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ABSTRACT

An ideal I of a ring R is strongly m-regular if for any x € I there exist n € N
and y € I such that 2" = z"T1y. We prove that every strongly 7-regular ideal
of a ring is a B-ideal. An ideal I is periodic provided that for any = € I there
exist two distinct m,n € N such that 2™ = z”. Furthermore, we prove that an

ideal I of a ring R is periodic if and only if I is strongly w-regular and for any
weU(), ut €Zu.

Key Words: strongly w-regular ideal; B-ideal; periodic ideal.

2010 Mathematics Subject Classification: 16E50, 16U50, 16E20.

1. INTRODUCTION

A ring R is strongly m-regular if for any « € R there exist n € N,y € R such that 2™ =
2"y, For instance, all artinian rings and all algebraic algebra over a filed. Such rings are
extensively studied by many authors from very different view points (cf. [1], [3-4], [7], [9-12]
and [14]). We say that an ideal I of a ring R is strongly w-regular provided that for any
x € I there exist n € N,y € I such that 2™ = 2"*!y. Many properties of strongly 7-regular
rings were extended to strongly m-regular ideals in [6].

Recall that a ring R has stable range one provided that aR 4+ bR = R with a,b € R
implies that there exists a y € R such that a + by € R is invertible. The stable range one
condition is especially interesting because of Evans’ Theorem, which states that a module
cancels from direct sums whenever has stable range one. For general theory of stable range
conditions, we refer the reader to [6]. An ideal I of a ring R is a B-ideal provided that
aR+ bR = R with a € 1 4+ 1,b € R implies that there exists a y € R such that a + by € R
is invertible. An ideal I is a ring R is stable provided that aR + bR = R witha € I,b € R
implies that there exists a y € R such that a + by € R is invertible. As is well known, every
B-ideal of a ring is stable, but the converse is not true.

In [1, Theorem 4], Ara proved that every strongly m-regular ring has stable range one.
This was extended to ideals, i.e., every strongly m-regular ideal of a ring is stable (cf. [5]).
The main purpose of this note is to extend these results, and show that every strongly =-
regular ideal of a ring is a B-ideal. An ideal I of a ring R is periodic provided that for any
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x € I there exists two distinct m,n € N such that 2 = z”. Furthermore, we show that an
ideal I of a ring R is periodic if and only if I is strongly m-regular and for any v € U(I),
u~1 € Z[u]. Several new properties of such ideals are also obtained.

Throughout, all rings are associative with an identity and all modules are unitary mod-
ules. U(R) denotes the set of all invertible elements in the ring R and U(I) = (1+I) NU(R).

2. STRONGLY II-REGULAR IDEALS

The aim of this section is to investigate more elementary properties of strongly m-regular
ideals and construct more related examples. For any x € R, we define 0, : R — R given by
o.(r) = xr for all r € R.

Theorem 2.1. Let I be an ideal of a ring R. Then the following are equivalent:
(1) I is strongly m-regular.
(2) For any x € I, there exists n > 1 such that R = ker(o}) @ im(ol).

Proof. (1) = (2) Let @ € I. In view of [6, Proposition 13.1.15], there exist n € Ny € I
such that 2" = 2"ty and 2y = yx. It is easy to check that o7 = o7%lg,. If a €
ker(o™) (N im(o?), then a = o7 (r) and 0% (a) = 0. This implies that z?"r = o2"(r) = 0,
and so a = a"r = 2" Tlyr = y2"tlr = y"2?"r = 0. Hence, ker(o?)(im(c?) = 0. For
any r € R, we see that 7 = (r — o2(y"r)) + 02 (y"r), and then R = ker(o?) 4+ im(o7), as
required.

(2) = (1) Write 1 = a + b with a € ker(o?) and b € im(c2). For any € I. o2(1) =
o™ (b), and so 2" € z?"R. Thus, I is strongly m-regular. |

Corollary 2.2. Let I be a strongly w-reqular ideal of a ring R, and let x € I. Then the
following are equivalent:

(1) o4 is a monomorphism.
(2) oy is an epimorphism.
(3) 0. is an isomorphism.

Proof. (1) = (2) In view of Theorem 2.1, there exists n > 1 such that R = ker(o])@im(o7).
Since o, is a monomorphism, so is o. Hence, ker(c?) = 0, and then R = im(cZ). This
implies that o, is an epimorphism.

(2) = (3) Since R = ker(c?) @ im(o?), it follows from R = im(c?) that ker(o?) = 0.
Hence, o, is a monomorphism. Therefore o, is an isomorphism.

(3) = (1) is trivial. O

Proposition 2.3. Let I be an ideal of a ring R. Then the following are equivalent:
(1) I is strongly m-regular.

(2) For any x € I, RxR is strongly m-regular.
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Proof. (1) = (2) Let € I. For any a € RxR, there exists an element b € I such that
a™ = a"™1b for some n € N. Hence, a™ = a""1(ab?). As ab®> € RxR, we see that RzR is
strongly m-regular.

(2) = (1) For any « € I, RzR is strongly m-regular, and so there exists a y € Rz R such
that 2™ = 2"*y. Clearly, y € I, and therefore I is strongly m-regular. O

The index of a nilpotent element in a ring is the least positive integer n such that ™ = 0.
The index i(]) of an ideal I of a ring R is the supremum of the indices of all nilpotent elements
of I. An ideal I of a ring R is of bounded index if (1) < co. It is well known that i(I) < n
if and only if I contains no direct sums of n + 1 nonzero pairwise isomorphic right ideals (cf.
[9, Theorem 7.2]).

Theorem 2.4. Let R be a ring, and let
I={a€R | i(RaR) < c0}.

Then I is a strongly w-reqular ideal of R.

Proof. Let x,y € I and z € R. Then RxzR, RzeR C RxR. This implies that RzzR and

RzxR are strongly w-regular of bounded index. Hence, xz, zx € I.
Obviously, R(z—y)R C RxR+RyR. For any a € R(x—y)R, a = c+d where ¢ € RxR and
d € RyR. Since RxR is strongly m-regular, there exists some n € N such that ¢® = ¢"*lr
for a r € R. Let RyR is of bounded index m. Then ¢® = ¢"*!s for a s € R. Hence,
a”*ls —a™ € RyR. As RyR is strongly m-regular, we can find £ € N and d € RyR such
that
(anerlS _ an)k — (anm+1s _ an)k"'ld’
d=d(a"™ s —a")d,
d(a"m s —a") = (a" s — a")d.

Hence,
) _ (a'rnn+1 an)Zd)k

)k(l_( nm+1 )d)
n)k’(l _ ( nm+1 n)d)

k

n

Therefore (a"™*!s — a")m = (amm*ls — a”)mﬂt. As a result, a™™ € o™t R. Hence, we
can find a r € R such that "™ = a"™*1(ar). Therefore I is a strongly m-regular ideal of
R. a

Corollary 2.5. Let R be a ring of bounded index. Then
I ={a € R | RaR is strongly w-regular}

is the maximal strongly m-reqular ideal of R.

Proof. Since R is of bounded index, so is RaR for any a € R. In view of Theorem 2.4,
I = {a € R | RaR is strongly w-regular} is a strongly m-regular ideal of R. Thus we
complete the proof by Proposition 2.3. O

Example 2.6. Let V be an infinite-dimensional vector space over a field F, let R =
Endp(V), and let I = {o € R | dimpo(V) < oo}. Then I is strongly w-regular, while R is
not strongly w-reqular.
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Proof. Clearly, I is an ideal of the ring R. We have the descending chain o (V) 2 o2(V) D
-+, As dimpo(V) < oo, we can find some n € N such that 0™ (V) = ¢""1(V). Since V is a
projective right F-module, we can find some 7 € R such that the following diagram

\%4
T,/ |o"

n+1

vV e otV

commutates, i.e., "7 = ¢". Hence, 0" = 0""1(072). Therefore I is a strongly m-regular
ideal of R. Let € be an element of R such that e(x;) = x,11 where {z1,22,---} is the
basis of V. If R is strongly m-regular, there exists some m € N such that €™ R = ¢™ 'R,
and so e™(V) = e™tY(V). As e™(x;) = @iym for all i, we see that e™(V) = > x,F #
i>m

S a;F = e™t(V). This gives a contradiction. Therefore R is not a strongly m-regular
i>m—+1
ring. O

Example 2.7. Let V be an infinite-dimensional vector space over a field F, let R =

Endp(V), and let S = ( 10% g > Then I = < 8 ]; ) is a strongly w-reqular ideal of R,

while S is not a strongly w-regular ring.

Proof. By the discussion in Example 2.6, R is not strongly m-regular. Hence, S is not
strongly m-regular. As I? = 0, one easily checks that I is a strongly m-regular ideal of the
ring S. m]

An ideal I of a ring R is called a gsr-ideal if for any a € I there exists some integer n > 2
such that aRa = a™ Ra™. For instance, every ideal of strongly regular rings is a gsr-ideal.

Example 2.8. FEvery gsr-ideal of a ring is strongly m-regular.

Proof. Let I be a gsr-ideal of a ring R. Given z2 =0 in I/(I()J(R)), then 2? € I J(R).
As I is a gsr-ideal, we see that xRz = z?Ra? C J(R), ie., (RzR)?> C J(R). As J(R) is
semiprime, it follows that RzR C J(R), and so x € J(R). That is, T = 0. This implies
that I/(I(J(R)) is reduced. For any idempotent e € I/(I()J(R)) and any a € R/J(R),
it follows from (ea(T — e))2 =0 that ea(1 —e) = 0, thus ea = eae. Likewise, ae = eae. This
implies that ea = ae. As a result, every idempotent in I/(I()J(R)) is central. For any
x € I J(R), there exists some y € R such that 2% = z?yz?, and then 2%(1 —yx?) = 0. This
implies that 2 = 0. Assume that 22 = 0. As I is a gsr-ideal, we see that zRz = 2?Rz? = 0.
That is, (RzR)? C J(R), and so x € J(R). Therefore INJ(R) = {x € I | 2 = 0}. Let
x € I. Then there exists some n > 2 such that zRx = 2" Ra™. Hence, 22 = 2%yx?. As
2%y € I is an idempotent, we see that x2 — 2%y? € I J(R). By the preceding discussion,
we get (2% — x6y2)2 = 0. This implies that 2* = x°r for some r € I. Thus I is strongly
m-regular. O

3. STABLE RANGE CONDITION

F it = . W "l to stand f > 1
or any =,y € R, write z oy T+y+ay e use r o stand for xo ox (n>1)

n
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and z[%) = 0. The following result was firstly observed in [1, Lemma 1], we include a simple
proof to make the paper is self-contained.

Lemma 3.1. Letz;,y; € R, and let p;,q; € Z(1 <i<m,1<j<n). IfY pi=>¢; =1,

then (2 pixi)o (X a5;) = 2 (pigj)(wioy;); If Sopi = 3¢5 = 0, then (X pixs) (X a5v5) =

i,J

2 (pigj) (i 0 y;).

i,J

Proof. For any p;,q; € Z, one easily checks that > (p;q;)(z; o y;) = (Zpimi)(z:qjyj) +
i i j

(> aj) (X piws) + (X pi) (X q;y;). Therefore the result follows.
J i i J

Lemma 3.2. Let I be a strongly w-reqular ideal of a ring R. Then for any x € I, there
exists some n € N such that ") = T oy = zo 2t fory, 2z e 1.

Proof. Let € I. Then —x — 2% € I. Since I is a strongly m-regular ideal, there exists some
n € N such that (—z — 22)" = (—z — 22)"t's = s(—z — 22)" L. Clearly, z — 22 = —z — 22
Thus,

(z— 2" = (& — 22)" s = (& — 21)™,
where t = s™. Since Y (—1) ( 7; ) =0, it follows from Lemma 3.1 that
i=0

() ( " > (211 o (22)0) = (z — 22)",

Thus,
(e = Sone((] )

=0

B n . n .
—xw+zew<.>ww.
i=1

2

n n

Let u = > (1)t ( ; )x[i]. Then uo 2™ = 2l o u. Since > (—1)*! ( 7; ) =1, by
i=1 i=1

using Lemma 2.1 again, (x - xm)n = zl") — z[" o u. Thus, we get

S gl oy = (gl — i) o)
— (el — 2] o u) () — ) o) (¢ - 0)
a2 — gl oy — g2 oy 2l o u[Q])(t -0)
= allo(t—uot—uot+uPoy+u+u—ul?)— gl
_ x[2n] ° (u2t) _ x[Zn]

Let v = 2" o (u?t) — z®"]. Then

x[n] = x[n]ou_i_v
x["]ou—i—v—O)ou—i—v

2l ou® 4+ (vou—u)+v

— gl oyl 43 (v o ull — )
=0
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Further,
vould — ¢l = (w (2n] o a;[?”]) o ulid — ¢l
= ( 2”] o [Qn] + O) le) u[l] — u[l]
227 o (u 215) o um — gl2n] o 4[]
Hence .
zlnl = gl oyl o 3 (x[%] o (th) oulil — x2n] o u[i])
i=0

Further, we see that

i (x[2"] o (u?t) ould — 27 o u[i]) = zPlo ( i ((u?t) o uld — ull) 4 0) — 2,
i=0 =0

As S (1)t ( " > =1, we see that

uln = ( i(_l)i-i-l ( 7; > x[ﬂ)[n-i-l]
— =t Z C’le z[i1+2i2+~--+’nin]
it =nt1 "
= > Ciy iy ™ o gplitiztt(n=1)in]

i1+ t+in=n+1

n .
It is easy to check that > Ciyoip, = (2 (=1) ( " ) )n+1 =1, and so ul"*+1 =
i1t tin=n+1 i=1 ?

z[™ o v, where v = > Cyy.iy, wlttiztt(0=1in] - Therefore

iy
i14-Hin=n+1

x[n] — [Zn] ov+1x [2n] o ( Z (( 2t) o u[’L u[z])) _ I[Qn]
=0

= zllo (v (Zn:((zﬂt o ullh — ulil)) —0)

=0
= 2Plo (v+ zn:(( 2t) o wll — i)

Let y = z" o (v + 3 ((u?) o ull — ull)). Then 2z = "1 o y with y € I. Likewise,
=0

zM = z o0 [t for a z € I, as required. U

Theorem 3.3. FEvery strongly w-reqular ideal of a ring is a B-ideal.

Proof. Let I be a strongly nw-regular ideal of aring R. Let a € 1+ 1. Thena—1 € I. In view
of Lemma 2.2, we can find some n € N, b, ¢ € 1+1 such that (a—1)[" = (a—1)"to(h—1) =
(c—1)o(a— 1) ["+1] " One easily checks that (a — 1) =" — 1 and (a — 1)I"*H = g+ — 1.
Therefore a” = a”“b = ca"™!, and so a™ € a"T' R Ra™*!. According to [6, Proposition
13.1.2], a € 1 + I is strongly m-regular. According to [6, Theorem 13.1.7], I is a B-ideal. O

Corollary 3.4. Let I be a strongly m-regular ideal of a ring R, and let A be a finitely
generated projective right R-module. If A = Al, then for any right R-modules B and C,
A® B= A C implies that B = C.

Proof. For any x € I, we have n € N and y € R such that 2" = 2"y and xy = yx.
Hence z" = x"™zz", where z = y™. Let ¢ = za™ and e = g + (1 — g)a™g. Then e € Rz is
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an idempotent. In addition, we have 1 —e = (1 — g)(1 — z"g) = (1 — g)(1 — 2™) € Ra.
Set f =1 —e. Then there exists an idempotent f € I such that f € Rr and 1 — f € Rx.
Therefore I is an exchange ideal of R. In view of Theorem 3.3, I is a B-ideal. Therefore we
complete the proof by [6, Lemma 13.1.9]. a

Corollary 3.5. Let I be a strongly w-regular ideal of a ring R, and let a,b € 1+ 1. If
aR = bR, then a = bu for for some u € U(R).

Proof. Write axr = b and a = by. As a,b € 1+ I, we see that z,y € 1+ [. In view of
Theorem 3.3, I is a B-ideal. Since yx + (1 — yz) = 1, there exists an element z € R such
that u:=y + (1 — yz)z € U(R). Therefore bu = b(y + (1 — yz)z) = by = a, as required. O

Corollary 3.6. Let I be a strongly m-regular ideal of a ring R, and let A € M,(I) be
reqular. Then A is the product of an idempotent matriz and an invertible matriz.

Proof. By virtue of Theorem 3.3, I is a B-ideal. As A € M,(I) is regular, we have
a B € M,(I) such that A = ABA. Since AB + (I, — AB) = I, we get (A + (I, —
AB))B + (I, — AB)(I, — B) = I, where A+ (I, — AB) € I, + M,(I). Thus, we can find
aY € M, (R) such that U := A+ (I, — AB) + (I, — AB)(I,, — B)Y € GL,(R). Therefore
A=ABA=AB(A+ (I, — AB) + (I, — AB)(I,, — B)Y) = ABU, as required. O

Let A is an algebra over a field F. An element a of an algebra A over a field F' is said
to be algebraic over F if a is the root of some non-constant polynomial in F'[z]. An ideal T
of A is said to be an algebraic ideal of A if every element in [ is algebraic over F.

Proposition 3.7. Let A is an algebra over a field F', and let I be an algebraic ideal of A.
Then I is a B-ideal.

Proof. For any a € I, a is the root of some non-constant polynomial in F[z]. So we

can find ay,, - ,a, € F such that a,a” + an_1a"" ' + -+ + a,,a™ = 0, where a,, # 0.
Hence, a™ = —(ana™ + -+ + apmyp1a™ )at = —a™ (e ™ + -+ apmyr)a,t. Set
b= —(a,a™ ™ 1+ -+ ami1)a,,t. Then a™ = a™tb. Therefore I is strongly m-regular,
and so we complete the proof by Theorem 3.3. O

In the proof of Theorem 3.3, we show that for any a € 1+ 1, there exists some n € N such
that a™ € a"t1b for a b € 1+1 if I is a strongly m-regular ideal. A natural problem asks that
if the converse of the preceding assertion is true. The answer is negative from the following
counterexample. Let p € Z be a prime and set Z,) = {a/b | b & Zp (a/b in lowest terms)}.
Then Z,) is a local ring with maximal pZ,). Thus, the Jacobson radical pZ,) satisfies the
condition above. Choose p/(p+ 1) € pZy). Then p/(p+ 1) € J(Z,)) is not nilpotent. This
shows that pZ,) is not strongly m-regular.

4. PERIODIC IDEALS

An ideal I of a ring R is periodic provided that for any = € I there exist distinct m,n € N
such that 2™ = 2™. We note that an ideal I of a ring R is periodic if and only if for any
a € 1, there exists a potent element p € I such that a — p is nilpotent and ap = pa.
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Lemma 4.1. Let I be an ideal of a ring R. If I is periodic, then for any x € 1+ I there
exist m € N, f(t) € Z[t] such that 2™ = 2™ f(z).

Proof. For any a € I, there exists some n € N such that a" = a”“(am_”_l) where

m >n+ 1. For any © € 1+ I, we see that x — 1 € I. As in the proof in Lemma 3.2, we
can find a f(t) € R[t] such that (z —1)") = (z —1)"* o (f(z) —1). One easily checks that
(z — 1D =2 — 1 and (z — 1)[**U = g7+t — 1. Therefore 2™ = 2! f(z), as required. O

Lemma 4.2. Let R be a ring, and let ¢ € R. If there exist a monic f(t) € Z[t] and some
m € N such that me =0 and f(c) = 0, then there exist s,t € N(s # t) such that ¢® = c'.

Proof. Clearly, Zc C {0,¢,---,(m — 1)c}. Write f(t) = t* +byt" "L + -  + b1t + by, €
Z[t]. Then 1 = —byck — .- — b1 — bre. This implies that {c,c?,¢®,--- ,c,---} C
{c,c?,c,---,cF 0,¢,--,(m—1)c,c?, -, (m=1)c2,--- ¥ - (m—1)cF}. Thatis, {c,c?, c?,

-,cF ...} is a finite set. Hence, we can find some s,t € N,s # t such that ¢* = ¢!, as
desired. 0

As is well known, a ring R is periodic if and only if for any x € R, there exists n € N
and f(t) € Z[t] such that 2" = 2" f(z). We extend this result to periodic ideals.

Lemma 4.3. Let I be an ideal of a ring R. If for any x € I, there exist n € N and
f(t) € Z[t] such that 2" = x" L f(z), then I is periodic.

Proof. Let z € I. If z is nilpotent, then we can find some n € N such that 2" = 2"*! = 0.
Thus, we may assume that z € I is not nilpotent. By hypothesis, there exists n € N and
g(t) € Z[t] such that 2 = 2""g(z). Thus, 2" = 2" f(z), where f(x) = x(g(m))2 € Z[t].
In addition, f(0) =0. Let e = x"(f(x))n Then 0 # e = ¢? € R and 2" = z"e. Set S = eRe
and a = ex = ze. Then f(a) = ef(z). Further,

a”(f(a))n =e,a" =z", 0" = a" " f(a).

Thus, e = a™ (f(a))n = qnt! (f(oz))nJr1 =a" (f(a))naf(a) =eaf(a) =af(a)in S. Write
f(t) = ait + -+ + ant™. Then a(aje + -+ + apa™) = e. This implies that (a=1)"*! —
ai(a~H)n=t—...—qa,e = 0. Let g(t) = t"** —a1t"" ! — ... —a, € Z[t]. Then g(t) is a monic
polynomial such that g(a=!) = 0.

Let T ={me € S | m € Z}. Then T is a subring of S. For any me € I, by hypothesis,
there exists a g(t) € Z[t] such that (me)? = (me)PT1g(me) € (me)PT. This implies that
T is strongly m-regular. Construct a map ¢ : Z — T,m — me. Then Z/Kerp 2 T. As Z
is not strongly m-regular, we see that Keryp # 0. Hence, T' = Z, for some ¢ € N. Thus,
ge = 0. As a result, ga~! = 0. In view of Lemma 4.2, we can find some s,t € N(s # t) such
that (a=1)* = (o~ 1), This implies that a® = af. Hence, 2™ = z°¢, as asserted. O

Theorem 4.4. Let I be an ideal of a ring R. Then I is periodic if and only if
(1) I is strongly m-regular.
(2) For anyu e U(I), u=! € Zu).

Proof. Suppose that I is periodic. Then I is strongly m-regular. For any v € U(I), it
follows by Lemma 4.1 that there exist m € N, f(t) € Z[t] such that u™ = u™! f(u). Hence,
uf(u) =1, and so u™! € Z[ul.

Suppose that (1) and (2) hold. For any x € I, there exist m € N and y € I such that
™ = x™ya™, y = yx™y and zy = yx from [6, Proposition 13.1.15]. Set u =1 — 2™y + z™.
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Then u=t =1 — 2™y + y. Hence, u € U(I). By hypothesis, there exists an g(t) € Z[t] such
that ug(u) = 1. Further, 2™ = xmy(l — ™y + :Em) = 2™yu. Hence, z™u~! = 2™y, and so
2™ = aMyz™ = 2?Mg(u) = p?ma™ (g(u))2 Write (g(u))2 =bg + bu+ -+ byu” € Zlu).
For any i > 0, it is easy to check that z™u’ = 2™ (1 — 2™y + xm)i € Z[z]. This implies that
™ (g(u))2 € Z[z]. According to Lemma 4.3, I is periodic. O

It follows by Theorem 4.4 and Theorem 3.3 that every periodic ideal of a ring is a B-ideal.

Corollary 4.5. Let I be a strongly w-regular ideal of a ring R. If U(I) is torsion, then I
is periodic.

Proof. For any u € U(I), there exists some m € N such that u™ = 1. Hence, u=! = u™"! €
Z[u]. According to Theorem 4.4, we complete the proof. m]

Example 4.6. Let R = ( % % > and I = < 8 % ) Then I is a nilpotent ideal of

R; hence, I is strongly w-reqular. Clearly, < (1) 1 ) e U(I), but ( (1) } > # 0 for any
m € N. Thus, U(I) is torsion. |

The example above shows that the converse of Corollary 4.6 is not true. But we can
derive the following.

Proposition 4.7. Let I be an ideal of a ring R. If char(R) # 0, then I is periodic if and
only if

(1) I is strongly m-regular.
(2) U(I) is torsion.

Proof. Suppose that I is periodic. Then [ is strongly m-regular. Let 2z € U(I). Then z is not
nilpotent. By virtue of Lemma 4.1, there exist m € N, f(t) € Z[t] such that 2™ = 2™+ f(x).
As in the proof of Lemma 4.3, we have a monic polynomial g(t) € Z[t] such that g(a~t) = 0.
As char(R) # 0, we assume that char(R) = q # 0. Then ga~! = 0. According to Lemma
4.2, we can find two distinct s,t € N such that (a=1)* = (a™!)!. Similarly to Lemma 4.3,
z™ = 2% and so z is torsion. Therefore U(I) is torsion. The converse is true by Corollary
4.5. o
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