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ABSTRACT

An ideal I of a ring R is strongly π-regular if for any x ∈ I there exist n ∈ N
and y ∈ I such that xn = xn+1y. We prove that every strongly π-regular ideal
of a ring is a B-ideal. An ideal I is periodic provided that for any x ∈ I there
exist two distinct m,n ∈ N such that xm = xn. Furthermore, we prove that an
ideal I of a ring R is periodic if and only if I is strongly π-regular and for any
u ∈ U(I), u−1 ∈ Z[u].

Key Words: strongly π-regular ideal; B-ideal; periodic ideal.

2010 Mathematics Subject Classification: 16E50, 16U50, 16E20.

1. INTRODUCTION

A ring R is strongly π-regular if for any x ∈ R there exist n ∈ N, y ∈ R such that xn =
xn+1y. For instance, all artinian rings and all algebraic algebra over a filed. Such rings are
extensively studied by many authors from very different view points (cf. [1], [3-4], [7], [9-12]
and [14]). We say that an ideal I of a ring R is strongly π-regular provided that for any
x ∈ I there exist n ∈ N, y ∈ I such that xn = xn+1y. Many properties of strongly π-regular
rings were extended to strongly π-regular ideals in [6].

Recall that a ring R has stable range one provided that aR + bR = R with a, b ∈ R
implies that there exists a y ∈ R such that a + by ∈ R is invertible. The stable range one
condition is especially interesting because of Evans’ Theorem, which states that a module
cancels from direct sums whenever has stable range one. For general theory of stable range
conditions, we refer the reader to [6]. An ideal I of a ring R is a B-ideal provided that
aR + bR = R with a ∈ 1 + I, b ∈ R implies that there exists a y ∈ R such that a + by ∈ R
is invertible. An ideal I is a ring R is stable provided that aR + bR = R with a ∈ I, b ∈ R
implies that there exists a y ∈ R such that a + by ∈ R is invertible. As is well known, every
B-ideal of a ring is stable, but the converse is not true.

In [1, Theorem 4], Ara proved that every strongly π-regular ring has stable range one.
This was extended to ideals, i.e., every strongly π-regular ideal of a ring is stable (cf. [5]).
The main purpose of this note is to extend these results, and show that every strongly π-
regular ideal of a ring is a B-ideal. An ideal I of a ring R is periodic provided that for any
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x ∈ I there exists two distinct m,n ∈ N such that xm = xn. Furthermore, we show that an
ideal I of a ring R is periodic if and only if I is strongly π-regular and for any u ∈ U(I),
u−1 ∈ Z[u]. Several new properties of such ideals are also obtained.

Throughout, all rings are associative with an identity and all modules are unitary mod-
ules. U(R) denotes the set of all invertible elements in the ring R and U(I) =

(
1+I

) ⋂
U(R).

2. STRONGLY Π-REGULAR IDEALS

The aim of this section is to investigate more elementary properties of strongly π-regular
ideals and construct more related examples. For any x ∈ R, we define σx : R → R given by
σx(r) = xr for all r ∈ R.

Theorem 2.1. Let I be an ideal of a ring R. Then the following are equivalent:

(1) I is strongly π-regular.

(2) For any x ∈ I, there exists n ≥ 1 such that R = ker(σn
x )⊕ im(σn

x ).

Proof. (1) ⇒ (2) Let x ∈ I. In view of [6, Proposition 13.1.15], there exist n ∈ N, y ∈ I
such that xn = xn+1y and xy = yx. It is easy to check that σn

x = σn+1
x σy. If a ∈

ker(σn
x )

⋂
im(σn

x ), then a = σn
x (r) and σn

x (a) = 0. This implies that x2nr = σ2n
x (r) = 0,

and so a = xnr = xn+1yr = yxn+1r = ynx2nr = 0. Hence, ker(σn
x )

⋂
im(σn

x ) = 0. For
any r ∈ R, we see that r =

(
r − σn

x (ynr)
)

+ σn
x (ynr), and then R = ker(σn

x ) + im(σn
x ), as

required.
(2) ⇒ (1) Write 1 = a + b with a ∈ ker(σn

x ) and b ∈ im(σn
x ). For any x ∈ I. σn

x (1) =
σn

x (b), and so xn ∈ x2nR. Thus, I is strongly π-regular. 2

Corollary 2.2. Let I be a strongly π-regular ideal of a ring R, and let x ∈ I. Then the
following are equivalent:

(1) σx is a monomorphism.

(2) σx is an epimorphism.

(3) σx is an isomorphism.

Proof. (1) ⇒ (2) In view of Theorem 2.1, there exists n ≥ 1 such that R = ker(σn
x )⊕im(σn

x ).
Since σx is a monomorphism, so is σn

x . Hence, ker(σn
x ) = 0, and then R = im(σn

x ). This
implies that σx is an epimorphism.

(2) ⇒ (3) Since R = ker(σn
x ) ⊕ im(σn

x ), it follows from R = im(σn
x ) that ker(σn

x ) = 0.
Hence, σx is a monomorphism. Therefore σx is an isomorphism.

(3) ⇒ (1) is trivial. 2

Proposition 2.3. Let I be an ideal of a ring R. Then the following are equivalent:

(1) I is strongly π-regular.

(2) For any x ∈ I, RxR is strongly π-regular.
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Proof. (1) ⇒ (2) Let x ∈ I. For any a ∈ RxR, there exists an element b ∈ I such that
an = an+1b for some n ∈ N. Hence, an = an+1(ab2). As ab2 ∈ RxR, we see that RxR is
strongly π-regular.

(2) ⇒ (1) For any x ∈ I, RxR is strongly π-regular, and so there exists a y ∈ RxR such
that xn = xn+1y. Clearly, y ∈ I, and therefore I is strongly π-regular. 2

The index of a nilpotent element in a ring is the least positive integer n such that xn = 0.
The index i(I) of an ideal I of a ring R is the supremum of the indices of all nilpotent elements
of I. An ideal I of a ring R is of bounded index if i(I) < ∞. It is well known that i(I) ≤ n
if and only if I contains no direct sums of n+1 nonzero pairwise isomorphic right ideals (cf.
[9, Theorem 7.2]).

Theorem 2.4. Let R be a ring, and let

I = {a ∈ R | i(RaR) < ∞}.

Then I is a strongly π-regular ideal of R.

Proof. Let x, y ∈ I and z ∈ R. Then RxzR,RzxR ⊆ RxR. This implies that RxzR and
RzxR are strongly π-regular of bounded index. Hence, xz, zx ∈ I.

Obviously, R(x−y)R ⊆ RxR+RyR. For any a ∈ R(x−y)R, a = c+d where c ∈ RxR and
d ∈ RyR. Since RxR is strongly π-regular, there exists some n ∈ N such that cn = cn+1r
for a r ∈ R. Let RyR is of bounded index m. Then cn = cnm+1s for a s ∈ R. Hence,
anm+1s − an ∈ RyR. As RyR is strongly π-regular, we can find k ∈ N and d ∈ RyR such
that (

anm+1s− an
)k =

(
anm+1s− an

)k+1
d,

d = d
(
anm+1s− an

)
d,

d
(
anm+1s− an

)
=

(
anm+1s− an

)
d.

Hence, (
(anm+1s− an)− (anm+1s− an)2d

)k

=
(
anm+1s− an

)k(
1− (anm+1s− an)d

)k

=
(
anm+1s− an

)k(
1− (anm+1s− an)d

)
= 0.

Therefore
(
anm+1s− an

)m =
(
anm+1s− an

)m+1
t. As a result, anm ∈ anm+1R. Hence, we

can find a r ∈ R such that anm = anm+1(ar). Therefore I is a strongly π-regular ideal of
R. 2

Corollary 2.5. Let R be a ring of bounded index. Then

I = {a ∈ R | RaR is strongly π-regular}

is the maximal strongly π-regular ideal of R.

Proof. Since R is of bounded index, so is RaR for any a ∈ R. In view of Theorem 2.4,
I = {a ∈ R | RaR is strongly π-regular} is a strongly π-regular ideal of R. Thus we
complete the proof by Proposition 2.3. 2

Example 2.6. Let V be an infinite-dimensional vector space over a field F , let R =
EndF (V ), and let I = {σ ∈ R | dimF σ(V ) < ∞}. Then I is strongly π-regular, while R is
not strongly π-regular.
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Proof. Clearly, I is an ideal of the ring R. We have the descending chain σ(V ) ⊇ σ2(V ) ⊇
· · · . As dimF σ(V ) < ∞, we can find some n ∈ N such that σn(V ) = σn+1(V ). Since V is a
projective right F -module, we can find some τ ∈ R such that the following diagram

V
τ ↙ ↓ σn

V
σn+1

� σn+1(V )

commutates, i.e., σn+1τ = σn. Hence, σn = σn+1(στ2). Therefore I is a strongly π-regular
ideal of R. Let ε be an element of R such that ε(xi) = xi+1 where {x1, x2, · · · } is the
basis of V . If R is strongly π-regular, there exists some m ∈ N such that εmR = εm+1R,
and so εm(V ) = εm+1(V ). As εm(xi) = xi+m for all i, we see that εm(V ) =

∑
i>m

xiF 6=∑
i>m+1

xiF = εm+1(V ). This gives a contradiction. Therefore R is not a strongly π-regular

ring. 2

Example 2.7. Let V be an infinite-dimensional vector space over a field F , let R =

EndF (V ), and let S =
(

R R
0 R

)
. Then I =

(
0 R
0 0

)
is a strongly π-regular ideal of R,

while S is not a strongly π-regular ring.

Proof. By the discussion in Example 2.6, R is not strongly π-regular. Hence, S is not
strongly π-regular. As I2 = 0, one easily checks that I is a strongly π-regular ideal of the
ring S. 2

An ideal I of a ring R is called a gsr-ideal if for any a ∈ I there exists some integer n ≥ 2
such that aRa = anRan. For instance, every ideal of strongly regular rings is a gsr-ideal.

Example 2.8. Every gsr-ideal of a ring is strongly π-regular.

Proof. Let I be a gsr-ideal of a ring R. Given x2 = 0 in I/
(
I

⋂
J(R)

)
, then x2 ∈ I

⋂
J(R).

As I is a gsr-ideal, we see that xRx = x2Rx2 ⊆ J(R), i.e., (RxR)2 ⊆ J(R). As J(R) is
semiprime, it follows that RxR ⊆ J(R), and so x ∈ J(R). That is, x = 0. This implies
that I/

(
I

⋂
J(R)

)
is reduced. For any idempotent e ∈ I/

(
I

⋂
J(R)

)
and any a ∈ R/J(R),

it follows from
(
ea(1− e)

)2 = 0 that ea(1− e) = 0, thus ea = eae. Likewise, ae = eae. This
implies that ea = ae. As a result, every idempotent in I/

(
I

⋂
J(R)

)
is central. For any

x ∈ I
⋂

J(R), there exists some y ∈ R such that x2 = x2yx2, and then x2(1−yx2) = 0. This
implies that x2 = 0. Assume that x2 = 0. As I is a gsr-ideal, we see that xRx = x2Rx2 = 0.
That is, (RxR)2 ⊆ J(R), and so x ∈ J(R). Therefore I

⋂
J(R) = {x ∈ I | x2 = 0}. Let

x ∈ I. Then there exists some n ≥ 2 such that xRx = xnRxn. Hence, x2 = x2yx2. As
x2y ∈ I is an idempotent, we see that x2 − x6y2 ∈ I

⋂
J(R). By the preceding discussion,

we get
(
x2 − x6y2

)2 = 0. This implies that x4 = x5r for some r ∈ I. Thus I is strongly
π-regular. 2

3. STABLE RANGE CONDITION

For any x, y ∈ R, write x ◦ y = x + y + xy. We use x[n] to stand for x ◦ · · · ◦ x︸ ︷︷ ︸
n

(n ≥ 1)
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and x[0] = 0. The following result was firstly observed in [1, Lemma 1], we include a simple
proof to make the paper is self-contained.

Lemma 3.1. Let xi, yj ∈ R, and let pi, qj ∈ Z(1 ≤ i ≤ m, 1 ≤ j ≤ n). If
∑
i

pi =
∑
j

qj = 1,

then
( ∑

i

pixi

)
◦
( ∑

j

qjyj

)
=

∑
i,j

(piqj)(xi◦yj); If
∑
i

pi =
∑
j

qj = 0, then
( ∑

i

pixi

)( ∑
j

qjyj

)
=∑

i,j

(piqj)(xi ◦ yj).

Proof. For any pi, qj ∈ Z, one easily checks that
∑
i,j

(piqj)(xi ◦ yj) =
( ∑

i

pixi

)( ∑
j

qjyj

)
+( ∑

j

qj

)( ∑
i

pixi

)
+

( ∑
i

pi

)( ∑
j

qjyj

)
. Therefore the result follows. 2

Lemma 3.2. Let I be a strongly π-regular ideal of a ring R. Then for any x ∈ I, there
exists some n ∈ N such that x[n] = x[n+1] ◦ y = z ◦ x[n+1] for y, z ∈ I.

Proof. Let x ∈ I. Then −x− x2 ∈ I. Since I is a strongly π-regular ideal, there exists some
n ∈ N such that (−x−x2)n = (−x−x2)n+1s = s(−x−x2)n+1. Clearly, x−x[2] = −x−x2.
Thus, (

x− x[2]
)n =

(
x− x[2]

)n+1
s =

(
x− x[2]

)2n
t,

where t = sn. Since
n∑

i=0

(−1)i

(
n
i

)
= 0, it follows from Lemma 3.1 that

n∑
i=0

(−1)i

(
n
i

) (
x[n−i] ◦ (x[2])[i]

)
=

(
x− x[2]

)n
.

Thus, (
x− x[2]

)n =
n∑

i=0

(−1)i

(
n
i

)
x[n+i]

= x[n] +
n∑

i=1

(−1)i

(
n
i

)
x[n+i].

Let u =
n∑

i=1

(−1)i+1

(
n
i

)
x[i]. Then u ◦ x[n] = x[n] ◦ u. Since

n∑
i=1

(−1)i+1

(
n
i

)
= 1, by

using Lemma 2.1 again,
(
x− x[2]

)n = x[n] − x[n] ◦ u. Thus, we get

x[n] − x[n] ◦ u =
(
x[n] − x[n] ◦ u

)2
t

=
(
x[n] − x[n] ◦ u

)(
x[n] − x[n] ◦ u

)
(t− 0)

=
(
x[2n] − x[2n] ◦ u− x[2n] ◦ u + x[2n] ◦ u[2]

)
(t− 0)

= x[2n] ◦
(
t− u ◦ t− u ◦ t + u[2] ◦ y + u + u− u[2]

)
− x[2n]

= x[2n] ◦ (u2t)− x[2n].

Let v = x[2n] ◦ (u2t)− x[2n]. Then

x[n] = x[n] ◦ u + v
=

(
x[n] ◦ u + v − 0

)
◦ u + v

= x[n] ◦ u[2] +
(
v ◦ u− u

)
+ v

...

= x[n] ◦ u[n+1] +
n∑

i=0

(
v ◦ u[i] − u[i]

)
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Further,
v ◦ u[i] − u[i] =

(
x[2n] ◦ (u2t)− x[2n]

)
◦ u[i] − u[i]

=
(
x[2n] ◦ (u2t)− x[2n] + 0

)
◦ u[i] − u[i]

= x[2n] ◦ (u2t) ◦ u[i] − x[2n] ◦ u[i]

Hence
x[n] = x[n] ◦ u[n+1] +

n∑
i=0

(
x[2n] ◦ (u2t) ◦ u[i] − x[2n] ◦ u[i]

)
Further, we see that

n∑
i=0

(
x[2n] ◦ (u2t) ◦ u[i] − x[2n] ◦ u[i]

)
= x[2n] ◦

( n∑
i=0

((u2t) ◦ u[i] − u[i]) + 0
)
− x[2n].

As
n∑

i=1

(−1)i+1

(
n
i

)
= 1, we see that

u[n+1] =
( n∑

i=1

(−1)i+1

(
n
i

)
x[i]

)[n+1]

=
∑

i1+···+in=n+1

Ci1···in
x[i1+2i2+···+nin]

=
∑

i1+···+in=n+1

Ci1···in
x[n] ◦ x[1+i2+···+(n−1)in].

It is easy to check that
∑

i1+···+in=n+1

Ci1···in
=

( n∑
i=1

(−1)i+1

(
n
i

) )n+1 = 1, and so u[n+1] =

x[n] ◦ v, where v =
∑

i1+···+in=n+1

Ci1···inx[1+i2+···+(n−1)in]. Therefore

x[n] = x[2n] ◦ v + x[2n] ◦
( n∑

i=0

((u2t) ◦ u[i] − u[i])
)
− x[2n]

= x[2n] ◦
(
v + (

n∑
i=0

((u2t) ◦ u[i] − u[i]))− 0
)

= x[2n] ◦
(
v +

n∑
i=0

((u2t) ◦ u[i] − u[i])
)

Let y = x[n−1] ◦
(
v +

n∑
i=0

((u2t) ◦ u[i] − u[i])
)
. Then x[n] = x[n+1] ◦ y with y ∈ I. Likewise,

x[n] = z ◦ x[n+1] for a z ∈ I, as required. 2

Theorem 3.3. Every strongly π-regular ideal of a ring is a B-ideal.

Proof. Let I be a strongly π-regular ideal of a ring R. Let a ∈ 1+I. Then a−1 ∈ I. In view
of Lemma 2.2, we can find some n ∈ N, b, c ∈ 1+I such that (a−1)[n] = (a−1)[n+1]◦(b−1) =
(c− 1) ◦ (a− 1)[n+1]. One easily checks that (a− 1)[n] = an− 1 and (a− 1)[n+1] = an+1− 1.
Therefore an = an+1b = can+1, and so an ∈ an+1R

⋂
Ran+1. According to [6, Proposition

13.1.2], a ∈ 1 + I is strongly π-regular. According to [6, Theorem 13.1.7], I is a B-ideal. 2

Corollary 3.4. Let I be a strongly π-regular ideal of a ring R, and let A be a finitely
generated projective right R-module. If A = AI, then for any right R-modules B and C,
A⊕B ∼= A⊕ C implies that B ∼= C.

Proof. For any x ∈ I, we have n ∈ N and y ∈ R such that xn = xn+1y and xy = yx.
Hence xn = xnzxn, where z = yn. Let g = zxn and e = g + (1 − g)xng. Then e ∈ Rx is
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an idempotent. In addition, we have 1 − e = (1 − g)
(
1 − xng

)
= (1 − g)

(
1 − xn

)
∈ Rx.

Set f = 1 − e. Then there exists an idempotent f ∈ I such that f ∈ Rx and 1 − f ∈ Rx.
Therefore I is an exchange ideal of R. In view of Theorem 3.3, I is a B-ideal. Therefore we
complete the proof by [6, Lemma 13.1.9]. 2

Corollary 3.5. Let I be a strongly π-regular ideal of a ring R, and let a, b ∈ 1 + I. If
aR = bR, then a = bu for for some u ∈ U(R).

Proof. Write ax = b and a = by. As a, b ∈ 1 + I, we see that x, y ∈ 1 + I. In view of
Theorem 3.3, I is a B-ideal. Since yx + (1 − yx) = 1, there exists an element z ∈ R such
that u := y + (1− yx)z ∈ U(R). Therefore bu = b

(
y + (1− yx)z

)
= by = a, as required. 2

Corollary 3.6. Let I be a strongly π-regular ideal of a ring R, and let A ∈ Mn(I) be
regular. Then A is the product of an idempotent matrix and an invertible matrix.

Proof. By virtue of Theorem 3.3, I is a B-ideal. As A ∈ Mn(I) is regular, we have
a B ∈ Mn(I) such that A = ABA. Since AB + (In − AB) = In, we get

(
A + (In −

AB)
)
B + (In − AB)(In − B) = In where A + (In − AB) ∈ In + Mn(I). Thus, we can find

a Y ∈ Mn(R) such that U := A + (In − AB) + (In − AB)(In −B)Y ∈ GLn(R). Therefore
A = ABA = AB

(
A + (In −AB) + (In −AB)(In −B)Y

)
= ABU , as required. 2

Let A is an algebra over a field F . An element a of an algebra A over a field F is said
to be algebraic over F if a is the root of some non-constant polynomial in F [x]. An ideal I
of A is said to be an algebraic ideal of A if every element in I is algebraic over F .

Proposition 3.7. Let A is an algebra over a field F , and let I be an algebraic ideal of A.
Then I is a B-ideal.

Proof. For any a ∈ I, a is the root of some non-constant polynomial in F [x]. So we
can find am, · · · , an ∈ F such that anan + an−1a

n−1 + · · · + amam = 0, where am 6= 0.
Hence, am = −(anan + · · · + am+1a

m+1)a−1
m = −am+1(anan−m−1 + · · · + am+1)a−1

m . Set
b = −(anan−m−1 + · · · + am+1)a−1

m . Then am = am+1b. Therefore I is strongly π-regular,
and so we complete the proof by Theorem 3.3. 2

In the proof of Theorem 3.3, we show that for any a ∈ 1+I, there exists some n ∈ N such
that an ∈ an+1b for a b ∈ 1+I if I is a strongly π-regular ideal. A natural problem asks that
if the converse of the preceding assertion is true. The answer is negative from the following
counterexample. Let p ∈ Z be a prime and set Z(p) = {a/b | b 6∈ Zp (a/b in lowest terms)}.
Then Z(p) is a local ring with maximal pZ(p). Thus, the Jacobson radical pZ(p) satisfies the
condition above. Choose p/(p + 1) ∈ pZ(p). Then p/(p + 1) ∈ J

(
Z(p)

)
is not nilpotent. This

shows that pZ(p) is not strongly π-regular.

4. PERIODIC IDEALS

An ideal I of a ring R is periodic provided that for any x ∈ I there exist distinct m,n ∈ N
such that xm = xn. We note that an ideal I of a ring R is periodic if and only if for any
a ∈ I, there exists a potent element p ∈ I such that a− p is nilpotent and ap = pa.
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Lemma 4.1. Let I be an ideal of a ring R. If I is periodic, then for any x ∈ 1 + I there
exist m ∈ N, f(t) ∈ Z[t] such that xm = xm+1f(x).

Proof. For any a ∈ I, there exists some n ∈ N such that an = an+1
(
am−n−1

)
where

m ≥ n + 1. For any x ∈ 1 + I, we see that x − 1 ∈ I. As in the proof in Lemma 3.2, we
can find a f(t) ∈ R[t] such that (x− 1)[n] = (x− 1)[n+1] ◦ (f(x)− 1). One easily checks that
(x− 1)[n] = xn − 1 and (x− 1)[n+1] = xn+1 − 1. Therefore xn = xn+1f(x), as required. 2

Lemma 4.2. Let R be a ring, and let c ∈ R. If there exist a monic f(t) ∈ Z[t] and some
m ∈ N such that mc = 0 and f(c) = 0, then there exist s, t ∈ N(s 6= t) such that cs = ct.

Proof. Clearly, Zc ⊆ {0, c, · · · , (m − 1)c}. Write f(t) = tk + b1t
k−1 + · · · + bk−1t + bk ∈

Z[t]. Then ck+1 = −b1c
k − · · · − bk−1c

2 − bkc. This implies that {c, c2, c3, · · · , cl, · · · } ⊆
{c, c2, c3, · · · , ck, 0, c, · · · , (m−1)c, c2, · · · , (m−1)c2, · · · , ck, · · · , (m−1)ck}. That is, {c, c2, c3,
· · · , ck, · · · } is a finite set. Hence, we can find some s, t ∈ N, s 6= t such that cs = ct, as
desired. 2

As is well known, a ring R is periodic if and only if for any x ∈ R, there exists n ∈ N
and f(t) ∈ Z[t] such that xn = xn+1f(x). We extend this result to periodic ideals.

Lemma 4.3. Let I be an ideal of a ring R. If for any x ∈ I, there exist n ∈ N and
f(t) ∈ Z[t] such that xn = xn+1f(x), then I is periodic.

Proof. Let x ∈ I. If x is nilpotent, then we can find some n ∈ N such that xn = xn+1 = 0.
Thus, we may assume that x ∈ I is not nilpotent. By hypothesis, there exists n ∈ N and
g(t) ∈ Z[t] such that xn = xn+1g(x). Thus, xn = xn+1f(x), where f(x) = x

(
g(x)

)2 ∈ Z[t].
In addition, f(0) = 0. Let e = xn

(
f(x)

)n. Then 0 6= e = e2 ∈ R and xn = xne. Set S = eRe
and α = ex = xe. Then f(α) = ef(x). Further,

αn
(
f(α)

)n = e, αn = xn, αn = αn+1f(α).

Thus, e = αn
(
f(α)

)n = αn+1
(
f(α)

)n+1 = αn
(
f(α)

)n
αf(α) = eαf(α) = αf(α) in S. Write

f(t) = a1t + · · · + antn. Then α
(
a1α + · · · + anαn

)
= e. This implies that (α−1)n+1 −

a1(α−1)n−1−· · ·−ane = 0. Let g(t) = tn+1−a1t
n−1−· · ·−an ∈ Z[t]. Then g(t) is a monic

polynomial such that g(α−1) = 0.
Let T = {me ∈ S | m ∈ Z}. Then T is a subring of S. For any me ∈ I, by hypothesis,

there exists a g(t) ∈ Z[t] such that (me)p = (me)p+1g(me) ∈ (me)p+1T . This implies that
T is strongly π-regular. Construct a map ϕ : Z → T,m → me. Then Z/Kerϕ ∼= T . As Z
is not strongly π-regular, we see that Kerϕ 6= 0. Hence, T ∼= Zq for some q ∈ N. Thus,
qe = 0. As a result, qα−1 = 0. In view of Lemma 4.2, we can find some s, t ∈ N(s 6= t) such
that (α−1)s = (α−1)t. This implies that αs = αt. Hence, xns = xst, as asserted. 2

Theorem 4.4. Let I be an ideal of a ring R. Then I is periodic if and only if

(1) I is strongly π-regular.

(2) For any u ∈ U(I), u−1 ∈ Z[u].

Proof. Suppose that I is periodic. Then I is strongly π-regular. For any u ∈ U(I), it
follows by Lemma 4.1 that there exist m ∈ N, f(t) ∈ Z[t] such that um = um+1f(u). Hence,
uf(u) = 1, and so u−1 ∈ Z[u].

Suppose that (1) and (2) hold. For any x ∈ I, there exist m ∈ N and y ∈ I such that
xm = xmyxm, y = yxmy and xy = yx from [6, Proposition 13.1.15]. Set u = 1− xmy + xm.
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Then u−1 = 1− xmy + y. Hence, u ∈ U(I). By hypothesis, there exists an g(t) ∈ Z[t] such
that ug(u) = 1. Further, xm = xmy

(
1− xmy + xm

)
= xmyu. Hence, xmu−1 = xmy, and so

xm = xmyxm = x2mg(u) = x2mxm
(
g(u)

)2. Write
(
g(u)

)2 = b0 + b1u + · · · + bnun ∈ Z[u].
For any i ≥ 0, it is easy to check that xmui = xm

(
1− xmy + xm

)i ∈ Z[x]. This implies that
xm

(
g(u)

)2 ∈ Z[x]. According to Lemma 4.3, I is periodic. 2

It follows by Theorem 4.4 and Theorem 3.3 that every periodic ideal of a ring is a B-ideal.

Corollary 4.5. Let I be a strongly π-regular ideal of a ring R. If U(I) is torsion, then I
is periodic.

Proof. For any u ∈ U(I), there exists some m ∈ N such that um = 1. Hence, u−1 = um−1 ∈
Z[u]. According to Theorem 4.4, we complete the proof. 2

Example 4.6. Let R =
(

Z Z
0 Z

)
and I =

(
0 Z
0 0

)
. Then I is a nilpotent ideal of

R; hence, I is strongly π-regular. Clearly,
(

1 1
0 1

)
∈ U(I), but

(
1 1
0 1

)m

6= 0 for any

m ∈ N. Thus, U(I) is torsion. 2

The example above shows that the converse of Corollary 4.6 is not true. But we can
derive the following.

Proposition 4.7. Let I be an ideal of a ring R. If char(R) 6= 0, then I is periodic if and
only if

(1) I is strongly π-regular.

(2) U(I) is torsion.

Proof. Suppose that I is periodic. Then I is strongly π-regular. Let x ∈ U(I). Then x is not
nilpotent. By virtue of Lemma 4.1, there exist m ∈ N, f(t) ∈ Z[t] such that xm = xm+1f(x).
As in the proof of Lemma 4.3, we have a monic polynomial g(t) ∈ Z[t] such that g(α−1) = 0.
As char(R) 6= 0, we assume that char(R) = q 6= 0. Then qα−1 = 0. According to Lemma
4.2, we can find two distinct s, t ∈ N such that (α−1)s = (α−1)t. Similarly to Lemma 4.3,
xns = xst, and so x is torsion. Therefore U(I) is torsion. The converse is true by Corollary
4.5. 2
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