t2, t3; we will also
use this multiplicative notation in the cell labels. We can assume, in addition, that
the labelling is chosen so that the left end of each ‘initial’ 1-cell 1 ⊗ e is attached
to 1 ⊗ e0, i.e., (1 ⊗ e)(0) = 1 ⊗ e0. (Here, we regard an oriented 1-cell as a path
[0, 1] → X[0].) Then, from the definition of the covering it follows that the right
ends are attached as follows:

(3.7) (1⊗ ai)(1) = ti ⊗ e0, (1⊗ cj)(1) = 1⊗ e0, i, j = 1, 2, 3,

i.e., the generators h1, v2, v3 are ‘unwrapped’, whereas h2, v1, v4 remain ‘latent’.
The other ends are determined by the G-action: for a 1-cell e in X, a monomial t
in t1, t2, t3, and ε = 0, 1 we have (t⊗ e)(ε) = t((1⊗ e)(ε)).

Recall that the member Cn of the cellular chain complex associated to a CW-
complex Y is the free abelian group generated by the n-cells of Y . Thus, each
cell e of X gives rise to a direct summand

⊕
Z(g ⊗ e), g ∈ G, in the complex of

X[0]; this summand is naturally identified with the free Λ-module Λe. (It is this
identification that explains the usage of ⊗ in the labels.) Furthermore, since the
CW-structure on X[0] is G-invariant, the boundary homomorphisms are Λ-linear.
Thus, the chain complex C∗ := C∗[0] of X[0] is a complex of free Λ-modules of the
form

0 −→ C2
∂2−→ C1 = Λa1 ⊕ Λa2 ⊕ Λa3 ⊕ Λc1 ⊕ Λc2 ⊕ Λc3

∂1−→ C0 = Λ −→ 0

(we omit the generator e0 of C0), where ∂1 is given by (3.7):

(3.8) ∂1ai = (ti − 1), ∂1cj = 0, i, j = 1, 2, 3.

The module C2 has nine generators, of which six have non-trivial images under ∂2:

(t2t3 − 1)c1,(3.9)

(t3 − 1)c1 + (t3 − 1)a2 − (t2 − 1)a3(3.10)

from (3.3),

(t1t3 − 1)c2,(3.11)

(t3 − 1)c2 + (t3 − 1)a1 − (t1 − 1)a3(3.12)

from (3.5), and

(t1t2 − 1)c3,(3.13)

(t1 − 1)c3 + (t1 − 1)a2 − (t2 − 1)a1(3.14)
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from (3.4). Relations (3.2) and (3.6) contribute 0 to Im ∂2.

Example 3.15. The proof of (3.9)–(3.14) is a straightforward computation. As
an example, consider (3.3), which can be written in the form of two relations

h2v2v3h
−1
2 v−1

3 v−1
2 = 1, h2v2v3v

−1
2 h−1

2 v−1
3 = 1.

The word in the left hand side of the first relation corresponds to the sequence
c1, a2, a3, c−1

1 , a−1
3 , a−1

2 of 1-cells in X along which a 2-cell e2
1 is attached. (The

inverse for a 1-cell means the reversion of the orientation.) Lift this sequence to
X[0], starting each cell at the end of the previous one, see (3.7):

1⊗ c1, 1⊗ a2, t2 ⊗ a3, (t2t3 ⊗ c1)−1, (t2 ⊗ a3)−1, (1⊗ a2)−1.

(Observe that, for example, t2 ⊗ a3 connects t2 ⊗ e0 to t2t3 ⊗ e0, see (3.7); hence,
the lift of a−1

3 starting at t2t3 ⊗ e0 is (t2 ⊗ a3)−1; it ends at t2 ⊗ e0. Note also that
(1⊗a2)−1 ends at 1⊗ e0, i.e., the lift is a loop, as expected.) We obtain a sequence
of 1-cells along which a 2-cell in X[0], viz. one of the lifts of e2

1, is attached; writing
this sequence as a chain, we get ∂2e

2
1 = (1− t2t3)c1 ∈ C1, which is (3.9) up to sign.

Similarly, the second relation lifts to the sequence

1⊗ c1, 1⊗ a2, t2 ⊗ a3, (t3 ⊗ a2)−1, (t3 ⊗ c1)−1, (1⊗ a3)−1,

which gives us (3.10).

3.3. Other coverings. Now, given an epimorphism α : G � G, it induces a ring
homomorphism α∗ : Λ � Z[G], making Z[G] a Λ-module. Clearly, the G-covering
X[α] is the quotient space X[0]/Kerα, the cells in X[α] being the Kerα-orbits of
those in X[0]. The chain homomorphism C∗ → C∗(X[α]) induced by the quotient
projection merely identifies the basis elements (which are the cells) within each
orbit of Kerα; algebraically, it can be expressed as the tensor product

id⊗ α∗ : C∗ = C∗ ⊗Λ Λ −→ C∗ ⊗Λ Z[G] = C∗(X[α]).

Recall, see the beginning of §3.2, that the 1-homology of the covering spaces
depend only on the homomorphism α̃ : π1 � G. Hence, the group H1(Φ◦[α]) =
H1(X[α]) is computed by the complex C∗[α] := C∗ ⊗Λ Z[G]. In view of the right
exactness Coker(∂2⊗Λα∗) = (Coker ∂2)⊗ΛZ[G], our primary interest is the quotient
A[α] := C1[α]/ Im ∂2. Explicitly, A[α] can be described as the Λ-module generated
by the six elements a1, a2, a3, c1, c2, c3 that are subject to relations (3.9)–(3.14) and
the extra relation

(3.16) tr11 t
r2
2 t

r3
3 = 1 whenever α(r1g1 + r2g2 + r3g3) = 0.

Summarizing, after the identification C0[α] = Z[G] and H0(X[α]) = Z, we have an
exact sequence

(3.17) 0 −→ H1(Φ◦[α]) ↪−→ A[α]
∂1−→ Z[G] −→ Z −→ 0,

where the last homomorphism is the augmentation g 7→ 1, g ∈ G.
Recall that the rank rkA of a finitely generated abelian group A is the maximal

number of linearly independent elements of A, whereas its length `(A) is the minimal
number of elements generating A. One has rkA = `(A) if and only if A is free.

Lemma 3.18. For any epimorphism α : G � G, there is a natural isomorphism
TorsH1(Φ◦[α]) = TorsA[α]. If G is finite, then `(H1(Φ◦[α])) = `(A[α]) − |G| + 1
and rkH1(Φ◦[α]) = rkA[α]− |G|+ 1.
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Proof. Since Im ∂1 ⊂ Z[G] is a free abelian group, the inclusion in (3.17) induces
an isomorphism of the torsion parts. This isomorphism and the obvious fact that
`(A) = rkA + `(TorsA) for any finitely generated abelian group A imply that
the length and rank identities in the statement are equivalent to each other. The
rank identity follows from the additivity of rank in (3.17) and the observation that
rkZ[G] = |G|. �

3.4. Fermat surfaces. If the image G of α : G � G is finite, one obviously has
Φ◦[α] = Φ[α] r V [α]. If α = m ∈ Z, i.e., in the case of a classical Fermat surface
Φ[m], it is more convenient to consider a smaller divisor L̄[m] := L[m] + R0[m],
see (2.4). The fundamental group π1(Φ[m] r L̄[m]) is given by Lemma 3.1: it is
the quotient of Ker α̃ = π1(Φ◦[α]) by the extra relations hm1 = vm2 = vm3 = 1 (as
the ramification index at each component of R[m] is obviously m). Hence, the
homology group H1(Φ[m] r L̄[m]) can be computed using the complex C∗[m] with
three extra 2-cells e2

i , i = 1, 2, 3, mapped by ∂2 to ϕm(ti)ai, where

ϕn(t) := (tn − 1)/(t− 1), n ∈ Z.

This computation is similar to Example 3.15: for example, the loop hm1 lifts to the
sequence 1⊗ a1, t1 ⊗ a1, t

2
1 ⊗ a1, . . . , t

m−1
1 ⊗ a1 of 1-cells, which results in the chain

(1 + t1 + t21 + . . .+ tm−1
1 )a1 = ϕm(t1)a1 ∈ C1[m]. Note that this chain is a cycle, as

in C1[m] we have the relation tm1 = 1.

Remark 3.19. Strictly speaking, the new complex is that of abelian groups rather
than Λ-modules, as we add three 2-cells only, i.e., three summands Ze2

i in C2[m].
However, in the presence of the relations tmi = 1, i = 1, 2, 3, cf. (3.16), one can use
(3.9)–(3.14) to show that all three images ϕm(ti)ai are G-invariant. Hence, without
changing the 1-homology of the complex, we can formally replace each summand
Ze2

i with Λe2
i , extending ∂2 by Λ-linearity. Geometrically, we replace a single disk

Γ as in Lemma 3.1 with a G-orbit consisting of m3 disks. Since the curve Ri[m]
patched in is irreducible (all disks intersecting the same component), this change
does not affect the fundamental group.

Now, as in §3.3, instead of extending the C2-term of the complex, we can add
extra relations to C1. Summarizing, we have

H1(Φ[m] r L̄[m]) = Ker[∂1 : Ā[m]→ C0[m]],

where Ā[m] is the quotient of A[0] by the extra relations

(3.20) tmi = 1, ϕm(ti)ai = 0, i = 1, 2, 3.

Arguing as in the proof of Lemma 3.18, we obtain the identity

(3.21) `(H1(Φ[m] r L̄[m])) = `(Ā[m])−m3 + 1.

3.5. Other Delsarte surfaces. In the generalized case, the first question that
arises is whether Theorem 2.2 is applicable, i.e., whether H1(Φ[α]) = 0. To state
the result, introduce the following notation: given a pair of integers 0 6 i, j 6 3,
let Gij := Zgi ⊕ Zgj ⊂ G, where gi ∈ G are the canonical generators, see §2.4.

Recall that the blow-up σ : X̃ → X of a smooth point of a surface X induces an
isomorphism of both the fundamental group π1 and first homology group H1 of the
surface. Hence, up to canonical isomorphism, the groups π1 and H1 do not depend
on the resolution of singularities.
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Proposition 3.22. For an epimorphism α : G� G, |G| <∞, one has

π1(Φ[α]) = H1(Φ[α]) = Kerα/
∑

Gij ∩Kerα,

the summation running over all pairs 0 6 i, j 6 3 of integers.

Proof. We start with the abelian group π1(Φ r R) = G generated by h1 7→ g1,
v2 7→ g2, v3 7→ g3, see §3.1. Clearly, π1(Φ[α] r R[α]) = H1(Φ[α] r R[α]) = Kerα.
(This group can also be regarded as a Λ-module, but the module structure is trivial:
t1 = t2 = t3 = 1.) For the rest of the proof, we use the additive notation for the
fundamental group (as the groups of interest are subquotients of G).

Let Φ′[α] be the manifold obtained from Φ[α]rR[α] by patching the components
of the proper transform of R[α] away from the exceptional divisor. At a generic
point of Ri, the ramification index mi of the ramified covering Φ[α]→ Φ equals the
index [Gii : Gii ∩Kerα], i = 0, 1, 2, 3. Hence, by Lemma 3.1, the inclusion induces
an epimorphism Kerα� π1(Φ′[α]) whose kernel is generated by the elements migi.
Thus, we have an isomorphism

(3.23) π1(Φ′[α]) = Kerα/
∑
iGii ∩Kerα, i = 0, 1, 2, 3.

(Strictly speaking, unlike the case of the Fermat surfaces, the curve Ri[α] may be
reducible, so that we need to attach a separate disk Γ as in Lemma 3.1 for each
component of this curve. However, since the G-action is trivial in the 1-homology
H1 = π1, all disks result in the same relation migi = 0, cf. Remark 3.19.)

What remains is patching the exceptional divisors. Fix a pair 0 6 i < j 6 3 and
let S̃ be a singular point of the normalized, but yet unresolved ramified covering
over the point S := Ri ∩ Rj . Fix a resolution of singularities and let E be the

exceptional divisor over S̃. Pick a sufficiently small ball U ⊂ Φ about S and denote
by Ũ the connected component of the preimage of U containing E. With respect to
an appropriate smooth triangulation, Ũ is a regular neighborhood of E; hence, E
is a strict deformation retract of Ũ , Ũ ∼ E. On the other hand, Ũ is a 4-manifold
with boundary ∂Ũ , and the latter is a covering of the 3-sphere ∂U ramified over
the Hopf link R ∩ ∂U .

Note also that the contraction of E gives us the space Ũ/E which is the cone

over ∂Ũ (with the vertex S̃ = E/E); hence, we have a homotopy equivalence (strict

deformation retraction) Ũ r E = (Ũ/E) r S̃ ∼ ∂Ũ .

We have π1(∂U rR) = Gij and, hence, π1(∂Ũ rR[α]) = Gij ∩Kerα. As above,

similar to Lemma 3.1, patching the union of circles ∂Ũ ∩R[α] results in the pair of
relations migi = mjgj = 0. Thus,

(3.24) π1(∂Ũ) = (Gij ∩Kerα)/(Gii ∩Kerα+ Gjj ∩Kerα)

is a finite group. Then H1(∂Ũ ;Q) = 0, i.e., ∂Ũ is a rational homology sphere and S̃

is a rational singular point. For us, important is the fact that π1(Ũ) = π1(E) = 0,

which can easily be proved directly. Indeed, since Ũ ∼ E and dimRE = 2, we have
H3(Ũ ;Q) = 0; then also H1(Ũ , ∂Ũ ;Q) = 0 (Lefschetz duality), and the fragment

H1(∂Ũ ;Q) −→ H1(Ũ ;Q) −→ H1(Ũ , ∂Ũ ;Q)

of the homology exact sequence of pair (Ũ , ∂Ũ) implies H1(Ũ ;Q) = H1(E;Q) = 0.
On the other hand, E is a connected projective algebraic curve, and it is easily
seen that E is homotopy equivalent to the wedge of closed topological surfaces (the
components of the normalization of E) and a number of circles. (Roughly, we can
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‘blow-up’ the locally reducible singular points of E to line segments, separating the
analytic branches and replacing E with a disjoint union of topologically nonsingular
closed surfaces with a number of segments attached. Then, within each surface,
move the ends of the segments to a single point. Finally, contract several segments
to make the surfaces share a common point; the result is a wedge as stated.) For
such a wedge E ∼

∨
iEi, all groups are easily computed (e.g., using iteratedly the

Mayer–Vietoris exact sequence (8.8) in [7, Chapter III] and Seifert–van Kampen
theorem [15], or just decomposing the wedge into cells):

H1(E;Q) =
⊕

iH1(Ei;Q), π1(E) = ∗i π1(Ei).

Clearly, H1(E;Q) = 0 if and only if all surface components are 2-spheres and there
are no circles present. Then obviously π1(E) = 0.

Now, start with Φ′[α] and proceed patching the exceptional divisors one by one.
Let Φ′′ be an intermediate space, not yet containing E. Applying the Seifert–van
Kampen theorem [15] to the union Φ′′ ∪ Ũ and using the homotopy equivalence

Φ′′ ∩ Ũ = Ũ r E ∼ ∂Ũ , we obtain the amalgamated free product

π1(Φ′′ ∪ Ũ) =
(
π1(Φ′′) ∗ π1(Ũ)

)
/π1(∂Ũ) = π1(Φ′′)/(Gij ∩Kerα).

(For the last isomorphism, we use (3.24) and the identity π1(Ũ) = 0.) The group
π1(Φ′[α]) is given by (3.23) and, after all the exceptional divisors have been patched,
we arrive at the expression in the statement. �

If H1(Φ[α]) = 0, Theorem 2.2 and Lemma 3.18 imply that

(3.25) T〈V [α]〉 ∼= TorsA[α].

Unfortunately, as a Z[G]-module, A[α] is far from free and it is difficult to control
its Z-torsion. (Experiments show that, at least, the intermediate quotients similar
to those considered in Lemma 4.4 do often have torsion.) An attempt of a direct
computation is made in §4.3, whereas in the case of the classical Fermat surfaces
we have to take a detour and estimate the length instead. The following two exact
sequences may prove useful:

A[α]
∂1−→ Z[G]

ε−→ Z −→ 0,

where ε is the augmentation, see (3.17), and

0 −→ A◦[α] −→ Ker ∂1 −→ Kerα −→ 0,

where A◦[α] ⊂ A[α] is the submodule generated by c1, c2, c3. The former sequence
merely states that H0(C∗[α]) = H0(Φ◦[α]) = Z. For the latter, we patch L[α] (by
using Lemma 3.1 or merely forgetting the generators h2, v1, v4, hence c1, c2, c3 in
the first place) to compute the group H1(Φ[α] rR[α]) = π1(Φ[α] rR[α]) = Kerα;
the resulting complex is 0 → A[α]/A◦[α] → Z[G] → 0. Both sequences split, and
we can extend (3.25) to

(3.26) T〈V [α]〉 ∼= TorsA◦[α] = TorsA[α],

still under the assumption that H1(Φ[α]) = 0.



14 ALEX DEGTYAREV

4. Proof of the main theorem

4.1. The length of Ā[m]. Fix an integer m > 1 and consider the Λ-module Ā[m]
introduced in §3.4. Recall that Ā[m] is generated by six elements ai, cj , i, j = 1, 2, 3,
subject to the relations (3.9)–(3.14) and (3.20). Observe that relations (3.9), (3.11),
and (3.13) can be recast in the form

(4.1) tick = t−1
j ck whenever {i, j, k} = {1, 2, 3}.

We introduce a few ad hoc notations. Given i = 1, 2, 3, let

Λi := Z[ti]/(t
m
i − 1), Λ̄i := Z[ti]/ϕm(ti).

These rings can be regarded as Λ-modules, but we usually do not specify the action
of the other two variables: it varies from case to case. In fact, we repeatedly use
the following simple observation, which is an immediate consequence of (4.1).

Lemma 4.2. Let i, j, k ∈ {1, 2, 3}, k 6= i, and p ∈ Λ, and let A be a subquotient of
Ā[m] generated by a single element x := pci. Assume that either tj = 1 or ti = t±1

k

on A. Then A is a quotient of Λsx for an appropriate index s ∈ {1, 2, 3}.
If x is also annihilated by ϕm(ts), then A is a quotient of Λ̄sx. C

The precise description of the ‘appropriate’ index s (not necessarily unique) is
left to the reader. Clearly, `(Λs) = m and `(Λ̄s) = m− 1.

For a generator x ∈ {a1, a2, a3, c1, c2, c3}, let

x′ := (t1 − 1)x, x̃ := (t3 − 1)x, x̃′ := (t1 − 1)x̃.

Observe that always

(4.3) ϕm(t1)x′ = ϕm(t3)x̃ = ϕm(t1)x̃′ = ϕm(t3)x̃′ = 0.

We will use a filtration 0 = A0 ⊂ A1 ⊂ . . . ⊂ A7 = Ā[m], where Ak ⊂ Ā[m] are
the submodules defined in Lemma 4.4 below.

Let δm := 1 if m is even and δm := 0 if m is odd.

Lemma 4.4. One has the following equations and inequalities:

(1) `(A1/A0) = m3 −m2, where A1 is the submodule generated by a3;
(2) `(A2/A1) 6 3(m− 1)− δm, where A2 := A1 + Λã′2 + Λc̃′3;
(3) `(A3/A2) 6 3(m− 1), where A3 := A1 + (t3 − 1)Ā[m];
(4) `(A4/A3) = m2 −m, where A4 := A3 + Λa1;
(5) `(A5/A4) 6 m− 1, where A5 := A4 + Λa′2 + Λc′3;
(6) `(A6/A5) = m− 1, where A6 := A5 + Λa2;
(7) `(A7/A6) 6 2m+ 1, where A7 := Ā[m].

Hence, `(A) 6 m3 + 9m− 7− δm.

Proof. One has `(A1) 6 m2(m−1) due to (3.20). On the other hand, the boundary
homomorphism ∂1 maps A1 onto (t3−1)C0[m]. Hence, there are no other relations
in A1, and Statement (1) holds. Furthermore, ∂1 factors to a homomorphism

Ā[m]/A3 → C ′0 := C0[m]/(t3 − 1)

which maps A4/A3 isomorphically onto (t1 − 1)C ′0, proving Statement (4). Then,
∂1 factors to

Ā[m]/A5 → C ′′0 := C ′0/(t1 − 1) = Λ2.

Since A6/A5 is (a priori a quotient of) the cyclic Λ̄2-module Λ̄2a2, the restriction
of ∂1 maps it isomorphically onto (t2 − 1)C ′′0 = Λ̄2, proving Statement (6).
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For the other statements, it suffices to estimate the number of generators. With
possible future applications in mind, we describe the structure of the intermediate
quotients in the form (known module)� Ak/Ak−1. In fact, all these epimorphisms
are isomorphisms, see Remark 4.14 below.

In Ā[m]/A4, one has

t3 = 1, a1 = a3 = 0, a′2 = −c′3;

the last relation follows from (3.14). Thus, A5/A4 is generated by c′3, and Ā[m]/A6

is generated by c1, c2, c3; by (3.20) and Lemma 4.2,

(4.5) Λ̄2c
′
3 � A5/A4, Λ1c1 ⊕ Λ2c2 ⊕ Zc3 � Ā[m]/A6.

For the last summand Zc3, we use the fact that

(t1 − 1)c3 = −(t1 − 1)a2 = 0 mod A6.

Thus, `(Ā[m]/A6) 6 2m+ 1, and Statements (5) and (7) are proved.
The module A3/A1 is generated by ã1, ã2, c̃1, c̃2, c̃3, and relations (3.10), (3.12),

(3.14) imply

ã2 = −c̃1, ã1 = −c̃2, (t1 − 1)(c̃3 + ã2) = (t2 − 1)ã1.

We can retain three generators c̃1, c̃2, c̃3 only, rewriting the last relation in the form

(4.6) (t1 − 1)(c̃3 − c̃1) + (t2 − 1)c̃2 = 0.

Note also that ϕm(t3)A3 = 0, see (4.3).
In A3/A2, we have (t1 − 1)c̃3 = (t1 − 1)ã2 = 0, hence also (t1 − 1)c̃1 = 0. Then

(4.6) implies (t2 − 1)c̃2 = 0, and

(4.7) Λ̄3c̃1 ⊕ Λ̄3c̃2 ⊕ Λ̄3c̃3 � A3/A2,

see Lemma 4.2. This gives us Statement (3).
The module A2/A1 is generated by c̃′1 and c̃′3. By (4.3) and (4.1), we have

(4.8) ϕm(ti)(A2/A1) = 0 for all i = 1, 2, 3.

Relations (3.11) and (4.6) imply (t1t3 − 1)(c̃′3 − c̃′1) = 0; using (4.1), this can be
rewritten as (t3 − t2)c̃′3 = (t1 − t2)c̃′1. Let

u := (t3 − t2)c̃′3 = (t1 − t2)c̃′1

and consider the cyclic submodule A′2 ⊂ A2/A1 generated by u. By Lemma 4.2,

(4.9) Λ̄2c̃
′
1 ⊕ Λ̄2c̃

′
3 � (A2/A1)/A′2.

On the other hand, A′2 ⊂ Λc̃′1 ∩ Λc̃′3; hence, t−1
3 = t2 = t−1

1 on this module and, by
Lemma 4.2 again,

(4.10) Λ̄2u� A′2 if m is odd.

This fact proves Statement (2) in the case of m odd.
If m = 2k is even, (4.10) still holds, but we need a stronger statement. Note

that ϕm(t) is divisible by ϕk(t2). Furthermore, one has a polynomial identity

(4.11) tm−2
m−1∑
r=0

t1−rϕr(t
2) = tϕk−1(t2)ϕm(t) + ϕk(t2),
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which is easily established by multiplying both sides by t2 − 1. On the submodule
A′2 we have t2 = t−1

1 , see (4.1); hence, s := t2t
−1
1 = t22. Then, representing u in the

form u = t1(1− s)c̃′1, we have

(4.12) t1−r2 ϕr(t
2
2)u = t1−r2 t1ϕr(s)(1− s)c̃′1 = tr1(1− sr)c̃′1 = (tr1 − tr2)c̃′1, r ∈ Z.

Summing up over r = 0, . . . ,m−1 and using (4.8) and (4.11) at t = t2, we conclude
that ϕk(t22)u = 0, i.e.,

(4.13) Λ2u/ϕk(t22)� A′2 if m = 2k is even,

obtaining a stronger inequality `(A′2) 6 degϕk(t2) = m− 2.
The final inequality in the statement of the lemma is the sum of items 1–7. �

4.2. Proof of Theorem 1.3. We assume that m > 3. By (2.4), it suffices to show
that T〈L̄[m]〉 = 0, where L̄[m] := L[m] + R0[m] is the divisor introduced in §3.4.
Since Φ[m] is simply connected, we can use Theorem 2.2, reducing the problem to
proving the inequality `(H1(Φ[m] r L̄[m])) 6 rkK〈L̄[m]〉.

According to [1, 13], rkSm = 3(m − 1)(m − 2) + 1 + δm. On the other hand,
H2(L̄[m]) is the free abelian group generated by the classes of the 3m2 lines and
the additional class [R0[m]]. Hence, rkK〈L̄[m]〉 = 9m− 6− δm, and the statement
follows from (3.21) and Lemma 4.4. �

Remark 4.14. It follows from the proof that all inequalities in the statement of
Lemma 4.4 are, in fact, equalities, i.e., no relation has been lost, even though some
relations were multiplied by non-units. Furthermore, all epimorphisms (4.5), (4.7),
(4.9), (4.10), (4.13) are isomorphisms.

Remark 4.15. We only use the inequality rkSm 6 3(m− 1)(m− 2) + 1 + δm, i.e.,
the fact that there is at least a certain number of relations between the components.
In general, it would suffice to prove the inequality `(A[α]) 6 rkK〈V [α]〉+ |G| − 1,
see Lemma 3.18.

Remark 4.16. The rank rkSm can easily be computed directly, by tensoring the
module by C and counting the irreducible summands, which are all of dimension 1
(multi-eigenspaces of the three commuting finite order operators t1, t2, t3).

Remark 4.17. By (3.26), when computing the torsion, one can replace A[α] with
the smaller module A◦[α]. A posteriori, A◦[m] is the Λ[m]-module spanned by the
three generators c1, c2, c3 subject to a single relation

(t1 − 1)(t3 − 1)c1 = (t2 − 1)(t3 − 1)c2 + (t1 − 1)(t3 − 1)c3,

see [5]. In this form, some of the results of this paper generalize to Fermat varieties
of higher dimension, see [6]. Note, though, that this one-relator presentation of
A◦[α] does not extend to more general Delsarte surfaces; see [5] for further details.

4.3. A toy example. In conclusion, we consider a very simple example, answering
the generalized question, see Problem 2.6, in the special case of a covering ramified
over at most three lines.

Theorem 4.18. If the covering Φ[α] → Φ is unramified over at least one of the
lines Rj, j = 0, 1, 2, 3, then T〈V [α]〉 = 0.
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Proof. We can assume that the covering is unramified overR3, i.e., the epimorphism
α : G → G sends g3 to 0. Then, obviously, Kerα = Zg3 ⊕ (G12 ∩ Kerα) and, by
Proposition 3.22, we have H1(Φ[α]) = 0, i.e., Theorem 2.2 is applicable.

By (3.16), we have t3 = 1 on A[α], and relations (3.10), (3.12), (3.14) become

(t2 − 1)a3 = (t1 − 1)a3 = 0, (t1 − 1)(c3 + a2) = (t2 − 1)a1.

Introducing the generator a′2 := c3 + a2 instead of a2, we see that the submodule
A◦[α] ⊂ A[α] introduced in §3.5 is a direct summand (as a Λ-module), and all
relations in A◦[α] are t3 = 1 and (3.9), (3.11), (3.13). The three latter translate
into independent relations (t2 − 1)c1 = (t1 − 1)c2 = (t1t2 − 1)c3 = 0, and A◦[α] is
a direct sum of three group rings:

A◦[α] = Z[G/α(g2)]c1 ⊕ Z[G/α(g1)]c2 ⊕ Z[G/α(g1 + g2)]c3.

By (3.26), one has T〈V [α]〉 ∼= TorsA◦[α] = 0. �

Corollary 4.19 (of (2.5) and Theorem 4.18). If a covering pr: Φ[α] → Φ as in
Theorem 4.18 has degree m prime to 6, then Pic Φ[α] = S〈V [α]〉. C

4.4. Proof of Theorem 1.4 and Corollary 1.5. Corollary 1.5 is an immediate
consequence of Theorem 1.4 and the fact that Pic Σp,q is rationally generated by the
classes of the lines, see [3]. In view of Theorem 2.2, the statement of Theorem 1.4
is purely homological, and we can deform Σp,q to the Fermat surface Φ[m]; then,
the m2 lines in question deform to the components of L1[m], and Sp,q = S〈L1[m]〉.
Similar to (2.4), the latter group equals S〈L̄1[m]〉, where L̄1[m] := L1[m] +R0[m].

Patching L2[m] and L3[m], cf. §3.4, we conclude that

T〈L̄1[m]〉 = Tors Ā′[m], Ā′[m] := Ā[m]/(Λc2 + Λc3).

Filtering this module as in Lemma 4.4 and analyzing the proof of the lemma, we see
that Statements (1), (4), and (6) hold without change, whereas the other statements
can be rewritten as follows:

(2) `(A2/A1) = 0 due to (4.6),
(3) `(A3/A2) 6 m− 1, see (4.7),
(5) `(A5/A4) = 0, see (4.5),
(7) `(A7/A6) 6 m, see (4.5).

Summing this up, we obtain `(Ā′[m]) 6 m3 + 2m− 2. On the other hand, one has
rkS〈L̄1[m]〉 = (m − 1)2 + 1, see [3]; hence, rkK〈L̄1[m]〉 = 2m − 1 and, as in §4.2,
we conclude that Ā′[m] is a free abelian group. �
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