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Abstract: In this study, we consider a bicriteria multiresource generalized assignment problem. Our criteria are the total assignment
load and maximum assignment load over all agents. We aim to generate all nondominated objective vectors and the corresponding
efficient solutions. We propose several lower and upper bounds and use them in our optimization and heuristic algorithms. The
computational results have shown the satisfactory behaviors of our approaches. © 2014 Wiley Periodicals, Inc. Naval Research Logistics
61: 621–636, 2014
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1. INTRODUCTION

Assignment problems (APs) are motivated by situations
where scarce resources, so-called agents, are to be allocated to
tasks. The importance of these assignments stems from their
direct applications and their roles as subproblems in several
operations research problems. The classical AP assigns the
tasks to the agents, each agent handles at most one task and
each task is assigned to exactly one agent, and the total cost
over all assignments is minimized. The generalized assign-
ment problem (GAP) is an extension of the classical model,
which assumes that more than one task can be assigned to one
agent, the agents have limited availabilities and the tasks have
defined resource consumptions. The multiresource general-
ized assignment problem (MRGAP) permits the assignment
of multiple tasks to an agent subject to the availability of a
set of multiple resources consumed by that agent.

The classical GAP minimizes the total cost over all agents;
hence there are concerns regarding efficiency. Conversely, in
many practical cases, the satisfaction level of each individual
agent, which can be represented by a fairness measure, is as
important as maximizing profits. Improving the satisfaction
levels of all agents is likely to promote their cooperation in
similar future projects.

In this study, we consider the MRGAP with two objec-
tives: minimizing the total workload assigned over all agents
and minimizing the maximum workload assigned among
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all agents. The total workload is pertinent to the efficiency
concerns of the decision makers. Conversely, the maximum
workload objective seeks to generate a balanced workload
among the agents, hence, it is related to the fairness concerns
of the decision makers.

One real application that we take our motivation from
is faced by a well-recognized firm in the heating, ventilat-
ing, and air-conditioning sector in Turkey. The problem is to
assign agents to the tasks that they call opportunities, such that
the agent assigned to an opportunity will follow it for mul-
tiple periods until its completion. In each period, the agents
have limited time, and the time requirement of an opportu-
nity depends on the experience of its assigned agent. The
managers require a single agent to be assigned to an opportu-
nity, as they believe that communication between multiagents
would slow the process down.

Our motivating case can be extended to many sectors,
including but not limited to, banking (agents replaced by
servers of limited capacity and arbitrary pace, opportunities
replaced by customers), communications (agents replaced
by nodes of the distributed computer systems, opportunities
replaced by processors and databases), healthcare (agents
replaced by physicians having specialization areas; hospi-
tal rooms and emergency facilities with limited capacities,
opportunities replaced by patients), transportation (agents
replaced by trucks having limited capacities or specified
routes, opportunities replaced by transportation items), retail
(agents replaced by warehouses with limited capacities,
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opportunities replaced by end-customer items), government
(agents replaced by clerks of limited capacity and arbitrary
pace, opportunities replaced by customer requests).

In all of the above sectors, the opportunities are the cus-
tomers, each with a specified service time and a need to be sat-
isfied by a single agent (server). The managers’ concern is not
only to minimize the total service time spent on all customers
(for efficiency), but also to minimize the maximum service
time allocated to any one customer (for fairness). For exam-
ple, for location problems in emergency services, not only the
total distance travelled, but also the longest distance between
the emergency facility and the patient is an important concern.

In this study, we consider a bicriteria MRGAP. To the best
of our knowledge, there is no other reported work on the
bicriteria MRGAP.

We generate all efficient solutions with respect to our effi-
ciency measure of total workload over all agents, and fairness
measure of maximum workload among all agents.

Our bicriteria MRGAP is NP-Hard in the strong sense as
the GAP that minimizes the total workload over all agents
is NP-Hard (Non-deterministic Polynomial-time Hard) in
the strong sense [17]. The complexity of our problem sug-
gests that any optimization procedure will have computa-
tional challenges as the number of agents and tasks increases.
Recognizing this fact, we propose optimization algorithms
to seek optimal solutions for small- to medium-sized prob-
lem instances. For large-sized problem instances, we rely on
heuristic procedures that are based on the ideas used in our
optimization algorithms.

The article is organized as follows: Section 2 reports on the
related literature. In Section 3, we specify our problem and
give its mathematical model. In Section 4, we define our clas-
sical approach (CA) that uses the successive solutions of the
constrained optimization models. In Section 5, we specify
our branch and bound (B&B) algorithm together with its
reduction and bounding mechanisms. Section 6 presents our
heuristic algorithms, and Section 7 reports the results of our
computational study. We conclude the article in Section 8.

2. LITERATURE REVIEW

Many practical applications of the AP, GAP, and MRGAP
are cited in the literature. Burkard [1] discusses some appli-
cations of the AP. The cited applications of the GAP include
fixed-charge plant location problems [3], p-median loca-
tion problems [29], grouping and loading problems in flex-
ible manufacturing systems [20], cell formation problems
in cellular manufacturing systems [31], routing problems
[7], designing communication networks [12], and allocat-
ing cross-trained workers to multiple departments [2]. The
examples cited for the MRGAP are allocating processors
and databases to the nodes of a distributed computer system,

truck routing, cargo loading on ships, warehouse design and
workload planning in job shops [9, 10, 24, 26].

Dell’Amico and Martello [5], and Cattrysse and Van
Wassenhove [3] give extensive surveys for the solution
approaches of the AP and GAP, respectively. The solution
approaches for the MRGAP are addressed in [10, 21, 22, 33].
Gavish and Pirkul [10] study different Lagrangean relax-
ations of the model and develop heuristic procedures and
a B&B algorithm based on these relaxations. Mazzola and
Wilcox [21] propose a three-phased heuristic procedure that
finds an initial feasible solution and then systematically
improves the solution. Yagiura et al. [33] propose a very large-
scale neighborhood search algorithm based on a Tabu Search
(TS) idea. Mitrović-Minić and Punnen [22] develop a very
large-scale neighborhood search algorithm for the MRGAP.

The AP, GAP, and MRGAP that consider min–max-type
objectives are referred to as the bottleneck AP, bottleneck
GAP, and bottleneck MRGAP, respectively. The bottleneck
AP, which minimizes the maximum cost (time) over all
assignments, has been widely studied in the literature (see
Burkard [1]). Punnen and Aneja [28] proposed exact and
heuristic methods to solve the general bottleneck (min–max
as they refer) combinatorial optimization problems. Seshan
[30], and Punnen and Aneja [28] studied a bottleneck AP
in which the tasks are divided into categories. Mazzola and
Neebe [18, 19], and Martello and Toth [16] considered the
bottleneck GAP with the objective of minimizing the max-
imum cost over all assignments. Mazzola and Neebe [18]
proposed mathematical models and a technique for trans-
forming bottleneck GAPs into classical GAPs. Mazzola and
Neebe [19] proposed an algorithm that solves a sequence of
GAP feasibility problems and uses lower bounds on the gen-
eral bottleneck linear programming problem. Martello and
Toth [16] present a B&B algorithm and several approximation
algorithms. Karsu and Azizoglu [15] address the MRGAP
that minimizes the maximum cost among all agents. They
propose a B&B algorithm that uses the optimal solutions of
the linear programming relaxations (LPRs).

There exists limited work on the bicriteria GAP. Zhang
and Ong [34] proposed a linear programming-based heuris-
tic procedure and Garrett and Dasgupta [8] presented a search
space and fitness landscape analysis. Both studies aimed to
generate an approximate set of nondominated solutions.

In this study, we consider a bicriteria MRGAP that consid-
ers the maximum cost among all agents and the total cost over
all agents, as the two objectives. To the best of our knowledge,
there is no other reported work on the bicriteria MRGAP.

3. PROBLEM DEFINITION

We considered n tasks to be assigned to m agents. There
are s periods. The available capacity of agent i in period t is
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defined as bit and pij t is the time required by task j in period
t if performed by agent i. We assume that all parameters are
integers.

We use a binary variable xij to explain our assignment
decisions where:

xij=
{

1 if task j is assigned to agent i

0 otherwise

}
.

Our bicriteria MRGAP is as follows:

min

⎧⎨
⎩

m∑
i=1

n∑
j=1

s∑
t=1

pijtxij , maxi

⎧⎨
⎩

n∑
j=1

s∑
t=1

pijtxij

⎫⎬
⎭

⎫⎬
⎭

n∑
j=1

pijtxij ≤ bit ∀i = 1, . . . , m, ∀t = 1, . . . , s

m∑
i=1

xij = 1 ∀j = 1, . . . , n

xij = 0 or 1 ∀i = 1, . . . , m, ∀j = 1, . . . , n

The linear programming representation of the problem is
as follows:

min{ZT, ZM}
n∑

j=1

pijtxij ≤ bit ∀i = 1, . . . , m, ∀t = 1, . . . , s (1)

m∑
i=1

xij = 1 ∀j = 1, . . . , n (2)

n∑
j=1

s∑
t=1

pijtxij ≤ ZM ∀i = 1, . . . , m (3)

m∑
i=1

n∑
j=1

s∑
t=1

pijtxij = ZT (4)

xij = 0 or ∀i = 1, . . . , m, ∀j = 1, . . . , n (5)

The objective functions are to minimize ZM (maximum
load among all agents) and minimize ZT (total load over all
agents).

Constraint set (1) ensures that the capacities of the agents
are not exceeded and Constraint set (2) ensures that each task
is assigned to one agent. Constraint sets (3) and (4) define ZM

and ZT. The assignment restrictions are given by constraint
set (5). We, hereafter, refer to Constraint sets (1) through (5)
as x ∈ X.

Our bicriteria MRGAP reduces to the bicriteria GAP when
s = 1 and to the bicriteria AP when s = 1 and all time and
capacity values are unity.

A solution r in set X is called efficient if there is no other
solution q in set X having Z

q

M ≤ Zr
M and Z

q

T ≤ Zr
T with

strict inequality holding at least once. The resulting objec-
tive vector (Zr

M, Zr
T) is said to be nondominated. If there

exists a solution q such that (Zq
M, Zq

T) ≤ (Zr
M, Zr

T) (that is
Z

q

M ≤ Zr
M and Z

q

T < Zr
T or Z

q

M < Zr
M and Z

q

T ≤ Zr
T) then

solution q dominates solution r, and we say the objective
vector (Zq

M, Zq
T) dominates the objective vector (Zr

M, Zr
T).

4. FINDING THE NONDOMINATED OBJECTIVE
VECTORS

Consider the min ZM s.t. x ∈ X problem and let Z∗
M be

its optimal ZM value. Z∗
M is a valid lower bound on the ZM

values of all efficient solutions. However, any optimal solu-
tion to the problem may not be efficient as there may exist
alternate optimal solutions having smaller ZT values.

Among the alternate optimal solutions to the min ZM s.t.
x ∈ X problem, the one having the smallest ZT value
requires the optimal solution of the min ZT s.t. x ∈ X and
ZM = Z∗

M problem. In place of treating ZM = Z∗
M in

the constraint set, we can modify the objective function as
ZM + εZTOTZT for a sufficiently small value of εZTOT> 0 and
get the min ZM + εZTOTZT s.t. x ∈ X problem.

εZTOT should be set small enough that the maximum load
value should not increase even for the largest possible value
of the total load, Zmax

T . That is, Z∗
M + εZTOTZmax

T < Z∗
M+

Zmin
T , where Zmin

T is the smallest possible value of ZT. This

follows εZTOTZmax
T < Zmin

T , that is, εZTOT < Zmin
T

Zmax
T

. The maxi-

mum value of ZT is not bigger than
∑n

j=1maxi{∑s
t=1pijt }

and the minimum value of ZT is not less than 1. Hence,
εZTOT< 1∑n

j=1maxi {∑s
t=1pijt } should hold. In our experiments, we

set εZTOT to:

1∑n
j=1 max

i
{∑s

t=1 pijt } + 1

4.1. Finding the Exact Nondominated Objective
Vectors

Procedure 1 (below) generates all nondominated objec-
tive vectors by solving the min ZM+ εZTOTZT subject to the
x ∈ X and ZT ≤ k problem. The procedure is based on the
fact that the objective vector values (ZM, ZT) are integers.

4.1.1. Procedure 1. Finding All Nondominated Objective
Vectors

Step 0. Solve min ZM + εZTOTZT

s.t. x ∈ X

Let the objective vector of the solution be (Z∗
M, Z∗

T)

k = Z∗
T − 1

Step 1. (P1) minZM + εZTOTZT

s.t. x ∈ X and ZT ≤ k

Naval Research Logistics DOI 10.1002/nav



624 Naval Research Logistics, Vol. 61 (2014)

Step 2. If (P1) is infeasible, stop.

Let the solution be (Z∗
M, Z∗

T)

k = Z∗
T − 1

Go to Step 1

An optimal solution to the min ZM + εZTOTZT s.t. x ∈
X and ZT ≤ k problem is efficient (see Haimes et al. [13]
for the general bicriteria problem). Hence each step of Proce-
dure 1 generates an efficient solution and the corresponding
nondominated objective vector. The procedure generates all
nondominated objective vectors, as it considers all possi-
ble values of ZT by varying k systematically between Zmin

T
and Zmax

T . There can be at most Zmax
T − Zmin

T + 1 nondomi-
nated objective vectors, hence the procedure iterates pseudo
polynomial times.

The MRGAP reduces to GAP when s = 1. The feasibil-
ity version of the GAP is NP-complete in the strong sense
(Martello and Toth [17]) so is the feasibility version of the
MRGAP. It follows that a problem of generating even a single
efficient solution is strongly NP-hard.

We, hereafter, refer to Procedure 1 as the CA. The CA takes
its spirit from the ε-approach that generates single objective
subproblems, and transforms all but one of the objectives into
constraints (Ehrgott and Gandibleux [6]). The upper bounds
of these constraints are given by the ε vector and the exact
nondominated objective vector is generated by varying the
ε vector. Note that the CA systematically varies the k value
and generates the exact nondominated objective vectors.

Alternatively, to generate the set of all nondomi-
nated objective vectors, we could solve the min ZT +
εZMAXZM s.t. x ∈ X and ZM ≤ k problem for a properly
selected value of εZMAX and vary k between Zmin

M and Zmax
M .

4.2. Finding the Approximate Nondominated
Objective Vectors

Recall that our bicriteria MRGAP is strongly NP-Hard as
the feasibility version of the GAP is NP-Complete in the
strong sense. It is likely that the CA may fail to solve large-
sized problem instances, hence there is a need for heuristic
procedures. We implement a variation of the CA so as find
an approximate set of the nondominated objective vectors.

We solve the min ZM + εZTOTZT s.t. x ∈ X and ZT ≤ k

problem using a gap, α%. Our integer programming solver
CPLEX, sets α to the relative deviation of the best known
objective function value (UB) and the best known lower
bound on the optimal objective function value (LB). That
is, α = UB−LB

LB × 100. Hence, it guarantees that the result-
ing ZM value deviates from the optimal ZM value by at most
α%. Note that the resulting solution has no guarantee of effi-
ciency even when α = 0, as there may exist alternative optimal
solutions with smaller ZT values.

Below is the stepwise description of the algorithm that
generates approximate nondominated objective vectors.

4.2.1. Procedure 2. Finding Approximate Nondominated
Objective Vectors

Step 0. Solve min ZM

s.t. x ∈ X

with α%gap

Let the solution be (Zα
M, Zα

T)

kT = Zα
T − 1

kM = Zα
M

Step 1. (P1) minZT

s.t. x ∈ X ZT ≤ kT and ZM ≤ kM

Solve P1 with α% gap

Step 2. Case 1. (P1) is infeasible

Solve min ZM

s.t. x ∈ X and ZT ≤ kT

with α% gap

If the solution is infeasible, stop

Let the solution be (Zα
M, Zα

T)

kT = Zα
T − 1

kM = Zα
M

Go to Step 1

Case 2. (P1) is feasible

Assume (Zα
M, Zα

T) solves (P1)

kT = Zα
T − 1

Solve min ZM

s.t. x ∈ X and ZT ≤ kT

with α% gap

If the solution is infeasible, stop

Let the solution be (Zα
M, Zα

T)

kT = Zα
T − 1

kM = Zα
M

Go to Step 1

In Step 0, we solve (P1) with α% gap, hence an overesti-
mate on the smallest possible value of ZM is found.

In Step 1, we look for a nondominated solution. If the α

value is zero, an efficient solution having the same ZM value,
but a smaller ZT value, could be found through the optimal
solution of the min ZT s.t. x ∈ X and ZM = kM problem.
We solved the min ZT s.t. x ∈ X ZT ≤ kT and ZM ≤ kM
problem with the hope of getting a nondominated solution.
However, the resulting solution may not be nondominated as
we are using a gap.
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Figure 1. The branching scheme.

Step 2 checks the feasibility of the problem solved in Step
1. If the problem is infeasible then we look for the feasible
solution with the smallest ZM value while satisfying ZT ≤ kT.
If the problem is feasible, we updated Zα

T and kT accordingly
then solve the min ZM s.t. x ∈ X and ZT ≤ kT problem. We
terminated the procedure in Step 2, after the smallest possible
ZT value is reached.We, hereafter, refer to Procedure 2 as the
classical approach heuristic (CAH).

5. BRANCH AND BOUND ALGORITHM

In this section, we present a B&B algorithm that finds the
exact set of all nondominated objective vectors together with
the corresponding efficient set. The reported B&B algorithms
to generate all nondominated objective vectors were provided
by Sun [32] for the network flow problems and Ozlen and
Azizoglu [25] for a rescheduling problem.

Our B&B algorithm starts with an initial approximate set
of nondominated objective vectors and updates the set, when-
ever a feasible solution that is not dominated by any objective
vector in the set is found. We refer to the current nondom-
inated set of objective vectors as an incumbent set (IS). At
the termination of the procedure, IS contains the exact set of
all nondominated objective vectors and one efficient solution
per nondominated objective vector.

At each level of the B&B tree, we selected a task. The task
selection was based on the optimal solutions of the LPR of the
minZT +εZMAXZM s.t. x ∈ X and ZM ≤ k problem (LPRT).
We selected the task corresponding to the highest fractional
variable of the LPRT. In our preliminary runs, we also tried the
highest fractional variable of the LPRM, however, we could
not find better results.

For the selected task, we generate m nodes: each represent-
ing the assignment of the task to one of the m agents. Figure
1 illustrates our branching scheme.

A partial solution to the problem, that is, a node of the
B&B tree, gives a set of assigned tasks (S) together with their
agents. At each node, we removed agent i from all future
considerations if it cannot process any unassigned task j in
any period t due to its available capacity.

We fathom a node representing the assignment of task j to
agent i if one of the following conditions holds:

1. The available capacity of agent i is not sufficient for
task j in any period (as the node cannot lead to a
feasible solution).

2.
∑

i ni. < n̄, where ni is an upper bound on the num-
ber of unassigned tasks that agent i can process by its
remaining capacity and n̄ is the number of unassigned
tasks (as the node cannot lead to a feasible solution).
The ni value that satisfies

∑ni

j=1

∑
t pi [j ] t ≤ ∑

t bit

and
∑ni+1

j=1

∑
t pi [j ] t >

∑
t bit is a valid upper

bound on the number of tasks that agent i can process,
once the tasks are ordered such that

∑
t pi [j ] t≤∑

t pi [j+1] t for all j.
3. The maximum and total loads after the assignment

are dominated by any solution in IS.

When a new feasible solution is reached, we update IS in
two ways:

1. Add the new feasible solution and its objective vec-
tor to IS if the new solution is not dominated by any
solution in IS.

2. Remove the solutions that are dominated by the new
solution, and their objective vectors.

We also update IS when all unassigned tasks at any node
can be performed by agent i without violating its capacity,
hence a new feasible solution is reached.

5.1. Lower Bounds

For each unfathomed node, we find two lower bounds
(LBs) and fathom a node if the lower bound (LBM, LBT)
is dominated by any solution in IS.

5.1.1. Lower Bound 1: (LB1M, LB1T)

LB1T assumes that each task is performed by the agent
with the least cost. The resulting expression is:

LB1T

∑
j

min
i

{ ∑
t

pij t

}
.

Such a solution ignores the capacities of the agents, which
may lead to infeasible solutions.

LB1M makes the same assumptions as LB1T, and moreover,
assumes that the load is equally split between the agents, en
route to their perfect load balancing. The resulting expression
is:

LB1M

∑
j min

i
{∑t pij t }
m

.
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5.1.2. Lower Bound 2: (LB2M, LB2T)

LB2M and LB2T are calculated by solving the LPR of the
min ZM+εZTOTZT s.t. x ∈ X and min ZT+εZMAXZM s.t. x ∈
X problems, respectively. For each problem, we simply relax
the integrality constraints and strengthen the relaxation by
incorporating the following constraints:

1.
∑

j

xij ≤ ni ∀i.

(6)

Constraint set (6) states that the number of tasks assigned
to agent i cannot exceed ni .

2. At the node representing the addition of task j to the
set of assigned tasks S, we set LBM(S) to max LB1M,
LB2M at the node S. We define:

ZT ≤ Zr
T − 1, (7)

where Zr
T is the smallest ZT value in the IS such

that LBM(S) ≥ Zr
M. Our aim is to avoid a solution

that is dominated by any solution in the IS.

At the node representing the addition of task j to the set
of assigned tasks S, we set LBT(S) to maxLB1T, LB2T at the
node S. We define:

ZT ≤ Zr
M − 1, (8)

where Zr
M is the smallest ZM value in the IS such that

LBT(S) ≥ Zr
T. Our aim is to avoid a solution that is dominated

by any solution in the IS.
We refer to the optimal solution of the LPR of the min ZT+

εZMAXZM s.t. x ∈ X, (6) and (8) problem as LB2T and that
of the min ZM + εZTOTZT s.t. x ∈ X, (6) and (7) problem
as LB2M. If one of those strengthened LPR models returns
all integer decision variables, we obtained a new feasible
solution and the IS was updated by adding the new feasible
solution and removing all solutions that are dominated by the
new solution.

Our preliminary experiments have revealed that LB2T is
effective in reducing the tree size, however, an effort spent
to compute LB2M cannot be justified by the additional node
reductions. For this reason, we do not use LB2M.

For each node, we first calculate LB1M and LB1T. If (LB1M,
LB1T) is not dominated by any objective vector in the IS then
we calculate LB2T and check for the dominance of (LB1M,
LB2T). If (LB1M, LB2T) is dominated by any objective vector
in the IS, then the current node is eliminated. If all nodes
are eliminated at any level then we backtrack to the previous
level.

5.2. Incumbent Set

To find the initial IS to our B&B algorithm, we used the
LPRs of the min ZT + εZMAXZM s.t. x ∈ X and min ZM +
εZTOTZT s.t. x ∈ X problems. For each LPR solution, we
assign the fractional tasks to their highest fractional agents,
as long as the assignment is feasible and we obtain at most
two initial feasible solutions. We improve each feasible solu-
tion with respect to ZM and ZT in two phases. The first phase
helps to reduce the maximum load and it focuses on the bot-
tleneck agent (the agent that has the maximum load, that is,
that defines the ZM value), whereas second phase helps in
reducing the total workload.

The first phase assigns each task of the bottleneck agent to
all other agents as long as the assignment leads to a feasible
solution, that is, the newly assigned agent has available capac-
ity. Then it exchanges all task pairs between bottleneck and
other agents, as long as the exchange is feasible. In the second
phase, we exchange each task of each agent with each task
of all other agents as long as the exchange leads to a feasible
solution.

In each phase, the move that leads to the maximum
improvement in ZM or ZT is performed. We stopped when the
number of nonimproving moves reaches 250 or the number
of iterations reaches 1000.

At each node, we seek opportunities to update the incum-
bent efficient set. In doing so, we first modified the LPR
solution by assigning the fractional tasks to their highest frac-
tional agents, as long as the assignment is feasible. We then
search the neighborhood of the modified solution by reassign-
ing one task from the bottleneck agent to another agent, and
interchanging two tasks assigned to different agents, as long
as the exchange is feasible. The IS was updated whenever
appropriate.

6. HEURISTIC ALGORITHMS

In this section, we present our heuristic algorithms, which
have been developed in an attempt to produce high quality
solutions in reasonable time.

6.1. Tabu Search Algorithms

We implement two TS algorithms, namely TSM and TST.
TSM is the algorithm proposed by Karsu and Azizoglu [15]
for the single objective min–max (min ZM) problem. It starts
with a feasible solution, which is found by modifying the opti-
mal LPR solution of a min–max problem by assigning each
fractional task to its highest fractional agent, as long as the
assignment is feasible. The neighborhoods, namely N1 and
N2 that consider minimizing the maximum load, are simi-
lar to the first phase of the initial incumbent algorithm. N1
assigns each task of the bottleneck agent to all other agents as
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long as the assignment leads to a feasible solution, that is, the
newly assigned agent has available capacity. N2 exchanges
all task pairs between the bottleneck agent and other agents,
as long as the exchange is feasible.

The TST algorithm is similar to the TSM algorithm, with
a modification in N2. We exchanged each task of each agent
with each task of all other agents as long as the assignment
leads to a feasible solution, as in the second phase of the
initial incumbent algorithm.

The TSM algorithm aims to improve the ZM value. Mean-
while, we keep track of the corresponding ZT values and
update the IS, whenever we find an eligible solution, that is,
a solution which is nondominated by the IS. Similarly, we
keep track of the ZM values in TST algorithm and update the
IS, whenever possible.

We first use TSM to obtain an initial set of solutions. Our
initial observations indicate that TSM performs well in terms
of generating solutions with low ZM values. TST starts with
a feasible solution that is found by TSM. To ensure a high
quality performance, that is, to obtain solutions with low ZT

values, we run the TST algorithm twice, each time with a dif-
ferent initial solution. In these two iterations, of the solutions
provided by the TSM algorithm, we start with the solutions
with the smallest ZM and the smallest ZT values, respectively.

We set the Tabu list size to O(m × n) and O(n × n) for
N1 and N2, respectively. Based on the results of our initial
experiments, we set the Tabu tenure to 50. We use the aspi-
ration criterion as the best solution of ZM in TSM (and ZT

in TST), that is, Tabu statuses of the moves that improve the
best solution are overridden.

The algorithm terminates when the number of nonim-
proving moves reaches a predetermined limit called “non-
implimit” or the total number of iterations reaches the limit
“maxiter.” Based on our preliminary experiments, we set the
“nonimplimit” value to 250 as it returned high-quality solu-
tions without causing a significant increase in the solution
times. We set the “maxiter” value to 1000 iterations.

For detailed information on the TS techniques, one may
refer to Glover and Laguna [11].

6.2. Beam Search and Filtered Beam Search
Algorithms

The filtered beam search (FBS) is a heuristic application of
a B&B algorithm that limits the number of partial solutions
evaluated on each level of the search tree. At each level, only
the most promising nodes are selected and the rest are per-
manently discarded. Hence, the search procedure evaluates
a polynomial number of nodes, unlike the B&B search that
evaluates an exponential number of nodes.

The number of nodes retained is called the “beam width”
of the search. There are at most “beam width” nodes, when
the B&B tree has been completely explored. As the rest of

the nodes are discarded, the solution can be obtained quickly
but with no guarantee of optimality. If the evaluation process,
called “beam evaluation function,” which defines the retained
nodes is powerful, then the beam search procedure expectedly
returns a good solution. However, such a powerful evaluation
function may be time consuming.

Filtering is used to catch the trade-off between the qual-
ity of the solutions and the time used to generate them. This
process uses a simpler evaluation method and is applied on all
nodes of a particular level. This simple evaluation function is
called “filter evaluation function.” Based on the outcome of
the filter evaluation function, a number of nodes are selected
for thorough evaluation by “beam evaluation function.” This
number of nodes is called the “filter width.”

The FBS with no filtering step is referred to as the “beam
search.” A beam search algorithm can be favored if the
“beam evaluation function” is computationally efficient and
powerful.

In our implementation, we use the following functions for
evaluating the partial solutions:

Filter Evaluation Function: As a filter evaluation func-
tion, we use our simple lower bounds, LB1M and LB1T.
Using simple functions, we favor low-cost evaluations.

Beam Evaluation Function: Our beam evaluation
functions are more thorough than the filter evaluation
functions. We use the LPR-based lower bounds, that is,
LB2M and LB2T. Using a thorough function, we favor
high-quality evaluations.

Increasing the beam and filter widths improves the quality
of the solutions, but at the expense of increased computa-
tional effort. In the literature, the most suitable values of the
beam width and filter width are set by empirical analysis.
We perform preliminary experiments to determine the most
appropriate values and discuss the results in the next section.

There are several successful applications of the beam
search techniques cited in the literature. Two noteworthy
applications of the beam search techniques to the multicri-
teria problems are provided by Honda [14] and Ponte et al.
[27]. For more detailed information on the beam and FBS
techniques, one may refer to Morton and Pentico [23].

7. COMPUTATIONAL EXPERIMENTS

In this section, we first report our data generation scheme
and performance measures, and then discuss the results of
our experiment.

7.1. Data Generation

We obtained the processing times and capacities via data
generation procedure that has been used previously by [10,
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15, 33. The stepwise description of the procedure is outlined
below. The constants a, b, and c, are used as an input.

Step 0. Generate the first period’s processing time,
pij1, from a discrete uniform distribution between a
and b, that is, U [a, b].
Step 1. Set pijt = 3pij1/4 + γijtpij t /2 for t ≥ 2 and
γijt∼ U(0, 1).
Step 2. Set bit = c

∑
j∈J pijt /m for all t.

In Step 0, we select pij1 ∼U [a, b] sets as follows:

Set S1. pij1 ∼ U [5,25]
Set S2. pij1 ∼ U [10,20]
Set S3. pij1 ∼ U [25,35]

Set S1 includes the instances where the distribution range
is relatively high. Set S2 is used to see the effect of a decrease
in the range of the distribution while maintaining its expected
value. Set S3 includes the instances where the range of the
distribution is low while the expected value is high.

In Step 2, we set c = 1.2. We try several other values for c,
however, similar effects are observed with 1.2 on the solution
times and solution quality of the algorithms.

In our experiments, we try different values for s (2, 3, 4,
and 5), however, no significant effects of s on the solution
times and quality of any algorithm were observed, therefore,
s is set to 5.

For each processing time set and m, n combination, we
generate 10 problem instances.

The algorithms are coded in Visual C++ and solved by
a dual core (Intel Core i5 2.27 GHz) computer with 4 GB
RAM. All models are solved by CPLEX 12.2. The solution
times are expressed in central processing unit seconds.

7.2. Performance Measures

For our optimization algorithms, namely the CA and B&B,
we report average and maximum CPU times. For the B&B
algorithm, we also give the number of partial solutions
evaluated, that is, the number of nodes.

To assess the quality of solutions returned by our heuristic
algorithms, we use the following three measures:

• P = Percentage of nondominated objective vectors
returned by the heuristic P = |ANS∩NS|

|NS| , where:
NS represents the exact set of nondominated objec-

tive vectors; ANS represents the set of nondominated
objective vectors returned by the heuristic procedure.

In our experiments, we use the nondominated set gener-
ated by the CA as NS. We set an upper time limit of 1800 s
for the execution of the CA.

P fails to measure the performance when the nondomi-
nated set is not available. Moreover, P only considers the
number of nondominated objective vectors returned, but not
the closeness of the approximate solutions to their nondom-
inated counterparts. To overcome these drawbacks, Czyżak
and Jaszkiewicz [4] proposed two distance measures. To state
the measures, we assume (Zr

M, Zr
T) is in set NS and (Z

q

M, Zq

T)

is in set ANS and calculate the following values:

RM = max
(Zr

M,Zr
T)∈NS

Zr
M − min

(Zr
M,Zr

T)∈NS
Zr

M

(range for theZMvalues in set NS)

RT = max
(Zr

M,Zr
T)∈NS

Zr
T − min

(Zr
M,Zr

T)∈NS
Zr

T

(range for the ZTvalues in set NS)

f ((Z
q

M, Zq

T), (Zr
M, Zr

T))

= max

{
0,

1

RM
(Z

q

M − Zr
M),

1

RT
(Z

q

T − Zr
T)

}

Using these values, the measures are defined as:

• Distance1 (D1): The average distance between the
points of set NS and the points in set ANS and is
calculated as follows:

D1 = 1

|NS|
∑

(Zr
M,Zr

T)∈NS

min
(Z

q

M,Zq

T)∈ANS

{f ((Z
q

M, Zq

T), (Zr
M, Zr

T))}

• Distance2 (D2): The maximum distance between the
points of set NS and the points in set ANS and is
calculated as follows:

D2 = max
(Zr

M,Zr
T)∈NS{
min

(Z
q

M,Zq

T)∈ANS
{f ((Z

q

M, Zq

T), (Zr
M, Zr

T))}
}

The smaller are the values of D1 and D2, the better is the
performance.

7.3. Preliminary Experiments

The aim of our preliminary experiment is to define the
beam and filter evaluation functions and the beam and filter
widths to be used in our main experiment. In the preliminary
experiments, we use m = 10 and n = 50 and 100.

7.3.1. Beam Evaluation Functions

We try four different beam evaluation functions: the simple
lower bounds (LB1M and LB1T) and LPR-based lower bounds
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Table 1. Average performances of the beam evaluation functions,
m = 10, beam width = 10

Beam
Evaluation

Set Function n CPU Time P D1 D2

S1

LB1M 50 3.78 10.40 0.07 0.16
100 17.08 8.82 0.08 0.21

LB2M 50 27.94 15.06 0.06 0.15
100 148.90 11.63 0.07 0.19

LB1T 50 4.27 28.89 0.05 0.12
100 10.92 22.21 0.05 0.14

LB2T 50 33.36 40.36 0.03 0.09
100 123.07 33.10 0.03 0.09

S2

LB1M 50 4.83 24.49 0.06 0.19
100 18.80 6.22 0.10 0.28

LB2M 50 52.27 26.64 0.05 0.17
100 209.75 8.66 0.09 0.26

LB1T 50 6.19 32.24 0.03 0.10
100 31.37 13.34 0.07 0.20

LB2T 50 40.05 45.95 0.02 0.07
100 174.39 24.51 0.03 0.10

S3

LB1M 50 4.54 10.48 0.10 0.27
100 20.70 3.15 0.10 0.32

LB2M 50 43.44 13.37 0.08 0.20
100 238.68 5.03 0.07 0.24

LB1T 50 6.60 15.11 0.07 0.20
100 24.85 5.33 0.07 0.23

LB2T 50 36.76 29.46 0.04 0.10
100 164.89 12.37 0.04 0.14

(LB2M and LB2T). Table 1 reports the average solution times
and the average values of the distance measures for the beam
search algorithms with beam width of 10.

Note from the above table that, in almost all combinations,
LB2T is the best in terms of solution quality, followed by its
simple counterpart LB1T. We found that these results hold for
other n and m and beam width values. Hence for our main
experiment, as beam evaluation functions, we select LB2T

and LB1T, owing to their superior performance in terms of
solution quality. We refer to the beam search algorithms using
LB1T and LB2T as the beam evaluation functions as BS1 and
BS2, respectively.

7.3.2. Filter Evaluation Functions

We try the simple lower bounds (LB1M and LB1T) as filter
evaluation functions. We use LB2T as the beam evaluation
function based on our preliminary results.

Table 2 reports the average solution times and the average
values of the distance measures for the two FBS algorithms
with a beam width of 10 and a filter width of 25.

Table 2 shows that the performances of the LB1T and LB1M

as filter evaluation functions are quite similar. Due to its supe-
rior performance as a beam evaluation function, we select
LB1T as a filter evaluation function.

Table 2. Average performances of the filter evaluation functions,
m = 10 and beam width = 10, filter width = 25

Beam Evaluation
Set Function n CPU Time P D1 D2

S1
LB1M 50 8.10 40.42 0.03 0.09

100 33.33 35.48 0.03 0.09
LB1T 50 8.98 38.53 0.03 0.09

100 31.64 35.00 0.03 0.09

S2
LB1M 50 13.09 43.3 0.02 0.07

100 73.05 25.7 0.04 0.11
LB1T 50 12.55 42.3 0.02 0.07

100 41.31 24.9 0.04 0.12

S3
LB1M 50 12.94 20.64 0.04 0.10

100 52.76 12.35 0.04 0.13
LB1T 50 9.71 18.71 0.05 0.11

100 48.72 12.01 0.05 0.15

7.3.3. Beam width and Filter width

Recall that there are at most “beam width” complete solu-
tions, when the B&B tree has been completely explored. In
our case, we may have more than “beam width” complete
solutions, as we keep the solutions of the discarded nodes, if
their LP relaxations give all integer values.

As a beam width value, we try m/2, m, 1.5m and 2m for a
given number of agents, that is, m value.

Tables 3 and 4 report the average results for the beam width
values for the BS1 and BS2, respectively.

Table 3. Average performances of the beam width values for the
BS1, m = 10

BS1
Set Beam width n CPU Time P D1 D2

S1

0.5m 50 1.25 22.74 0.06 0.14
100 7.48 17.09 0.06 0.16

m 50 4.27 28.89 0.05 0.12
100 10.92 22.21 0.05 0.14

1.5m 50 6.26 29.63 0.04 0.12
100 34.03 25.45 0.05 0.12

2m 50 9.10 31.10 0.04 0.11
100 37.17 27.15 0.04 0.12

S2

0.5m 50 3.05 27.01 0.04 0.12
100 11.15 10.43 0.07 0.21

m 50 6.19 32.24 0.03 0.10
100 31.37 13.34 0.07 0.20

1.5m 50 10.12 36.96 0.03 0.10
100 33.16 14.88 0.06 0.17

2m 50 13.37 36.96 0.03 0.09
100 69.10 15.13 0.05 0.17

S3

0.5m 50 2.43 10.48 0.09 0.23
100 7.94 4.19 0.06 0.21

m 50 6.60 15.11 0.07 0.20
100 24.85 5.33 0.07 0.23

1.5m 50 7.30 17.22 0.06 0.18
100 28.78 5.80 0.07 0.21

2m 50 11.08 16.78 0.06 0.18
100 33.60 6.80 0.07 0.22
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Table 4. Average performances of the beam width values for the
BS2, m = 10

BS2
Set Beam width n CPU Time P D1 D2

S1

0.5m 50 8.17 33.96 0.04 0.11
100 30.27 28.37 0.04 0.11

m 50 33.36 40.36 0.03 0.09
100 123.07 33.10 0.03 0.09

1.5m 50 40.92 42.25 0.03 0.09
100 167.36 37.99 0.03 0.09

2m 50 56.66 44.35 0.03 0.08
100 229.51 38.02 0.03 0.09

S2

0.5m 50 13.77 39.99 0.03 0.08
100 47.36 19.83 0.04 0.12

m 50 40.05 45.95 0.02 0.07
100 174.39 24.51 0.03 0.10

1.5m 50 79.38 48.16 0.02 0.06
100 237.93 26.62 0.03 0.11

2m 50 119.08 48.47 0.02 0.06
100 345.70 28.84 0.03 0.10

S3

0.5m 50 13.29 18.70 0.05 0.13
100 48.40 9.64 0.05 0.15

m 50 36.76 29.46 0.04 0.10
100 164.89 12.37 0.04 0.14

1.5m 50 57.98 33.97 0.03 0.10
100 230.71 13.29 0.04 0.13

2m 50 87.13 32.70 0.03 0.10
100 380.68 13.89 0.04 0.14

We try 1.5m, 2m, 2.5m, and 3m for the filter width value
after we fix the beam width at m. The results are reported in
Table 5.

We use the beam width value of m and filter width value
of 2.5m in our main experiments, as we observe that at
those values high-quality solutions are obtained in small CPU
times.

7.4. Main Experiment

In our main experiment, we test the performances of our
optimization algorithms and heuristic algorithms.

Table 5. Average performances of the filter width values, m = 10
and beam width = m

Set Filter width n CPU Time P D1 D2

S1

1.5m 50 5.02 35.97 0.03 0.09
100 17.914 29.28 0.04 0.11

2m 50 6.654 37.19 0.03 0.09
100 26.453 34.92 0.03 0.09

2.5m 50 8.982 38.53 0.03 0.09
100 31.638 35.00 0.03 0.09

3m 50 9.779 38.53 0.03 0.09
100 42.36 35.91 0.03 0.09

S2

1.5m 50 6.04 39.91 0.03 0.07
100 18.98 18.84 0.04 0.13

2m 50 8.38 43.53 0.02 0.08
100 28.33 25.70 0.04 0.11

2.5m 50 12.55 42.35 0.02 0.07
100 41.31 24.89 0.04 0.12

3m 50 12.86 44.18 0.02 0.07
100 46.62 23.20 0.04 0.13

S3

1.5m 50 5.35 20.32 0.05 0.13
100 19.41 9.32 0.05 0.16

2m 50 7.32 23.64 0.04 0.11
100 33.97 11.91 0.05 0.16

2.5m 50 11.44 25.10 0.04 0.10
100 48.72 12.01 0.05 0.15

3m 50 11.82 23.69 0.04 0.12
100 56.68 11.76 0.04 0.12

7.4.1. Optimization Algorithms

We first analyze the performance of our optimization algo-
rithms. Table 6 reports the average and maximum solution
times for small-sized problem instances with m = 5 agents
and n = 15, 20, 25 tasks. We use such small instances as the
B&B could not return solutions in reasonable time for larger-
sized problem instances. The table also includes the number
of nodes for B&B.

As can be observed from the table, the CA returns the exact
nondominated set in negligible time. However, the solution
time and number of nodes evaluated by the B&B algorithm
are quite high even for small-sized problem instances.

Table 6. Solution times of the optimization algorithms

B&B CA

CPU Time Number of nodes CPU Time

Set m n Avg Max Avg Max Avg Max

S1 5 15 2.65 7.97 2469 5445 0.51 0.97
20 17.85 57.25 7793 18925 0.48 0.72
25 27.95 100.06 9392 25520 0.57 2.26

S2 5 15 109.21 600.00 25030 108091 0.43 1.17
20 277.44 600.00 45751 98727 0.64 1.05
25 547.26 600.00 65804 84148 1.11 1.79

S3 5 15 174.99 600.00 30814 90105 0.47 1.28
20 402.41 600.00 55314 87524 0.42 0.66
25 562.22 600.00 72067 88453 0.70 1.17
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For sets S2 and S3, the B&B algorithm could not return
optimal solutions in our time limit of 600 s. Unlike the CA, the
B&B algorithm returns the nondominated set in one execu-
tion. The nondominated set has many solutions, leading to the
return of many partial and complete solutions by our B&B
algorithm. Moreover, each partial solution is evaluated for
two criteria; hence node eliminations are tougher compared
to the single criterion problems.

For the CA, we consider some larger-sized instances, start-
ing with m = 10 and n = 50 and increasing m and n values
in respective increments of 10 and 50. We specify a time
limit of 1800 s for each instance. In Table 7, we report on the
average and maximum CPU times and the average number
of nondominated points for each problem combination.

As can be observed from Table 7, the number of non-
dominated points increases linearly with increases in m or n.
Conversely, as m or n increases, the time to find all nondom-
inated points increases significantly. Hence, this significant
increase in the CPU times can be attributed to the increases in
the complexity of the integer models that return a single non-
dominated point. Note that when n = 50, the average CPU
times are less than 10 s for most combinations. When n =
150, the average CPU times are greater than 500 s for most
combinations, and the maximum CPU times are greater than
1800 s indicating that there are instances that could not be
solved in 1800 s.

7.4.2. Heuristic Procedures

We first discuss the performance of our beam search algo-
rithms. Table 8 reports on the average and maximum solution
times and the number of LPR problems solved for the two

Table 7. Performance results of the CA

CPU Time |NS|

m n Avg Max Avg

S1
10 50 4.04 7.71 16.10

100 44.39 127.30 18.30
150 212.94 844.29 37.60

20 50 9.45 22.11 19.50
100 69.80 196.07 28.10

S2
10 50 8.30 17.46 17.40

100 328.84 1800.0(1)a 23.00
150 822.68 1800.0(3) 26.50

20 50 17. 54 27.66 11.50
100 30.45 49.65 27.40

S3
10 50 4.41 9.24 16.10

100 28.60 92.09 36.90
150 544.79 1800.0(1) 45.67

20 50 7.28 15.56 9.60
100 91.51 469.33 27.50

aThe figures in the parentheses give the number of instances (out of
10) remained unsolved in 1800sec.

beam search algorithms. Table 9 shows the average solution
time per LPR for the beam search algorithms and the average
depth of the beam search tree.

Note from Table 9 that for Set S1, when m = 20 and n = 100,
the average tree depth for BS1 is 50 at the termination, that
is, 50 out of 100 tasks are searched along each path between
the root and any one of the end nodes.

Table 8 reveals that the number of agents, m, and the num-
ber of tasks, n have significant effects on the solution times
of the BS1 and BS2.

For fixed n, as m increases, the number of branches
increases, which triggers an increase in the solution times.

Table 8. CPU times and number of LPs solved for the BS1 and BS2

BS1 BS2

CPU Time Number of LPs solved CPU Time Number of LPs solved

m n Avg Max Avg Max Avg Max Avg Max

S1
10 50 4.27 13.66 289 468 33.36 55.24 2093 2392

100 10.92 33.40 430 662 123.07 240.55 3876 5284
150 86.95 369.42 587 1186 131.29 240.44 3987 5515

20 50 10.25 14.20 572 808 104.45 174.05 3805 4645
100 43.96 96.05 849 1283 758.69 1424.17 14080 18761

S2
10 50 6.19 30.25 358 491 40.05 62.34 2726 3250

100 31.37 143.44 470 880 174.39 305 5552 7548
150 116.79 460.31 835 1306 371.80 595.86 7841 10954

20 50 51.30 108.93 764 937 192.03 398.47 6640 9407
100 171.76 738.82 1138 1895 583.45 1095.57 12760 25051

S3
10 50 6.60 16.93 391 467 36.76 55.35 2655 3261

100 24.85 83.35 529 954 164.89 320.67 5450 7309
150 22.99 39.62 737 1161 446.09 773.81 8914 11625

20 50 85.64 119.09 843 922 354.88 580.68 9519 10868
100 275.16 655.77 1456 1801 805.88 1701.35 15894 24784
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Table 9. Average solution times per LP and average tree depth for the BS1 and BS2

Average CPU Time/LP Average Tree Depth

m n BS1 BS2 BS1 BS2

S1
10 50 0.007 0.012 32.2 37.5

100 0.011 0.021 48.8 63.5
150 0.017 0.025 63.3 59.1

20 50 0.012 0.019 32.1 37.7
100 0.021 0.056 50.1 69.2

S2
10 50 0.007 0.013 38.7 40.4

100 0.012 0.025 52.4 75.1
150 0.020 0.038 88.0 97.8

20 50 0.016 0.025 40.6 33.7
100 0.024 0.038 62.3 52.2

S3
10 50 0.008 0.013 40.9 40.4

100 0.013 0.025 55.9 76.4
150 0.019 0.040 78.8 113.0

20 50 0.023 0.033 44.0 41.0
100 0.025 0.041 77.3 58.2

This is because our beam width increases as m increases.
Similarly, for fixed m, an increase in n makes the tree deeper
which in turn increases the solution times. Moreover, as
m or n increases, the LPRs become more difficult to solve
(Table 9).

Table 8 also reveals that the BS1 runs significantly faster
than the BS2. For example, for Set S1, when m = 10 and n
= 100, the average solution times for the BS1 and BS2 are
10.92 and 123.07 s, respectively. This is due to the fact that at
each level the BS2 solves the LPR for each of the m × beam
width nodes, whereas the BS1 evaluates m × beam width
nodes by simple lower bounds and solves LPR only for the
selected beam width nodes.

For the BS2, we observe that as the range of the processing
times decreases, that is, as we move from Set S1 to Set S3, the

solution times increase, with a few exceptions. For example,
when m = 10 and n = 150, the average solution times of the
BS2 are 131.29, 371.80, and 446.09 s for Set S1, S2, and S3,
respectively. This is due to the increase in the number of LPR
problems solved as we move from Set S1 to Set S3.

Compared to the BS2, the BS1 uses considerably fewer
LPR problems; hence the processing time distributions have
less significant effects on the solution times. Similarly, higher
solution times are observed for Set S2 and Set S3 where the
range of processing times is relatively lower.

Table 10 reports on the average performances of the BS1
and BS2 with respect to our three quality-related measures,
namely P, D1, and D2. The table also gives the average num-
ber of nondominated solutions returned by the algorithms
(|ANS|).

Table 10. Average performances of the BS1 and BS2

BS1 BS2

m n P D1 D2 |ANS| P D1 D2 |ANS|

S1
10 50 28.89 0.05 0.12 12.8 40.36 0.03 0.09 13.3

100 22.21 0.05 0.14 12.4 33.10 0.03 0.09 15.0
150 11.74 0.08 0.21 20.4 23.64 0.04 0.11 24.3

20 50 26.65 0.05 0.11 14.3 34.95 0.03 0.09 16.1
100 14.42 0.07 0.16 17.0 23.16 0.04 0.11 19.0

S2
10 50 32.24 0.03 0.10 13.7 45.95 0.02 0.07 14.3

100 13.34 0.07 0.20 14.4 24.51 0.03 0.10 16.6
150 11.59 0.07 0.19 15.3 20.21 0.05 0.13 18.5

20 50 19.59 0.06 0.15 9.7 30.19 0.05 0.13 10.0
100 11.83 0.09 0.22 13.6 17.62 0.07 0.20 15.5

S3
10 50 15.11 0.07 0.20 10.1 29.46 0.04 0.10 11.8

100 5.33 0.07 0.23 15.9 12.37 0.04 0.14 20.2
150 7.80 0.06 0.18 18.7 12.46 0.04 0.12 23.4

20 50 17.07 0.11 0.25 6.9 33.03 0.09 0.25 8.1
100 5.65 0.08 0.22 13.5 11.12 0.06 0.17 16.1
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Table 11. CPU times and number of LPs solved for the TS, CAH and FBS

TS CAH FBS

CPU Time CPU Time CPU Time Number of LPs solved

m n Avg Max Avg Max Avg Max Avg Max

S1
10 50 0.61 0.73 3.31 4.79 8.98 11.54 789 895

100 2.14 2.39 9.74 41.36 31.64 51.85 1467 1969
150 4.66 4.85 13.70 21.55 51.48 96.46 1431 2738

20 50 1.05 1.27 6.15 9.99 29.96 46.52 1598 1980
100 3.55 3.75 26.78 73.80 92.52 203.78 2444 4364

S2
10 50 1.13 1.40 9.51 19.41 12.55 17.88 944 1075

100 3.69 4.48 22.63 61.45 41.31 69.93 1709 2316
150 7.07 10.36 37.01 70.08 88.98 140.01 2240 3394

20 50 1.72 2.28 16.22 24.74 28.86 43.94 1592 2147
100 5.45 6.80 49.14 76.03 119.41 244.02 2818 4776

S3
10 50 0.58 0.61 2.60 4.93 11.44 17.44 941 1139

100 2.06 2.20 8.16 17.47 48.72 83.73 1813 2360
150 4.87 5.15 15.24 38.29 94.93 165.11 2261 3208

20 50 0.97 1.01 5.36 10.29 48.06 64.90 1988 2194
100 3.62 3.76 12.58 16.44 146.68 282.46 3153 4555

Table 10 reveals that for both algorithms, with a few excep-
tions, the solution quality deteriorates as the problem size,
that is, m or n, increases and as we go from Set S1 to
Set S3.

The BS2 has the advantage of using a thorough function
and outperforms the BS1 in all quality-related measures as
well as in the number solutions returned. Recall that the high-
quality solutions by the BS2 are achieved at the expense of
greater computational effort.

We now discuss the performances of the TS, CAH, and
FBS. We set α = 1% in the CAH, that is, solve each prob-
lem with α = 1% gap. Our FBS uses a beam width of m,
a filter width of 2.5m (see Section 7.3) and starts with the
nondominated objective vectors returned by the TS.

Table 11 reports the average and maximum solution times
of the TS, CAH, FBS, and the average and maximum number
of the LPRs solved in the FBS.

From Tables 7 and 11, we see that the CAH runs signifi-
cantly faster than the CA with a few exceptions (for Set S2
when m = 10, n = 50 and m = 20, n = 100). Such exceptions
occur as the CA solves a single model in exponential time
and gets an efficient solution whereas the CAH solves two
models, each in exponential time and gets an approximate
efficient solution, at each iteration.

It can be seen in Table 11 that the TS is the fastest of all
three heuristic algorithms, it takes a maximum of 10.36 s
over all problem instances. The FBS is the slowest but still
provides quick solutions to all large-sized problem instances
in reasonable times. Note that maximum CPU times spent by
the FBS algorithm are less than 5 min.

The number of agents, m, significantly affects the solu-
tion times of all heuristic algorithms. For example, for Set

S1 when n = 100, as m increases from 10 to 20, the average
solution times of the TS, CAH, and FBS increase from 2.14
to 3.55 s, from 9.74 to 26.78 s, and from 31.64 to 92.52 s,
respectively. The increase in the solution times for the TS can
be attributed to its neighborhood search mechanism where the
number of moves increases as m gets larger. The increase in
the solution times for the CAH is mainly due to the fact that,
as m gets larger the combinatorial subproblems become more
difficult to solve. Conversely, the increase in solution time for
the FBS can be attributed to the increase in the tree size and
deteriorating performance of the LPR bound, with increases
in m.

The number of tasks, n, also has a significant effect on the
solution times. All solution times increase as n increases for
fixed m. For example, for S2 when m = 10 as n increases from
100 to 150, the average CPU time for the TS increases from
3.69 to 7.07 s; for the CAH from 22.63 to 37.01 s, and for
the FBS from 65.57 to 130.42 s. Similar to the effect of m, an
increase in n triggers an increase in the neighborhood search
moves for the TS, leading to harder combinatorial subprob-
lems for the CAH, resulting in weaker lower bounds and a
deeper tree for the FBS.

We now discuss the quality of the solutions for the TS,
CAH, and FBS algorithms. Table 12 reports the average val-
ues of P, D1, and D2 and the average number of nondominated
objective vectors (|ANS|).

Table 12 demonstrates that the performances of the TS and
FBS deteriorate with increases in the problem size parameters
m and n.

Note that the CAH performs consistently well over all
problem instances by generating at least 39% of the non-
dominated objective vectors. We also observe that the average
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Table 12. Average values of P, D1, D2, and |ANS| for the TS, CAH and FBS

TS CAH FBS

m n P D1 D2 |ANS| P D1 D2 |ANS| P D1 D2 |ANS|

S1
10 50 3.49 0.11 0.23 9 82.06 0.00 0.02 16.1 38.53 0.03 0.09 13.5

100 3.78 0.11 0.28 8.5 73.11 0.01 0.03 18.3 35.00 0.03 0.09 15.2
150 1.05 0.19 0.50 11.6 63.60 0.00 0.02 37.6 23.14 0.04 0.11 24.6

20 50 0.45 0.15 0.31 8.3 82.29 0.00 0.01 19.5 37.29 0.03 0.10 15.7
100 0.44 0.17 0.40 8.7 77.85 0.00 0.01 28.1 22.75 0.05 0.13 18.8

S2
10 50 16.79 0.08 0.23 9.6 76.86 0.00 0.02 17.4 42.35 0.02 0.07 14.3

100 2.78 0.13 0.38 9.3 56.52 0.01 0.02 24.8 24.89 0.04 0.12 15.8
150 2.26 0.12 0.33 10.5 50.81 0.01 0.03 28.8 21.05 0.05 0.14 18.1

20 50 0.00 0.21 0.45 5.6 82.54 0.00 0.03 11.5 31.81 0.04 0.12 9.4
100 2.43 0.22 0.51 7.3 68.51 0.00 0.02 27.4 16.05 0.07 0.18 15.9

S3
10 50 9.48 0.10 0.27 7.9 72.69 0.00 0.02 16.1 25.10 0.04 0.10 11.9

100 1.89 0.11 0.34 12.5 51.67 0.00 0.02 36.9 12.01 0.05 0.15 19.9
150 2.67 0.09 0.28 14.1 39.77 0.01 0.02 47.7 11.85 0.04 0.14 22.4

20 50 2.00 0.24 0.41 6.2 91.52 0.00 0.03 9.6 29.27 0.09 0.25 7.9
100 1.55 0.16 0.40 9.5 70.04 0.00 0.02 27.5 10.09 0.06 0.16 15.5

number of solutions returned by the CAH is larger than that
of the FBS and TS. In almost all combinations, the average
P value of the TS is below 10%, that is, it generates less than
10% of the nondominated objective vectors. Conversely, the
average P value of the FBS is above 10%, showing its superior
performance over the TS, in terms of reaching exact efficient
objective vectors.

For D1 and D2 measures, the TS is the worst and the CAH
is the best performing algorithm over all problem instances.
For example, for Set S1 when m = 10 and n = 100, the average

(D1, D2) values are (0.11, 0.28), (0.01, 0.03), and (0.03, 0.09)
for the TS, CAH, and FBS, respectively.

We perform additional runs to observe the behaviors of
FBS, CAH, and TS for large-sized problem instances. To
avoid excessive computational time, in the FBS we decrease
the beamwidth and filterwidth parameters to 0.2 and 0.5 m,
respectively (one-fifth of their previous values) and in the
CAH, we increase the α value to α =5% (five times of the
previous value). We keep the parameters of the TS at their
previous values of nonimplimit = 250, maxiter = 1000, tabu

Table 13. Performances of the CAH, FBS, and TS for large-sized problem instances

CAH FBS TS

CPU Time |ANS| CPU Time |ANS| CPU Time |ANS|

Set m n Avg Max Avg Avg Max Avg Avg Max Avg

S1

50

200 118.60 156.53 20.8 261.58 407.53 14.4 30.79 36.06 6.4
400 166.91 204.69 21.2 1183.90 1834.56 14.6 126.44 156.36 8.8
600 170.66 227.83 15.6 1797.37 3600 11.6 327.86 361.66 8.6
800 155.63 249.87 11.4 – – – 692.99 810.47 9.2
1000 118.75 159.59 8 – – – 1367.23 1633.17 8.2

100

200 167.37 181.94 15.6 1439.44 2112.37 12.6 82.55 87.26 4.4
400 609.81 722.28 20.6 2703.80 3600 10.2 303.29 338.71 7.6
600 863.12 1093.67 20.6 – – – 738.53 1035.58 8.8
800 1110.16 1413.94 19.6 – – – 958.06 1092.99 7.2
1000 1248.15 1248.15 17 – – – 2317.74 3600 9

S3

50

200 129.4 144.91 18.8 577.17 1295.45 9.4 30.66 33.71 11
400 356.73 448.704 29 1658.55 2058.97 14.2 131.24 143.32 13.4
600 388.89 568.886 25.6 1945.50 2708.73 13 332.38 419.13 17.2
800 310.5 397.988 18.6 2020.06 2380.85 12.6 688.67 883.00 16.4
1000 325.56 431.557 17.6 2853.11 3600 14.2 924.21 1328.72 16

100

200 3600 3600 2 3432.04 3600 1.8 83.03 90.56 5.6
400 – – – – – – 263.52 290.11 10.6
600 – – – – – – 670.17 809.54 11.6
800 – – – – – – 1122.21 1456.30 11.6
1000 – – – – – – 1723.82 2321.73 17.8
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tenure = 50. We report the CPU times and the average values
of the number of solutions (|ANS|) returned by each algo-
rithm in Table 13 for sets S1 and S3, m = 50, 100 and n =
200–1000, increasing in increments of 200. We generate five
problem instances for each setting. We use a time limit of 1
h for each instance and report the solutions returned by the
algorithms at the end of 1 h. The empty entries in the table
indicate that the algorithms would fail to terminate in 1 h for
the majority of the instances.

It is observed from Table 13 that all three algorithms are
likely to fall into computational trouble as the problem size
increases. The performance of the FBS deteriorates much
faster than those of the CAH and TS. The significant increase
in the solution times for the FBS with increases in n and m,
can be attributed to the increases in the tree size and in the
complexity of the solved LPR problems.

The results indicate that the CAH achieves a superior
performance in terms of the number of solutions returned.
The CAH returns solutions in less than 1 h for all problem
instances in Set S1 and for all problem instances with m=50
in Set S3. However, due to its exponential time complexity,
the CAH falls into computational trouble as the problem size
increases. In S3 and m=100, no instance could be solved by
the CAH in 1 h even when n = 200. In S3 and m=100, n =
200 about two solutions have been returned by the CAH at
the termination, whereas TS solves this combination at an
average solution time of 83.03 s by returning an average of
5.6 solutions. It is also observed that the TS returns heuristic
solutions to all large-sized instances in Set 3 in less than half
an hour, on average.

To summarize, the CAH should be favored due to its supe-
rior performance in terms of the closeness to, and coverage
of, the nondominated set. For the large-sized instances that
could not be solved by the CAH in reasonable time, TS should
be favoured due to its superior solution time performance.

8. CONCLUSIONS

In this study, we consider a bicriteria multiresource gener-
alized AP. Our criteria are the total workload over all agents
and maximum workload among all agents. The maximum
workload assigned among all agents, serves the fairness con-
cerns of the decision maker, whereas the total workload serves
his/her efficiency concerns.

For the small-sized problem instances, we aim to find all
nondominated objective vectors and propose optimization
algorithms, namely the B&B algorithm and the CA. Our B&B
algorithm benefits from the LPRs of the various related prob-
lems, whereas the CA uses the successive solutions of the
constrained optimization models. Our computational experi-
ment has revealed that the B&B algorithm is likely to fall into
computational trouble even for small-sized problem instances

and the CA could solve small-sized problem instances with
up to five agents and 25 tasks in about 1 s.

For medium- to large-sized problem instances with more
than 20 agents, we try to find a set of good approximate
nondominated objective vectors, and propose heuristic pro-
cedures, namely the beam search and FBS algorithms and
CA-based heuristic. The CA-based heuristic follows the ideas
used in the exact CA. The beam search and FBS algorithms
use the TS algorithm to get an initial set of approximate non-
dominated objective vectors and the mechanisms derived for
the B&B algorithm. Based on the results of our extensive
computational study, one can conclude that the CA-based
heuristic produces solutions that are very close to the exact
nondominated objective vectors.

The results of our experiments on very large size-problems
with up to 100 agents and 1000 tasks reveal that the CA
heuristic outperforms the FBS and TS algorithms in terms of
the number of solutions found. However, CA heuristic fails to
solve many problem instances with 100 agents, in 1 h. These
unsolved instances, could be solved by the TS algorithm in
less than half an hour, but without offering any guarantee for
the solution quality.

To the best of our knowledge, our study is the first reported
attempt to solve the bicriteria multiresource generalized AP.
Future research may consider different fairness measures
such as minimizing the deviation between all workloads or
minimizing the workload deviations from a specified ideal
workload. The efficiency measures might be selected so as
to reflect the relative importance of the agents, like total
weighted workload.
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[15] Ö. Karsu and M. Azizoğlu, The multi-resource agent bot-
tleneck generalized assignment problem, Int J Prod Res 50
(2012), 309–324.

[16] S. Martello and P. Toth, The bottleneck generalized assignment
problem, Eur J Oper Res 83 (1995), 621–638.

[17] S. Martello and P. Toth, Knapsack problems: Algorithms and
computer implementations, Wiley, Chichester, 1990.

[18] J.B. Mazzola and A.W. Neebe, Bottleneck generalized assign-
ment problems, Eng Cost Prod Econ 14 (1988), 61–65.

[19] J.B. Mazzola and A.W. Neebe, An algorithm for the bottle-
neck generalized assignment problem, Comput Oper Res 20
(1993), 366–362.

[20] J.B. Mazzola, A.W. Neebe, and C.V.R. Dunn, Production
planning of a flexible manufacturing system in material

requirements planning environment, Int J Flexible Manuf Syst
1 (1989), 115–142.

[21] J.B. Mazzola and S.P. Wilcox, Heuristics for the multi-resource
generalized assignment problem, Naval Res Logistics 48
(2001), 468–483.
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