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Abstract. An element of a ring R is strongly P -clean provided that it can

be written as the sum of an idempotent and a strongly nilpotent element that

commute. A ring R is strongly P -clean in case each of its elements is strongly

P -clean. We investigate, in this article, the necessary and sufficient conditions

under which a ring R is strongly P -clean. Many characterizations of such

rings are obtained. The criteria on strong P -cleanness of 2 × 2 matrices over

commutative projective-free rings are also determined.
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1. Introduction

An element a ∈ R is strongly clean provided that there exist an idempotent

e ∈ R and an element u ∈ U(R) such that a = e + u and eu = ue, where U(R)

is the set of all units in R. A ring R is strongly clean in case every element in

R is strongly clean. Recently, strong cleanness has been extensively studied in the

literature (cf. [1-5],[8],[10],[12],[13]). As is well known by [9] that, every 2×2 matrix

A over a field satisfies the conditions: A = E+W,E is similar to a diagonal matrix,

W ∈M2(R) is nilpotent and E and W commute. Such a decomposition over a field

is called the Jordan-Chevalley decomposition in Lie algebra theory. This motivates

us to investigate certain strong cleanness related to nilpotent property. Following

Diesl [7], a ring R is strongly nil clean provided that for any a ∈ R there exists an

idempotent e ∈ R such that a− e ∈ R is nilpotent and ae = ea. If such idempotent

is unique, we say R is uniquely nil clean. In [4], the author develop the theory

for strongly nil clean matrices. The main purpose of this article is to introduce a

subclass of strongly nil cleanness but behaving better than those ones.
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An element a of a ring R is strongly nilpotent if every sequence a = a0, a1, a2, · · ·
such that ai+1 ∈ aiRai is ultimately zero. Obviously, every strongly nilpotent

element is nilpotent. The prime radical P (R) of a ring R, i.e. the intersection of

all prime ideals, consists of precisely the strongly nilpotent elements. Replacing

nilpotent elements by strongly nilpotent elements, we shall investigate strong P -

cleanness over a ring R. An element of a ring R is called strongly P -clean provided

that it can be written as the sum of an idempotent and an element in P (R) that

commute. A ring R is strongly P -clean in case each of its elements is strongly P -

clean. In Section 2, we give several necessary and sufficient conditions under which

a ring R is strongly P -clean. Many characterizations of such rings are obtained.

A ring R is said to be local if R has only one maximal right ideal. In Section 3,

the strong P -cleanness of triangular matrix ring over a local ring is determined.

Finally, we characterize strongly P -clean matrix over commutative local rings by

means of the solvability of quadratic equations.

Throughout, all rings are associative rings with identity. As usual, Mn(R) de-

notes the ring of all n × n matrices over a ring R and GL2(R) denotes the 2-

dimensional general linear group of a ring R. An ideal I of a ring R is locally

nilpotent provided that for any x ∈ I, RxR is nilpotent. Let a ∈ R. Then

ann`(a) = {r ∈ R | ra = 0} and annr(a) = {r ∈ R | ar = 0}. J(R) and

P (R) stand for the Jacobson radical and prime radical of R, respectively.

2. Strongly P -Clean Rings

Recall that a ringR is Boolean provided that every element inR is an idempotent.

Obviously, all Boolean rings are commutative. Let R be a ring. Then P (R) = {x ∈
R | RxR is nilpotent}. We begin with the connection between strong P -cleanness

and strong cleanness.

Theorem 2.1. A ring R is strongly P -clean if and only if

(1) R is strongly clean.

(2) R/J(R) is Boolean.

(3) J(R) is locally nilpotent.

Proof. Suppose that R is strongly P -clean. Let x ∈ R. Then there exist an

idempotent e ∈ R and a w ∈ P (R) such that x = e + w and ew = we. Thus,

x = (1 − e) + ((2e − 1) + w). Since w ∈ P (R) ⊆ J(R) and 2e − 1 is invertible

and ew = we, (2e − 1) + w ∈ J(R). Hence, x ∈ R is strongly clean. Thus, R is

strongly clean. Clearly, P (R) ⊆ J(R). This implies that R/J(R) is Boolean. Let

x ∈ J(R). Then there exist an idempotent e ∈ R and an element w ∈ P (R) such

that x = e + w. Clearly, w ∈ J(R), and so e = x − w ∈ J(R). This implies that
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e = 0. Hence, x = w ∈ P (R), i.e., RxR is nilpotent. Therefore J(R) is locally

nilpotent.

Conversely, assume that conditions (1), (2) and (3) hold. Let x ∈ R. Since R is

strongly clean, we can find an idempotent e ∈ R and an invertible u ∈ R such that

x = e+ u and ex = xe. Thus, x = (1− e) + (2e− 1 + u) and (1− e)2 = 1− e. As

R/J(R) is Boolean, we see that u2 = u, and so u−1 ∈ J(R). As 2
2

= 2 ∈ R/J(R),

we deduce that 2 ∈ J(R); hence, 2e−1+u ∈ J(R). Since J(R) is locally nilpotent,

R(2e− 1 + u)R is nilpotent; hence, 2e− 1 + u ∈ P (R), as required. �

Recall that a ring R is strongly J-clean provided that for any x ∈ R, there exists

an idempotent e ∈ R such that x−e ∈ J(R) and xe = ex (cf.[5]). One easily checks

that a ring R is strongly P -clean if and only if R is strongly J-clean and J(R) is

locally nilpotent.

Corollary 2.2. Let R be a local ring. Then the following are equivalent:

(1) R is strongly P -clean.

(2) R/J(R) ∼= Z2 and J(R) is locally nilpotent.

Proof. It is immediate from Theorem 2.1. �

The following example shows that strongly clean rings may be not strongly P -

clean.

Example 2.3. Let R =
∞∏

n=1
Z2n . For each n, Z2n is a local ring with the Jacobson

radical 2Z2n . One easily checks that Z2n is strongly clean. Thus, R is strongly

clean. Choose r = (0, 2, 2, 2, · · · ). It is easy to check that r ∈ R is not strongly

P -clean. Therefore R is not a strongly P -clean ring.

Let comm(x) = {r ∈ R | xr = rx} and comm2(x) = {r ∈ R | ry = yr for all y ∈
comm(x)}.

Theorem 2.4. Let R be a ring. Then the following are equivalent:

(1) R is strongly P -clean.

(2) R/P (R) is Boolean.

(3) For any x ∈ R, there exists an idempotent e ∈ R such that x− e ∈ P (R).

(4) For any x ∈ R, there exists an idempotent e ∈ comm2(x) such that x− e ∈
P (R).

(5) For any x ∈ R, there exists a unique idempotent e ∈ R such that x − e ∈
P (R) and xe = ex.

Proof. (1)⇒ (3) is trivial.

(3)⇒ (2) is clear.
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(2)⇒ (4) By hypothesis, R/P (R) is Boolean. For any x ∈ R, then x ∈ R/P (R)

is an idempotent. Hence, x−x2 ∈ P (R), i.e., x(1−x) ∈ P (R). Write xn(1−x)n = 0.

Let f(t) =
n∑

i=0

(
2n

i

)
t2n−i(1− t)i ∈ Z[t]. Then f(t) ≡ 0 (mod tn). It follows from

f(t) +

2n∑
i=n+1

(
2n

i

)
x2n−i(1− t)i =

(
t+ (1− t)

)n
= 1

that f(t) ≡ 1
(
mod (1 − t)n

)
. Thus, f(t)

(
1 − f(t)

)
≡ 0

(
mod tn(1 − t)n

)
. Let

e = f(x). We see that e(1 − e) = 0; hence, e ∈ R is an idempotent. For any

y ∈ comm(x), we have yx = xy, and then ye = yf(x) = f(x)y = ey. This implies

that y ∈ comm2(x). Further, x− e ∈ P (R).

(4) ⇒ (5) For any x ∈ R, there exists an idempotent e ∈ comm2(x) such that

x− e ∈ P (R). As x ∈ comm(x), we get ex = xe. If there is an idempotent f ∈ R
such that x − f ∈ P (R) and xf = fx, then f ∈ comm(x). This implies that

ef = fe, and so e− f = (x− f)− (x− e) ∈ P (R). But (e− f)3 = e− f , and then

(e− f)
(
1− (e− f)2

)
= 0. Therefore e = f , as desired.

(5)⇒ (1) is trivial. �

Immediately, we see that every Boolean ring is strongly P -clean. As every

Boolean ring has stable range one, it follows from Theorem 2.4 that every strongly

P -clean ring has stable range one. As usual, we call R periodic if for each x ∈ R,

there exist distinct positive integers m,n such that xm = xn.

Corollary 2.5. A ring R is strongly P -clean if and only if

(1) R is periodic.

(2) Every element in 1 + U(R) is strongly nilpotent.

Proof. Suppose R is strongly P -clean. For any x ∈ R, it follows by Theorem

2.4 that x − x2 ∈ P (R). Thus, (x − x2)n = 0 for some n ∈ N. This shows that

xn = xn+1f(x), where f(t) ∈ Z[t]. By using Herstein’s Theorem, R is periodic.

Let x ∈ 1 + U(R). Write x = e + w with e = e2, w ∈ P (R) and we = ew. Then

1− x = (1− e)−w, and so 1− e = (1− x) +w ∈ U(R). It follows that e = 0, and

therefore x = w ∈ P (R) is strongly nilpotent.

Conversely, assume that (1) and (2) hold. Since R is periodic, it is strongly

π-regular. In view of [3, Proposition 13.1.8], there exist e = e2 ∈ R, u ∈ U(R) and

a nilpotent w ∈ R such that x = eu+ w, where e, u, w commutate. By hypothesis,

1−u ∈ P (R), and then u ∈ 1+P (R). Moreover, we see that w = 1−(1−w) ∈ P (R).

Accordingly, x = e +
(
w − x(1 − u)

)
with w − x(1 − u) ∈ P (R). Therefore R is

strongly P -clean. �



120 HUANYIN CHEN, HANDAN KÖSE AND YOSUM KURTULMAZ

Let Z2n [i] = {a + bi | a, b ∈ Z2n , i
2 = −1}(n ≥ 2). Then we claim that

Z2n [i] is strongly P -clean. One easily checks that P (Z2n [i]) = (1 + i). Further,

Z2n [i]/P
(
Z2n [i]

) ∼= Z2 is Boolean, and we are through by Theorem 2.4.

Let R =

(
Z2 Z2

0 Z2

)
. Then P (R) =

(
0 Z2

0 0

)
. Hence, R/P (R) ∼= Z2 ⊕ Z2,

and so R/P (R) is Boolean. Therefore R is strongly P -clean.

Lemma 2.6. Every homomorphic image of strongly P -clean rings is strongly P -

clean.

Proof. Let I be an ideal of a strongly P -clean ring R. Let M be a prime ideal of

R/I. Then M = P/I, where P is a prime ideal of R. Let x ∈ R/I. In light of

Theorem 2.4, x − x2 ∈ P ; hence, x − x2 ∈ M . This shows that x − x2 ∈ P
(
R/I

)
.

Thus R/I/P
(
R/I

)
is Boolean, and we therefore complete the proof by Theorem

2.4. �

Lemma 2.7. Let I be a nilpotent ideal of a ring R. Then R is strongly P -clean if

and only if R/I is strongly P -clean.

Proof. If R is strongly P -clean, then so is R/I by Lemma 2.6. Write In = 0(n ∈
N). Suppose R/I is strongly P -clean. For any x ∈ R, it suffices to show that

x − x2 ∈ P (R) by Theorem 2.4. Given x − x2 = a0, a1, · · · , an, · · · with each

ai+1 ∈ aiRai, we have x− x2 = a0, a1, · · · , an, · · · with each ai+1 ∈ ai(R/I)ai. As

R/I is strongly P -clean, it follows by Theorem 2.4 that am = 0 for some m ∈ N.

Hence, am ∈ I. This shows that an+m ∈
(
amR

)(
amR

)
· · ·
(
amR

)︸ ︷︷ ︸
n

⊆ In = 0.

Therefore x− x2 ∈ P (R), hence the result. �

Theorem 2.8. Let I be an ideal of a ring R. Then the following are equivalent:

(1) R/I is strongly P -clean.

(2) R/In is strongly P -clean for some n ∈ N.

(3) R/In is strongly P -clean for all n ∈ N.

Proof. (1)⇒ (3) It is easy to verify that

R/I ∼=
(
R/In

)
/
(
I/In

)
.

As
(
I/In

)n
= 0, we see that R/I is strongly P -clean, by Lemma 2.7.

(3)⇒ (2) is trivial.

(2)⇒ (1) Clearly,

R/I ∼=
(
R/In

)
/
(
I/In

)
.

Therefore the proof is completed in terms of Lemma 2.6. �
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Lemma 2.9. Every finite subdirect product of strongly P -clean rings is strongly

P -clean.

Proof. Let R be the subdirect product of R1, · · · , Rn, where each Ri is strongly

P -clean. Then
n⊕

i=1

Ri is strongly P -clean. Furthermore, R is a subring of
n⊕

i=1

Ri.

Let x ∈ R. Then x − x2 ∈ P
( n⊕
i=1

Ri

)
. Given x − x2 = a0, a1, · · · , am, · · · in R

and each ai+1 ∈ aiRai, we see that x− x2 = a0, a1, · · · , am, · · · in
n⊕

i=1

Ri and each

ai+1 ∈ ai
( n⊕
i=1

Ri

)
ai. In view of Theorem 2.4, x − x2 ∈ P

( n⊕
i=1

Ri

)
. Hence, we

can find some s ∈ N such that as = 0. This implies that x − x2 ∈ P (R). That is,

R/P (R) is Boolean. In light of Theorem 2.4, R is strongly P -clean, as required. �

Proposition 2.10. Let I and J be ideals of a ring R. Then the following are

equivalent:

(1) R/I and R/J are strongly P -clean.

(2) R/
(
IJ
)

is strongly P -clean.

(3) R/
(
I
⋂
J
)

is strongly P -clean.

Proof. (1)⇒ (3) Construct maps f : R/
(
I
⋂
J
)
→ R/I, x+

(
I
⋂
J
)
7→ x+ I and

g : R/
(
I
⋂
J
)
→ R/J, x +

(
I
⋂
J
)
7→ x + J . Then ker(f)

⋂
ker(g) = 0. Therefore

R/
(
I
⋂
J
)

is the subdirect product of R/I and R/J . Thus, R/
(
I
⋂
J
)

is strongly

P -clean, by Lemma 2.9.

(3) ⇒ (2) Obviously, R/
(
I
⋂
J
) ∼= (

R/IJ
)
/
(
(I
⋂
J)/IJ

)
, and

(
(I
⋂
J)/IJ

)2
=

0. In view of Lemma 2.7, R/
(
IJ
)

is strongly P -clean.

(2) ⇒ (1) As R/I ∼=
(
R/IJ

)
/
(
I/IJ

)
, it follows from Lemma 2.6 that R/I is

strongly P -clean. Likewise, R/J is strongly P -clean. �

We say that a ring R is uniquely P -clean provided that for any x ∈ R there

exists a unique idempotent e ∈ R such that x − e ∈ P (R), and that R is uniquely

nil-clean provided that for any x ∈ R there exists a unique idempotent e ∈ R such

that x− e is nilpotent. Every uniquely P -clean ring is uniquely nil-clean.

Theorem 2.11. Let R be a ring. Then R is uniquely P -clean if and only if

(1) R is abelian.

(2) R is strongly P -clean.

Proof. Suppose R is uniquely P -clean. For all x ∈ R there exists a unique idem-

potent e ∈ R such that x − e ∈ P (R). Thus, R/P (R) is Boolean. In view of

Theorem 2.4, R is strongly P -clean. Furthermore, ex− exe2 = ex− exe = 0.

Hence, ex−exe ∈ P (R). Clearly, e and e+ex−exe ∈ R are idempotents, and that

e − e, e − (e + ex − exe) ∈ P (R). By the uniqueness, we get ex = exe. Likewise,
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xe = exe, and so ex = xe. That is, every idempotent in R is central. Therefore R

is abelian.

Conversely, assume that (1) and (2) hold. For any x ∈ R, there exists an

idempotent e ∈ R such that x−e ∈ P (R). Suppose that x−f ∈ P (R) where f ∈ R
is an idempotent. Then e− f = (x− f)− (x− e) ∈ P (R). Hence, we can find some

n ∈ N such that (e− f)2n+1 = e− f = 0. This implies that e = f , as required. �

In light of Theorem 2.11, one directly verifies that Z4 is uniquely P -clean. Recall

that a ring R is uniquely clean provided that each element in R has a unique repre-

sentation as the sum of an idempotent and a unit (cf. [12]). Let R =

(
Z2 Z2

0 Z2

)
.

By [12, Example 21], R is not uniquely clean. But it is strongly P -clean.

Corollary 2.12. Every uniquely P -clean ring is uniquely clean.

Proof. In view of Theorem 2.1, R is strongly clean. Write x = e + u where

e = e2 ∈ R and u ∈ U(R). Then (1− e)− x = (1− 2e)− u. Clearly, (1− 2e)2 = 1.

As R/P (R) is Boolean, we see that u = 1− 2e = 1. Thus, (1 − 2e) − u ∈ P (R).

This implies that (1 − e) − x ∈ P (R). Write x = f + v where f = f2 ∈ R and

v ∈ U(R). Likewise, (1− f)− x ∈ P (R). By the uniqueness, we get 1− e = 1− f ,

and then e = f . Therefore R is uniquely clean. �

Corollary 2.13. Let R be uniquely P -clean. Then T = {(aij) ∈ Tn(R) | a11 =

· · · = ann} is strongly P -clean.

Proof. Let S = {(aij) ∈ Tn(R) | a11 = · · · = ann = 0}. Then S be a ring (not

necessary unitary), and S is a R-R-bimodule in which (s1s2)r = s1(s2r), r(s1s2) =

(rs1)s2 and (s1r)s2 = s1(rs2) for all s1, s2 ∈ S, r ∈ R. Construct I(R;S) =

{(r, s) | r ∈ R, s ∈ S}. Define (r1, s1)+(r2, s2) = (r1 +r2, s1 +s2); (r1, s1)(r2, s2) =

(r1r2, s1s2 + r1s2 + s1r2). Then I(R;S) is a ring with an identity (1, 0). Obviously,

T ∼= I(R;S). Let (r, s) ∈ I(R;S). Since R is strongly P -clean, write r = e+w, ew =

we, e = e2 ∈ R,w ∈ P (R). Hence, (r, s) = (e, 0) + (w, s). Clearly, (e, 0)2 = (e, 0).

In light of Proposition 2.10, every idempotent in R is central, we see that es = se,

and so (e, 0)(w, s) = (w, s)(e, 0). As w ∈ P (R), we can find some m ∈ N such

that (RwR)m = 0. This implies that
(
I(R;S)(w, s)I(R;S)

)m+n
= (0, 0). Hence,

(w, s) ∈ P
(
I(R;S)

)
. Therefore I(R;S) is strongly P -clean, as required. �

Theorem 2.14. Let R be a ring. Then R is uniquely P -clean if and only if

(1) R is strongly P -clean.

(2) R is uniquely nil clean.

Proof. Suppose R is uniquely P -clean. It follows by Proposition 2.10 that R is

strongly P -clean. Additionally, R is abelian. Let w ∈ R is nilpotent. Then we
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have an idempotent e ∈ R such that w − e ∈ P (R) and we = ew. This shows that

e = w − (w − e) ∈ R is nilpotent. Hence, e = 0, and so w ∈ P (R). Therefore R is

uniquely nil clean.

Conversely, assume that (1) and (2) hold. Then R is abelian. Therefore we

complete the proof by Proposition 2.10. �

We note that { uniquely P - clean rings } $ { strongly P -clean rings } $ { strongly

clean rings }.

3. Triangular Matrix Rings

We use Tn(R) to denote the ring of all upper triangular n×n matrix over a ring

R. The aim of this section is to investigate the conditions under which Tn(R) is

strongly P -clean for a local ring R.

Lemma 3.1. Let R be a ring, and let a = e+w be a strongly P -clean decomposition

of a in R. Then ann`(a) ⊆ ann`(e) and annr(a) ⊆ annr(e).

Proof. Let r ∈ ann`(a). Then ra = 0. Write a = e + w, e = e2, w ∈ P (R) and

ew = we. Then re = −rw; hence, re = −rwe = −rew. It follows that re(1+w) = 0

as 1+w ∈ U(R), and so re = 0. That is, r ∈ ann`(e). Therefore ann`(a) ⊆ ann`(e).
A similar argument shows that annr(a) ⊆ annr(e). �

Theorem 3.2. Let R be a ring, and let f ∈ R be an idempotent. Then a ∈ fRf
is strongly P -clean in R if and only if a ∈ fRf is strongly P -clean in fRf .

Proof. Suppose that a = e + w, e = e2 ∈ fRf,w ∈ P (fRf) and ew = we. Then

there exists some n ∈ N such that (fRfwfRf)n = 0, and so (RfwfR)n+4 = 0.

That is, (RwR)n+4 = 0. This infers that w ∈ P (R). Hence, a ∈ fRf is strongly

P -clean in R.

Conversely, suppose that a = e + w, e = e2 ∈ R,w ∈ P (R) and ew = we. As

a ∈ fRf , it follows from Lemma 3.1 that

1− f ∈ ann`(a)
⋂
annr(a)

⊆ ann`(e)
⋂
annr(e)

= R(1− e)
⋂

(1− e)R
= (1− e)R(1− e).

Hence, ef = e = fe. We observe that a = fef + fwf , (fef)2 = fef . Furthermore,

fef ·fwf = fewf = fwef = fwf ·fef . As w ∈ P (R), there exists some n ∈ N such

that (RwR)n = 0. Thus, (fRfwfRf)n ⊆ (RwR)n = 0, and so fwf ∈ P (fRf).

Therefore we complete the proof. �
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As is well known, every corner of a strongly clean ring is strongly clean. Analo-

gously, we can derive the following.

Corollary 3.3. A ring R is strongly P -clean if and only if so is eRe for all idem-

potents e ∈ R.

Let a ∈ R. Then la : R → R and ra : R → R denote, respectively, the abelian

group endomorphisms given by la(r) = ar and ra(r) = ra for all r ∈ R. Thus,

la − rb is an abelian group endomorphism such that (la − rb)(r) = ar − rb for any

r ∈ R.

Lemma 3.4. Let R be a local ring and suppose that A = (aij) ∈ Tn(R). Then for

any set {eii} of idempotents in R such that eii = ejj whenever laii
− rajj

is not a

surjective abelian group endomorphism of R, there exists an idempotent E ∈ Tn(R)

such that AE = EA and Eii = eii for every i ∈ {1, · · · , n}.

Proof. See [1, Lemma 7]. �

Theorem 3.5. Let R be a local ring. Then the following are equivalent:

(1) R is strongly P -clean.

(2) R is uniquely P -clean.

(3) R/J(R) ∼= Z2 and J(R) is locally nilpotent.

(4) Tn(R) is strongly P -clean.

Proof. (1)⇒ (2) is obvious from Theorem 2.11.

(2) ⇒ (3) In view of Theorem 2.1, R/J(R) is Boolean, and J(R) is locally

nilpotent. As R is local, we get R/J(R) ∼= Z2.

(3) ⇒ (4) Let A = (aij) ∈ Tn(R). We need to construct an idempotent E ∈
Tn(R) such that EA = AE and such that A − E ∈ P

(
Tn(R)

)
. By hypothesis,

R/J(R) ∼= Z2 and J(R) is locally nilpotent. Thus, R = J(R)
⋃(

1 + J(R)
)
. Begin

by constructing the main diagonal of E. Set eii = 0 if aii ∈ J(R), and set eii = 1

otherwise. Thus, aii − eii ∈ J(R) for every i. If eii 6= ejj , then it must be the case

(without loss of generality) that aii ∈ U(R) and ajj ∈ J(R). Thus, ajj ∈ P (R) is

nilpotent. Write amjj = 0. Construct a map ϕ = la−1
ii

+ la−2
ii
rajj

+ · · ·+ la−m
ii
ram−1

jj
:

R → R. For any r ∈ R, it is easy to verify that
(
laii
− rajj

)(
ϕ(r)

)
= r. Thus,

laii
−rajj

: R→ R is surjective. According to Lemma 3.4, there exists an idempotent

E ∈ Tn(R) such that AE = EA and Eii = eii for every i ∈ {1, · · · , n}. Further,

aii − eii ∈ P (R). Write
(
R(aii − eii)R

)mi
= 0. Then one easily checks that

(
Tn(R)(A− E)Tn(R)

) n∑
i=1

mi+n+1
= 0.

This implies that A− E ∈ P
(
Tn(R)

)
. Therefore Tn(R) is strongly P -clean.

(4)⇒ (1) is clear by Corollary 3.3. �



STRONGLY P -CLEAN RINGS AND MATRICES 125

We close this section by considering a single 2 × 2 strongly P -clean triangular

matrix over a local ring.

Proposition 3.6. Let R be a local ring, let A =

(
a v

0 b

)
∈ T2(R). Then A is

strongly P -clean if and only if a and b are in P (R) or 1 + P (R).

Proof. Suppose that A is strongly P -clean and A, I2−A 6∈ P
(
T2(R)

)
. Then there

exists some E =

(
e w

0 f

)
∈ R such that

(
a v

0 b

)
− E ∈ P

(
T2(R)

)
and

(
a v

0 b

)
E = E

(
a v

0 b

)
.

Since A and B are local rings, we see that e = 0, 1 and f = 0, 1. Thus, E =(
1 x

0 0

)
or E =

(
0 x

0 1

)
where x ∈ R. This implies that a ∈ P (R), b ∈

1 + P (R) or a ∈ 1 + P (R), b ∈ P (R), as desired.

Suppose that a, b ∈ P (R) or a, b ∈ 1A + P (R), then A ∈ M2(R) is strongly P -

clean. Assume that a ∈ 1 + P (R), b ∈ P (R). As P (R) is locally nilpotent, we may

write bm = 0. Construct a map ϕ = la−1 +la−2rb+· · ·+la−mrbm−1 : R→ R. Choose

x = ϕ(v). Then one easily checks that
(
la − rb

)(
ϕ(v)

)
= v. Hence, ax − xb = v.

Choose E =

(
1 x

0 0

)
. Then E = E2, A− E ∈ P

(
T2(R)

)
and

AE =

(
a ax

0 0

)
=

(
a v + xb

0 0

)
= EA.

Assume that a ∈ P (R), b ∈ 1 + P (R). Analogously, we can find an idempotent

E ∈ T2(R) such that AE = EA and A − E ∈ P
(
T2(R)

)
. Therefore A ∈ T2(R) is

strongly P -clean. �

Example 3.7. Let Z3n [α] = {a + bα | a, b ∈ Z3n , α
2 + α + 1 = 0}(n ≥ 1). Then

P
(
Z3n [α]

)
=
(
1 − α

)
, i.e., the principal generated by 1 − α ∈ Z3n [α]. Therefore

Z3n [α] is local. Additionally, T2
(
Z3n [α]

)
is not strongly P -clean, by Theorem 3.5.

But, we see from Proposition 3.6 that

(
x z

0 y

)
∈ T2

(
Z3n [α]

)
is strongly P -clean

if and only if x, y ∈
(
1− α

)
or 1 +

(
1− α

)
.

4. Strongly P -Clean Matrices

The main purpose of this section is to investigate the strong P -cleanness of a

single matrix over commutative local rings. We start with a well known result.

Lemma 4.1. [11, Theorem 4.29] Let R be a ring. Then P
(
Mn(R)

)
= Mn

(
P (R)

)
.
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Theorem 4.2. Let R be a local ring. Then A ∈ M2(R) is strongly P -clean if

and only if A ∈ M2

(
P (R)

)
or I2 − A ∈ M2

(
P (R)

)
or A is similar to a matrix(

λ 0

0 µ

)
, where λ ∈ 1 + P (R), µ ∈ P (R).

Proof. If A ∈ M2

(
P (R)

)
or I2 − A ∈ M2

(
P (R)

)
, it follows by Lemma 4.1 that

either A or I2−A is in P
(
M2(R)

)
, and so A is strongly P -clean. For any w1, w2 ∈

P (R), we see that

(
1 + w1 0

0 w2

)
=

(
1 0

0 0

)
+

(
w1 0

0 w2

)
. In light of

Lemma 4.1,

(
w1 0

0 w2

)
∈M2

(
P (R)

)
. Thus, one direction is clear.

Conversely, assume that A ∈ M2(R) is strongly P -clean, and that A, I2 − A 6∈
M2

(
P (R)

)
. Then there exist an idempotent E ∈ M2(R) and a W ∈ P

(
M2(R)

)
such that A = E + W with EW = WE. This implies that the idempotent

E 6= 0, I2. In view of [3, Lemma 16.4.11], E is similar to

(
0 w1

1 1 + w2

)
. As

E = E2, we deduce that w1 = w2 = 0; hence, E is similar to

(
0 0

1 1

)
. Ob-

viously,

(
1 0

1 1

)(
0 0

1 1

)(
1 0

−1 1

)
=

(
0 0

0 1

)
. Thus, we have an H ∈

GL2(R) such that HEH−1 =

(
1 0

0 0

)
. Thus, HAH−1 =

(
1 0

0 0

)
+HWH−1.

Set V = (vij) := HWH−1. It follows from EW = WE that

(
1 0

0 0

)
V =

V

(
1 0

0 0

)
; hence, v12 = v21 = 0 and v11, v22 ∈ P (R). Therefore A is similar to(

1 + v11 0

0 v22

)
, as desired. �

Lemma 4.3. Let R be a local ring, and let A ∈M2(R) be strongly P -clean. Then

A ∈ M2

(
P (R)

)
or I2 − A ∈ M2

(
P (R)

)
or A is similar to a matrix

(
0 λ

1 µ

)
,

where λ ∈ P (R), µ ∈ 1 + P (R).

Proof. If A, I2 − A 6∈ M2

(
P (R)

)
, it follows from Theorem 4.2 that there exists a

P ∈ GL2(R) such that P−1AP =

(
α 0

0 β

)
, where α ∈ 1 +P (R), β ∈ P (R). One

computes that

[α− β, 1]B12

(
− α(α− β)−1

)
B21(1)P−1APB21(−1)B12

(
α(α− β)−1

)
[(α− β)−1, 1]
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=

(
0 −(α− β)α(α− β)−1β

1 (α− β)α(α− β)−1 + β

)
.

Here, [ξ, η] = diag(ξ, η) and Bij(ξ) = I2 + ξEij where Eij is the matrix with

1 on the place (i, j) and 0 on other places. Let λ = −(α − β)α(α − β)−1β

and µ = (α − β)α(α − β)−1 + β. Therefore A is similar to

(
0 λ

1 µ

)
, where

λ ∈ P (R), µ ∈ 1 + P (R). �

Theorem 4.4. Let R be a commutative local ring. Then the following are equiva-

lent:

(1) A ∈M2(R) is strongly P -clean.

(2) A−A2 ∈M2

(
P (R)

)
.

(3) A ∈M2

(
P (R)

)
or I2−A ∈M2

(
P (R)

)
or the equation x2−trA·x+detA = 0

has a root in P (R) and a root in 1 + P (R).

Proof. (1) ⇒ (2) Write A = E + W with EW = WE,W ∈ P
(
M2(R)

)
. Then

A− A2 = W − EW −WE −W 2 ∈ P
(
M2(R)

)
. Therefore, A− A2 ∈ M2

(
P (R)

)
),

by Lemma 4.1.

(2) ⇒ (1) Since A − A2 ∈ M2

(
P (R)

)
, we get A − A2 ∈ P

(
M2(R)

)
by Lemma

4.1. As P
(
M2(R)

)
is locally nilpotent, we can find an idempotent E ∈M2(R) such

that A− E ∈ P
(
M2(R)

)
. Explicitly, AE = EA, as required.

(1) ⇒ (3) Let A ∈ M2(R) be strongly P -clean and A, I2 − A 6∈ M2

(
P (R)

)
.

By virtue of Theorem 4.2, A is similar to the matrix

(
λ 0

0 µ

)
∈ M2(R), where

λ ∈ 1+P (R), µ ∈ P (R). Thus, x2− trA ·x+detA = det(xI2−A) = (x−λ)(x−µ),

which has a root λ ∈ 1 + P (R) and a root µ ∈ P (R).

(3) ⇒ (1) Let A ∈ M2(R). If A ∈ M2

(
P (R)

)
or I2 − A ∈ M2

(
P (R)

)
, it follows

from Lemma 4.1 that A ∈ M2(R) is strongly P -clean. Otherwise, it follows by

the hypothesis that the equation x2 − trA · x + detA = 0 has a root x1 ∈ P (R)

and a root x2 ∈ 1 + P (R). Clearly, x1 − x2 ∈ −1 + P (R) ⊆ U(R). In addition,

trA = x1+x2 ∈ 1+P (R) and detA = x1x2 ∈ P (R). As detA ∈ P (R), A 6∈ GL2(R).

It follows from det(I2−A) = 1− trA+detA ∈ P (R) that I2−A 6∈ GL2(R). In light

of [10, Lemma 4], there are some λ ∈ J(R), µ ∈ 1 + J(R) such that A is similar to

B =

(
0 λ

1 µ

)
. Further, x2 − trB · x + detB = det(xI2 − B) = det(xI2 − A) =

x2 − trA · x+ detA; and so x2 − trB · x+ detB = 0 has a root in 1 + P (R) and a

root in P (R). As in the proof of Lemma 4.3, there exists a P ∈ GL2(R) such that

P−1BP =

(
α1 0

0 α2

)
for some α1 ∈ 1 + P (R), α2 ∈ P (R). By virtue of Lemma
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4.1, P−1BP =

(
1 0

0 0

)
+

(
α1 − 1 0

0 α2

)
is a strongly P -clean expression.

Consequently, A ∈M2(R) is strongly P -clean. �

Example 4.5. Let R = {mn ∈ Q | 2 - n}. Then R is a commutative local ring.

Choose A =

(
1 2

3 2

)
∈ M2(R). Clearly, A, I2 − A 6∈ M2

(
P (R)

)
. Further, the

equation x2 − trA · x + detA = 0 has a root 4 and a root −1. But 4,−1 6∈ P (R).

Thus, A ∈ M2(R) is not strongly P -clean from Theorem 4.4. But A ∈ M2(R) is

strongly clean by [6, Corollary 2.2]. It is worth noting that every strongly P -clean

2× 2 matrix over integral domains must be an idempotent by Theorem 4.4.

Recall that a ∈ R is strongly nil clean provided that a is the sum of an idempotent

and a nilpotent element that commute.

Corollary 4.6. Let R be a commutative local ring, and let A ∈ M2(R). Then the

following are equivalent:

(1) A ∈M2(R) is strongly nil clean.

(2) A ∈ N
(
M2(R)

)
or I2−A ∈ N

(
M2(R)

)
, or A ∈M2(R) is strongly P -clean.

Proof. (1)⇒ (2) If A, I2−A 6∈ N
(
M2(R)

)
, then the equation x2−trA ·x+detA =

0 has a root in N(R) and a root in 1 + N(R), by [4, Corollary 3.6]. As R is

commutative, N(R) = P (R). In light of Theorem 4.4., A ∈ M2(R) is strongly

P -clean, as required.

(2)⇒ (1) is obvious. �

Example 4.7. Let Z4 = {0, 1, 2, 3}, and let A =

(
1 2

2 2

)
∈ M2(Z4). Then

A − A2 =

(
0 0

0 2

)
∈ M2

(
P (Z4)

)
. Thus, A ∈ M2(Z4) is strongly P -clean. In

fact, we have the strongly P -clean decomposition: A =

(
1 2

2 0

)
+

(
0 0

0 2

)
. In

this case, A, I2 −A 6∈ N
(
M2(Z4)

)
.

5. Characteristic Criteria

For several kinds of 2 × 2 matrices over commutative local rings, we can derive

accurate characterizations.

Theorem 5.1. Let R be a commutative local ring, and let A ∈ M2(R). If A is

strongly P -clean, then either A ∈ M2

(
P (R)

)
, or I2 − A ∈ M2

(
P (R)

)
, or trA ∈

1 + P (R) and tr2A− 4detA = u2 for some u ∈ 1 + P (R).
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Proof. According to Corollary 4.6, A ∈ M2

(
P (R)

)
or I2 − A ∈ M2

(
P (R)

)
, or

trA ∈ 1 + P (R) and the equation x2 − x = detA
−tr2A has a root a ∈ P (R). Then

detA ∈ P (R) and 2a − 1 ∈ −1 + P (R). Further, (2a − 1)2 = 4(a2 − a) + 1 =
4detA
−tr2A + 1 = tr2A−4detA

tr2A , and therefore tr2A − 4detA =
(
trA · (2a − 1)

)2
. Set

u = trA · (2a− 1). Then u ∈ 1 + P (R), as required. �

Corollary 5.2. Let R be a commutative local ring. If 1
2 ∈ R, then the following

are equivalent:

(1) A ∈M2(R) is strongly P -clean.

(2) A ∈ M2

(
P (R)

)
or I2 − A ∈ M2

(
P (R)

)
, or trA ∈ 1 + P (R) and tr2A −

4detA = u2 for a u ∈ 1 + P (R).

Proof. (1)⇒ (2) is clear by Theorem 5.1.

(2)⇒ (1) If trA ∈ 1 +P (R) and tr2A−4detA = u2 for some u ∈ 1 +P (R), then

u ∈ U(R) and the equation x2 − trA · x+ detA = 0 has a root 1
2 (trA− u) in P (R)

and a root 1
2 (trA+ u) in 1 + P (R). Therefore we complete the proof by Theorem

4.4. �

Example 5.3. Let R be a commutative local ring, and let p ∈ P (R), q ∈ R. Then(
p+ 1 p

q p

)
is strongly P -clean if and only if 1 + 4pq = u2 for a u ∈ 1 + P (R).

Proof. Set A =

(
p+ 1 p

q p

)
. Then A, I2 − A 6∈ M2

(
P (R)

)
. As tr2A− 4detA =

1 + 4pq, the result follows by Theorem 5.1.

Theorem 5.4. Let R be a commutative local ring, and let A ∈M2(R). Then A is

strongly P -clean if and only if

(1) A ∈M2

(
P (R)

)
, or

(2) I2 −A ∈M2

(
P (R)

)
, or

(3) A ∈ M2(R) is strongly π-regular and A is similar to a matrix

(
0 λ

1 µ

)
,

where λ ∈ P (R), µ ∈ 1 + P (R).

Proof. Let A ∈M2(R) be strongly P -clean. Assume that A, I2 −A 6∈M2

(
P (R)

)
.

In view of Lemma 4.3, there exists a P ∈ GL2(R) such that P−1AP =

(
0 λ

1 µ

)
,

where λ ∈ 1 + P (R), µ ∈ P (R). According to Theorem 4.4, the equation x2 −
trA · x + detA = 0 has a root in P (R) and a root in 1 + P (R). As trA = µ and

detA = −λ, we see that h(x) = x2 − µx − λ has two roots, one is in U(R) and

the other one is nilpotent. In light of [13, Lemma 20], we conclude that P−1AP

is strongly π-regular. Thus, we can find some m ∈ N and B ∈ M2(R) such that
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(
P−1AP

)m
=
(
P−1AP

)m+1
B and (P−1AP )B = B(P−1AP ). It follows that

Am = Am+1(PBP−1) and A(PBP−1) = (PBP−1)A, and thus A ∈ M2(R) is

strongly π-regular.

Conversely, assume that A ∈ M2(R) is strongly π-regular and A is similar to a

matrix

(
0 λ

1 µ

)
, where λ ∈ P (R), µ ∈ 1 + P (R). Then

(
0 λ

1 µ

)
is strongly

π-regular. In light of [13, Lemma 20], x2−µx−λ has two roots, one α ∈ U(R) and

one β ∈ R which is nilpotent. Obviously, α2 − µα − λ = 0 and β2 − µβ − λ = 0;

hence, α + β = µ. As R is commutative, we see that β ∈ P (R), and then α =

µ − β ∈ 1 + P (R). Obviously, trA = µ and detA = −λ. Therefore the equation

x2− trA ·x+detA = 0 has two roots, one in 1+P (R) and the other one is in P (R).

According to Theorem 4.4, A is strongly P -clean. �

Proposition 5.5. Let R be a commutative ring, and let A ∈M2(R). If R/J(R) ∼=
Z2 and J(R) is nilpotent, then A is strongly π-regular if and only if A ∈ GL2(R)

or A is nilpotent, or A is strongly P -clean.

Proof. If A ∈ GL2(R) or A is nilpotent, then A is strongly π-regular. If A is

strongly P -clean, it follows from Theorem 5.4 that A is strongly π-regular. Con-

versely, assume that A is strongly π-regular, A 6∈ GL2(R) and A ∈ M2(R) is not

nilpotent. As J(R) = P (R), we see that A 6∈M2

(
J(R)

)
. By virtue of [10, Lemma

19], A is similar to

(
0 λ

1 µ

)
, where λ ∈ P (R), µ ∈ R. If µ ∈ 1 + P (R), it fol-

lows from Theorem 5.4 that A ∈ M2(R) is strongly P -clean. If µ ∈ P (R), then

A2 is isomorphic to

(
λ λµ

µ µ+ µ2

)
. This implies that A2 ∈ M2

(
P (R)

)
. Hence,

A ∈M2(R) is nilpotent, a contradiction. Therefore the result follows. �

Example 5.6. Let A ∈ M2

(
Z2n [i]

)
(n ≥ 1). Then A is strongly π-regular if and

only if A ∈ GL2

(
Z2n [i]

)
or A is nilpotent, or A is strongly P -clean.

Proof. Clearly, J
(
Z2n [i]

)
=
(
1 + i

)
, and that Z2n [i]/J

(
Z2n [i]

) ∼= Z2. Thus, Z2n [i]

is a commutative local ring with the nilpotent Jacobson radical. Therefore we

complete the proof by Proposition 5.5. �
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