EXTENSIONS OF STRONGLY π-REGULAR RINGS

Huanyin Chen, Handan Kose, and Yosum Kurtulmaz
Dedicated to Professor Abdullah Harmanci on his 70th birthday

Abstract

An ideal I of a ring R is strongly π-regular if for any $x \in I$ there exist $n \in \mathbb{N}$ and $y \in I$ such that $x^{n}=x^{n+1} y$. We prove that every strongly π-regular ideal of a ring is a B-ideal. An ideal I is periodic provided that for any $x \in I$ there exist two distinct $m, n \in \mathbb{N}$ such that $x^{m}=x^{n}$. Furthermore, we prove that an ideal I of a ring R is periodic if and only if I is strongly π-regular and for any $u \in U(I), u^{-1} \in \mathbb{Z}[u]$.

1. Introduction

A ring R is strongly π-regular if for any $x \in R$ there exist $n \in \mathbb{N}, y \in R$ such that $x^{n}=x^{n+1} y$. For instance, all artinian rings and all algebraic algebra over a filed. Such rings are extensively studied by many authors from very different view points (cf. $[1,3,4,7,9,10,11,12,13,14]$). We say that an ideal I of a ring R is strongly π-regular provided that for any $x \in I$ there exist $n \in \mathbb{N}, y \in I$ such that $x^{n}=x^{n+1} y$. Many properties of strongly π-regular rings were extended to strongly π-regular ideals in [5].

Recall that a ring R has stable range one provided that $a R+b R=R$ with $a, b \in R$ implies that there exists $y \in R$ such that $a+b y \in R$ is invertible. The stable range one condition is especially interesting because of Evans' Theorem, which states that a module cancels from direct sums whenever has stable range one. For general theory of stable range conditions, we refer the reader to [5]. An ideal I of a ring R is a B-ideal provided that $a R+b R=R$ with $a \in 1+I, b \in R$ implies that there exists $y \in R$ such that $a+b y \in R$ is invertible. An ideal I is a ring R is stable provided that $a R+b R=R$ with $a \in I, b \in R$ implies that there exists $y \in R$ such that $a+b y \in R$ is invertible. As is well known, every B-ideal of a ring is stable, but the converse is not true.

In [1, Theorem 4], Ara proved that every strongly π-regular ring has stable range one. This was extended to ideals, i.e., every strongly π-regular ideal of a

[^0]ring is stable (cf. [6]). The main purpose of this note is to extend these results, and show that every strongly π-regular ideal of a ring is a B-ideal. An ideal I of a ring R is periodic provided that for any $x \in I$ there exist two distinct $m, n \in \mathbb{N}$ such that $x^{m}=x^{n}$. Furthermore, we show that an ideal I of a ring R is periodic if and only if I is strongly π-regular and for any $u \in U(I)$, $u^{-1} \in \mathbb{Z}[u]$. Several new properties of such ideals are also obtained.

Throughout, all rings are associative with an identity and all modules are unitary modules. $U(R)$ denotes the set of all invertible elements in the ring R and $U(I)=(1+I) \bigcap U(R)$.

2. Strongly π-regular ideals

The aim of this section is to investigate more elementary properties of strongly π-regular ideals and construct more related examples. For any $x \in R$, we define $\sigma_{x}: R \rightarrow R$ given by $\sigma_{x}(r)=x r$ for all $r \in R$.

Theorem 2.1. Let I be an ideal of a ring R. Then the following are equivalent:
(1) I is strongly π-regular.
(2) For any $x \in I$, there exists $n \geq 1$ such that $R=\operatorname{ker}\left(\sigma_{x}^{n}\right) \oplus \operatorname{im}\left(\sigma_{x}^{n}\right)$.

Proof. (1) $\Rightarrow(2)$ Let $x \in I$. In view of [5, Proposition 13.1.15], there exist $n \in \mathbb{N}, y \in I$ such that $x^{n}=x^{n+1} y$ and $x y=y x$. It is easy to check that $\sigma_{x}^{n}=\sigma_{x}^{n+1} \sigma_{y}$. If $a \in \operatorname{ker}\left(\sigma_{x}^{n}\right) \bigcap \operatorname{im}\left(\sigma_{x}^{n}\right)$, then $a=\sigma_{x}^{n}(r)$ and $\sigma_{x}^{n}(a)=0$. This implies that $x^{2 n} r=\sigma_{x}^{2 n}(r)=0$, and so $a=x^{n} r=x^{n+1} y r=y x^{n+1} r=$ $y^{n} x^{2 n} r=0$. Hence, $\operatorname{ker}\left(\sigma_{x}^{n}\right) \bigcap \operatorname{im}\left(\sigma_{x}^{n}\right)=0$. For any $r \in R$, we see that $r=\left(r-\sigma_{x}^{n}\left(y^{n} r\right)\right)+\sigma_{x}^{n}\left(y^{n} r\right)$, and then $R=\operatorname{ker}\left(\sigma_{x}^{n}\right)+\operatorname{im}\left(\sigma_{x}^{n}\right)$, as required.
(2) \Rightarrow (1) Write $1=a+b$ with $a \in \operatorname{ker}\left(\sigma_{x}^{n}\right)$ and $b \in \operatorname{im}\left(\sigma_{x}^{n}\right)$. For any $x \in I$. $\sigma_{x}^{n}(1)=\sigma_{x}^{n}(b)$, and so $x^{n} \in x^{2 n} R$. Thus, I is strongly π-regular.
Corollary 2.2. Let I be a strongly π-regular ideal of a ring R, and let $x \in I$. Then the following are equivalent:
(1) σ_{x} is a monomorphism.
(2) σ_{x} is an epimorphism.
(3) σ_{x} is an isomorphism.

Proof. (1) $\Rightarrow(2)$ In view of Theorem 2.1, there exists $n \geq 1$ such that $R=$ $\operatorname{ker}\left(\sigma_{x}^{n}\right) \oplus \operatorname{im}\left(\sigma_{x}^{n}\right)$. Since σ_{x} is a monomorphism, so is σ_{x}^{n}. Hence, $\operatorname{ker}\left(\sigma_{x}^{n}\right)=0$, and then $R=\operatorname{im}\left(\sigma_{x}^{n}\right)$. This implies that σ_{x} is an epimorphism.
(2) \Rightarrow (3) Since $R=\operatorname{ker}\left(\sigma_{x}^{n}\right) \oplus \operatorname{im}\left(\sigma_{x}^{n}\right)$, it follows from $R=\operatorname{im}\left(\sigma_{x}^{n}\right)$ that $\operatorname{ker}\left(\sigma_{x}^{n}\right)=0$. Hence, σ_{x} is a monomorphism. Therefore σ_{x} is an isomorphism. $(3) \Rightarrow(1)$ is trivial.

Proposition 2.3. Let I be an ideal of a ring R. Then the following are equivalent:
(1) I is strongly π-regular.
(2) For any $x \in I, R x R$ is strongly π-regular.

Proof. (1) $\Rightarrow(2)$ Let $x \in I$. For any $a \in R x R$, there exists an element $b \in I$ such that $a^{n}=a^{n+1} b$ for some $n \in \mathbb{N}$. Hence, $a^{n}=a^{n+1}\left(a b^{2}\right)$. As $a b^{2} \in R x R$, we see that $R x R$ is strongly π-regular.
$(2) \Rightarrow(1)$ For any $x \in I, R x R$ is strongly π-regular, and so there exists $y \in R x R$ such that $x^{n}=x^{n+1} y$. Clearly, $y \in I$, and therefore I is strongly π-regular.

The index of a nilpotent element in a ring is the least positive integer n such that $x^{n}=0$. The index $i(I)$ of an ideal I of a ring R is the supremum of the indices of all nilpotent elements of I. An ideal I of a ring R is of bounded index if $i(I)<\infty$. It is well known that $i(I) \leq n$ if and only if I contains no direct sums of $n+1$ nonzero pairwise isomorphic right ideals (cf. [9, Theorem 7.2]).

Theorem 2.4. Let R be a ring, and let

$$
I=\{a \in R \mid i(R a R)<\infty\} .
$$

Then I is a strongly π-regular ideal of R.
Proof. Let $x, y \in I$ and $z \in R$. Then $R x z R, R z x R \subseteq R x R$. This implies that $R x z R$ and $R z x R$ are strongly π-regular of bounded index. Hence, $x z, z x \in I$.

Obviously, $R(x-y) R \subseteq R x R+R y R$. For any $a \in R(x-y) R, a=c+d$ where $c \in R x R$ and $d \in R y R$. Since $R x R$ is strongly π-regular, there exists some $n \in \mathbb{N}$ such that $c^{n}=c^{n+1} r$ for a $r \in R$. Let $R y R$ is of bounded index m. Then $c^{n}=c^{n m+1} s$ for a $s \in R$. Hence, $a^{n m+1} s-a^{n} \in R y R$. As $R y R$ is strongly π-regular, we can find $k \in \mathbb{N}$ and $d \in R y R$ such that

$$
\begin{aligned}
\left(a^{n m+1} s-a^{n}\right)^{k} & =\left(a^{n m+1} s-a^{n}\right)^{k+1} d, \\
d & =d\left(a^{n m+1} s-a^{n}\right) d, \\
d\left(a^{n m+1} s-a^{n}\right) & =\left(a^{n m+1} s-a^{n}\right) d .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left(\left(a^{n m+1} s-a^{n}\right)-\left(a^{n m+1} s-a^{n}\right)^{2} d\right)^{k} \\
= & \left(a^{n m+1} s-a^{n}\right)^{k}\left(1-\left(a^{n m+1} s-a^{n}\right) d\right)^{k} \\
= & \left(a^{n m+1} s-a^{n}\right)^{k}\left(1-\left(a^{n m+1} s-a^{n}\right) d\right) \\
= & 0 .
\end{aligned}
$$

Therefore $\left(a^{n m+1} s-a^{n}\right)^{m}=\left(a^{n m+1} s-a^{n}\right)^{m+1} t$. As a result, $a^{n m} \in a^{n m+1} R$. Hence, we can find $r \in R$ such that $a^{n m}=a^{n m+1}(a r)$. Therefore I is a strongly π-regular ideal of R.

Corollary 2.5. Let R be a ring of bounded index. Then

$$
I=\{a \in R \mid R a R \text { is strongly } \pi \text {-regular }\}
$$

is the maximal strongly π-regular ideal of R.

Proof. Since R is of bounded index, so is $R a R$ for any $a \in R$. In view of Theorem 2.4, $I=\{a \in R \mid R a R$ is strongly π-regular $\}$ is a strongly π-regular ideal of R. Thus we complete the proof by Proposition 2.3.
Example 2.6. Let V be an infinite-dimensional vector space over a field F, let $R=\operatorname{End}_{F}(V)$, and let $I=\left\{\sigma \in R \mid \operatorname{dim}_{F} \sigma(V)<\infty\right\}$. Then I is strongly π-regular, while R is not strongly π-regular.

Proof. Clearly, I is an ideal of the ring R. We have the descending chain $\sigma(V) \supseteq \sigma^{2}(V) \supseteq \cdots$. As $\operatorname{dim}_{F} \sigma(V)<\infty$, we can find some $n \in \mathbb{N}$ such that $\sigma^{n}(V)=\sigma^{n+1}(V)$. Since V is a projective right F-module, we can find some $\tau \in R$ such that the following diagram

$$
V \stackrel{ }{ } \begin{array}{ll}
\tau \swarrow & V \\
\tau \\
\sigma^{n+1} \\
\rightarrow & \downarrow \sigma^{n} \\
\sigma^{n+1}(V)
\end{array}
$$

commutes, i.e., $\sigma^{n+1} \tau=\sigma^{n}$. Hence, $\sigma^{n}=\sigma^{n+1}\left(\sigma \tau^{2}\right)$. Therefore I is a strongly π-regular ideal of R. Let ε be an element of R such that $\varepsilon\left(x_{i}\right)=x_{i+1}$ where $\left\{x_{1}, x_{2}, \ldots\right\}$ is the basis of V. If R is strongly π-regular, there exists some $m \in \mathbb{N}$ such that $\varepsilon^{m} R=\varepsilon^{m+1} R$, and so $\varepsilon^{m}(V)=\varepsilon^{m+1}(V)$. As $\varepsilon^{m}\left(x_{i}\right)=x_{i+m}$ for all i, we see that $\varepsilon^{m}(V)=\sum_{i>m} x_{i} F \neq \sum_{i>m+1} x_{i} F=\varepsilon^{m+1}(V)$. This gives a contradiction. Therefore R is not a strongly π-regular ring.
Example 2.7. Let V be an infinite-dimensional vector space over a field F, let $R=\operatorname{End}_{F}(V)$, and let $S=\left(\begin{array}{cc}R & R \\ 0 & R\end{array}\right)$. Then $I=\left(\begin{array}{cc}0 & R \\ 0 & 0\end{array}\right)$ is a strongly π-regular ideal of R, while S is not a strongly π-regular ring.
Proof. By the discussion in Example 2.6, R is not strongly π-regular. Hence, S is not strongly π-regular. As $I^{2}=0$, one easily checks that I is a strongly π-regular ideal of the ring S.

An ideal I of a ring R is called a gsr-ideal if for any $a \in I$ there exists some integer $n \geq 2$ such that $a R a=a^{n} R a^{n}$. For instance, every ideal of strongly regular rings is a gsr-ideal.
Example 2.8. Every gsr-ideal of a ring is strongly π-regular.
Proof. Let I be a gsr-ideal of a ring R. Given $\bar{x}^{2}=\overline{0}$ in $I /(I \bigcap J(R))$, then $x^{2} \in I \bigcap J(R)$. As I is a gsr-ideal, we see that $x R x=x^{2} R x^{2} \subseteq J(R)$, i.e., $(R x R)^{2} \subseteq J(R)$. As $J(R)$ is semiprime, it follows that $R x R \subseteq J(R)$, and so $x \in J(R)$. That is, $\bar{x}=\overline{0}$. This implies that $I /(I \bigcap J(R))$ is reduced. For any idempotent $e \in I /(I \bigcap J(R))$ and any $a \in R / J(R)$, it follows from $(e a(\overline{1}-e))^{2}=0$ that $e a(\overline{1}-e)=0$, thus $e a=e a e$. Likewise, $a e=e a e$. This implies that $e a=a e$. As a result, every idempotent in $I /(I \bigcap J(R))$ is central. For any $x \in I \bigcap J(R)$, there exists some $y \in R$ such that $x^{2}=x^{2} y x^{2}$, and then $x^{2}\left(1-y x^{2}\right)=0$. This implies that $x^{2}=0$. Conversely, we let $x^{2}=0$. As I is a gsr-ideal, we see that $x R x=x^{2} R x^{2}=0$. That is, $(R x R)^{2} \subseteq J(R)$, and
so $x \in J(R)$. Therefore $I \bigcap J(R)=\left\{x \in I \mid x^{2}=0\right\}$. Let $x \in I$. Then there exists some $n \geq 2$ such that $x R x=x^{n} R x^{n}$. Hence, $x^{2}=x^{2} y x^{2}$. As $x^{2} y \in I$ is an idempotent, we see that $x^{2}-x^{6} y^{2} \in I \bigcap J(R)$. By the preceding discussion, we get $\left(x^{2}-x^{6} y^{2}\right)^{2}=0$. This implies that $x^{4}=x^{5} r$ for some $r \in I$. Thus I is strongly π-regular.

3. Stable range condition

For any $x, y \in R$, write $x \circ y=x+y+x y$. We use $x^{[n]}$ to stand for $\underbrace{x \circ \cdots \circ x}_{n}(n \geq 1)$ and $x^{[0]}=0$. The following result was firstly observed in $[8$,
Lemma 1], we include a simple proof to make the paper self-contained.
Lemma 3.1. Let $x_{i}, y_{j} \in R$, and let $p_{i}, q_{j} \in \mathbb{Z}(1 \leq i \leq m, 1 \leq j \leq n)$. If $\sum_{i} p_{i}=\sum_{j} q_{j}=1$, then $\left(\sum_{i} p_{i} x_{i}\right) \circ\left(\sum_{j} q_{j} y_{j}\right)=\sum_{i, j}\left(p_{i} q_{j}\right)\left(x_{i} \circ y_{j}\right)$. If $\sum_{i} p_{i}=\sum_{j} q_{j}=0$, then $\left(\sum_{i} p_{i} x_{i}\right)\left(\sum_{j} q_{j} y_{j}\right)=\sum_{i, j}\left(p_{i} q_{j}\right)\left(x_{i} \circ y_{j}\right)$.

Proof. For any $p_{i}, q_{j} \in \mathbb{Z}$, one easily checks that

$$
\begin{aligned}
& \sum_{i, j}\left(p_{i} q_{j}\right)\left(x_{i} \circ y_{j}\right) \\
= & \left(\sum_{i} p_{i} x_{i}\right)\left(\sum_{j} q_{j} y_{j}\right)+\left(\sum_{j} q_{j}\right)\left(\sum_{i} p_{i} x_{i}\right)+\left(\sum_{i} p_{i}\right)\left(\sum_{j} q_{j} y_{j}\right) .
\end{aligned}
$$

Therefore the result follows.
Lemma 3.2. Let I be a strongly π-regular ideal of a ring R. Then for any $x \in I$, there exists some $n \in \mathbb{N}$ such that $x^{[n]}=x^{[n+1]} \circ y=z \circ x^{[n+1]}$ for $y, z \in I$.

Proof. Let $x \in I$. Then $-x-x^{2} \in I$. Since I is a strongly π-regular ideal, there exists some $n \in \mathbb{N}$ such that $\left(-x-x^{2}\right)^{n}=\left(-x-x^{2}\right)^{n+1} s=s\left(-x-x^{2}\right)^{n+1}$. Clearly, $x-x^{[2]}=-x-x^{2}$. Thus,

$$
\left(x-x^{[2]}\right)^{n}=\left(x-x^{[2]}\right)^{n+1} s=\left(x-x^{[2]}\right)^{2 n} t
$$

where $t=s^{n}$. Since $\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}=0$, it follows from Lemma 3.1 that

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}\left(x^{[n-i]} \circ\left(x^{[2]}\right)^{[i]}\right)=\left(x-x^{[2]}\right)^{n}
$$

Thus,

$$
\begin{aligned}
\left(x-x^{[2]}\right)^{n} & =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} x^{[n+i]} \\
& =x^{[n]}+\sum_{i=1}^{n}(-1)^{i}\binom{n}{i} x^{[n+i]} .
\end{aligned}
$$

Let $u=\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i} x^{[i]}$. Then $u \circ x^{[n]}=x^{[n]} \circ u$. Since $\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i}$ $=1$, by using Lemma 2.1 again, $\left(x-x^{[2]}\right)^{n}=x^{[n]}-x^{[n]} \circ u$. Thus, we get

$$
\begin{aligned}
x^{[n]}-x^{[n]} \circ u & =\left(x^{[n]}-x^{[n]} \circ u\right)^{2} t \\
& =\left(x^{[n]}-x^{[n]} \circ u\right)\left(x^{[n]}-x^{[n]} \circ u\right)(t-0) \\
& =\left(x^{[2 n]}-x^{[2 n]} \circ u-x^{[2 n]} \circ u+x^{[2 n]} \circ u^{[2]}\right)(t-0) \\
& =x^{[2 n]} \circ\left(t-u \circ t-u \circ t+u^{[2]} \circ t+u+u-u^{[2]}\right)-x^{[2 n]} \\
& =x^{[2 n]} \circ\left(u^{2} t\right)-x^{[2 n]} .
\end{aligned}
$$

Let $v=x^{[2 n]} \circ\left(u^{2} t\right)-x^{[2 n]}$. Then

$$
\begin{aligned}
x^{[n]}= & x^{[n]} \circ u+v \\
= & \left(x^{[n]} \circ u+v-0\right) \circ u+v \\
= & x^{[n]} \circ u^{[2]}+(v \circ u-u)+v \\
& \vdots \\
= & x^{[n]} \circ u^{[n+1]}+\sum_{i=0}^{n}\left(v \circ u^{[i]}-u^{[i]}\right) .
\end{aligned}
$$

Further,

$$
\begin{aligned}
v \circ u^{[i]}-u^{[i]} & =\left(x^{[2 n]} \circ\left(u^{2} t\right)-x^{[2 n]}\right) \circ u^{[i]}-u^{[i]} \\
& =\left(x^{[2 n]} \circ\left(u^{2} t\right)-x^{[2 n]}+0\right) \circ u^{[i]}-u^{[i]} \\
& =x^{[2 n]} \circ\left(u^{2} t\right) \circ u^{[i]}-x^{[2 n]} \circ u^{[i]} .
\end{aligned}
$$

Hence

$$
x^{[n]}=x^{[n]} \circ u^{[n+1]}+\sum_{i=0}^{n}\left(x^{[2 n]} \circ\left(u^{2} t\right) \circ u^{[i]}-x^{[2 n]} \circ u^{[i]}\right) .
$$

Further, we see that
$\sum_{i=0}^{n}\left(x^{[2 n]} \circ\left(u^{2} t\right) \circ u^{[i]}-x^{[2 n]} \circ u^{[i]}\right)=x^{[2 n]} \circ\left(\sum_{i=0}^{n}\left(\left(u^{2} t\right) \circ u^{[i]}-u^{[i]}\right)+0\right)-x^{[2 n]}$.
As $\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i}=1$, we see that

$$
\begin{aligned}
u^{[n+1]} & =\left(\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i} x^{[i]}\right)^{[n+1]} \\
& =\sum_{i_{1}+\cdots+i_{n}=n+1} C_{i_{1} \cdots i_{n}} x^{\left[i_{1}+2 i_{2}+\cdots+n i_{n}\right]} \\
& =\sum_{i_{1}+\cdots+i_{n}=n+1} C_{i_{1} \cdots i_{n}} x^{[n]} \circ x^{\left[1+i_{2}+\cdots+(n-1) i_{n}\right]} .
\end{aligned}
$$

It is easy to check that $\sum_{i_{1}+\cdots+i_{n}=n+1} C_{i_{1} \cdots i_{n}}=\left(\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i}\right)^{n+1}=1$, and so $u^{[n+1]}=x^{[n]} \circ v$, where $v=\sum_{i_{1}+\cdots+i_{n}=n+1} C_{i_{1} \cdots i_{n}} x^{\left[1+i_{2}+\cdots+(n-1) i_{n}\right]}$. Therefore

$$
\begin{aligned}
x^{[n]} & =x^{[2 n]} \circ v+x^{[2 n]} \circ\left(\sum_{i=0}^{n}\left(\left(u^{2} t\right) \circ u^{[i]}-u^{[i]}\right)\right)-x^{[2 n]} \\
& =x^{[2 n]} \circ\left(v+\left(\sum_{i=0}^{n}\left(\left(u^{2} t\right) \circ u^{[i]}-u^{[i]}\right)\right)-0\right) \\
& =x^{[2 n]} \circ\left(v+\sum_{i=0}^{n}\left(\left(u^{2} t\right) \circ u^{[i]}-u^{[i]}\right)\right) .
\end{aligned}
$$

Let $y=x^{[n-1]} \circ\left(v+\sum_{i=0}^{n}\left(\left(u^{2} t\right) \circ u^{[i]}-u^{[i]}\right)\right)$. Then $x^{[n]}=x^{[n+1]} \circ y$ with $y \in I$. Likewise, $x^{[n]}=z \circ x^{[n+1]}$ for a $z \in I$, as required.
Theorem 3.3. Every strongly π-regular ideal of a ring is a B-ideal.
Proof. Let I be a strongly π-regular ideal of a ring R. Let $a \in 1+I$. Then $a-1 \in I$. In view of Lemma 2.2, we can find some $n \in \mathbb{N}, b, c \in 1+I$ such that $(a-1)^{[n]}=(a-1)^{[n+1]} \circ(b-1)=(c-1) \circ(a-1)^{[n+1]}$. One easily checks that $(a-1)^{[n]}=a^{n}-1$ and $(a-1)^{[n+1]}=a^{n+1}-1$. Therefore $a^{n}=a^{n+1} b=c a^{n+1}$, and so $a^{n} \in a^{n+1} R \bigcap R a^{n+1}$. According to [5, Proposition 13.1.2], $a \in 1+I$ is strongly π-regular. According to [5, Theorem 13.1.7], I is a B-ideal.
Corollary 3.4. Let I be a strongly π-regular ideal of a ring R, and let A be a finitely generated projective right R-module. If $A=A I$, then for any right R-modules B and $C, A \oplus B \cong A \oplus C$ implies that $B \cong C$.
Proof. For any $x \in I$, we have $n \in \mathbb{N}$ and $y \in R$ such that $x^{n}=x^{n+1} y$ and $x y=y x$. Hence $x^{n}=x^{n} z x^{n}$, where $z=y^{n}$. Let $g=z x^{n}$ and $e=g+(1-g) x^{n} g$. Then $e \in R x$ is an idempotent. In addition, we have $1-e=(1-g)\left(1-x^{n} g\right)=$ $(1-g)\left(1-x^{n}\right) \in R x$. Set $f=1-e$. Then there exists an idempotent $f \in I$ such that $f \in R x$ and $1-f \in R x$. Therefore I is an exchange ideal of R. In view of Theorem 3.3, I is a B-ideal. Therefore we complete the proof by [5, Lemma 13.1.9].

Corollary 3.5. Let I be a strongly π-regular ideal of a ring R, and let $a, b \in$ $1+I$. If $a R=b R$, then $a=b u$ for some $u \in U(R)$.

Proof. Write $a x=b$ and $a=b y$. As $a, b \in 1+I$, we see that $x, y \in 1+I$. In view of Theorem 3.3, I is a B-ideal. Since $y x+(1-y x)=1$, there exists an element $z \in R$ such that $u:=y+(1-y x) z \in U(R)$. Therefore $b u=$ $b(y+(1-y x) z)=b y=a$, as required.
Corollary 3.6. Let I be a strongly π-regular ideal of a ring R, and let $A \in$ $M_{n}(I)$ be regular. Then A is the product of an idempotent matrix and an invertible matrix.

Proof. By virtue of Theorem 3.3, I is a B-ideal. As $A \in M_{n}(I)$ is regular, we have a $B \in M_{n}(I)$ such that $A=A B A$. Since $A B+\left(I_{n}-A B\right)=I_{n}$, we get $\left(A+\left(I_{n}-A B\right)\right) B+\left(I_{n}-A B\right)\left(I_{n}-B\right)=I_{n}$ where $A+\left(I_{n}-A B\right) \in I_{n}+M_{n}(I)$. Thus, we can find a $Y \in M_{n}(R)$ such that $U:=A+\left(I_{n}-A B\right)+\left(I_{n}-A B\right)\left(I_{n}-\right.$ $B) Y \in G L_{n}(R)$. Therefore $A=A B A=A B\left(A+\left(I_{n}-A B\right)+\left(I_{n}-A B\right)\left(I_{n}-\right.\right.$ $B) Y$) $=A B U$, as required.

Let A is an algebra over a field F. An element a of an algebra A over a field F is said to be algebraic over F if a is the root of some non-constant polynomial in $F[x]$. An ideal I of A is said to be an algebraic ideal of A if every element in I is algebraic over F.

Proposition 3.7. Let A is an algebra over a field F, and let I be an algebraic ideal of A. Then I is a B-ideal.

Proof. For any $a \in I, a$ is the root of some non-constant polynomial in $F[x]$. So we can find $a_{m}, \ldots, a_{n} \in F$ such that $a_{n} a^{n}+a_{n-1} a^{n-1}+\cdots+a_{m} a^{m}=0$, where $a_{m} \neq 0$. Hence, $a^{m}=-\left(a_{n} a^{n}+\cdots+a_{m+1} a^{m+1}\right) a_{m}^{-1}=-a^{m+1}\left(a_{n} a^{n-m-1}+\right.$ $\left.\cdots+a_{m+1}\right) a_{m}^{-1}$. Set $b=-\left(a_{n} a^{n-m-1}+\cdots+a_{m+1}\right) a_{m}^{-1}$. Then $a^{m}=a^{m+1} b$. Therefore I is strongly π-regular, and so we complete the proof by Theorem 3.3.

In the proof of Theorem 3.3, we show that for any $a \in 1+I$, there exists some $n \in \mathbb{N}$ such that $a^{n}=a^{n+1} b$ for a $b \in 1+I$ if I is a strongly π-regular ideal. A natural problem asks that if the converse of the preceding assertion is true. The answer is negative from the following counterexample. Let $p \in \mathbb{Z}$ be a prime and set $\mathbb{Z}_{(p)}=\{a / b \mid b \notin \mathbb{Z} p(a / b$ in lowest terms $)\}$. Then $\mathbb{Z}_{(p)}$ is a local ring with maximal $p \mathbb{Z}_{(p)}$. Thus, the Jacobson radical $p \mathbb{Z}_{(p)}$ satisfies the condition above. Choose $p /(p+1) \in p \mathbb{Z}_{(p)}$. Then $p /(p+1) \in J\left(\mathbb{Z}_{(p)}\right)$ is not nilpotent. This shows that $p \mathbb{Z}_{(p)}$ is not strongly π-regular.

4. Periodic ideals

An ideal I of a ring R is periodic provided that for any $x \in I$ there exist distinct $m, n \in \mathbb{N}$ such that $x^{m}=x^{n}$. We note that an ideal I of a ring R is periodic if and only if for any $a \in I$, there exists a potent element $p \in I$ such that $a-p$ is nilpotent and $a p=p a$.

Lemma 4.1. Let I be an ideal of a ring R. If I is periodic, then for any $x \in 1+I$ there exist $m \in \mathbb{N}, f(t) \in \mathbb{Z}[t]$ such that $x^{m}=x^{m+1} f(x)$.
Proof. For any $a \in I$, there exists some $n \in \mathbb{N}$ such that $a^{n}=a^{n+1}\left(a^{m-n-1}\right)$ where $m \geq n+1$. For any $x \in 1+I$, we see that $x-1 \in I$. As in the proof in Lemma 3.2, we can find $f(t) \in R[t]$ such that $(x-1)^{[n]}=(x-1)^{[n+1]} \circ(f(x)-1)$. One easily checks that $(x-1)^{[n]}=x^{n}-1$ and $(x-1)^{[n+1]}=x^{n+1}-1$. Therefore $x^{n}=x^{n+1} f(x)$, as required.

Lemma 4.2. Let R be a ring, and let $c \in R$. If there exist a monic $f(t) \in \mathbb{Z}[t]$ and some $m \in \mathbb{N}$ such that $m c=0$ and $f(c)=0$, then there exist $s, t \in \mathbb{N}(s \neq t)$ such that $c^{s}=c^{t}$.

Proof. Clearly, $\mathbb{Z} c \subseteq\{0, c, \ldots,(m-1) c\}$. Write $f(t)=t^{k}+b_{1} t^{k-1}+\cdots+$ $b_{k-1} t+b_{k} \in \mathbb{Z}[t]$. Then $c^{k+1}=-b_{1} c^{k}-\cdots-b_{k-1} c^{2}-b_{k} c$. This implies that $\left\{c, c^{2}, c^{3}, \ldots, c^{l}, \ldots\right\} \subseteq\left\{c, c^{2}, c^{3}, \ldots, c^{k}, 0, c, \ldots,(m-1) c, c^{2}, \ldots,(m-1) c^{2}, \ldots\right.$, $\left.c^{k}, \ldots,(m-1) c^{k}\right\}$. That is, $\left\{c, c^{2}, c^{3}, \ldots, c^{k}, \ldots\right\}$ is a finite set. Hence, we can find some $s, t \in \mathbb{N}, s \neq t$ such that $c^{s}=c^{t}$, as desired.

As is well known, a ring R is periodic if and only if for any $x \in R$, there exist $n \in \mathbb{N}$ and $f(t) \in \mathbb{Z}[t]$ such that $x^{n}=x^{n+1} f(x)$. We extend this result to periodic ideals.

Lemma 4.3. Let I be an ideal of a ring R. If for any $x \in I$, there exist $n \in \mathbb{N}$ and $f(t) \in \mathbb{Z}[t]$ such that $x^{n}=x^{n+1} f(x)$, then I is periodic.
Proof. Let $x \in I$. If x is nilpotent, then we can find some $n \in \mathbb{N}$ such that $x^{n}=x^{n+1}=0$. Thus, we may assume that $x \in I$ is not nilpotent. By hypothesis, there exist $n \in \mathbb{N}$ and $g(t) \in \mathbb{Z}[t]$ such that $x^{n}=x^{n+1} g(x)$. Thus, $x^{n}=x^{n+1} f(x)$, where $f(x)=x(g(x))^{2} \in \mathbb{Z}[t]$. In addition, $f(0)=0$. Let $e=x^{n}(f(x))^{n}$. Then $0 \neq e=e^{2} \in R$ and $x^{n}=x^{n} e$. Set $S=e R e$ and $\alpha=e x=x e$. Then $f(\alpha)=e f(x)$. Further,

$$
\alpha^{n}(f(\alpha))^{n}=e, \alpha^{n}=x^{n}, \alpha^{n}=\alpha^{n+1} f(\alpha) .
$$

Thus, $e=\alpha^{n}(f(\alpha))^{n}=\alpha^{n+1}(f(\alpha))^{n+1}=\alpha^{n}(f(\alpha))^{n} \alpha f(\alpha)=e \alpha f(\alpha)=$ $\alpha f(\alpha)$ in S. Write $f(t)=a_{1} t+\cdots+a_{n} t^{n}$. Then $\alpha\left(a_{1} \alpha+\cdots+a_{n} \alpha^{n}\right)=e$. This implies that $\left(\alpha^{-1}\right)^{n+1}-a_{1}\left(\alpha^{-1}\right)^{n-1}-\cdots-a_{n} e=0$. Let $g(t)=t^{n+1}-a_{1} t^{n-1}-$ $\cdots-a_{n} \in \mathbb{Z}[t]$. Then $g(t)$ is a monic polynomial such that $g\left(\alpha^{-1}\right)=0$.

Let $T=\{m e \in S \mid m \in \mathbb{Z}\}$. Then T is a subring of S. For any $m e \in I$, by hypothesis, there exists $g(t) \in \mathbb{Z}[t]$ such that $(m e)^{p}=(m e)^{p+1} g(m e) \in$ $(m e)^{p+1} T$. This implies that T is strongly π-regular. Construct a map φ : $\mathbb{Z} \rightarrow T, m \rightarrow m e$. Then $\mathbb{Z} / \operatorname{Ker} \varphi \cong T$. As \mathbb{Z} is not strongly π-regular, we see that $\operatorname{Ker} \varphi \neq 0$. Hence, $T \cong \mathbb{Z}_{q}$ for some $q \in \mathbb{N}$. Thus, $q e=0$. As a result, $q \alpha^{-1}=0$. In view of Lemma 4.2, we can find some $s, t \in \mathbb{N}(s \neq t)$ such that $\left(\alpha^{-1}\right)^{s}=\left(\alpha^{-1}\right)^{t}$. This implies that $\alpha^{s}=\alpha^{t}$. Hence, $x^{n s}=x^{s t}$, as asserted.

Theorem 4.4. Let I be an ideal of a ring R. Then I is periodic if and only if
(1) I is strongly π-regular.
(2) For any $u \in U(I), u^{-1} \in \mathbb{Z}[u]$.

Proof. Suppose that I is periodic. Then I is strongly π-regular. For any $u \in U(I)$, it follows by Lemma 4.1 that there exist $m \in \mathbb{N}, f(t) \in \mathbb{Z}[t]$ such that $u^{m}=u^{m+1} f(u)$. Hence, $u f(u)=1$, and so $u^{-1} \in \mathbb{Z}[u]$.

Suppose that (1) and (2) hold. For any $x \in I$, there exist $m \in \mathbb{N}$ and $y \in I$ such that $x^{m}=x^{m} y x^{m}, y=y x^{m} y$ and $x y=y x$ from [5, Proposition
13.1.15]. Set $u=1-x^{m} y+x^{m}$. Then $u^{-1}=1-x^{m} y+y$. Hence, $u \in U(I)$. By hypothesis, there exists $g(t) \in \mathbb{Z}[t]$ such that $u g(u)=1$. Further, $x^{m}=$ $x^{m} y\left(1-x^{m} y+x^{m}\right)=x^{m} y u$. Hence, $x^{m} u^{-1}=x^{m} y$, and so $x^{m}=x^{m} y x^{m}=$ $x^{2 m} g(u)=x^{2 m} x^{m}(g(u))^{2}$. Write $(g(u))^{2}=b_{0}+b_{1} u+\cdots+b_{n} u^{n} \in \mathbb{Z}[u]$. For any $i \geq 0$, it is easy to check that $x^{m} u^{i}=x^{m}\left(1-x^{m} y+x^{m}\right)^{i} \in \mathbb{Z}[x]$. This implies that $x^{m}(g(u))^{2} \in \mathbb{Z}[x]$. According to Lemma 4.3, I is periodic.

It follows by Theorem 4.4 and Theorem 3.3 that every periodic ideal of a ring is a B-ideal.

Corollary 4.5. Let I be a strongly π-regular ideal of a ring R. If $U(I)$ is torsion, then I is periodic.
Proof. For any $u \in U(I)$, there exists some $m \in \mathbb{N}$ such that $u^{m}=1$. Hence, $u^{-1}=u^{m-1} \in \mathbb{Z}[u]$. According to Theorem 4.4, we complete the proof.
Example 4.6. Let $R=\left(\begin{array}{l}\mathbb{Z} \\ 0 \\ \mathbb{Z}\end{array}\right)$ and $I=\left(\begin{array}{ll}0 & \mathbb{Z} \\ 0 & 0\end{array}\right)$. Then I is a nilpotent ideal of R; hence, I is strongly π-regular. Clearly, $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in U(I)$, but $\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right)^{m} \neq 0$ for any $m \in \mathbb{N}$. Thus, $U(I)$ is torsion.

The example above shows that the converse of Corollary 4.6 is not true. But we can derive the following.

Proposition 4.7. Let I be an ideal of a ring R. If $\operatorname{char}(R) \neq 0$, then I is periodic if and only if
(1) I is strongly π-regular.
(2) $U(I)$ is torsion.

Proof. Suppose that I is periodic. Then I is strongly π-regular. Let $x \in U(I)$. Then x is not nilpotent. By virtue of Lemma 4.1, there exist $m \in \mathbb{N}, f(t) \in \mathbb{Z}[t]$ such that $x^{m}=x^{m+1} f(x)$. As in the proof of Lemma 4.3, we have a monic polynomial $g(t) \in \mathbb{Z}[t]$ such that $g\left(\alpha^{-1}\right)=0$. As $\operatorname{char}(R) \neq 0$, we assume that $\operatorname{char}(R)=q \neq 0$. Then $q \alpha^{-1}=0$. According to Lemma 4.2, we can find two distinct $s, t \in \mathbb{N}$ such that $\left(\alpha^{-1}\right)^{s}=\left(\alpha^{-1}\right)^{t}$. Similarly to Lemma 4.3, $x^{n s}=x^{s t}$, and so x is torsion. Therefore $U(I)$ is torsion. The converse is true by Corollary 4.5 .

References

[1] P. Ara, Strongly π-regular rings have stable range one, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3293-3298.
[2] A. Badawi, A. Y. M. Chin, and H. V. Chen, On rings with near idempotent elements, Internat. J. Pure Appl. Math. 1 (2002), no. 3, 253-259.
[3] G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296.
[4] M. Chacron, On a theorem of Herstein, Canad. J. Math. 21 (1969), 1348-1353.
[5] H. Chen, Rings Related to Stable Range Conditions, Series in Algebra 11, World Scientific, Hackensack, NJ, 2011.
[6] H. Chen and M. Chen, On strongly π-regular ideals, J. Pure Appl. Algebra 195 (2005), no. 1, 21-32.
[7] A. J. Diesl and T. J. Dorsey, A note on completeness in the theory of strongly clean rings, Preprint.
[8] X. Du and Y. Yang, The adjoint semigroup of a π-regular rings, Acta Sci. Natur. Univ. Jilin. 3 (2001), no. 3, 35-37.
[9] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, San Francisco, Melbourne, 1979.
[10] N. K. Kim and Y. Lee, On strong π-regularity and π-regularity, Comm. Algebra 39 (2011), no. 11, 4470-4485.
[11] M. Ohori, On strongly π-regular rings and periodic rings, Math. J. Okayama Univ. 27 (1985), 49-52.
[12] F. T. Shirley, Regular and Strongly Π-Regular Rings, University of Texas at Austin, 1984.
[13] L. W. White, Strongly П-Regular Rings and Matrix Rings over Regular Rings, University of Texas at Austin, 1987.
[14] H. P. Yu, On strongly π-regular rings of stable range one, Bull. Austral. Math. Soc. 51 (1995), no. 3, 433-437.

Huanyin Chen
Department of Mathematics
Hangzhou Normal University
Hangzhou 310034, P. R. China
E-mail address: huanyinchen@yahoo.cn
Handan Kose
Department of Mathematics
Ahi Evran University
Kirsehir, Turkey
E-mail address: handankose@gmail.com
Yosum Kurtulmaz
Department of Mathematics
Bilkent University
Ankara, Turkey
E-mail address: yosum@fen.bilkent.edu.tr

[^0]: Received January 7, 2013.
 2010 Mathematics Subject Classification. 16E50, 16U50, 16E20.
 Key words and phrases. strongly π-regular ideal, B-ideal, periodic ideal.
 The research of the author was supported by the Natural Science Foundation of Zhejiang Province (LY13A010019).

