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Abstract: We study a class of systems of stochastic differential equations describing
diffusive phenomena. The Smoluchowski-Kramers approximation is used to describe
their dynamics in the small mass limit. Our systems have arbitrary state-dependent
friction and noise coefficients. We identify the limiting equation and, in particular, the
additional drift term that appears in the limit is expressed in terms of the solution to a
Lyapunov matrix equation. The proof uses a theory of convergence of stochastic integrals
developed by Kurtz and Protter. The result is sufficiently general to include systems
driven by both white and Ornstein–Uhlenbeck colored noises. We discuss applications
of the main theorem to several physical phenomena, including the experimental study
of Brownian motion in a diffusion gradient.

1. Introduction

For an open subset U ⊂ R
d , consider the 2d-dimensional stochastic differential equation

(SDE): {
dxm

t = vm
t dt xm

0 = x,

dvm
t =

[
F(xm

t )

m − γ (xm
t )

m vm
t

]
dt + σ (xm

t )

m dW t vm
0 = v,

(1)

with F : U �→ R
d , γ : U → R

d×d a d × d invertible matrix-valued function, σ : U →
R

d×k and W a k-dimensional Wiener process. The above SDE provides a framework to
model many physical systems, from colloidal particles in a fluid [19] to a camera tracking
an object [22]. For example, the motion of a Brownian particle can be modeled using

an SDE where x and v are one-dimensional and γ (x) = kB T
D(x)

and σ(x) = kB T
√

2√
D(x)

(see
description below in Sect. 4.1). In fact, the original motivation for the present work was to
provide a mathematical explanation of the experimental observation of a noise-induced
drift in [36]. While in this model the coefficients γ (x) and σ(x) are constrained by the
fluctuation-dissipation relation such that γ (x) ∝ σ(x)2 [35], our main result, Theorem 1,
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does not assume it and has a much more general reach including applications in other
fields.

Theorem 1 says that, under the assumptions stated in Sect. 2, the x-component of the
solution of Equation (1) converges in L2, with respect to the topology on CU ([0, T ])
(i.e. the space of continuous functions from [0, T ] to U with the uniform metric), to the
solution of the SDE

dxt =
[
γ −1(xt )F(xt ) + S(xt )

]
dt + γ −1(xt )σ (xt )dW t , (2)

with the original initial condition x0 = x, where S(xt ) is the noise-induced drift whose
i th component equals

Si (x) = ∂

∂xl

[
(γ −1)i j (x)

]
J jl(x), (3)

where J is the matrix solving the Lyapunov equation

Jγ ∗ + γ J = σσ ∗. (4)

Throughout the paper we use Einstein summational convention and “∗” denotes the
transposition of a matrix. The limiting SDE (2) is given in the Itô form, while we
provide in Sect. 5 the corresponding Stratonovich form. Note that for m > 0 the process
xm

t has bounded variation and thus all definitions of stochastic integral lead to the same
form of SDE (1).

The zero-mass limits of equations similar to Eq. (1) have been studied by many authors
beginning with Smoluchowski [34] and Kramers [15]. In the case where F = 0 and γ

and σ are constant, the solution to equation (1) converges to the solution of equation (2)
almost surely [19]. The case including an external force was treated by entirely different
methods in [31]. The problem of identifying the limit for position-dependent noise and
friction was studied in [10] for the case when the fluctuation-dissipation relation is satis-
fied and in [30] for the general one-dimensional case (the multidimensional case is also
discussed there but without complete proof). The homogenization techniques described
in [23,25,31] were used to compute the limiting backward Kolmogorov equation as
mass is taken to zero in [12]. In [24] convergence in distribution is proven rigorously
for equations of the same type as Eq. (1), under somewhat stronger assumptions than
those made here. The rigorous proof of convergence in probability for γ constant and σ
position-dependent is given in [6]. The present paper contains the first rigorous deriva-
tion of the zero-mass limit of Eq. (1) for a multidimensional system with general friction
and noise coefficients.

Systems with colored noise can also be treated within the above (suitably adapted)
framework. For example, the one-dimensional equation driven by an Ornstein–
Uhlenbeck (OU) noise with a short correlation time τ

mẍm
t = F(xm

t ) − γ (xm
t )ẋm

t + σ(xm
t )ητ

t (5)

can be rewritten in the form of Eq. (1), by defining vm
t = (vm

t , ητ
t )∗, xm

t = (xm
t , ζ τ

t )∗
and τ = τ0m [25], as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dxm
t = vm

t dt

dvm
t =

[
F(xm

t )

m − γ (xm
t )

m vm
t + σ(xm

t )

m ητ
t

]
dt

dζ τ
t = ητ

t dt

dητ
t = − aητ

t
τ

dt +
√

2λ
τ

dWt .

(6)
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The details are worked out in Sect. 4.2. SDE with colored noise were first studied in
[39], where it was shown that, as the correlation time of the noise goes to zero, the
stochastic integral converges to the Stratonovich integral with respect to the Wiener
process. This result was generalized in [17] and similar systems were studied in [16] by
homogenization methods. Our method is sufficiently general to permit us to recover the
results obtained in these works as well as those in [7,39].

In Sect. 2 we state and prove the main result, Theorem 1, for arbitrary dimension d.
In Sect. 3 we explicitly calculate the limit for d = 1. In Sect. 4 we present a series of
applications of our result. In Sect. 4.1 we study the equations describing the experiment
on Brownian motion in a diffusion gradient that originally motivated this work [36]. In
Sect. 4.2 we study the case of SDE driven by OU colored noise and find the explicit
limit for constant (Sect. 4.2.1) and position-dependent (Sect. 4.2.2) friction. In Sect. 4.3
we study a three-dimensional Brownian particle on which a non-conservative external
force is acting, and in Sect. 4.4 we consider the more specific case of a magnetic force.
In Sect. 5 we reformulate the main result using Stratonovich formalism.

2. Smoluchowski-Kramers Approximation

For the main theorem, we assume xm
t , xt ∈ U ⊂ R

d , an open set, and vm
t ∈ R

d for all
0 ≤ t ≤ T . For an arbitrary vector a ∈ R

d , |a| is the Euclidean norm and, for a d × d
matrix A ∈ R

d×d , |A| is the induced operator norm. We now state the assumptions and
main theorem.

Assumption 1. The coefficients F, γ , σ are continuously differentiable functions. Fur-
thermore, the smallest eigenvalue λ1(x) of the symmetric part 1

2 (γ + γ ∗) of the matrix
γ is positive uniformly in x, i.e.

λ1(x) ≥ cλ > 0. (7)

It follows that (γ (x) y, y) ≥ cλ( y, y) and |γ (x)| ≥ cλ for all x ∈ U , y ∈ R
d and that

the real parts of the eigenvalues of γ (x) are bounded below by cλ.

Remark 1. The lower bounds on γ and its eigenvalues are crucial for the estimates of
the proof. A system with vanishing friction, i.e. γ (x) = 0, behaves differently [8].

Assumption 2. With probability one there exist global unique solutions, defined on
[0, T ], to Eq. (1) for each m and to Eq. (2). In particular, there are no explosions.

Assumption 3. With probability one there exists a compact set K � U such that, for all
m > 0, xm

t ∈ K for all t ∈ [0, T ].
The existence of such a set K, together with the continuity of the coefficients F,

γ and σ , implies that there exists a constant CT , depending only on T (in particular,
independent of m), such that

|F(xm
t )|, |σ (xm

t )|, |γ (xm
t )| ≤ CT , (8)

for all t ∈ [0, T ].
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Theorem 1. Suppose SDE (1) satisfies Assumptions 1–3. Let (xm
t , vm

t ) ∈ U × R
d be its

solution with initial condition (x, v) independent of m and let xt be the solution to the
Itô SDE (2) with the same initial position x0 = x. Then

lim
m→0

E

⎡
⎣
(

sup
0≤t≤T

|xm
t − xt |

)2
⎤
⎦ = 0. (9)

Before proving the theorem, we state a lemma about convergence of stochastic inte-
grals, which restates (in a slightly less general form) a theorem of Kurtz and Protter
[17].

2.1. Convergence of stochastic integrals. Let {Ft }t≥0 be a filtration on a probability
space (Ω,F , P). We assume that it satisfies the usual conditions [29]. In our case, Ft
will be (the usual augmentation of) σ({W s : s ≤ t}), the σ -algebra generated by a
k-dimensional Wiener process W t up to time t .

Suppose H is an {Ft }-adapted semi-martingale with paths in CRn [0, T ], whose
Doob–Meyer decomposition is H t = M t + At so that M t is an Ft -local martingale
and At is a process of locally bounded variation [29]. For a continuous {Ft }-adapted
process X with paths in CRd×n [0, T ] and for t ≤ T consider the Itô integral∫ t

0
Xs d Hs = lim

∑
i

X ti (H ti+1 − H ti ), (10)

where {ti } is a partition of [0, t] and the limit is taken as the maximum of ti+1 − ti goes
to zero. For a continuous processes Xs such that

P

(∫ T

0
|Xs |2 d〈M〉s +

∫ T

0
|Xs | dVs(A) < ∞

)
= 1, (11)

where 〈M〉s is the quadratic variation of Ms and Vs(A) is the total variation of As , the
limit in Eq. (10) exists in the sense that

sup
0≤t≤T

(∣∣∣∣∣
∫ t

0
Xs d Hs −

∑
i

X ti (H ti+1 − H ti )

∣∣∣∣∣
)

→ 0,

in probability. This (and related) convergence modes will be used throughout the paper
[28,29].

Consider (Um, Hm) with paths in CRd×Rn [0, T ] adapted to {Ft } where Hm
t is a semi-

martingale with respect to Ft . Let Hm
t = Mm

t + Am
t be its Doob-Meyer decomposition.

Let f : U → R
d×n be a continuous matrix-valued function and let Xm , with paths in

CU [0, T ], satisfy the SDE

Xm
t = X0 + Um

t +
∫ t

0
f (Xm

s ) d Hm
s , (12)

where Xm
0 = X0 ∈ R

d is the same initial condition for all m. Define X , with paths in
CU [0, T ], to be the solution of

X t = X0 +
∫ t

0
f (Xs) d Hs . (13)

Note that (12) implies Um
0 = 0 for all m.
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Lemma 1. [17, Theorem 5.10] Assume (Um, Hm) → (0, H) in probability with respect
to CRd×Rn [0, T ], i.e. for all ε > 0,

P

[
sup

0≤s≤T

(|Um
s | + |Hm

s − Hs |
)

> ε

]
→ 0, (14)

as m → 0, and the following condition is satisfied:

Condition 1. [Tightness condition] The total variations, {Vt (Am)}, are stochastically
bounded for each t > 0, i.e. P[Vt (Am) > L] → 0 as L → ∞, uniformly in m.

Suppose that there exists a unique global solution to equation (13). Then, as m →
0, Xm converges to X , the solution of equation (13), in probability with respect to
CU ([0, T ]).

To cast the limiting equation in the form of Lemma 1, it would be enough to rewrite
Eq. (1) and check that Condition 1 is satisfied. In our case, the limiting equation is

dxt =
[
γ −1(xt )F(xt ) + S(xt )

]
dt + γ −1(xt )σ (xt )dW t , x0 = x. (15)

To state the limiting equation, it would be enough to define

f (x) = (γ −1(x)F(x), γ −1(x)σ (x), S(x)).

However, to describe the equations with m > 0 using the same function f , we need
it to have more components. In the limit m → 0 these additional components will be
integrated against zero processes and thus will not contribute to the stochastic integral.
That is, we will apply Lemma 1, with f of the form

f (x) = (γ −1(x)F(x), γ −1(x)σ (x), S(x), . . .), (16)

where f contains more components and the limit process H t has zeros in the corre-
sponding rows, i.e.

H t =

⎛
⎜⎜⎜⎜⎜⎜⎝

t
W t
t
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (17)

Note also that H t has two components equal t to separate the noise-induced drift S from
the term γ −1 F.

Proof (of Theorem 1). We first state and prove a lemma about the convergence of the
processes mvm to zero.

Lemma 2. For each m > 0, let xm
t be any Ft -adapted process with continuous paths

in K and define vm
t as the solution to the SDE given by the second equation in (1) with

functions F, γ , and σ satisfying Assumptions 1–3. Then, for any p ≥ 1, mvm → 0 as
m → 0 in L p with respect to CRd [0, T ], and hence also in probability with respect to
CRd [0, T ], i.e.

lim
m→0

E

[(
sup

0≤t≤T
|mvm

t |
)p]

= 0. (18)
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and, for all ε > 0,

lim
m→0

P

(
sup

0≤t≤T
|mvm

t | > ε

)
= 0. (19)

Proof. Consider the SDE for mvm
t given by Eq. (1),

d(mvm
t ) = F(xm

t ) dt − γ (xm
t )

m
(mvm

t ) dt + σ (xm
t ) dW t . (20)

This equation is similar to an Ornstein–Uhlenbeck equation, which we would obtain
with F = 0 and γ and σ constant. Thus we use this similarity to bound mvm . We use a
technique similar to the proof of Lemma 3.19 in [2]. We first define the function

fm(u) = 2m

cλ

∫ √
cλu/(2mΓ )

0
es2/2

∫ s

0
e−r2/2 dr ds, (21)

where Γ = C2
T d (CT is the bound from Assumption 3 and d is the dimension of vm

t , i.e.
the dimension of the space). Note that fm(0) = 0, f ′

m(u), f ′′
m(u) > 0 for all u ∈ [0,∞).

Also, fm(u) → ∞ and fm(m2u) → 0 as m → 0 for all u > 0. Furthermore,

A fm(u) = 1 (22)

for all u ∈ [0,∞), where A is the differential operator defined by

A fm(u) ≡ f ′
m(u)(−cλ

m
u + 2Γ ) + 4Γ u f ′′

m(u). (23)

We will prove that

P

(
sup

0≤t≤T
|mvm

t |2 ≥ ε

)
≤ fm

(|mv|2) + T

fm(ε)
→ 0, (24)

as m → 0. Using the Itô product formula for |mvm
t |2 = m(vm

t )∗mvm
t , we obtain

d(m(vm
t )∗mvm

t ) = m(vm
t )∗d(mvm

t ) + d(mvm
t )∗mvm

t + d(mvm
t )∗d(mvm

t ) (25)

= − 2

m
(γ (xm

t )mvm
t , mvm

t ) dt

+ T r(σ (xm
t )σ ∗(xm

t )) dt + m(vm
t )∗ F(xm

t )dt + F(xm
t )∗mvm

t dt

+ m(vm
t )∗(σ (xm

t ) dW t ) + (σ (xm
t ) dW t )

∗mvm
t . (26)

By the Itô formula for all t ∈ [0, T ],

fm

(
|mvm

t |2
)

= fm

(
|mv|2

)
(27)

+
∫ t

0

[
f ′
m

(
|mvm

s |2
) (

− 2

m
(γ (xm

s )mvm
s , mvm

s )

+ m(vm
s )∗ F(xm

s ) + F(xm
s )∗mvm

s + T r(σ (xm
s )σ ∗(xm

s ))
)

+ 2 f ′′
m

(
|mvm

s |2
)

|mσ ∗(xm
s )vm

s |2
]

ds + Mt
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where Mt ∈ CR[0, T ] is a martingale with E[Mt ] = 0. Next we use the bound,

(mvm
t , F(xm

t )) ≤ 1

2
|mvm

t |2 +
1

2
|F(xm

t )|2 (28)

and from Assumption 1

(γ (xm
t )mvm

t , mvm
t ) ≥ cλ|mvm

t |2. (29)

Using f ′
m(u), f ′′

m(u) > 0 for all u ∈ [0,∞), we obtain

fm

(
|mvm

t |2
)

≤ fm

(
|mv|2

)
+
∫ t

0

[
f ′
m

(
|mvm

s |2
) (

− 2cλ

m
|mvm

s |2

+ |mvm
s |2 + |F(xm

s )|2 + T r(σ (xm
s )σ ∗(xm

s ))
)

+ 2 f ′′
m

(
|mvm

s |2
)

|mvm
s |2|σ (xm

s )|2
]

ds + Mt . (30)

For small m > 0, the first term under the integral will dominate the second. More
precisely, for xm

s in the compact set K and for m sufficiently small so that cλ

m > 1, we
have

fm

(
|mvm

t |2
)

≤ fm

(
|mv|2

)
+
∫ t

0
[ f ′

m

(
|mvm

s |2
) (

− cλ

m
|mvm

s |2 + C2
T + C2

T d
)

+ 2 f ′′
m

(
|mvm

s |2
)

|mvm
s |2C2

T

]
ds + Mt . (31)

Using the definition of Γ and Eqs. (23) and (22) we get

fm(|mvm
t |2) ≤ fm

(
|mv|2

)
+
∫ t

0
[ f ′

m(|mvm
s |2)(−cλ

m
|mvm

s |2 + 2Γ )

+ 4Γ |mvm
s |2 f ′′

m(|mvm
s |2)

]
ds + Mt (32)

= fm

(
|mv|2

)
+
∫ t

0
A fm(|mvm

s |2) ds + Mt (33)

= fm

(
|mv|2

)
+ t + Mt . (34)

Define τm
ε = inf{t : |mvm

t |2 = ε}. Then for all ε > 0,

P

(
sup

0≤t≤T
|mvm

t |2 ≥ ε

)
= P

(
|mvm

T ∧τm
ε
|2 ≥ ε

)
. (35)

Next, because fm is an increasing function (since f ′
m(u) > 0 for all u ≥ 0),

P
(
|mvm

T ∧τm
ε
|2 ≥ ε

)
= P

(
fm(|mvm

T ∧τm
ε
|2) ≥ fm(ε)

)
(36)
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Finally we use Chebyshev’s inequality and the Optional Stopping Theorem to obtain,

P

(
sup

0≤t≤T
|mvm

t |2 ≥ ε

)
≤

E[ fm(|mvm
T ∧τm

ε
|2)]

fm(ε)
≤ E[ fm

(|mv|2) + T ∧ τm
ε ]

fm(ε)
(37)

≤ fm
(|mv|2) + T

fm(ε)
. (38)

Recalling that fm
(
m2|v|2) → 0 and fm(ε) → ∞ as m → 0, this inequality proves that

as m → 0, sup0≤t≤T |mvm
t |2 → 0 in probability, i.e., for all ε > 0,

lim
m→0

P

(
sup

0≤t≤T
|mvm

t |2 > ε

)
= 0. (39)

We prove that mvm converges to zero in L p with respect to CRd [0, T ]. Let q > 1, then

E

[(
sup

0≤t≤T
|mvm

t |2
)q]

=
∫ ∞

0
qxq−1 P

(
sup

0≤t≤T
|mvm

t |2 ≥ x

)
dx

≤
∫ ∞

0
qxq−1 fm

(|mv|2) + T

fm(x)
dx

≤ q(1 + T )

∫ ∞

0

xq−1

fm(x)
dx

for m sufficiently small since fm
(|mv|2) → 0 as m → 0. Since

fm(x) = 2m

cλ

∫ √
cλx/(2mΓ )

0
es2/2

∫ s

0
e−r2/2 dr ds

≥ 2m

cλ

∫ √
cλx/(2mΓ )

0
es2/2

( s

2

)
e−s2/8 ds

= 1

4Γ

∫ x

0
e

3cλu
16mΓ du ≥ 1

4Γ

( x

2

)
e

3cλx
32mΓ

it follows that

E

[(
sup

0≤t≤T
|mvm

t |2
)q]

≤ C(q) < ∞

where C(q) depends on q but is independent of m. Thus, there exists m0 > 0 such that
the family {sup0≤t≤T |mvm

t |p : 0 < m ≤ m0} is uniformly integrable for 1 ≤ p < 2q
[38, 13.3]. This fact together with (39) implies (18)[38, 13.7]. ��

To determine the limit of SDE (1) as m → 0, we rewrite the equation for vm
t as

γ (xm
t )vm

t dt = F(xm
t ) dt + σ (xm

t )dW t − mdvm
t . (40)

By Assumption 1, γ (x) is invertible, thus

dxm
t = vm

t dt = γ −1(xm
t )F(xm

t ) dt + γ −1(xm
t )σ (xm

t )dW t − mγ −1(xm
t ) dvm

t , (41)
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or, in integral form,

xm
t = x +

∫ t

0
γ −1(xm

s )F(xm
s ) ds +

∫ t

0
γ −1(xm

s )σ (xm
s )dW s −

∫ t

0
mγ −1(xm

s ) dvm
s .

(42)
In order to apply Lemma 1 we need to integrate the last term by parts (see Remark 2).

2.2. Integration by parts to satisfy assumptions of Lemma 1. To determine the limit of
the expression (42) as m → 0, we consider its i th component. Integrating by parts the
last term on the right-hand side of Eq. (42) we obtain, noting that vm

0 = v,∫ t

0
m
[
(γ −1)i j (xm

s )
]

d(vm
s ) j = (γ −1)i j (xm

t )m(vm
t ) j − (γ −1)i j (x)mv j

−
∫ t

0

∂

∂xl
[(γ −1)i j (xm

s )]m(vm
s ) j d(xm

s )l . (43)

Since d(xm
s )l = (vm

s )l ds, the last integral can be rewritten as∫ t

0

∂

∂xl
[(γ −1)i j (xm

s )]m(vm
s ) j (v

m
s )l ds. (44)

Note that xm
t has bounded variation, hence the Itô term in the integration by parts formula

is zero. The product m(vm
s ) j (v

m
s )l in the above integral is the ( j, l)-entry of the (outer

product) matrix mvm
s (vm

s )∗. We will express this matrix as a solution of an equation. To
this end, we calculate, using the Itô product formula,

d[mvm
s (mvm

s )∗] = d(mvm
s )(mvm

s )∗ + mvm
s d(mvm

s )∗ + d(mvm
s ) d(mvm

s )∗. (45)

We now substitute for md(vm
s ) and for its adjoint the expression from Eq. (1), obtaining

d[mvm
s (mvm

s )∗] = [
m F(xm

s )(vm
s )∗ − mγ (xm

s )vm
s (vm

s )∗
]

ds

+ m
(
σ (xm

s ) dW s
)
(vm

s )∗

+
[
mvm

s F(xm
s )∗ − mvm

s (vm
s )∗γ ∗(xm

s )
]

ds

+ mvm
s

(
σ (xm

s ) dW s
)∗ + σ (xm

s )σ ∗(xm
s ) ds. (46)

Because of Lemma 2, we expect the terms proportional to mvm
s to converge to zero in

probability. Defining

Ũ
m
t =

∫ t

0
mvm

s F∗(xm
s )ds +

∫ t

0
mvm

s (σ (xm
s )dW s)

∗, (47)

we can rewrite Eq. (46) as

− mvm
t (vm

t )∗γ ∗(xm
t )dt − γ (xm

t )mvm
t (vm

t )∗dt

= d[mvm
t (mvm

t )∗] − σ (xm
t )σ ∗(xm

t ) dt − dŨ
m
t − d(Ũ

m
t )∗. (48)

Equation (48) can be written as

[mvm
t (vm

t )∗dt][−γ ∗(xm
t )] + [−γ (xm

t )][mvm
t (vm

t )∗dt]
= d[mvm

t (mvm
t )∗] − σ (xm

t )σ ∗(xm
t ) dt − dŨ

m
t − d(Ũ

m
t )∗. (49)
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Denoting mvm
t (vm

t )∗dt by V , −γ (xm
t ) by A and the right-hand side of Eq. (49) by C,

we obtain

AV + V A∗ = C, (50)

which is a Lyapunov equation [1,21]. By [21, Theorem 6.4.2], if the real parts of all
eigenvalues of A are negative, then the Lyapunov equation has a unique solution, given
by [1, Chapter 11]

V = −
∫ ∞

0
eAy CeA∗ y dy. (51)

By Assumption 1, this applies to A = −γ (xm
t ), giving

mvm
t (vm

t )∗dt = −
∫ ∞

0
e−γ (xm

t )y (d[mvm
t (mvm

t )∗] − σ (xm
t )σ ∗(xm

t ) dt

− dŨ
m
t − d(Ũ

m
t )∗

)
e−γ ∗(xm

t )y dy

= −
∫ ∞

0
e−γ (xm

t )yd[mvm
t (mvm

t )∗]e−γ ∗(xm
t )y dy︸ ︷︷ ︸

dC1
t

+
∫ ∞

0
e−γ (xm

t )y (σ (xm
t )σ ∗(xm

t ) dt
)

e−γ ∗(xm
t )y dy︸ ︷︷ ︸

dC2
t

+
∫ ∞

0
e−γ (xm

t )y
(

dŨ
m
t + d(Ũ

m
t )∗

)
e−γ ∗(xm

t )y dy︸ ︷︷ ︸
dC3

t

. (52)

We will treat each term in a different way: after substituting the above expression into
Eq. (43), the term with C1

t will be included in the Hm
t process (in the notation of

Lemma 1), the C2
t term will become a part of the noise-induced drift term S in the

limiting Eq. (2), and the C3
t term will become a part of Um

t which will be shown to
converge to zero. For the first term,

d(C1
t )i j = −

∫ ∞

0
(e−γ (xm

t )y)ik1(e
−γ ∗(xm

t )y)k2 j dy d[m(vm
t )k1(mvm

t )∗k2
], (53)

where the integral exists and is finite for all t ∈ [0, T ]. For the second term, dC2
t =

J(xm
t )dt , where J(x) : U → R

d×d is the solution to the Lyapunov equation

Jγ ∗ + γ J = σσ ∗, (54)

as follows from differentiating the (Lebesgue) integrals in the identity

∫ t

0
[J(xm

s )γ ∗(xm
s ) + γ (xm

s )J(xm
s )] ds =

∫ t

0
σ (xm

s )σ ∗(xm
s ) ds. (55)
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For the third term, using the Eq. (47) for Ũ
m

, the entries of C3 can be written as

(C3
t )i j =

∫ t

0

∫ ∞

0
(e−γ (xm

s )y)ik1

([mvm
s F∗(xm

s )]k1k2 ds

+ [mvm
s (σ (xm

s )dW s)
∗]k1k2 + [F(xm

s )(mvm
s )∗]k1k2 ds

+ [σ (xm
s )dW s(mvm

s )∗]k1k2

)
(e−γ ∗(xm

s )y)k2 j dy

=
∑
k1k2

∫ t

0

∫ ∞

0
(e−γ (xm

s )y)ik1(e
−γ ∗(xm

s )y)k2 j dy
([mvm

s F∗(xm
s )]k1k2 ds

+ [mvm
s (σ (xm

s )dW s)
∗]k1k2 + [F(xm

s )(mvm
s )∗]k1k2 ds

+ [σ (xm
s )dW s(mvm

s )∗]k1k2

)
. (56)

We substitute the expression for mvm
t (vm

t )∗ dt back into Eq. (43). In the resulting for-
mula for xm

t , the contribution from C3 will form a vector-valued process Um . Integrating
Eq. (42) by parts and substituting Eq. (52) for (vm

s ) j (v
m
s )lds,

(xm
t )i = xi + (U m

t )i +
∫ t

0
(γ −1(xm

s )F(xm
s ))i ds

+

(∫ t

0
(γ −1(xm

s )σ (xm
s ))dW s

)
i

+
∫ t

0

∂

∂xl
[(γ −1)i j (xm

s )]J jl(xm
s ) ds

+
∫ t

0

∂

∂xl
[(γ −1)i j (xm

s )]

×
[
−
∫ ∞

0
(e−γ (xm

s )y) jk1(e
−γ ∗(xm

s )y)k2l dy

]
d[(mvm

s )k1(mvm
s )k2 ], (57)

where Um
t is

(U m
t )i = (γ −1)i j (xm

t )m(vm
t ) j − (γ −1)i j (x)mv j

+
∫ t

0

∂

∂xl
[(γ −1)i j (xm

s )]

×
[ ∫ ∞

0
(e−γ (xm

s )y) jk1(e
−γ ∗(xm

s )y)k2l dy

× ([mvm
s F∗(xm

s )]k1k2 ds + [mvm
s (σ (xm

s )dW s)
∗]k1k2

+ [F(xm
s )(mvm

s )∗]k1k2 ds + [σ (xm
s )dW s(mvm

s )∗]k1k2

) ]
. (58)

Now we prove that Um
t → 0 in L2, and hence in probability, with respect to CRd [0, T ].

By Lemma 2, the first two terms on the right-hand side of Eq. (58) go to zero in L2

with respect to CRd [0, T ]. The rest of the terms in Um are Lebesgue or Itô integrals
with integrands that are products of continuous functions and m(vm

t )i . We need a lemma
about the convergence of these integrals to zero. Recall that in Lemma 2 we have shown
that m|vm

t | → 0 in L2. The next lemma proves an explicit bound on the rate of this
convergence.
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Lemma 3. For each m > 0, let (xm
t , vm

t ) be the solution to the system (1) with functions
F, γ , and σ satisfying Assumptions 1–3. Then for any fixed t ∈ [0, T ],

E
[
m|vm

t |2
]

≤ C, (59)

where C is a constant independent of m and of t ≤ T . Furthermore, this implies that

E
[
|mvm

t |2
]

≤ Cm. (60)

Proof. Consider the generator of the diffusion process defined by the system (1):

L = σik(x)σ jk(x)

2m2

∂2

∂vi∂v j
+ vi

∂

∂xi
+

Fi (x)

m

∂

∂vi
− γik(x)vk

m

∂

∂vi
, (61)

and apply it to the kinetic energy

φ(x, v) = m

2
|v|2. (62)

The result is

Lφ = T r(σ (x)σ ∗(x))

2m
+ Fi (x)vi − γik(x)vkvi . (63)

Next, from Assumption 1 we have

γik(x)vkvi ≥ cλ|v|2. (64)

We use this fact along with the bound

Fi (x)vi =
(

Fi (x)√
cλ

)
(
√

cλvi ) ≤ 1

2cλ

|F(x)|2 +
cλ

2
|v|2, (65)

to obtain

Lφ ≤ −cλ

2
|v|2 +

1

2cλ

|F(x)|2 +
T r(σ (x)σ ∗(x))

2m
, (66)

for all x ∈ U , v ∈ R
d . Recall that for 0 ≤ t ≤ T , xm

t lies in the compact set K, so that
|F(x)| and |σ (x)| are bounded by CT > 0 (Assumption 3). Thus, we obtain the bound

Lφ(v) ≤ −cλ

m
φ(v) +

C2
T

2cλ

+
C2

T d

2m
. (67)

For m < cλd, the second term is less than the third and thus

Lφ(v) ≤ −cλ

m
φ(v) +

C2
T d

m
. (68)

Applying the Itô formula to the process ym
t ≡ exp( cλ

m t)(φ(vm
t ) − C2

T d
cλ

) we obtain

dym
t =

[
cλ

m
e

cλ
m t

(
φ(vm

t ) − C2
T d

cλ

)
+ e

cλ
m tLφ(vm

t )

]
dt + e

cλ
m t (vm

t )∗σ (xm
t ) dW t . (69)
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Using inequality (68) we obtain,

cλ

m
e

cλ
m t

(
φ(vm

t ) − C2
T d

cλ

)
+ e

cλ
m tLφ(vm

t ) ≤ 0. (70)

Thus, by Dynkin’s formula [20],

E

[
e

cλ
m t

(
φ(vm

t ) − C2
T d

cλ

)]
≤ m

2
|v|2 − C2

T d

cλ

. (71)

This implies

E
[m

2
|vm

t |2
]

≤ C2
T d

cλ

(
1 − e− cλ

m t
)

+
me− cλ

m t

2
|v|2 ≤ C2

T d

cλ

+
m

2
|v|2 ≤ C

2
, (72)

for C independent of m. ��
Now we can prove a lemma to show the integrals in Um converge to zero.

Lemma 4. For each m > 0, let xm
t be an Ft -adapted process with values in the compact

set K ⊂ U for t ∈ [0, T ]. If g(x) : K → R is a continuous function such that
|g(x)| ≤ CT , then for all x ∈ K

lim
m→0

E

⎡
⎣( sup

0≤t≤T

∣∣∣∣
∫ t

0
g(xm

s )m(vm
s )i ds

∣∣∣∣
)2

⎤
⎦ = 0 (73)

and

lim
m→0

E

⎡
⎣
(

sup
0≤t≤T

∣∣∣∣
∫ t

0
g(xm

s )m(vm
s )i d(Ws) j

∣∣∣∣
)2

⎤
⎦ = 0, (74)

for i = 1, . . . , d, j = 1, . . . , k.

Proof. First note that,

E

⎡
⎣( sup

0≤t≤T

∣∣∣∣
∫ t

0
g(xm

s )m(vm
s )i ds

∣∣∣∣
)2

⎤
⎦ ≤ E

[(∫ T

0

∣∣g(xm
s )m(vm

s )i
∣∣ ds

)2]
. (75)

By the Cauchy-Schwarz inequality,

E

[(∫ T

0

∣∣g(xm
s )m(vm

s )i
∣∣ ds

)2]
≤ T

∫ T

0
E
[
(g(xm

s )m(vm
s )i )

2
]

ds

≤ C2
T T

∫ T

0
E
[
(m(vm

s )i )
2
]

ds, (76)

where the continuous function g is bounded by CT on K. From Lemma 3 we have,

E

[(∫ T

0

∣∣g(xm
s )m(vm

s )i
∣∣ ds

)2]
≤ T 2Cm. (77)
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Taking the limit of both sides as m → 0,

lim
m→0

E

[(∫ T

0
|g(xm

s )m(vm
s )i | ds

)2]
= 0. (78)

Therefore,

lim
m→0

E

⎡
⎣( sup

0≤t≤T

∣∣∣∣
∫ t

0
g(xm

s )m(vm
s )i ds

∣∣∣∣
)2

⎤
⎦ ≤ lim

m→0
E

[(∫ T

0
|g(xm

s )m(vm
s )i | ds

)2]
= 0.

(79)

To estimate the Itô integral in (74), we first use Itô isometry:

E

[(∫ T

0
g(xm

s )m(vm
s )i d(Ws) j

)2]
=
∫ T

0
E
[
(g(xm

s )m(vm
s )i )

2
]

ds

≤ C2
T

∫ T

0
E[(m(vm

s )i )
2] ds. (80)

Using Lebesgue dominated convergence theorem and Doob’s maximal inequality (see
page 14 of [14]),

E

⎡
⎣
(

sup
0≤t≤T

∣∣∣∣
∫ t

0
g(xm

s )m(vm
s )i d(Ws) j

∣∣∣∣
)2

⎤
⎦ ≤ 4E

[(∫ T

0
g(xm

s )m(vm
s )i d(Ws) j

)2]
→ 0

(81)

as m → 0. ��
We use Lemma 4 to show Um converges to zero in L2 with respect to CRd [0, T ]

as m → 0. Note that all functions in the expression (58) for Um are continuous. The
integrals

∫∞
0 (e−γ (xm

s )y) jk1(e
−γ ∗(xm

s )y)k2l dy are continuous because γ is continuous,
matrix exponentiation is a continuous operation and the integrand decays exponentially
with y. Therefore, Um → 0 as m → 0 in L2 with respect to CRd [0, T ].

To verify the rest of the assumptions of Lemma 1, including Condition 1, we first
write Eq. (57) in the form

xm
t = x + Um

t +
∫ t

0
f (xm

t ) d Hm
t . (82)

Define f : U → R
d×(1+k+1+d2) as

f (x) = (
γ −1(x)F(x), γ −1(x)σ (x), S(x), f 1(x), . . . , f d(x)

)
(83)

where the components of S(x) : U → R
d are defined as

Si (x) =
∫ t

0

∂

∂xl
[(γ −1)i j (xm

s )]J jl(x), (84)

J is the solution of the Lyapunov equation (54) and the components of f β(x) : U →
R

d×d are defined as

f k2
ik1

(x) =
∫ t

0

∂

∂xl
[(γ −1)i j (x)]

[
−
∫ ∞

0
(e−γ (x)y) jk1(e

−γ ∗(x)y)k2l dy

]
(85)
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for k1, k2 = 1, 2, . . . , d. Next, Hm
t with paths in C

R1+k+1+d2 [0, T ] is defined as

Hm
t =

⎛
⎜⎜⎜⎜⎜⎜⎝

t
W t
t

(mvm
t )1mvm

t − mv1mv
...

(mvm
t )dmvm

t − mvdmv

⎞
⎟⎟⎟⎟⎟⎟⎠

. (86)

By Lemma 2, Hm → H as m → 0 in probability with respect to C
R1+k+1+d2 [0, T ],

where

H t =

⎛
⎜⎜⎜⎜⎜⎜⎝

t
W t
t
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (87)

Therefore, (Um, Hm) → (0, H) as m → 0 in probability with respect to
C

Rd×R1+k+1+d2 [0, T ]. All that is left, to be able to use Lemma 1, is to check Condition 1.

2.3. Verification of Condition 1. We need to find the Doob-Meyer decomposition of Hm
t

and stochastically bound, uniformly in m, the bounded variation part of the decomposi-
tion, denoted Am

t . Only the last d2 rows of Hm depend on m. Furthermore, the columns
of the matrix (mvm

t (mvm
t )∗) make up the last d2 rows of Hm . That is, the first column

of the matrix (mvm
t (mvm

t )∗) is rows 1 + k + 1 + 1 through 1 + k + 1 + d of Hm . The second
column of the matrix (mvm

t (mvm
t )∗) is rows 1 + k + 1 + d + 1 through 1 + k + 1 + 2d of

Hm and so on. Consider the expression for d(mvm
t (mvm

t )∗) given by Eq. (46). Because
the stochastic integrals are local martingales, Am

t contains the columns of the Lebesgue
integrals in the above expression. That is,

Am
t =

⎛
⎜⎜⎜⎜⎜⎜⎝

t
0
t

(Am
t )1

...

(Am
t )d

⎞
⎟⎟⎟⎟⎟⎟⎠

, (88)

where

(
(Am

t )1, (Am
t )2, . . . , (Am

t )d
) =

∫ t

0
mvm

s F(xm
s )∗ ds

+
∫ t

0
F(xm

s )(mvm
s )∗ds −

∫ t

0
m(vm

s )(γ (xm
s )vm

s )∗ ds

−
∫ t

0
γ (xm

s )vm
s m(vm

s )∗ ds +
∫ t

0
σ (xm

s )σ ∗(xm
s ) ds. (89)
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We must show that Am
t is stochastically bounded. Because mvm → 0 in probability,

the first and second terms on the right-hand side of Eq. (89) go to zero in probability.
By Assumption 3, σ (xm

t )σ ∗(xm
t ) is bounded for all t ∈ [0, T ] and thus the fifth term

is stochastically bounded in m. To prove stochastic boundedness of the third and fourth
terms, it is enough to show E[|m(vm

s )i (v
m
s )|] is bounded uniformly in m (based on

previous works [12,16,25], we expect
√

mvm
s to be of order one). For the rows we have

|m(vm
s )i (v

m
s )| ≤ m|vm

s |2 for every i = 1, . . . , d. Using Lemma 3 we have

E[m|vm
s |2] ≤ C, (90)

uniformly in m. Thus, by the Chebyshev inequality, {Vt (Am)} is stochastically bounded
and this proves that Hm

t satisfies Condition 1.
Therefore, xm

t → xt in probability as m → 0. We use this together with boundedness
to prove L2 convergence: because xm

t lies in a bounded set K, there exists N > 0 such
that P(|xm

t | ≤ N ) = 1 for all t and m. Therefore,

lim
m→0

E

⎡
⎣
(

sup
0≤t≤T

|xm
t − xt |

)2
⎤
⎦ = lim

m→0

∫ ∞

0
P

⎡
⎣
(

sup
0≤t≤T

|xm
t − xt |

)2

≥ x

⎤
⎦ dx

=
∫ (2N )2

0
lim

m→0
P

⎡
⎣
(

sup
0≤t≤T

|xm
t − xt |

)2

≥ x

⎤
⎦ dx

= 0. (91)

��
Remark 2. One may be tempted to apply Lemma 1 to Eq. (42) without integration by
parts, because mvm

t → 0. However, this would lead to the limiting Equation,

dxt = γ −1(xt )F(xt ) dt + γ −1(xt )σ (xt ) dW t . (92)

This is not the equation we derived. In view of Lemma 2, if γ (x) = γ 0 is a constant
matrix for all x, then

lim
m→0

P

⎛
⎝( sup

0≤t≤T

∣∣∣∣
∫ t

0
mγ −1

0 dvm
s

∣∣∣∣
)2

> ε

⎞
⎠

= lim
m→0

P

⎛
⎝( sup

0≤t≤T

∣∣∣γ −1
0 mvm

t − γ −1
0 mv

∣∣∣
)2

> ε

⎞
⎠ = 0, (93)

similarly to [6,19]. However, with γ (x) dependent on position, the limit will be non-zero
because mvm

t does not satisfy Condition 1. Note that from the SDE (1) for dvm
t

mvm
t = mv +

∫ t

0

(
F(xm

s ) − γ (xm
s )vm

s

)
ds︸ ︷︷ ︸

Am
t Bounded Variation

+
∫ t

0
σ (xm

s ) dW s︸ ︷︷ ︸
Mm

t Local Martingale

. (94)

Because the limits of integration are finite, Am
t has bounded variation for fixed m > 0.

Note that O(Vt (Am)) = O(vm
t ). It can be shown explicitly in the special case in which

the fluctuation-dissipation relation is satisfied (and we expect it to be true in general)

that vm
t is of the order m− 1

2 . Therefore O(Vt (Am)) = O(m−1/2) and Lemma 1 cannot
be used.
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3. One Dimension

As the first example, we apply Theorem 1 to a one-dimensional model of a Brownian
particle. This is the model studied in [12] and earlier in [30]. The particle’s position
satisfies {

dxm
t = vm

t dt

dvm
t =

(
F(xm

t )

m − γ (xm
t )

m vm
t

)
dt + σ(xm

t )

m dWt
(95)

with initial conditions xm
0 = x and vm

0 = v. For simplicity, we study the system on
the whole real line, assuming the coefficients and their derivatives are bounded. These
assumptions will be relaxed in Sect. 4.1. Equation (54) for the noise-induced drift term
is in this case

2J (x)γ (x) = σ(x)2. (96)

Thus, the limiting equation for xt is

dxt =
(

F(xt )

γ (xt )
− γ ′(xt )

2γ (xt )3 σ(xt )
2
)

dt +
σ(xt )

γ (xt )
dWt , (97)

with x0 = x , which recovers prior results [7,12,30].
It is instructive to illustrate on this simple example the key quantities entering the

proof of Lemma 1, namely f and Hm
t . Define f , a continuous function from R to R

4,
as

f (x) =
(

F(x)
γ (x)

,
σ (x)
γ (x)

, − γ ′(x)

2γ (x)3 σ(x)2, − γ ′(x)

γ (x)3

)
, (98)

and Hm
t with paths in CR4 [0, T ] as,

Hm
t =

⎛
⎜⎝

t
Wt
t

1
2

[
(mvm

t )2 − (mv)2
]
⎞
⎟⎠ . (99)

We have limm→0 Hm
t = (t, Wt , t, 0)∗, and the limiting Equation (97) is recovered.

The boundedness of the coefficients and their derivatives implies global existence
of the strongly unique solutions xm

t to SDE (1) for every m > 0, and xt to SDE (2);
Assumptions 1–3 are thus satisfied. However, because the state space of the process
(the real line) is unbounded, we can only conclude convergence in probability (for
comparison, see the last paragraph of the proof of Theorem 1). Therefore, by Theorem 1,
xm

t → xt as m → 0 in probability with respect to CR[0, T ].

4. Examples and Applications

4.1. Brownian particle in a one-dimensional diffusion gradient. The equations studied
in this example model the experiment described in [3]. In this experiment a colloidal
particle is diffusing in a cylinder filled with water. The friction and noise coefficients
depend on the particle’s position, as described below, giving rise to a noise-induced drift.
Even though we do not verify Assumption 2 in this case, the Smoluchowski-Kramers
approximation derived in Theorem 1 agrees with the experimental results of [3]. The
equations are: {

dxm
t = vm

t dt

dvm
t =

[
F(xm

t )

m − kB T
m D(xm

t )
vm

t

]
dt + kB T

√
2

m
√

D(xm
t )

dWt
(100)
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Fig. 1. Plot of the normalized diffusion coefficient D(x) for a spherical particle of radius 1 µm

where D(x) is the diffusion coefficient. Near x = 0 D(x) can be expressed analytically
[11] and has the form shown in Fig. 1; an analogous behavior also holds near the top of
the cylinder. The force F results from effective gravity and electrostatic repulsion from
the bottom and top walls of the container. Away from the lateral walls of the cylinder
both forces are vertical so the horizontal components of particle’s motion can be (and
were) separated and the equations are written for the vertical component only.

An application of Eq. (97) to this case gives the limiting equation

dxt =
[

D(xt )F(xt )

kB T
+ D′(xt )

]
dt +

√
2D(xt ) dWt . (101)

The noise-induced term in the drift is thus S(x) = D′(x), as observed in [3].

4.2. Systems driven by a colored noise. The driving mechanisms of real physical systems
are typically characterized by a non-zero correlation time. Therefore, models employing
colored noise, instead of white noise, are often more appropriate to describe them. We
work through two examples with Ornstein–Uhlenbeck colored noise. We calculate the
limiting equations without stating explicit conditions for the existence and uniqueness
assumed in Theorem 1. In this Section we consider the multi-dimensional version of
Eq. (6): ⎧⎨

⎩
dxt = vt dt

dvt =
[

F(xt )
m − γ (xt )

m vt + σ (xt )
m ηt

]
dt

(102)

where xt ∈ U ⊂ R
d and ηt is a k-dimensional stationary random process with zero

mean and correlation time τ . To use the framework of Theorem 1, we consider a special
type of noise, the Ornstein–Uhlenbeck process defined as the stationary solution of the
SDE

dηt = − A
τ

ηt dt +
λ

τ
dW t , (103)
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where A is a k by k constant invertible matrix, λ is a k by � constant matrix, and W an
�-dimensional Wiener process. Defining the variable ζ t by the equation dζ t = ηt dt , we
use the above framework by setting x̄ = (x, ζ ) and v̄ = (v, η). We will now illustrate
this use of Theorem 1 to derive the limit, as the correlation time τ and mass m tend to
zero, on two concrete examples. Note that here the initial condition η0 is taken to be
a random variable distributed according to the stationary distribution corresponding to
(103), so that it is Gaussian and depends on τ , but this presents no additional difficulty
and the theorem can be generalized to include this case.

4.2.1. A system with colored noise and constant friction. Consider the system{
μẍt = F(xt ) + [−ẋt + f (xt )ηt ]

dηt = − aηt
ε2 dt +

√
2λ

ε2 dWt

(104)

with xt and ηt one-dimensional. This is equivalent to the example in [25, Sect. 11.7.6]
with the substitution ηt = 1

ε
η̃t , where η̃t is the colored noise used in the reference.

Setting μ = kε2, we rewrite the above system as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dxt = vt dt

dvt =
[

F(xt )

kε2 − vt
kε2 + f (xt )ηt

kε2

]
dt

dζt = ηt dt

dηt = − aηt
ε2 dt +

√
2λ

ε2 dWt .

(105)

In the framework of Sect. 2, defining xt = (xt , ζt )
∗ and vt = (vt , ηt )

∗, and letting
m = ε2, the SDE system (105) becomes{

dxt = vt dt

mdvt = F̃(xt )dt − γ (xt )vt dt + σ (xt )dWt

(106)

with

F̃(xt ) =
(

F(xt )
k
0

)
, γ (xt ) =

(
1
k − f (xt )

k
0 a

)
, σ (xt ) =

(
0√
2λ

)
. (107)

To compute the noise-induced drift term, we solve the Lyapunov equation,

γ J + Jγ ∗ = σσ ∗, (108)

and note that the Wiener process Wt is one-dimensional. We use Mathematica® to find
a closed form for J ,

J(x) =
⎛
⎝ λ f (x)2

a(1+ak)
λ f (x)

a(1+ak)

λ f (x)
a(1+ak)

λ
a

⎞
⎠ . (109)

We compute the noise-induced drift in the first component (i = 1) using Eq. (3):

S1(x) = ∂

∂xl
[(γ −1)1 j (x)]J jl(x)

= λ f ′(x) f (x)

a2(1 + ka)
. (110)
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Therefore, the limiting SDE for xt is

dxt =
[

F(xt ) +
λ f ′(xt ) f (xt )

a2(1 + ka)

]
dt +

√
2λ

a2 f (xt ) dWt , (111)

in agreement with [25].

4.2.2. Thermophoresis. The same type of equation can be used to model thermophore-
sis, i.e. the movement of small particles in a temperature gradient [27]. While theoretical
models of this phenomenon are still a matter of debate, thermophoresis has been suc-
cessfully employed experimentally, e.g., to separate and group small particles [27] and
to influence the motion of DNA [5]. In [13] we used Eq. (102) to model the motion of
a particle of mass m driven by a colored noise ηt with a short correlation time τ in an
environment where the temperature T (x) depends on the particle’s position x , and thus
γ (x) = γ (T (x)) and D(x) = D(T (x)). In the limit as m, τ → 0, the noise-induced
drift pushes the particle toward the hotter regions or toward the colder regions depending
on the ratio m/τ . This was argued in [13] using a multi-scale expansion. We now show
this using Theorem 1. We consider the SDE system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dxt = vt dt

dvt =
[

F(xt )
θ(xt )τ

− 1
θ(xt )τ

vt +
√

2D(xt )ηt
θ(xt )τ

]
dt

dζt = ηt dt

dηt = − 2ηt
τ

dt + 2
τ

dWt

(112)

where Wt is a one-dimensional Wiener process and we have introduced the dimensionless
quantity

θ(x) = θ(T (x)) = m

γ (T (x))τ
. (113)

Differently from previous sections, the small parameter is τ , not m (as τ goes to zero m
will go to zero as well). Define x = (x, ζ ), v = (v, η), and

γ (x) =
(

1
θ(x)

−
√

2D(x)
θ(x)

0 2

)
, σ =

(
0

2

)
. (114)

γ is invertible and

γ −1(x) =
(

θ(x)
√

2D(x)
2

0 1
2

)
. (115)

To compute the noise-induced drift term, we solve the Lyapunov equation,

γ J + Jγ ∗ = σσ . (116)

A closed form of J obtained using Mathematica® is

J(x) =
⎛
⎝ 2D(x)

1+2θ(x)

√
2D(x)

1+2θ(x)√
2D(x)

1+2θ(x)
1

⎞
⎠ (117)
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Using Eq. (2), as τ, m → 0 so that m/τ is constant, we see that the limiting equation
for x is

dxt =
[

F(xt )

θ(xt )
+

γ (xt )D′(xt ) − 4θ(xt )γ
′(xt )D(xt )

2γ (xt )(1 + 2θ(xt ))

]
dt +

√
2D(xt ) dWt , (118)

which coincides with the result of [13].

Remark 3. Strictly speaking, the system (112) does not obey the fluctuation-dissipation
relation as the time correlations of the noise should be reflected in the friction term, which
should become an integral over the past [40, Sect. 1.5]. The resulting non-Markovian
system requires a more refined analysis.

4.3. Three-dimensional Brownian motion in a force field. As a generalization of the
example in Sect. 4.1, we consider a Brownian particle in R

3. The coefficients consist of
a spatially varying noise coefficient σ (x) and the fluctuation-dissipation relation [35] in
multi-dimensional form, i.e.

γ (x) = σ (x)σ ∗(x)

kB T
. (119)

A force F is acting on the particle. Equation (1) becomes⎧⎨
⎩

dxm
t = vm

t dt

dvm
t =

[
F(xm

t )

m − σσ ∗(xm
t )

mkB T vm
t

]
dt + σ (xm

t )

m dW t .
(120)

To find the limiting equations, we solve the Lyapunov equation

1

kB T

(
σσ ∗ J + Jσσ ∗) = σσ ∗ (121)

obtaining J = kB T
2 I where I is the identity matrix. The limiting equation (2), as m → 0,

is

dxt =
[
(σσ ∗(xt ))

−1kB T F(xt ) − kB T S(xt )
]

dt + [σ (xt )
∗]−1kB T dW t , (122)

where the i th component of S equals

Si (x) = kB T

2

∂

∂xl
([(σσ ∗)−1(x)]il). (123)

Remark 4. If F is a conservative force, i.e. F = −∇U , it can be shown (e.g. by solving
the corresponding stationary Fokker-Planck equation) that for m > 0 Eq. (120) has

a stationary density C exp
{
−U (x)

kB T − m|v|2
2kB T

}
(Gibbs distribution). In this case, one can

recover the formula for S by requiring that the limiting equation has C exp
{
−U (x)

kB T

}
as

its stationary density. For a non-conservative force F, the stationary solution will not
be Gibbs and the limit is identified using Theorem 1. Interestingly these cases have also
been studied experimentally in the presence, e.g., of non-conservative forces arising from
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hydrodynamic interactions in two dimensions [37] and optical forces in three dimensions
[26,33].

4.4. Brownian particle in a three-dimensional magnetic field. We consider a particle of
mass m and charge q, moving in three dimensions under an external force F(x) and
a friction force −γ (x)v in the presence of (white) noise σ (x)ηt . We assume there is
an additional magnetic (Lorentz) force qv × B(x), where B ∈ R

3 is a magnetic field.
Similar problems were studied in [4,9,18]. The Lorentz force can be written as an action
of an (antisymmetric) matrix H(x) ∈ CR3×3[0, T ] on v. While physically H(x) does
not represent friction, it can be added to the friction term, changing the matrix γ to a
modified one

γ̃ (x) = γ (x) + H(x).

Note that γ and γ̃ have the same symmetric part and, therefore, Assumption 1 is pre-
served. Accordingly, the noise-induced drift S̃ is now calculated, using the solution of
the modified Lyapunov equation

J γ̃ ∗ + γ̃ J = σσ ∗, (124)

In particular, if γ and σ satisfy the Einstein relation σσ ∗ = 2kB T γ , the solution of the
Lyapunov equation is

J = kB T I,

where I is the identity matrix, leading to

S̃i (x) = kB T
∂

∂x j

[
(γ + H)−1

i j (x)
]
.

The result in this case is essentially contained (based on different arguments) in [32].
This case is special in that adding an anti-symmetric matrix H to γ does not change the
solution of the Lyapunov equation.

5. Stratonovich form of the Limiting Equation

In general, an Itô system

d(xt )i = bi (xt ) dt + hi j (xt ) d(Wt ) j (125)

has an equivalent Stratonovich form

d(xt )i = bi (xt ) dt − 1

2

(
∂k(hi j )(xt )

)
hkj (xt )dt + hi j (xt ) ◦ d(Wt ) j , (126)

in which the middle term − 1
2

(
∂k(hi j )(xt )

)
hkj (xt ) is the Itô-to-Stratonovich correction.

We apply it to Eq. (2), where h = γ −1σ , getting for the Itô-to-Stratonovich correction
the expression

−1

2
(∂k(γ

−1)i�)σ�j (γ
−1)kmσmj − 1

2
(γ −1)i�(∂k(σ�j ))(γ

−1)kmσmj . (127)



The Smoluchowski-Kramers Limit of Stochastic Differential Equations 1281

In the case when γ = γ ∗ commutes with σ (and thus also with σ ∗), the solution of the
Lyapunov equation (4) is

J = 1

2
σσ ∗γ −1. (128)

Substituting it into the limiting equation (3) we see that S cancels the first term of the Itô-
to-Stratonovich correction and thus in the Stratonovich language the limiting equation
becomes

dxt =
[
γ −1(xt )F(xt ) + S̄(xt )

]
dt + γ −1(xt )σ (xt ) ◦ dW t , (129)

with

S̄i (x) = −1

2
(γ −1)i�(x)(∂k(σ�j )(x))(γ −1)km(x)σmj (x). (130)

For example, in one dimension, Eq. (129) is

dxt =
(

F(xt )

γ (xt )
− 1

2

σ(xt )σ
′(xt )

γ 2(xt )

)
dt +

σ(xt )

γ (xt )
◦ dWt . (131)

It follows that S̄ = 0 if the noise matrix σ is independent of x. Note that when γ (x) = γ
is independent of x, the noise-induced drift in the Itô SDE (2) is zero.

6. Conclusion

We have proven convergence of solutions of a class of SDE systems in the small-mass
limit. Generalizing earlier work by several authors, the results apply in arbitrary dimen-
sion and allow us to include position-dependent friction and noise coefficients, as well as
colored noises with suitably scaled correlation times. Our main result (Theorem 1) pro-
vides an alternative to homogenization of SDE obtained by multiscale expansion; while
the latter prove convergence in distribution, our method yields stronger L2-convergence.
It has a wide range of physically relevant applications, including explanation of actual
experiments and prediction of new effects. We have, in particular, discussed applica-
tions to Brownian motion in a diffusion gradient, thermophoresis of small particles, and
Brownian motion in the presence of non-conservative forces.
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