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Abstract

We use Markov risk measures to formulate a risk-averse version of the undiscounted total cost problem
for a transient controlled Markov process. We derive risk-averse dynamic programming equations and we
show that a randomized policy may be strictly better than deterministic policies, when risk measures are
employed. We illustrate the results on an optimal stopping problem and an organ transplant problem.

Keywords: Dynamic Risk Measures; Markov Risk Measures; Stochastic Shortest Path; Optimal Stop-
ping; Randomized Policy

1 Introduction
The optimal control problem for transient Markov processes is a classical model in Operations Research
(see Veinott [44], Pliska [31], Bertsekas and Tsitsiklis [6], Hernandez-Lerma and Lasserre [17], and the
references therein). The research is focused on the expected total undiscounted cost model, with increased
state and control space generality.

Our objective is to consider a risk-averse model. So far, risk-averse problems for transient Markov mod-
els were based on the arrival probability criteria (see, e.g., Nie and Wu [23] and Ohtsubo [25]) and utility
functions (see Denardo and Rothblum [10] and Patek [29]). We plan to use the recent theory of dynamic risk
measures (see Scandolo [40], Ruszczyński and Shapiro [37, 39], Cheridito, Delbaen and Kupper [7], Artzner
et. al. [3], Klöppel and Schweizer [20], Pflug and Römisch [30], and the references therein) to develop and
solve new risk-averse formulations of the stochastic optimal control problem for transient Markov models.
Specific examples of such models are stochastic shortest path problems (Bertsekas and Tsitsiklis [6]) and
optimal stopping problems (cf. Çinlar [9], Dynkin and Yushkevich [11, 12], Puterman [32]).

Some applications of stochastic shortest path problems concerned with expected performance criteria are
given in the survey paper by White [45] and the references therein. However, in many practical problems,
the expected values may not be appropriate to measure performance, because they implicitly assume that the
decision maker is risk-neutral. Below, we provide examples of such real-life problems which were modeled
before as a discrete-time Markov decision process with expected value as the objective function.

Alagoz et. al. [1] suggest a discounted, infinite horizon, and absorbing Markov decision process model
to find the optimal time of liver transplant for a risk-neutral patient under the assumption that the liver is
transferred from a living donor. However, referring to Chew and Ho [8], they state that the risk-neutrality
of the patient is not a realistic assumption. In that study, the patient can be in one of the states “transplant,”
“death” and intermediate states corresponding to increasing sickness. The decisions are either to wait or
to transplant. The “death” and “transplant” states are absorbing states with zero reward. Therefore, the
undiscounted version of the model reduces to a stochastic longest path problem.
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A stochastic shortest path problem can be used to find the optimal replacement time of a system. Kurt
and Kharoufe [21] propose a discounted, infinite horizon Markov decision process model to solve a similar
problem for a system under Markovian deterioration and Markovian environment. They assume that the sys-
tem returns to the “new” state after it is replaced at a given cost. The state space depends on the environment
and deterioration levels of the system. The decisions are either to replace the system at a replacement cost
or to maintain it at a maintenance cost. Furthermore, we can consider another control “do nothing,” to leave
the system in operation without any maintenance or replacement at zero cost. They state that their problem
can also be equivalently formulated as a stochastic shortest path problem with some probability of making a
transition from each state to a zero-cost absorbing state. However, managers are not risk-neutral in real life
and this needs to be considered in such replacement problems (see Tapiero and Venezia [43]).

So and Thomas [42] employ a discrete time Markov decision process to model profitability of credit cards.
The objective is to find a policy which maximizes the expected total discounted profit of the creditor. The state
space depends on the customer’s riskiness and the credit limit bands. Additionally, there are absorbing states
which represent account closure and different classes of default. The decisions are either to increase the credit
limit or keep it unchanged. If zero reward is collected at some of the absorbing states (e.g. closed account),
then the undiscounted version of the model reduces to a stochastic longest path problem. However, creditors
are assumed to be risk-neutral in these expected-value models, which may not be a realistic assumption.

Our theory of risk-averse control problems for transient models applies to these and many other models.
Our results complement and extend the results of Ruszczyński [36], where infinite-horizon discounted models
were considered.

In section 2 we quickly review some basic concepts of controlled Markov models. In section 3 we adapt
and extend our earlier theory of Markov risk measures. In section 4 we introduce and analyze the concept
of a multikernel, which is essential for our theory. Section 5 is devoted to the analysis of a finite horizon
model. The main model with infinite horizon and dynamic risk measures is analyzed and solved in sections 6
and 7. Section 8 compares randomized and deterministic polices. Finally, section 9 illustrates our results on
risk-averse versions of an optimal stopping problem of Karlin [19] and of the organ transplant problem of
Alagoz et al. [1].

2 Controlled Markov Processes
We quickly review the main concepts of controlled Markov models and we introduce relevant notation (for
details, see [13, 16, 17]). Let X be a state space, and U a control space. We assume that X and U are Polish
spaces, equipped with their Borel σ -algebras. A control set is a measurable multifunction U : X ⇒ U ; for
each state x ∈X the set U(x)⊆U is a nonempty set of possible controls at x. A controlled transition kernel
Q is a measurable mapping from the graph of U to the set P(X ) of probability measures on X (equipped
with the topology of weak convergence).

The cost of transition from x to y, when control u is applied, is represented by the function c(x,u,y),
where c : X ×U ×X →R. Only u ∈U(x) and those y ∈X to which transition is possible matter here,
but it is convenient to consider the function c(·, ·, ·) as defined on the product space.

A stationary controlled Markov process is defined by a state space X , a control space U , a control set
U , a controlled transition kernel Q, and a cost function c.

For t = 1,2, . . . we define the space of state and control histories up to time t as Ht = graph(U)t ×X .
Each history is a sequence ht = (x1,u1, . . . ,xt−1,ut−1,xt) ∈Ht .

We denote by P(U ) the set of probability measures on the set U . Likewise, P(U(x)) is the set of
probability measures on U(x). A randomized policy is a sequence of measurable functions πt : Ht→P(U ),
t = 1,2, . . . , such that πt(ht) ∈P(U(xt)) for all ht ∈Ht . In words, the distribution of the control ut is
supported on a subset of the set of feasible controls U(xt). A Markov policy is a sequence of measurable
functions πt : X →P(U ), t = 1,2, . . . , such that πt(x) ∈P(U(x)) for all x ∈X . The function πt(·) is
called the decision rule at time t. A Markov policy is stationary if there exists a function π : X →P(U )
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such that πt(x) = π(x), for all t = 1,2, . . . and all x ∈X . Such a policy and the corresponding decision rule
are called deterministic, if for every x ∈X there exists u(x) ∈U(x) such that the measure π(x) is supported
on {u(x)}.

For a stationary decision rule π , we write Qπ to denote the corresponding transition kernel.
We focus on transient Markov models. We assume that there exists some absorbing state xA ∈X , such

that Q
(
{xA}

∣∣xA,u
)
= 1 and c(xA,u,xA) = 0 for all u ∈U(xA). Thus, after the absorbing state is reached, no

further costs are incurred.1 To analyze such Markov models, it is convenient to consider the effective state
space X̃ = X \ {xA}, and the effective controlled substochastic kernel Q̃ whose arguments are restricted
to X̃ and whose values are nonnegative measures on X̃ , so that Q̃

(
B
∣∣x,u) = Q

(
B
∣∣x,u), for all Borel sets

B ⊂ X̃ , all x ∈ X̃ , and all u ∈ U(x). Moreover, we assume that the following Pliska condition [31] is
satisfied: a weight function w : X → [1,∞) and a constant K exist, such that for every Markov decision rule
π we have

∞

∑
j=1

∥∥∥(Q̃π
) j
∥∥∥

w
≤ K. (1)

In the condition above, the norm ‖A‖w of a substochastic kernel A is defined as follows:

‖A‖w = sup
x∈X̃

1
w(x)

∫
X̃

w(y) A(dy|x). (2)

It is the standard operator norm in the space Bw(X̃ ,B(X̃ )) of measurable functions v : X̃ →R for which

‖v‖w = sup
x∈X̃

v(x)
w(x)

< ∞.

Hernadez-Lerma and Lasserre [17] extensively discuss the role of weighted norms in dynamic programming
models.

Our point of departure is the expected total cost problem, which is to find a policy Π = {πt}∞
t=1 so as to

minimize the expected cost until absorption:

min
Π
E

[
∞

∑
t=1

c(xt ,ut ,xt+1)

]
. (3)

Under standard assumptions, the problem has a solution in form of a stationary Markov policy. Moreover,
it is sufficient to restrict the considerations to deterministic policies. The optimal policy can be found by
solving appropriate dynamic programming equations.

Our intention is to introduce risk aversion to problem (3), and to replace the expected value operator
by a dynamic risk measure. We shall show that the Pliska condition (1) is not sufficient in this case, and
that properties of risk measures must be taken into account when considering transient models. We shall
also show that in the risk-averse case randomized policies can be optimal, and that it is essential to consider
general transition cost c(xt ,ut ,xt+1), which in problem (3) could easily be reduced to functions depending
only on (xt ,ut). We do not assume that the costs are nonnegative, and thus our approach applies also, among
others, to stochastic longest path problems and optimal stopping problems with positive rewards.

3 Markov Risk Measures
Suppose T is a fixed time horizon. Each policy Π = {π1,π2, . . .} results in a cost sequence Zt = c(xt−1,ut−1,xt),
t = 2, . . . , T + 1. We define the spaces Zt of Ft -measurable random variables on Ω , t = 1, . . . ,T . In this
paper, we focus on the case when Zt = Lp(Ω ,Ft ,P), for some p ∈ [1,∞].

1The case of a larger class of absorbing states easily reduces to the case of one absorbing state.
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To evaluate risk of this sequence we use a dynamic time-consistent risk measure of the following form:

JT (Π ,x1) = ρ1

(
c(x1,u1,x2)+ρ2

(
c(x2,u2,x3)+ · · ·

+ρT−1
(
c(xT−1,uT−1,xT )+ρT (c(xT ,uT ,xT+1))

)
· · ·
))

.

(4)

Here, ρt : Zt+1→Zt , t = 1, . . . ,T , are one-step conditional risk measures satisfying the following conditions:

A1. ρt(αZ +(1−α)W )≤ αρt(Z)+(1−α)ρt(W ), ∀ α ∈ (0,1), Z,W ∈Zt+1;

A2. If Z ≤W then ρt(Z)≤ ρt(W ), ∀ Z,W ∈Zt+1;

A3. ρt(Z +W ) = Z +ρt(W ), ∀ Z ∈Zt , W ∈Zt+1;

A4. ρt(βZ) = βρt(Z), ∀ Z ∈Zt+1, β ≥ 0.

Ruszczyński [36, sec. 3] derives the nested formulation (4) and conditions (A2) and (A3) from general
properties of monotonicity and time-consistency of dynamic measures of risk. Conditions (A1) and (A4) are
added to model the diversification effect and scale-invariance of the preferences, similarly to the axioms of
coherent measures of risk (see (B1)–(B4) below).

It is convenient to introduce vector spaces Zt,θ = Zt ×Zt+1×·· ·×Zθ , where 1 ≤ t ≤ θ ≤ T + 1 and
the conditional risk measures ρt,θ : Zt,θ →Zt defined as follows:

ρt,θ (Zt , . . . ,Zθ ) = Zt +ρt

(
Zt+1 +ρt+1

(
Zt+2 + · · ·+ρθ−1(Zθ ) · · ·

))
. (5)

The operations of addition and multiplication by a scalar are defined in Zt,θ in the usual way. We can also
define the partial order relation � in a natural way:

(Zt , . . . ,Zθ )� (Wt , . . . ,Wθ ) ⇐⇒ Zτ ≤Wτ , a.s., τ = t, . . . ,θ .

Immediately from the definition we obtain the following properties of conditional measures of risk.

Lemma 3.1. If the one-step conditional risk measures ρτ , τ = t, . . . ,θ −1, satisfy conditions A1–A4, then

(i) ρt,θ (αZ +(1−α)W )≤ αρt,θ (Z)+(1−α)ρt,θ (W ), ∀ α ∈ (0,1), Z,W ∈Zt,θ ;

(ii) If Z �W then ρt,θ (Z)≤ ρt,θ (W ), ∀ Z,W ∈Zt,θ ;

(iii) ρt,θ (βZ) = βρt,θ (Z), ∀ Z ∈Zt+1, β ≥ 0;

(iv) ρt,θ (Zt , . . . ,Zθ−1,0) = ρt,θ−1(Zt , . . . ,Zθ−1).

As indicated in [36], the fundamental difficulty of formulation (4) is that at time t the value of ρt(·)
is Ft -measurable and is allowed to depend on the entire history ht of the process. In order to overcome
this difficulty, in [36, sec. 4] a new construction of a one-step conditional measure of risk was introduced.
Its arguments are functions on the state space X , rather than on the probability space Ω . This entails
additional complication, because in a controlled Markov process the probability measure on the state space
is not fixed, but depends on decisions u. We adapt this construction to the case of controlled Markov models
with randomized policies. In this case, it is convenient to consider functions on the product space U ×X
equipped with its product Borel σ -algebra B.

Suppose the current state is x and we use a randomized control λ . This control, together with the transition
kernel Q defines a probability measure λ ◦Qx on the product space U ×X as follows:

[λ ◦Qx](Bu×By) =
∫

Bu

Q(By|x,u) λ (du), Bu ∈B(U), By ∈B(X ). (6)
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The measure is extended to other sets in B in a usual way. In the case of countable state and control spaces,[
λ ◦Qx

]
(u,y) is the probability that control u will be used at x and the next state will be y.

The cost incurred at the current stage is given by the function cx on the product space U ×X defined as
follows:

cx(u,y) = c(x,u,y), u ∈U , y ∈X . (7)

Let V =Lp(U ×X ,B,P0), where p ∈ [1,∞] and P0 is some reference probability measure on U ×X .
It is convenient to think of the dual space V ′ as the space of signed measures m on (U ×X ,B), which
are absolutely continuous with respect to P0, with densities (Radon–Nikodym derivatives) lying in the space
Lq(U ×X ,B,P0), where 1/p+1/q= 1. In the case of finite state and control spaces P0 may be the uniform
measure; in other cases P0 should be chosen in such a way that the measures λ ◦Qx are elements of V ′. The
measure P0 does not play any other role in our considerations. We consider the set of probability measures in
V ′:

M =
{

m ∈ V ′ : m(U ×X ) = 1, m≥ 0
}
.

We also assume that the spaces V and V ′ are endowed with topologies that make them paired topological
vector spaces with the bilinear form

〈ϕ,m〉=
∫

U ×X
ϕ(u,y) m(du×dy), ϕ ∈ V , m ∈ V ′. (8)

The space V ′ (and thus M ) will be endowed with the weak∗ topology. For p ∈ [1,∞) we may endow V with
the strong (norm) topology, or with the weak topology. For p = ∞, the space V will be endowed with is weak
topology defined by the form (8), that is, the weak∗ topology on L∞(X ,B,P0).

Definition 3.1. A measurable function σ : V ×X ×M →R is a risk transition mapping if for every x ∈X
and every m ∈M , the function ϕ 7→ σ(ϕ,x,m) is a coherent measure of risk on V .

Recall that σ(·) is a coherent measure of risk on V (we skip the other two arguments for brevity), if

B1. σ(αϕ +(1−α)ψ)≤ ασ(ϕ)+(1−α)σt(ψ), ∀ α ∈ (0,1), ϕ,ψ ∈ V ;

B2. If ϕ ≤ ψ then σ(ϕ)≤ σ(ψ), ∀ ϕ,ψ ∈ V ;

B3. σ(a+ϕ) = a+σ(ϕ), ∀ ϕ ∈ V , a ∈R;

B4. σ(βϕ) = βσ(ϕ), ∀ ϕ ∈ V , β ≥ 0.

Example 3.1. Consider the first-order mean–semideviation risk measure analyzed by Ogryczak and Ruszczyń-
ski [26, 27], and Ruszczyński and Shapiro [38, Example 4.2], [39, Example 6.1]), but with the state and the
underlying probability measure as its arguments. We define

σ(ϕ,x,m) = 〈ϕ,m〉+κ(x)
〈
(ϕ−〈ϕ,m〉)+,m

〉
, (9)

with some measurable function κ : X → [0,1]. We can verify directly that conditions (B1)–(B4) are satisfied.

Example 3.2. Another important example is the Conditional Average Value at Risk (see, inter alia, Ogryczak
and Ruszczyński [28, Sec. 4], Pflug and Römisch [30, Sec. 2.2.3, 3.3.4], Rockafellar and Uryasev [34],
Ruszczyński and Shapiro [38, Example 4.3], [39, Example 6.2]), which has the following risk transition
counterpart:

σ(ϕ,x,m) = inf
η∈R

{
η +

1
α(x)

〈
(ϕ−η)+,m

〉}
.

Here α : X → [αmin,αmax]⊂ (0,1) is measurable. Again, the conditions (B1)–(B4) can be verified directly.
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We shall use the property of law invariance of a risk transition mapping. For a function ϕ ∈ V and a
probability measure µ ∈M we can define the distribution function Fµ

ϕ :R→ [0,1] as follows

Fµ

ϕ (η) = µ
{
(u,y) ∈U ×X : ϕ(u,y)≤ η

}
.

Definition 3.2. A risk transition mapping σ : V ×X ×M →R is law invariant, if for all ϕ,ψ ∈ V and all
µ,ν ∈M such that Fµ

ϕ ≡ Fν
ψ , we have σ(ϕ,x,µ) = σ(ψ,x,ν) for all x ∈X .

The concept of law invariance corresponds to a similar concept for coherent measures of risk, but here we
additionally need to take into account the variability of the probability measure. The risk transition mappings
of Examples 3.1 and 3.2 are law invariant. While we shall not directly use law invariance in our main
theoretical considerations, it greatly simplifies the analysis of specific problems, as illustrated in section 9.1.

Risk transition mappings allow for convenient formulation of risk-averse preferences for controlled Markov
processes, where the cost is evaluated by formula (4). Consider a controlled Markov process {xt} with some
Markov policy Π = {π1,π2, . . .}. For a fixed time t and a measurable function g : X ×U ×X → R the
value of Zt+1 = g(xt ,ut ,xt+1) is a random variable. We assume that g is w-bounded, that is,∣∣g(x,u,y)∣∣≤C

(
w(x)+w(y)

)
, ∀ x ∈X , u ∈U(x), y ∈X ,

for some constant C > 0 and for the weight function w : X → [1,∞), w∈V . Then Zt+1 is an element of Zt+1.
Let ρt : Zt+1 → Zt be a conditional risk measure satisfying (A1)–(A4). By definition, ρt

(
g(xt ,ut ,xt+1)

)
is

an element of Zt , that is, it is an Ft -measurable function on (Ω ,F ). In the definition below, we restrict it
to depend on the past only via the current state xt . We write gx : U ×X → R for the function gx(u,y) =
g(x,u,y), πx for the measure π(·|x), and Qx for the mapping u→ Q(·|x,u).

Definition 3.3. A one-step conditional risk measure ρt : Zt+1→Zt is a Markov risk measure with respect
to the controlled Markov process {xt}, if there exists a risk transition mapping σt : V ×X ×M → R

such that for all w-bounded measurable functions g : X ×U ×X →R and for all feasible decision rules
π : X →P(U) we have

ρt
(
g(xt ,ut ,xt+1)

)
= σt

(
gxt ,xt ,πxt ◦Qxt

)
, a.s. (10)

Observe that the right hand side of formula (10) is parametrized by xt , and thus it defines a special Ft -
measurable function of ω , whose dependence on the past is carried only via the state xt .

Remark 3.1. If c(xt ,ut ,xt+1)≡ d(xt ,xt+1), or if randomized policies are not allowed, then it is sufficient to
start from a probability measure P0 on X and define V = Lp(X ,B(X ),P0), V ′ - the set of measures on
(X ,B(X )) having densities with respect to P0 in Lq(X ,B(X ),P0), and M = {m ∈ V ′ : m(X ) = 1, m≥ 0},
exactly as in [36].

Remark 3.2. If, additionally, the stage-wise costs have the form c(xt ,ut ,xt+1,ξt), where ξt , t = 1,2, . . . , are
some random variables distributed a Polish space Ξ according to a measure which is absolutely continuous
with respect to some fixed Pξ , but may depend on xt and ut , then we need to consider larger spaces of
arguments of a risk transition mapping:

V = Lp(U ×X ×Ξ ,B(U ×X ×Ξ),P0×Pξ ),

V ′ = Lq(U ×X ×Ξ ,B(U ×X ×Ξ),P0×Pξ ),

M =

m ∈ V ′ :
∫

U ×X ×Ξ

m(u,x,ξ )P0(dudxdξ ) = 1, m≥ 0

 .

All our considerations remain valid, just the notation complicates.
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4 Stochastic Multikernels
In order to analyze Markov measures of risk, we need to introduce the concept of a multikernel.

Definition 4.1. A multikernel is a measurable multifunction M from X to the space rca(X ,B(X )) of regu-
lar measures on (X ,B(X)). It is stochastic, if its values are sets of probability measures. It is substochastic,
if 0≤M(B|x)≤ 1 for all M ∈M(x), B ∈B(X ), and x ∈X . It is convex (closed), if for all x ∈X its value
M(x) is a convex (closed) set.

The concept of a multikernel is thus a multivalued generalization of the concept of a kernel. A measurable
selector of a stochastic multikernel M is a stochastic kernel M such that M(x) ∈M(x) for all x ∈X . We
symbolically write MlM to indicate that M is a measurable selector of M.

Recall that a composition M1 ◦M2 of (sub-) stochastic kernels M1 and M2 is given by the formula:[
M1 ◦M2

](
B
∣∣x)= ∫

X
M2(B|y) M1(dy|x), B ∈B(X ), x ∈X . (11)

It is also a (sub-) stochastic kernel. Multikernels, in particular substochastic multikernels, can be composed
in a similar fashion.

Definition 4.2. If Mi : X ⇒ rca(X ,B(X )), i = 1,2 are substochastic multikernels, then their composition
M1 ◦M2 is defined as follows:[

M1 ◦M2
](

B
∣∣x)= {[M1 ◦M2]

(
B
∣∣x) : Mi lMi, i = 1,2

}
.

It follows from Definition 4.2, that a composition of (sub-) stochastic multikernels is a (sub-) stochastic
multikernel. We may compose a substochastic multikernel M with itself several times, to obtain its “power”:

(M)k =M◦M . . .◦M︸ ︷︷ ︸
k times

.

The norm of a substochastic multikernel M : X̃ ⇒ rca(X̃ ,B(X̃ )) is defined as follows:

‖M‖w = sup
MlM

‖M‖w,

where the norm ‖M‖w is given by (2).
The concept of a multikernel and the composition operation arise in a natural way in the context of Markov

risk measures. If σ(·, ·, ·) is a Markov risk measure, then the function σ(·,x,m) is lower semicontinuous for
all x ∈ X and m ∈M (see Ruszczyński and Shapiro [38, Proposition 3.1]). Then it follows from [38,
Theorem 2.2] that for every x ∈X and m ∈M a closed convex set A (x,m) ⊂M exists, such that for all
ϕ ∈ V we have

σ(ϕ,x,m) = max
µ∈A (x,m)

〈ϕ,µ〉. (12)

In fact, we also have
A (x,m) = ∂ϕ σ(0,x,m). (13)

In many cases, the multifunction A : X ×M ⇒ M can be described analytically.

Example 4.1. For the mean-semideviation model of Example 3.1, following the derivations of Ruszczyński
and Shapiro [38, Example 4.2], we have

A (x,m) =
{

µ ∈M : ∃
(
h ∈L∞(U ×X ,B,P0)

) dµ

dm
= 1+h−〈h,m〉, ‖h‖∞ ≤ κ(x), h≥ 0

}
. (14)

Similar formulas can be derived for higher order measures.
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Example 4.2. For the Conditional Average Value at Risk of Example 3.2, following the derivations of
Ruszczyński and Shapiro [38, Example 4.3], we obtain

A (x,m) =

{
µ ∈M :

dµ

dm
≤ 1

α(x)

}
. (15)

Consider the formula (10) and suppose that g(xt ,ut ,xt+1) = v(xt+1) for some measurable w-bounded
function v : X →R. Using the representation (12) we can write it as follows:

ρt
(
v(xt+1)

)
= max

µ∈A (xt ,πxt ◦Qxt )
〈v,µ〉, a.s. (16)

In the formula above, the last bilinear form is an integral over U ×X . The function v(·) depends on x only,
and thus it is sufficient to consider the marginal measures

µ̄(B) = µ(U ×B), B ∈B(X ). (17)

Denote by L the linear operator mapping each µ ∈V ′ to the corresponding marginal measure µ̄ on (X ,B(X )),
as defined in (17). For every x we can define the set of probability measures:

Mπ
x =

{
Lµ : µ ∈A (x,πx ◦Qx)

}
, x ∈X . (18)

The multifunction Mπ : X ⇒ P(X ), assigning to each x ∈X the set Mπ
x , is a closed convex stochastic

multikernel. We call it a risk multikernel, associated with the risk transition mapping σ(·, ·, ·), the controlled
kernel Q, and the policy π . Its measurable selectors Mπ lMπ are transition kernels.

It follows that formula (16) can be rewritten as follows:

ρt
(
v(xt+1)

)
= max

M∈Mπ
xt

∫
X

v(y) M(dy). (19)

In the risk-neutral case we have

ρt
(
v(xt+1)

)
=E

[
v(xt+1)

∣∣xt
]
=
∫

U

∫
X

v(y) Q(dy|xt ,u) π(du|xt) =
∫

X
v(y) Qπ

xt (dy),

with the transition kernel Qπ associated with the policy π given by Qπ
x = L[πx ◦Qx]. The comparison of the

last two displayed equations reveals that in the risk-neutral case we have

Mπ
x =

{
Qπ

x
}
, x ∈X , (20)

that is, the risk multikernel Mπ is single-valued, and its only selector is the kernel Qπ . In the risk-averse case,
the risk multikernel Mπ is a closed convex-valued multifunction, whose measurable selectors are transition
kernels. It is evident that properties of this multifunction are germane for our analysis. We return to this issue
in section 6, where we calculate some examples of transition multikernels.

Remark 4.1. If m ∈ A (x,m) for all x ∈X and m ∈M , then it follows from equation (18) that Qπ is a
measurable selector of Mπ . Moreover, it follows from (12) that for any function ϕ ∈ V we have

ρt
(
ϕ(ut ,xt+1)

)
≥
∫

U ×X
ϕ(u,y)

[
Qxt ◦πxt

]
(du×dy) =E

[
ϕ(ut ,xt+1)

∣∣xt
]
.

It follows that the dynamic risk measure (4) is bounded from below by the expected value of the total cost.

The condition m ∈A (x,m) is satisfied by the measures of risk in Examples 4.1 and 4.2.
Interestingly, uncertain transition matrices were used by Nilim and El Ghaoui in [24] to increase ro-

bustness of control rules for Markov models. In our theory, controlled multikernels (generalization of such
matrices), arise in a natural way in the analysis of risk-averse preferences.

Let us quickly recall continuity properties of the multifunctions involved in the construction of a Markov
risk measure.
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Proposition 4.1. Suppose ϕ ∈ V and x ∈X . If the controlled kernel u 7→ Q(·|x,u) is continuous, and the
multifunction m 7→ A (ϕ,x,m) is lower semicontinuous, then the function λ 7→ σ(ϕ,x,λ ◦Qx) is weakly∗

lower semicontinuous on P
(
U(x)

)
.

Proof. For a continuous Q, the multifunction λ 7→A (x,λ ◦Qx) inherits the continuity properties of A . The
function µ 7→ 〈ϕ,µ〉 is continuous on M (in the weak∗ topology). The assertion of the theorem follows
now from the dual representation (12) by [4, Theorem 1.4.16], whose proof remains valid in our setting as
well.

Some comments on the assumptions of Proposition 4.1 are in order. The continuity of the kernel Q
is a standard condition in the theory of risk-neutral Markov control processes (see, e.g., [16]). If the risk
transition mapping σ(·, ·, ·) is continuous, then its subdifferential (13) is upper semicontinuous. However,
in Proposition 4.1 we assume lower semicontinuity of the mapping m 7→ ∂ϕ σ(0,x,m), which is not trivial
and should be verified for each case. For example, the subdifferentials derived in Examples 4.1 and 4.2 are
continuous with respect to m.

5 Finite Horizon Problem
We consider the Markov model at times 1,2, . . . ,T +1 under general policies Π = {π1,π2, . . . ,πT}. The cost
at the last stage is given by a function vT+1(xT+1). Consider the problem

min
Π

JT (Π ,x1), (21)

with JT (Π ,x1) defined by formula (4), with Markov conditional risk measures ρt , t = 1, . . . ,T , with risk
transition mappings σt(·, ·, ·):

JT (Π ,x1) = ρ1

(
c(x1,u1,x2)+ρ2

(
c(x2,u2,x3)+ · · ·+ρT

(
c(xT ,uT ,xT+1)+ vT+1(xT+1)

)
· · ·
))

. (22)

Theorem 5.1. Assume that the following conditions are satisfied:

(i) For every x ∈X the transition kernel Q(x, ·) is continuous;

(ii) The conditional risk measures ρt , t = 1, . . . ,T , are Markov and such that for every x ∈X the multifunc-
tion At(x, ·) is lower semicontinuous;

(iii) The function c(·, ·, ·) is w-bounded, measurable, and lower semicontinuous with respect to the second
argument;

(iv) For every x ∈X the set U(x) is compact;

(v) The function vT+1(·) is w-bounded and measurable.

Then problem (21) has an optimal solution and its optimal value v1(x) is the solution of the following dynamic
programming equations:

vt(x) = min
λ∈P(U(x))

σt
(
cx + vt+1,x,λ ◦Qx

)
, x ∈X , t = T, . . . ,1. (23)

Moreover, an optimal Markov policy Π̂ = {π̂1, . . . , π̂T} exists and satisfies the equations:

π̂t(x) ∈ argmin
λ∈P(U(x))

σt
(
cx + vt+1,x,λ ◦Qx

)
, x ∈X , t = T, . . . ,1. (24)

Conversely, every solution of equations (23)–(24) defines an optimal Markov policy Π̂ .
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Proof. Our proof is similar to the proof of Ruszczyński [36, Thm. 2], but with adjustments due to the use of
randomized strategies. We provide its short outline.

Owing to the monotonicity condition (B2) applied to ρt , t = 1, . . . ,T , problem (21) can be written as
follows:

min
π1,...,πT

{
ρ1

(
c(x1,u1,x2)+ · · ·+ρT

(
c(xT ,uT ,xT+1)+ vT+1(xT+1)

)
· · ·
)}

=

min
π1,...,πT−1

{
ρ1

(
c(x1,u1,x2)+ · · ·+min

πT
ρT
(
c(xT ,uT ,xT+1)+ vT+1(xT+1)

)
· · ·
)}

.

Consider the innermost optimization problem. Owing to the Markov structure of the conditional risk measure
ρT , this problem can be rewritten as follows:

min
λ∈P(U(xT ))

σT
(
cxT + vT+1,xT ,λ ◦QxT

)
. (25)

The problem becomes equivalent to (23) for t = T , and its solution is given by (24) for t = T . By Proposi-
tion 4.1, the function λ 7→ σT

(
cxT + vT+1,xT ,λ ◦QxT

)
is lower semicontinuous. As the set of λ ∈P(U )

such that λ (U(xT )) = 1 is weakly∗ compact, the optimal randomized policy πT (x), which is the minimizer
in (25), exists.

After that, the horizon T +1 is decreased to T , and the final cost becomes vT (xT ). Proceeding in this way
for T,T −1, . . . ,1 we obtain the assertion of the theorem.

It follows from our proof that the functions vt(·) calculated in (23) are the optimal values of tail subprob-
lems formulated for a fixed xt = x as follows:

vt(x) = min
πt ,...,πT

ρt

(
c(xt ,ut ,xt+1)+ρt+1

(
c(xt+1,ut+1,xt+2)+ · · ·+ρT

(
c(xT ,uT ,xT+1)+ vT+1(xT+1)

)
· · ·
))

.

We call them value functions, as in risk-neutral dynamic programming. It is clear that we may also have
non-stationary costs and transition kernels in this case. Also, the assumption that the process is transient is
not needed.

Equations (23)–(24) provide a computational recipe for solving finite horizon problems.

6 Evaluation of Stationary Markov Policies in Infinite Horizon Prob-
lems

Consider a policy Π = {π1,π2, . . .} and define the cost until absorption as follows:

J∞(Π ,x1) = lim
T→∞

JT (Π ,x1), (26)

where each JT (Π ,x1) is defined by the formula

JT (Π ,x1) = ρ1

(
c(x1,u1,x2)+ρ2

(
c(x2,u2,x3)+ · · ·+ρT

(
c(xT ,uT ,xT+1)

)
· · ·
))

= ρ1,T+1
(
0,c(x1,u1,x2),c(x2,u2,x3), . . . ,c(xT ,uT ,xT+1)

)
,

(27)

with Markov conditional risk measures ρt , t = 1, . . . ,T , sharing the same risk transition mapping σ(·, ·, ·). We
assume all conditions of Theorem 5.1. We still have to index each conditional risk measure by time, because
by definition it acts from the space Zt+1 to the space Zt .

The first question to answer is when this cost is finite. This question is nontrivial, because even for
uniformly bounded costs Zt = c(xt−1,ut−1,xt), t = 2,3, . . . , and for a transient finite-state Markov chain, the
limit in (26) may be infinite, as the following example demonstrates.
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Example 6.1. Consider a transient Markov chain with two states and with the following transition probabili-
ties: Q11 = Q12 =

1
2 , Q22 = 1. Only one control is possible in each state, the cost of each transition from state

1 is equal to 1, and the cost of the transition from 2 to 2 is 0. Clearly, the time until absorption is a geometric
random variable with parameter 1

2 . Let x1 = 1. If the limit (26) is finite, then (skipping the dependence on
Π ) we have

J∞(1) = lim
T→∞

JT (1) = lim
T→∞

ρ1
(
1+ JT−1(x2)

)
= ρ1

(
1+ J∞(x2)

)
.

In the last equation we used the continuity of ρ1(·). Clearly, J∞(2) = 0.
Suppose that we are using the Average Value at Risk from Example 3.2, with 0 < α ≤ 1

2 , to define ρ1(·).
Using standard identities for the Average Value at Risk (see, e.g., [41, Thm. 6.2]), we obtain

J∞(1) = inf
η∈R

{
η +

1
α
E
[(

1+ J∞(x2)−η
)
+

]}
= 1+ inf

η∈R

{
η +

1
α
E
[(

J∞(x2)−η
)
+

]}
= 1+

1
α

∫ 1

1−α

F−1(β ) dβ ,

(28)

where F(·) is the distribution function of J∞(x2). As all β -quantiles of J∞(x2) for β ≥ 1
2 are equal to J∞(1),

the last equation yields
J∞(1) = 1+ J∞(1),

a contradiction. It follows that a composition of average values at risk has no finite limit, if 0 < α ≤ 1
2 .

On the other hand, if 1
2 < α < 1, then

F−1(β ) =

{
J∞(2) = 0 if 1−α ≤ β < 1

2 ,

J∞(1) if 1
2 ≤ β ≤ 1.

Formula (28) then yields

J∞(1) = 1+
1

2α
J∞(1).

This equation has a solution J∞(1) = 2α/(2α−1).
If we use the mean-semideviation model of Example 3.1, we obtain

J∞(1) =E
[
1+ J∞(x2)

]
+κE

[(
1+ J∞(x2)−E

[
1+ J∞(x2)

])
+

]
= 1+

1
2

J∞(1)+κ
1
2

(
J∞(1)−

1
2

J∞(1)
)
= 1+

2+κ

4
J∞(1).

Thus J∞(1) = 4/(2−κ), which is finite for all κ ∈ [0,1], which are all values of κ for which the model defines
a coherent measure of risk.

It follows that deeper properties of the measures of risk and their interplay with the transition kernel need
to be investigated to answer the question about finiteness of the dynamic measure of risk in this case. We
propose a condition that generalizes the Pliska condition (1) to the risk-averse case.

Recall that with every risk transition mapping σ(·, ·, ·), every controlled kernel Q, and every decision rule
π , a multikernel Mπ is associated, as defined in (18). Similarly to the expected value case, it is convenient
to consider the effective state space X̃ = X \ {xA}, and the effective substochastic multikernel M̃π whose
arguments are restricted to X̃ and whose values are convex sets of nonnegative measures on X̃ , so that
M̃
(
B
∣∣x,u)= M

(
B
∣∣x,u), for all Borel sets B⊂ X̃ , and all M ∈ M̃π .
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Definition 6.1. We call the Markov model with a risk transition mapping σ(·, ·, ·) and with a stationary
Markov policy {π,π, . . .} risk-transient if a weight function w : X → [1,∞), w ∈ V , and a constant K exist
such

∞

∑
j=1

∥∥∥(M̃π
) j
∥∥∥

w
≤ K. (29)

If the estimate (29) is uniform for all Markov policies, the model is called uniformly risk-transient.

In the special case of a risk-neutral model, Definition 6.1 reduces to the Pliska condition (1), owing to the
equation (20).

Example 6.2. Consider the simple transient chain of Example 6.1 with the Average Value at Risk from
Examples 3.2 and 4.2, where 0 < α ≤ 1. From (15) we obtain

A (x,m) =
{
(µ1,µ2) : 0≤ µ j ≤

m j

α
, j = 1,2; µ1 +µ2 = 1

}
.

As only one control is possible, formula (18) simplifies to

Mi =
{
(µ1,µ2) : 0≤ µ j ≤

Qi j

α
, j = 1,2; µ1 +µ2 = 1}, i = 1,2.

The effective state space is just X̃ = {1}, and we conclude that the effective multikernel has the form

M̃1 =
[
0,min

(
1,

1
2α

)]
.

For 0 < α ≤ 1
2 we can select M̃ = 1 ∈ M̃1 to show that 1 ∈

(
M̃1
) j for all j, and thus condition (29) is not

satisfied. On the other hand, if 1
2 < α ≤ 1, then for every M̃ ∈ M̃1 we have 0≤ M̃ < 1, and condition (29) is

satisfied.
Consider now the mean-semideviation model of Examples 3.1 and 4.1. From (14) we obtain

A (x,m) =
{
(µ1,µ2) : µ j = m j (1+h j− (h1m1 +h2m2)) , 0≤ h j ≤ κ, j = 1,2

}
,

Mi =
{
(µ1,µ2) : µ j = Qi j (1+h j− (h1Qi1 +h2Qi2)) , 0≤ h j ≤ κ, j = 1,2

}
, i = 1,2.

Calculating the lowest and the largest possible values of µ1 we conclude that

M̃1 =
[1

2

(
1− κ

2

)
,

1
2

(
1+

κ

2

)]
.

For every κ ∈ [0,1], Definition 6.1 is satisfied.

We start our analysis from an estimate of the risk in a finite horizon model of a final cost given by a
certain function v(xT ), where T is the horizon, and v : X →R is a measurable function with ‖v‖w < ∞ for
the weight function w : X → [1,∞), w ∈ V , and with v(xA) = 0. In the lemma below, we consider x1 ∈X
as a parameter of the problem, and thus ρ1,T

(
0, . . . ,0,v(xT )

)
is a function of x1.

Lemma 6.1. Suppose a stationary policy Π = {π,π, . . .} is applied to a controlled Markov model with a
Markov risk transition mapping σ(·, ·, ·). If the model is risk-transient, then there exists a function v̄1 : X →
R, ‖v̄1‖w < ∞, such that for all x1 ∈X , and all T ≥ 1

ρ1,T
(
0, . . . ,0,v(xT )

)
≤ v̄1(x1), (30)

and ∥∥v̄1
∥∥

w ≤
∥∥∥(M̃π

)T−1
∥∥∥

w
·
∥∥v
∥∥

w, (31)

where M̃π is the substochastic risk multikernel implied by π and σ .
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Proof. By construction,

ρ1,T
(
0, . . . ,0,v(xT )

)
= ρ1

(
ρ2
(
· · ·ρT−1

(
v(xT )

)
· · ·
))

.

Applying (19), we obtain

ρT−1
(
v(xT )

)
= max

mT−1∈Mπ
xT−1

∫
X

v(y) mT−1(dy). (32)

It is a function of xT−1, which we denote as vT−1(xT−1). Since ‖v‖w < ∞ and w ∈ V , then v ∈ V . As the sets
Mπ

x are weakly∗ compact, the maximum in (32) is achieved. Moreover,∥∥vT−1
∥∥

w ≤
∥∥M̃π

∥∥
w ·
∥∥v
∥∥

w < ∞.

One step earlier, in a similar way we obtain

ρT−2
(
ρT−1

(
v(xT )

))
= max

mT−2∈Mπ
xT−2

∫
X

vT−1(y) mT−2(dy)

= max
mT−2∈Mπ

xT−2

∫
X

max
mT−1∈Mπ

y

∫
X

v(z) mT−1(dz) mT−2(dy).

The maximizers m̂T−1 ∈Mπ
y under the integral can be chosen in such a way that they form a measurable

selector MT−1 l Mπ (see, e.g., [35, Thm. 14.37]. On the other hand, no measurable selector can do better
than the pointwise maximizers. We can, therefore, interchange the operations of maximization and integration
and conclude that

ρT−2
(
ρT−1

(
v(xT )

))
= max

mT−2∈Mπ
xT−2

max
MT−1lMπ

∫
X

∫
X

v(z) MT−1(dz|y) mT−2(dy).

Similarly, the outer maximizer may be represented as a value of a certain measurable selector of Mπ at xT−2.
Denoting the value of the above expression by vT−2(xT−2), we obtain

vT−2(x) = max
MT−2lMπ

max
MT−1lMπ

∫
X

∫
X

v(z) MT−1(dz|y) MT−2(dy|x).

Changing the order of integration we observe that the double integral above can be represented as an integral
with respect to a composition of the kernels MT−2 and MT−1 (cf. formula (11)). We obtain

vT−2(x) = max
MT−2lMπ

max
MT−1lMπ

∫
X

v(z) [MT−2 ◦MT−1
](

dz
∣∣x)≤ max

Ml(Mπ )2

∫
X

v(z) M
(
dz
∣∣x)= v̄T−2(x).

The last inequality follows from the fact that MT−2 ◦MT−1 l
(
Mπ
)2. Therefore, vT−2 ≤ v̄T−2, where∥∥v̄T−2

∥∥
w ≤

∥∥∥(M̃π
)2
∥∥∥

w
·
∥∥v
∥∥

w < ∞.

Continuing in this way, we conclude that

ρ1

(
ρ2

(
· · ·ρT−1

(
v(xT )

)
· · ·
))
≤ max

Ml(Mπ )T−1

∫
X

v(z) M
(
dz
∣∣x1
)
= max

M̃l(M̃π )T−1

∫
X̃

v(z) M̃
(
dz
∣∣x1
)
.

Denoting the right-hand side by v̄1(x1), we obtain the estimates (30)–(31).
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We can now provide sufficient conditions for the finiteness of the limit (26).

Theorem 6.1. Suppose a stationary policy Π = {π,π, . . .} is applied to a the controlled Markov model
with a Markov risk transition mapping σ(·, ·, ·). If the model is risk-transient for the policy Π and the cost
function c(·, ·, ·) is w-bounded, then the limit (26) is finite and

∥∥J∞(Π , ·)
∥∥

w < ∞. If the model is uniformly
risk-transient, then

∥∥J∞(Π , ·)
∥∥

w is uniformly bounded.

Proof. By Lemma 3.1, each conditional risk measure ρ1,T (·) is convex and positively homogeneous, and thus
subadditive. For any 1 < T1 < T2 we obtain the following estimate of (27):

JT2−1(Π ,x1) = ρ1,T2(0,Z2, . . . ,ZT2)

≤ ρ1,T2(0,Z2, . . . ,ZT1 ,0, . . . ,0)+
T2−1

∑
j=T1

ρ1,T2(0, . . . ,0,Z j+1,0, . . . ,0)

= ρ1,T1(0,Z2, . . . ,ZT1)+
T2−1

∑
j=T1

ρ1, j+1(0, . . . ,0,Z j+1).

(33)

By assumption, Z j+1 ≤ C
(
w̄(x j)+ w̄(x j+1)

)
, where w̄(x) = w(x) if x ∈ X̃ , and w̄(xA) = 0. Owing to the

monotonicity and positive homogeneity of the conditional risk mappings

ρ1, j+1(0, . . . ,0,Z j+1)≤Cρ1

(
ρ2

(
· · ·ρ j−1

(
ρ j
(
w̄(x j)+ w̄(x j+1)

))
· · ·
))

=Cρ1

(
ρ2

(
· · ·ρ j−1

(
w̄(x j)+ρ j

(
w̄(x j+1)

))
· · ·
))

≤Cρ1
(
ρ2
(
· · ·ρ j−1

(
w̄(x j)

)
· · ·
))

+Cρ1
(
ρ2
(
· · ·ρ j

(
w̄(x j+1)

)
· · ·
))
.

In the middle equation we used the fact that w̄(x j) is F j-measurable, and in the last inequality – the subaddi-
tivity of the risk measures. Since

∥∥w̄
∥∥

w = 1, Lemma 6.1 implies that

ρ1
(
ρ2
(
· · ·ρ j

(
w̄(x j+1)

)
· · ·
))
≤ v̄ j(x1)

with ∥∥v̄ j
∥∥

w ≤
∥∥∥(M̃π

) j
∥∥∥

w
. (34)

Substitution to (33) yields the estimate

ρ1,T2(0,Z2, . . . ,ZT2)≤ ρ1,T1(0,Z2, . . . ,ZT1)+2C
T2

∑
j=T1+1

v̄ j(x1). (35)

Consider now the sequence of costs Z1, . . . ,ZT1 ,−ZT1+1, . . . ,−ZT2 , in which we flip the sign of the costs
Zt+1 = c(xt ,ut ,xt+1) for t ≥ T1. As |Zt+1| are bounded by C

(
w̄(xt)+ w̄(xt+1)

)
, the estimate (35) applies to

the new sequence. We obtain

ρ1,T2(0,Z2, . . . ,ZT1 ,−ZT1+1, . . . ,−ZT2)≤ ρ1,T1(0,Z2, . . . ,ZT1)+2C
T2

∑
j=T1+1

v̄ j(x1). (36)

By convexity and positive homogeneity of ρ1,T2(·),

2ρ1,T1(0,Z2, . . . ,ZT1)≤ ρ1,T2(0,Z2, . . . ,ZT1 ,ZT1+1, . . . ,ZT2)+ρ1,T2(0,Z2, . . . ,ZT1 ,−ZT1+1, . . . ,−ZT2).

Substituting the estimate (36), we deduce that

ρ1,T2(0,Z2, . . . ,ZT2)≥ ρ1,T1(0,Z2, . . . ,ZT1)−2C
T2

∑
j=T1+1

v̄ j(x1).
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This combined with (35) yields

∣∣JT2−1(Π ,x1)− JT1−1(Π ,x1)
∣∣≤ 2C

T2

∑
j=T1+1

v̄ j(x1).

In view of (34), we conclude that

∥∥JT2−1(Π , ·)− JT1−1(Π , ·)
∥∥

w ≤ 2C
T2

∑
j=T1+1

∥∥∥(M̃π
) j
∥∥∥

w
. (37)

By Definition 6.1, the right hand side of the last displayed inequality converges to 0, when T1,T2→∞, T1 < T2.
Hence, the sequence of functions JT (Π , ·), T = 1,2, . . . is convergent to some limit J∞(Π , ·). Moreover,∥∥J∞(Π , ·)

∥∥
w < ∞. If the model is uniformly risk-transient, then the estimate (37) is the same for all Markov

policies Π , and thus
∥∥J∞(Π , ·)

∥∥
w is uniformly bounded.

Remark 6.1. It is clear from the proof of Theorem 6.1, that

J∞(Π ,x1) = lim
T→∞

ρ1,T
(
0,Z2, . . . ,ZT + f (xT )

)
, (38)

for any measurable function f : X →R, with
∥∥ f
∥∥

w < ∞, because c(xT−1,ut ,xT )+ f (xT ) is still w-bounded.

This analysis allows us to derive dynamic programming equations for the infinite horizon problem, in the
case of a fixed Markov policy.

Theorem 6.2. Suppose a controlled Markov model with a Markov risk transition mapping σ(·, ·, ·) is risk-
transient for the stationary Markov policy Π = {π,π, . . .}, with some weight function w(·). Then a measur-
able function v : X →R, with ‖v‖w < ∞, satisfies the equations

v(x) = σ
(
cx + v,x,π(x)◦Qx

)
, x ∈ X̃ , (39)

v(xA) = 0, (40)

if and only if v(x) = J∞(Π ,x) for all x ∈X .

Proof. Denote Zt = c(xt−1,ut−1,xt). Suppose a measurable function v(·) satisfies the dynamic programming
equations (39)–(40). Since ‖v‖w < ∞ and w ∈ V , then also v ∈ V . By assumption, c(·, ·, ·) is w-bounded, and
thus cx(·, ·) ∈ V . Consequently, the right-hand side of (39) is well-defined. By iteration of (39), we obtain
for all x1 ∈X the following equation:

v(x1) = ρ1

(
c(x1,u1,x2)+ρ2

(
c(x2,u2,x3)+ · · ·+ρT

(
c(xT ,uT ,xT+1)+ v(xT+1)

)
· · ·
))

.

Denote Zt = c(xt−1,ut−1,xt). Using monotonicity and subadditivity of the conditional risk measures we
deduce that:

ρ1,T+1
(
0,Z2, . . . ,ZT+1 + v(xT+1)

)
≤ ρ1,T+1

(
0,Z2, . . . ,ZT+1

)
+ρ1,T+1

(
0,0, . . . ,v(xT+1)

)
. (41)

By Lemma 6.1,

v(x1) = ρ1,T+1
(
0,Z2, . . . ,ZT+1 + v(xT+1)

)
≤ ρ1,T+1

(
0,Z2, . . . ,ZT+1))+dT (x1), (42)

with ∥∥dT
∥∥

w ≤
∥∥∥(M̃π

)T−1
∥∥∥

w
·
∥∥v
∥∥

w. (43)
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By convexity of ρ1,T+1(·),

2ρ1,T+1
(
0,Z2, . . . ,ZT+1

)
≤ ρ1,T+1

(
0,Z2, . . . ,ZT+1 + v(xT+1)

)
+ρ1,T+1

(
0,Z2, . . . ,ZT+1− v(xT+1)

)
= v(x1)+ρ1,T+1

(
0,Z2, . . . ,ZT+1− v(xT+1)

)
. (44)

Similar to (41)–(42),

ρ1,T+1
(
0,Z2, . . . ,ZT+1− v(xT+1)

)
≤ ρ1,T+1

(
0,Z2, . . . ,ZT+1

)
+dT (x1).

Substituting into (44) we obtain

v(x1)≥ ρ1,T+1
(
0,Z2, . . . ,ZT+1))−dT (x1).

Combining this estimate with (42) and using (43) we conclude that∥∥v(·)− JT (Π , ·)
∥∥

w ≤
∥∥dT

∥∥
w→ 0, as T → ∞.

Thus v(·)≡ J∞(Π , ·), as postulated.
To prove the converse implication we can use the fact that all conditional risk measures ρt(·) share the

same risk transition mapping to rewrite (27) as follows:

JT (Π ,x1) = ρ1
(
c(x1,u1,x2)+ JT−1(Π ,x2)

)
.

The function ρ1(·), as a finite-valued coherent measure of risk on a Banach lattice, is continuous (see [38,
Prop. 3.1]). Since

∥∥JT (Π , ·)− J∞(Π , ·)
∥∥

w→ 0, as T → ∞, then the sequence
{

JT (Π , ·)
}

is also convergent
in the space V . Therefore,

lim
T→∞

JT (Π ,x1) = ρ1

(
c(x1,u1,x2)+ lim

T→∞
JT−1(Π ,x2)

)
.

This is identical with equation (39) with v(·)≡ J∞(Π , ·). Equation (40) is obvious.

7 Dynamic Programming Equations for Infinite Horizon Problems
We shall now focus on the optimal value function

J∗(x) = inf
Π∈ΠRM

J∞(Π ,x), x ∈X , (45)

where ΠRM is the set of all stationary Markov policies.

Theorem 7.1. Assume that the following conditions are satisfied:

(i) For every x ∈X the transition kernel Q(x, ·) is continuous;

(ii) The conditional risk measures ρt , t = 1, . . . ,T , are Markov and such that for every x ∈X the multifunc-
tion A (x, ·) is lower semicontinuous;

(iii) The function c(·, ·, ·) is w-bounded and lower semicontinuous with respect to the second argument;

(iv) For every x ∈X the set U(x) is compact;

(v) The model is uniformly risk-transient.
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Then a function v : X →R, with ‖v‖w < ∞, satisfies the equations

v(x) = inf
λ∈P(U(x))

σ
(
cx + v,x,λ ◦Qx

)
, x ∈X , (46)

v(xA) = 0, (47)

if and only if v(x) = J∗(x) for all x ∈X . Moreover, the minimizer π∗(x), x ∈X , on the right hand side of
(46) exists and defines an optimal randomized Markov policy Π ∗ = {π∗,π∗, . . .}.

Proof. Suppose J∗(·) is given by (45). The set of policies of the form {λ ,π,π, . . .} is larger than ΠRM, and
thus

J∗(x1)≥ inf
λ∈P(U(x1))

Π∈ΠRM

ρ1
(
c(x1,u1,x2)+ J∞(Π ,x2)

)
.

By the monotonicity of ρ1(·) we can move the infimum operator inside:

J∗(x1)≥ inf
λ∈P(U(x1))

ρ1

(
c(x1,u1,x2)+ inf

Π∈ΠRM
J∞(Π ,x2)

)
= inf

λ∈P(U(x1))
ρ1
(
c(x1,u1,x2)+ J∗(x2)

)
.

As the model is uniformly risk-transient,
∥∥J∗
∥∥

w < ∞, and the right-hand side is well-defined. Thus J∗(·)
satisfies the inequality

J∗(x)≥ inf
λ∈P(U(x))

σ
(
cx + J∗,x,λ ◦Qx

)
, x ∈X . (48)

The mapping λ 7→σ
(
cx+J∗,x,λ ◦Qx

)
is continuous for all x, and the set of λ ∈P(U ) such that λ (U(x)) = 1

is weakly∗ compact. Therefore, there exists a minimizer π∗(x) on the right hand side of (48). Hence,

J∗(x)≥ σ
(
cx + J∗,x,π∗(x)◦Qx

)
, x ∈X .

Iterating this inequality we conclude that J∗(x1) is bounded below by

J∗(x1)≥ ρ1,T
(
0,Z2, . . . ,ZT + J∗(xT )

)
, (49)

with the sequence of controls and states resulting from the stationary Markov policy Π ∗ = {π∗,π∗, . . .}.
Owing to Remark 6.1, we can pass to the limit on the right-hand side and obtain the inequality:

J∗(x1)≥ J∞(Π
∗,x1), x1 ∈X .

It follows that Π ∗ is the optimal stationary Markov policy, and thus J∗(·) = J∞(Π
∗, ·). By Theorem 6.2,

relation (48) is an equation, which proves (46)–(47).
To prove the converse implication, suppose v(·) satisfies (46)–(47) and ‖v‖w <∞. By the continuity of the

mapping λ 7→ σ
(
cx + v,x,λ ◦Qx

)
and weak∗ compactness of the set of λ ∈P(U ) such that λ (U(x)) = 1,

there exists a randomized control π̂(·), which is a minimizer on the right hand side of (46). We obtain the
equation

v(x) = σ
(
cx + v,x, π̂(x)◦Qx

)
, x ∈X .

By Theorem 6.2,
v(x) = J∞(Π̂ ,x)≥ J∗(x), x ∈X , (50)

where Π̂ = {π̂, π̂, . . .}. On the other hand, it follows from (46) that for the optimal policy Π ∗ = {π∗,π∗, . . .}
we have

v(x)≤ σ
(
cx + v,x,π∗(x)◦Qx

)
, x ∈X . (51)
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The risk transition mapping σ is nondecreasing with respect to the first argument. Therefore, iterating in-
equality (51) we obtain an inequality corresponding to (49):

v(x1)≤ ρ1,T
(
0,Z2, . . . ,ZT + v(xT )

)
,

Passing to the limit with T → ∞ and applying Remark 6.1, we conclude that

v(x)≤ J∞(Π
∗,x) = J∗(x), x ∈X .

The last estimate together with (50) implies that v(·)≡ J∗(·) and that both stationary policies Π ∗ and Π̂ are
optimal.

We can now address the case of general non-stationary policies. For a policy Λ = {λ1,λ2, . . .} we define

J∞(Λ ,x1) = liminf
T→∞

JT (Λ ,x1)

and

Ĵ(x1) = inf
Λ

J∞(Λ ,x1).

Theorem 7.2. Assume that the conditions of Theorem 7.1 are satisfied, together with the following assump-
tion: there exists a constant C such that J∞(Λ ,x) ≥ −Cw(x) for all x ∈X and for all policies Λ . Then a
function v : X →R, with ‖v‖w < ∞, satisfies the equations (46)–(47) if and only if v(x) = Ĵ(x) for all x∈X .
Moreover, the minimizer π∗(x), x ∈X , on the right hand side of (46) exists and defines an optimal policy
Π ∗ = {π∗,π∗, . . .}.

Proof. As for stationary Markov policies Π we have
∥∥J∞(Π , ·)

∥∥
w < ∞, in view of the additional assumption

we have
∥∥Ĵ
∥∥

w < ∞. Denote Λ 1 = {λ2,λ3, . . .}. Due to the monotonicity and continuity of ρ1(·), we have the
chain of relations

Ĵ(x1) = inf
λ1,λ2,...

liminf
T→∞

ρ1
(
c(x1,u1,x2)+ JT−1(Λ

1,x2)
)

≥ inf
λ1,λ2,...

liminf
T→∞

ρ1
(
c(x1,u1,x2)+ inf

τ≥T−1
Jτ(Λ

1,x2)
)

= inf
λ1,λ2,...

lim
T→∞

ρ1
(
c(x1,u1,x2)+ inf

τ≥T−1
Jτ(Λ

1,x2)
)

= inf
λ1,λ2,...

ρ1

(
c(x1,u1,x2)+ liminf

T→∞
JT−1(Λ

1,x2)
)
= inf

λ1,λ2,...
ρ1
(
c(x1,u1,x2)+ J∞(Λ

1,x2)
)
,

Owing to the monotonicity of ρ1(·), we can move the minimization with respect to Λ 1 inside the argument,
to obtain

Ĵ(x1)≥ inf
λ1

ρ1

(
c(x1,u1,x2)+ inf

Λ1
J∞(Λ

1,x2)
)
= inf

λ1
ρ1
(
c(x1,u1,x2)+ Ĵ(x2)

)
.

Thus Ĵ(·) satisfies an inequality analogous to (48):

Ĵ(x)≥ inf
λ∈P(U(x))

σ
(
cx + Ĵ,x,λ ◦Qx

)
, x ∈X . (52)

We can now repeat the argument from the proof of Theorem 7.1. Denoting by λ̂ the minimizer above,
iterating inequality (52), and passing to the limit we conclude that

Ĵ(x)≥ J∞(Λ̂ ,x), x ∈X ,

where Λ̂ = {λ̂ , λ̂ , . . .} is a stationary Markov policy. Therefore, optimization with respect to stationary
Markov policies is sufficient, and the result follows from Theorem 7.1.
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Our additional technical assumption that J∞(Λ ,x) ≥ −Cw(x) is obviously true for nonnegative costs
c(·, ·, ·). More generally, it is true in the case when the cost function is w-bounded, the model is transient,
and µ ∈A (x,µ), for all x ∈X and µ ∈M . Indeed, by virtue of Remark 4.1, the dynamic risk measure is
bounded from below by the expected value of the cost, which is finite in this case.

8 Randomized versus Deterministic Control
Observe that the mapping λ 7→ σ

(
cx + v,x,λ ◦Qx

)
, which plays the key role in the dynamic programming

equation (46), is nonlinear, in general, as opposed to the expected value model, where

σ
(
cx + v,x,λ ◦Qx

)
=
∫

U(x)

∫
X

(
c(x,u,y)+ v(y)

)
Q(dy|x,u) λ (du|x).

In the expected value case, it is sufficient to consider only the extreme points of the set P
(
U(x)

)
, which are

the measures assigning unit mass to one of the controls u ∈U(x):

inf
λ∈P(U(x))

∫
U(x)

∫
X

(
c(x,u,y)+ v(y)

)
Q(dy|x,u) λ (du|x) = inf

u∈U(x)

∫
X

(
c(x,u,y)+ v(y)

)
Q(dy|x,u).

In the risk averse case this simplification is not justified and a randomized policy may be strictly better than
any deterministic policy. Of course, we may always restrict the set of possible decision rules to deterministic
rules, and solve the corresponding version of the dynamic equation (46):

v(x) = min
λ∈Pδ (U(x))

σ
(
cx + v,x,λ ◦Qx

)
, x ∈X , (53)

where Pδ (U(x)) denotes the set of Dirac measures supported at U(x). For a fixed x ∈ X and a Dirac
measure λ = δu, the function cx + v = c(x,u) + v(y) is only a function of the next state y ∈ X , and the
measure λ ◦Qx is the measure Q(·|x,u) on the state space X . We can, therefore, rewrite (53) in a simpler
form

v(x) = min
u∈U(x)

{
c(x,u)+σ

(
v,x,Q(·|x,u)

)}
, x ∈X , (54)

where (with a slight abuse of notation) σ : Lp(X ,B(X ),Px)×X ×Lq(X ,B(X ),Px)→R, and σ(·, ·, ·)
is a coherent measure of risk with respect to its first argument. In equation (54) we also used the translation
property of coherent measures of risk. This is almost exactly the form of the dynamic programming equation
which we derived in [36] for discounted problems, but with the discount factor α = 1.

A question arises whether it is possible to identify cases in which deterministic policies are sufficient. It
turns out that we can prove this for a class of measures of risk which are called optimized certainty equivalents
[5]:

σ(ϕ,x,µ) = inf
ξ∈R

∫
U(x)×X

{
ξ +G

(
ϕ(u,y)−ξ ;x

)}
µ(du×dy). (55)

In formula (55), the function G :R→R is nondecreasing and convex, with G(0) = 0 and 1 ∈ ∂G(0). We
assume that |G(z)| ≤ c(1+ zp) for all z ∈R, with some c > 0 and p≥ 1, and we define V using the same p,
so that the integral above is finite for ϕ ∈ V .

Lemma 8.1. If the risk transition mapping has the form (55) then the dynamic programming equations (46)
have a solution in deterministic decision rules.
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Proof. Interchanging the integration and the infimum in the definition of an optimized certainty equivalent,
we obtain a lower bound

σ(ϕ,x,λ ◦Qx) = inf
ξ∈R

∫
U(x)

∫
X

{
ξ +G

(
ϕ(u,y)−ξ ;x

)}
Q(dy|x,u) λ (du|x)

≥
∫

U(x)

inf
ξ∈R

∫
X

{
ξ +G

(
ϕ(u,y)−ξ ;x

)}
Q(dy|x,u) λ (du|x).

The above inequality becomes an equation for every Dirac measure λ . On the right-hand side of (46) we have

inf
λ∈P(U(x))

σ(cx + v,x,λ ◦Qx)≥ inf
λ∈P(U(x))

∫
U(x)

inf
ξ∈R

∫
X

{
ξ +G

(
c(x,u,y)+ v(y)−ξ ;x

)}
Q(dy|x,u) λ (du|x).

As the right hand side achieves its minimum over λ ∈P(U(x)) at a Dirac measure concentrated at an extreme
point of U(x), and both sides coincide in this case, the minimum of the left hand side is also achieved at
such measure. Consequently, for risk transition mappings of form (55) deterministic Markov policies are
optimal.

9 Illustrative Examples
We illustrate our models and results on two simple examples.

9.1 Asset Selling
Let us at first consider the classical example of asset selling originating from Karlin [19]. Offers Yt arriving
in time periods t = 1,2, . . . are independent integer-valued integrable random variables. At each time we may
accept the highest offer received so far, or we may wait, in which case a waiting cost c is incurred. Denoting
the random stopping time by τ we see that the total “cost” equals Z = cτ−max0≤ j≤τ Yj. The problem is an
example of an optimal stopping problem, a structure of considerable theoretical and practical relevance (see,
e.g., Çinlar [9], Dynkin and Yushkevich [11, 12], and Puterman [32]).

Formally, we introduce the state space X = {xA}∪{0,1,2, . . .}, where xA is the absorbing state reached
after the transaction, and the other states represent the highest offer received so far. The control space is
U = {0,1}, with 0 representing “wait” and 1 representing “sell.” The state evolves according to the equation

xt+1 =

{
max(xt ,Yt+1) if ut = 0,
xA if ut = 1.

This formula defines the transition kernel Q. The cost is

c(xt ,ut) =

{
c if ut = 0,
−xt if ut = 1.

The expected value version of this problem has a known solution: accept the first offer greater than or equal
to the solution x̂ of the equation

c =E
[
(Y − x̂)+

]
. (56)

We shall solve the risk-averse version of the problem in deterministic policies. For a stationary risk transition
mapping σ , equation (54) has the form:

v(x) = min
{
− x,c+σ

(
v,x,Qx

)}
, x ∈ X̃ . (57)
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Suppose σ is law invariant (Definition 3.2). As the distribution of v with respect to the measure Qx is the
same as the distribution of v

(
max(x,Y )

)
under the measure PY of Y , we obtain

σ
(
v,x,Qx

)
= σ

(
v
(

max(x,Y )
)
,x,PY

)
.

Suppose our attitude to risk does not depend on the current state, that is, σ does not depend on its second
argument. Using (12), we may rewrite the last equation as follows:

σ
(
v,x,Qx

)
= max

µ∈A
Eµ

[
v
(

max(x,Y )
)]
.

The convex closed set of probability measures A is fixed. Equation (57) takes on the form

v(x) = min
{
− x,c+max

µ∈A
Eµ

[
v
(

max(x,Y )
)]}

, x ∈ X̃ . (58)

Observe that v(x)≤−x and thus v
(

max(x,Y )
)
≤−max(x,Y ). The last displayed inequality implies that

v(x)≤min
{
− x,c+max

µ∈A
Eµ

[
−max(x,Y )

]}
= min

{
− x,c− min

µ∈A
Eµ

[
max(x,Y )

]}
, x ∈ X̃ .

If the offer at level x is accepted, then v(x) =−x. We obtain the inequality:

min
µ∈A

E
[
(Y − x)+

]
≤ c.

This suggests the solution: accept any offer that is greater or equal to the solution x∗ of the equation

min
µ∈A

E
[
(Y − x∗)+

]
= c; (59)

if x < x∗, then wait. The corresponding value function equals:

v∗(x) =−max(x,x∗).

Equation (58) can be verified by direct substitution.
Observe that the solution (59) of the risk-averse problem is closely related to the solution (56) of the

expected value problem. The only difference is that we have to account for the least favorable distribution of
the offers. If PY ∈A , then the critical level x∗ ≤ x̂.

9.2 Organ Transplant
We illustrate our results on a risk-averse version of a simplified organ transplant problem discussed in Alagoz
et. al. [1]. We consider the discrete-time absorbing Markov chain depicted in Figure 1. State S, which is
the initial state, represents a patient in need of an organ transplant. State L represents life after a successful
transplant. State D (absorbing state) represents death. Two control values are possible in state S: W (for
“Wait”), in which case transition to state D or back to state S may occur, and T (for “Transplant”), which
results in a transition to states L or D. The probability of death is lower for W than for T, but successful
transplant may result in a longer life, as explained below. In other two states only one (formal) control value
is possible: “Continue”. The rewards collected at each time step are months of life. In state S a reward equal
to 1 is collected, if the control is W; otherwise, the immediate reward is 0. In state L the reward r(L) is
collected, representing the sure equivalent of the random length of life after transplant. In state D the reward
is 0.

Generally, in a cost minimization problem, the value of a dynamic measure of risk (4) is the “fair” sure
charge one would be willing to incur, instead of a random sequence of costs. In our case, which will be a
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Figure 1: The organ transplant model.

maximization problem, we shall work with the negatives of the months of life as our “costs.” The value of
the measure of risk, therefore, can be interpreted as the negative of a sure life length which we consider to be
equivalent to the random life duration faced by the patient.

Let us start from describing the way the deterministic equivalent length of life r(L) at state L is calculated.
The state L is in fact an aggregation of n states in a survival model representing months of life after transplant,
as depicted in Figure 2.

p1 p2 p3  Pn = 1  
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Figure 2: The survival model.

In state i = 1, . . . ,n, the patient dies with probability pi and survives with probability 1− pi. The prob-
ability pn = 1. The reward collected at each state i = 1, . . . ,n is equal to 1. In order to follow the notation
of our paper, we define the cost c(·) = −r(·). For illustration, we apply the mean–semideviation model of
Example 3.1 with κ = 1.

The risk transition mapping has the form:

σ(ϕ, i,ν) = Eν [ϕ]︸ ︷︷ ︸
expected value

+κEν

[(
ϕ−Eν [ϕ]

)
+

]︸ ︷︷ ︸
semideviation

. (60)

Owing to the monotonicity property B2, σ(ϕ, i,ν)≤ 0, whenever ϕ(·)≤ 0.
In (60), the measure ν is the transition kernel at the current state i, and the function ϕ(·) is the cost

incurred at the current state and control plus the value function at the next state. At each state i = 1, . . . ,n−1
two transitions are possible: to D with probability pi and ϕ = −1, and to i+ 1 with probability 1− pi and
ϕ = −1+ vi+1(i+ 1). At state i = n the transition to D occurs with probability 1, and ϕ = −1. Therefore,
vn(n) =−1.
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The survival problem is a finite horizon problem, and thus we apply equation (23). As there is no control
to choose, the minimization operation in is eliminated. The equation has the form:

vi(i) = σ(ϕ, i,Qi), i = 1, . . . ,n−1,

with ϕ and Qi as explained above. By induction, vi(i)≤ 0, for i = n−1,n−2, . . . ,1.
Let us calculate the mean and semideviation components of (60) at states i = 1, . . . ,n−1:

EQi [ϕ] =−pi +(1− pi)
(
−1+ vi+1(i+1)) =−1+(1− pi)vi+1(i+1),

EQi

[(
ϕ−EQi [ϕ]

)
+

]
=EQi

[(
ϕ +1− (1− pi)vi+1(i+1)

)
+

]
= pi

(
−1+1− (1− pi)vi+1(i+1)

)
+
+(1− pi)

(
−1+ vi+1(i+1)+1− (1− pi)vi+1(i+1)

)
+

= pi
(
− (1− pi)vi+1(i+1)

)
+
+(1− pi)

(
pivi+1(i+1)

)
+

=−pi(1− pi)vi+1(i+1).

In the last equation we used the fact that vi+1(i+ 1) ≤ 0. For i = 1, . . . ,n− 1, the dynamic programming
equations (23) take on the form:

vi(i) =−1+(1− pi)vi+1(i+1)︸ ︷︷ ︸
expected value

−κ pi(1− pi)vi+1(i+1)︸ ︷︷ ︸
semideviation

, i = n−1,n−2, . . . ,1.

The value v(1) is the negative of the risk-adjusted length of life with new organ. For κ = 0 the above formulas
give the negative of the expected length of life with new organ.

In our calculations we used the transition data provided in Table 1. They have been chosen for purely
illustrative purposes and do not correspond to any real medical situation.

Control S L D
W 0.99882 0 0.00118
T 0 0.90782 0.09218

Table 1: Transition probabilities from state S.

For the survival model, we used the distribution function, F(x), of lifetime of the American population
from Jasiulewicz [18]. It is a mixture of Weibull, lognormal, and Gompertz distributions:

F(x) = w1

(
1− exp

(
−
( x

δ

)β))
+w2Φ

( logx−m
σ

)
+w3

(
1− exp

(
− b

α
(eαx−1)

))
, x≥ 0.

The values of the parameters and weights, provided by Jasiulewicz [18], are given in Table 2.

Distribution Parameters Weights
Weibull δ = 0.297, β = 0.225 w1 = 0.0170

Lognormal m = 3.11, σ = 0.218 w2 = 0.0092
Gompertz b = 0.0000812, α = 0.0844 w3 = 0.9737

Table 2: Values of parameters for F(x).

Then, we calculated the probability of dying at age k (in months) as follows:

pk =
F(k/12+1/24)−F(k/12−1/24)

1−F(k/12−1/24)
, k = 1,2, . . . .
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The maximum lifetime of the patient was taken to be 1200 months, and that the patient after transplant has
survival probabilities starting from k = 300. Therefore, n = 900 in the survival model used for calculating
r(L).

Let λ = (λW ,λT) be the randomized policy in the state S and let Λ =
{

λ ∈R2 : λW +λT = 1, λ ≥ 0
}

.
The dynamic programming equation (46) at S takes on the form

v(S) = min
λ∈Λ

{
λW

[
qS,S(W)

(
v(S)−1)

)
+qS,D(W)

(
v(D)−1

)]
+λT

[
qS,L(T)v(L)+qS,D(T)v(D)

]︸ ︷︷ ︸
expected value µ

+κ

(
λW

[
qS,S(W)

(
v(S)−1−µ

)
+
+qS,D(W)

(
v(D)−1−µ

)
+

]︸ ︷︷ ︸
semideviation . . .

+λT

[
qS,L(T)

(
v(L)−µ

)
+
+qS,D(T)

(
v(D)−µ

)
+

])
︸ ︷︷ ︸

. . . semideviation

}
.

In the semideviation parts, we wrote µ for the expectation of the value function in the next state, which is
given by the first underbraced expression, and which is also dependent on λ . Of course, the above expression
can be simplified, by using the fact that v(L)< v(S)< v(D) = 0, but we prefer to leave it in the above form
to illustrate the way it has been developed.

We compared two optimal control models for this problem. The first one was the expected value model
(κ = 0), which corresponds to the expected reward r(L) = 610.46 in the survival model. Standard dynamic
programming equations were solved, and the optimal decision in state S turned out to be W.

The second model was the risk-averse model using the mean–semideviation risk transition mapping with
κ = 1. This changed the reward at state L to 515.35. We considered two versions of this model. In the first
version, we restricted the feasible policies to be deterministic. In this case, the optimal action in state S was
T. In the second version, we allowed randomized policies, as in our general model. Then the optimal policy
in state S was W with probability λW = 0.9873 and T with probability λT = 0.0127.

How can we interpret these results? The optimal randomized policy results in a random waiting time
before transplanting the organ. This is due to the fact that immediate transplant entails a significant probability
of death, and a less risky policy is to “dilute” this probability in a long waiting time. This cannot be derived
from an expected value model, no matter what the data, because deterministic policies are optimal in such a
model: either transplant immediately or never.
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