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The impact of price skimming on supply and
exit decisions
Ayşegül Toptala*† and Sıla Çetinkayab

Stochastic inventory control theory has focused on the order and/or pricing policy when the length of the selling period is known.
In contrast to this focus, we examine the optimal length of the selling period—which we refer to as market exit time—in the context
of a novel inventory replenishment problem faced by a supplier of a new, trendy, and relatively expensive product with a short life
cycle. An important characteristic of the problem is that the supplier applies a price skimming strategy over time and the demand
is modeled as a nonhomogeneous Poisson process with an intensity that is dependent on time. The supplier’s problems of finding the
optimal order quantity and market exit time, with the objective of maximizing expected profit, is studied. Procedures are proposed
for joint optimization of the objective function with respect to the order quantity and the market exit time. Then, the effects of the
order quantity and market exit time on the supplier’s profitability are explored on the basis of a quantitative investigation. Copyright
© 2014 John Wiley & Sons, Ltd.
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1. Introduction and related literature

We consider a new, trendy, and relatively expensive product that has a limited supply and a short life cycle associated
with its fast-clockspeed industry. Hence, it is in the market for a short selling period. Examples of interest include high-
end/designer clothing, accessories, perfumes, cosmetics, jewelery, toys or so-called status or fad items that go in and out
of fashion, and some electronics or technology products that become obsolete as newer and better products are introduced.
Because of the short life cycle, there is only a single replenishment opportunity for the supplier at the beginning of the
selling period. Therefore, given the pricing strategy, we are concerned with (i) the order quantity and (ii) the length of the
selling period, which we refer to as market exit time, taking the perspective of the supplier of the product.

The supplier in consideration is the new product’s inventor and has significant sunk costs associated with development.
There are no competitors in the market currently; however, the competition may eventually step in with imitations or product
substitutes. The inventing supplier desires and estimates to be out of the market by that time. In this setting, the market
can be divided into distinct segments according to the customers’ willingness to pay. In order to recoup development-
related sunk costs, the supplier initially targets the segment that is willing to pay the highest price. This group of customers
includes early adopters who are relatively insensitive to price. Over time, the supplier sequentially reduces the price for
the next customer segment aiming for shoppers who are more price sensitive and have not purchased the product yet.

This form of pricing strategy is referred to as ‘price skimming’ in the marketing literature [1, 2] and is used for differ-
ential pricing in cases of heterogenous consumer segments depending on their willingness to pay. By reducing the prices
systematically over time, the supplier skims the revenues layer by layer from the market. Apple, Du Pont, Polaroid, and
Sony are known to have used skimming to benefit from high, short-term profits for their innovative products. Pharmaceuti-
cal companies also apply price skimming to fund their research and development activities before the generic alternatives
eventually decrease the prices [3].

Skimming is a strategy for new product pricing, and it is common for ‘status’ or ‘fad’ items. It is also known as periodic
discounting or riding down the demand curve [1]. Price skimming is most appropriate when [4, 5]
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• the high price is perceived as a sign of high quality,
• there are enough customers willing to purchase the product at high prices,
• the cost of producing small volumes is relatively low, and
• competitors cannot enter the market quickly because of protection by patents, secrets of production, or by other

barriers.

These conditions are particularly applicable for various status or fad items. Penetration pricing and experience curve pricing
are the other ways to price new (perhaps, more lasting) products [2].

Tellis [1] reports that when a price skimming strategy is in place, the manner of discounting is predictable over time, and
it is not necessarily unknown to consumers. Hence, we also consider the case that the supplier has effectively segmented
the market, knows the highest price payable by the consumers in each segment, and has a well-defined pricing strategy to
decrease prices over time. Further, we assume that customers behave myopically, an assumption that is especially applicable
to buyers of status or fad items. That is, they do not develop strategies against the supplier and wait to purchase the item
the first time the current price drops below their valuation [6]. In fact, because of the circumstances that price skimming is
applied and the status or fad nature of the product, early adopters are not deterred from buying the product at high prices
even if they know the prices will be lowered later. On the contrary, status-conscious, early adopters help the supplier drive
the perception of the brand, so the supplier continues to attract more elastic segments of the market over time, even if the
competition is expected to enter the market at lower prices.

In broad terms, the underlying integrated inventory/marketing problem is motivated and characterized by the following
three key issues that, in turn, differentiate the paper’s setting of interest from that of more traditional settings:

1. The product’s price is initially set to a high value and then systematically reduced over time under price skimming,
that is, the pricing strategy of the supplier is modeled using a linearly decreasing function of time. Assuming a finite
population and customers’ valuations are uniformly distributed at a certain interval, it has been shown that the structure
of the optimal price skimming strategy is in fact linearly decreasing in time [7, Chapter 5]. Many studies on dynamic
pricing also allow prices to change continuously over time (e.g., [8,9]). Clearly, changing prices continuously is most
appropriate when relabeling costs are negligible, and these costs have been dropping in many applications, because of
the growing Internet-based sales systems [10, 11].

2. Because of the nature of the product (e.g., status or fad item) and the pricing strategy in place, the market demand has
an intensity that is dependent on time, and indirectly on the price, that is, the demand arrival process at the supplier
is characterized by a nonhomogeneous Poisson (NP) process to represent time-dependent nature of the demand. Note
that, because the price is exogenous, we do not explicitly model the dependency between price and demand. However,
the linear structure of the time-varying demand intensity implicitly incorporates those cases in which demand intensity
is a linearly decreasing function of price. Bitran and Mondschein [12] and Zhao and Zheng [13] also model customer
arrivals according to an NP process with general intensity in different problem settings.

3. The cost is high for holding one unit of the product in inventory for a unit time due to high initial market value and
price depreciation over time. That is, although we are faced with a single-period inventory problem—in the sense that
there is a single replenishment opportunity—holding costs are modeled carefully while keeping track of inventory
depletion times. In other words, tracking the demand arrivals in a continuous fashion allows us to model holding costs
precisely. This approach is critical because of the nature of the product in consideration.

Consequently, inventory-related costs build up substantially for unsold items as time evolves, and the corresponding order
quantity and market exit time decisions should be examined carefully for profitability. For this purpose, first we develop
an analytical expression of the supplier’s expected profit function in which decreasing prices, changing demand over time,
and holding costs are modeled explicitly. Then, we investigate the effects of the order quantity and market exit time on
the supplier’s profitability based on analytical and numerical investigations. We also propose procedures for the supplier’s
joint decisions for order quantity and market exit time to maximize his or her expected profits.

Because our modeling of demand intensity implicitly incorporates price sensitivity as discussed earlier, our work is also
related to joint ordering/production and pricing literature (e.g., [9, 14–20]). This line of literature generally assumes the
demand is simply price sensitive, so the dependency between demand and price is modeled using the function 𝛼tD(pt) + 𝛽t
where 𝛼t and 𝛽t are random variables and D(pt) is a decreasing function of price pt in period t. Note that additive (e.g.,
[21]) and multiplicative demand (e.g., [22]) cases are special forms of this more general function [23, 24]. However, our
focus is on time-dependent demand rather than price sensitivity. By modeling the demand arrivals as an NP process and
allowing the intensity to be increasing or nonincreasing, we incorporate the natural decrease in customers’ willingness to
purchase the item in time as well as the market broadened by decreased prices.

While analyzing the ordering and market exit time decisions for a new product subject to price skimming, our objective
is to answer the following questions:
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Q1. If the supplier plans to stay in the market for a limited duration, what is the desirable order quantity for generating
a profit under explicit sunk costs?

Q2. For a given level of initial inventory, what is the optimal market exit time?
Q3. How does the supplier’s expected profit and the optimum market exit time change for varying levels of demand

sensitivity with respect to price?
Q4. How does the supplier make joint decisions for market exit time and replenishment quantity?

However, the proposed model also has potential to be useful for making decisions regarding an end-of-life product. In
fast-clockspeed industries, because of rapid changes in technology and fashion, inventory is liquidated via planned price
reductions over time. The end-of-life products in these industries either are displaced with the introduction of a new product
as in the context of product rollovers [25–29] or are fad items that simply disappear from the market with no replacement.
Whether there is a replacement product or not, it is important to make careful manufacturing and business decisions for
phasing out an end-of-life product, as the related costs may be significant. For example, Hewlett Packard Company reports
more than $20m annual end-of-life-cycle write-off expenses for the computer servers division [30]. The end-of-life prod-
uct’s final order quantity [31], on-hand inventory, salvage value, pricing strategy, and demand process are among the issues
that need to be considered for planning a product’s phase-out.

Recall that examples for the products of interest in this paper include fad, status items that go in and out of fashion
quickly (e.g., high-end/designer clothing, accessories, perfumes, cosmetics, jewelery, and toys) and some electronic prod-
ucts that become obsolete because of improved technology or competition. It is worth noting that some of these products
are ‘personal-taste items’, which simply disappear from the market with no true replacement, for example, fad clothing
items such as Valentino designer leggings priced at $990, and currently in-stock, at Saks Fifth Avenue. Others, for exam-
ple, some electronic toys or games, face competition eventually with imitations or perhaps substitutes. Our main focus is
on the former class of products under the assumption that the supplier in consideration is the inventor of the product with
no competitors in the market currently. Although the competition may eventually step in, the inventing supplier predicts to
go out of the market by that time, so we do not explicitly consider a replacement/new product. However, we do propose a
useful way of examining the impact of delayed market exit time (or product rollover if there is a replacement) on profits.

That is, we do not specifically account for a new product or an improved generation of the same product that will be sold
in the market after the current product is discontinued. By including the marginal profit of the new product into the lost-sale
cost per unit of the current product, we can address the opportunity cost of losing the new product’s profit when it is not yet
introduced and the old product runs out of stock before the planned market exit time. Hence, our model is also potentially
useful for answering the following managerial questions, which are related to liquidation of an end-of-life product:

Q5. What should be the order quantity in the last replenishment of an end-of-life-cycle product for which market exit
time is known?

Q6. What is the maximum order quantity for a soon-to-be-discontinued product to generate some positive profits?
Q7. What is the impact of delaying market exit time (or product rollover if there is a replacement) on profits?
Q8. How do the market exit times differ for varying levels of demand sensitivity to decreasing prices?
Q9. How should the price skimming decisions be made for an end-of-life product, given the market exit time?

The remainder of the paper is organized as follows. In Section 2, we discuss our assumptions and present the general
model. In Section 3, we develop the supplier’s expected profit function for the nonhomogenous demand intensity. A detailed
analysis of the special case with Poisson demand arrivals follows in Section 4. In Section 5, we present our results on the
general case. Finally, in Section 6, we summarize our fundamental results and answers to the aforementioned questions
(Q1–Q9).

2. Problem definition and notation

We consider a supplier who faces random demand during a finite horizon of length T . The supplier has a single replen-
ishment opportunity at the beginning of the demand period. If the quantity produced is less than the demand, the supplier
incurs a penalty of $b∕unit. Items unsold at the end of the period are salvaged with a per unit earning of $v∕unit. Each
item that stays in the supplier’s inventory brings a cost of $h∕unit∕unittime. The supplier incurs $c for each unit manu-
factured and an additional amount of $K as a fixed replenishment/development cost. Because the proposed model can be
applied to the different stages in the life cycle of a product, the fixed cost K may be due to ‘replenishment’ or ‘develop-
ment’ depending on the context. For example, if the model is used to decide the order quantity in the last replenishment of
an end-of-life-cycle product, K would strictly refer to the fixed cost of replenishment.
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As discussed in Section 1, the supplier has planned reductions of the price over time representing the price skimming
strategy of interest [1, 2, 4]. More specifically, the price of an item at time t, that is, r(t), is given by 𝛼 − 𝛽t. Also, as we
noted earlier, the demand arrival process at the supplier is characterized by an NP process whose intensity is given by
𝜆0 + 𝜆1t where 𝜆0 ⩾ 0. Under a price skimming strategy—depending on the size of the market in each customer segment,
or under a liquidation policy—depending on how the increase in demand due to the decreasing price compares with its
natural decrease, we further consider the following three cases:

• 𝜆1 > 0: This happens when the increase in demand due to the decrease in the price is higher than the natural decrease
in demand. Under a price skimming strategy, 𝜆1 > 0 represents a case where demand rate increases with the inclusion
of the late adopters in the more elastic market segments.

• 𝜆1 = 0: The natural decrease in demand is balanced with the demand increase due to lower prices over time. Under a
price skimming strategy, 𝜆1 = 0 represents a case where the number of shoppers in different customer segments and
their arrival processes are alike.

• 𝜆1 < 0: This happens when the increase in demand due to the decrease in the price is lower than the natural decrease in
demand. Under a price skimming strategy, 𝜆1 < 0 represents a case where many of the shoppers are in more inelastic
market segments and demand appears to be slowing due to decreased customer willingness to purchase the item as
time passes.

Before introducing the supplier’s expected profit functions, we summarize our notation in Table I.
The supplier’s income consists of the revenue from regular sales and the salvage value of any remaining items at the end of

period T . The expenses the supplier incurs are inventory holding, lost-sale, manufacturing, and replenishment/development
costs. Therefore, the expected value of the supplier’s profits is given by

Π(Q, T) = E[Revenue] + E[Salvage Value] − E[Holding cost] − E[Lost-salecost]

− E[Manufacturing cost] − E[Replenishment cost]
(1)

Comparing the aforementioned expression with the expected profit function in the classical single-period stochastic
replenishment problem (i.e., the newsboy problem), a precise computation of expected holding costs is a novelty of our
model although it introduces an additional complexity. Quantification of inventory holding costs is important for effective
inventory management. An important component of inventory holding cost rate is the return that could be expected if the
value of the item was not invested in inventory. Because the item in consideration is of high value as discussed in Section 1,
the associated inventory holding costs are significant and therefore should be explicitly considered.

Given the value of the selling period T , the only decision variable that affects the supplier’s expected profits is the order
quantity Q. In this case, the supplier solves the following problem to decide the optimal order quantity for a given T , that
is, Q∗(T).

max Π(Q,T)

s.t. Q ∈ {0} ∪ Z
+,

where Z
+ denotes the positive integers.

Table I. Notation.

T Length of the selling period
𝛼 Selling price of the item at the beginning of the demand period
𝛽 Rate at which the selling price of the item is decreased (𝛼 − 𝛽T > 0)
Si Arrival time of the ith demand
N(T) Number of demand arrivals during [0,T]
b Supplier’s per unit lost-sale cost
v Salvage value of an item unsold at the supplier
c Manufacturing cost per unit
h Supplier’s per unit per time inventory holding cost
K Supplier’s fixed cost of development/replenishment
Π(Q,T) Supplier’s expected profit function
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In the sections that follow, we will show that market exit time, T , is a critical parameter of this problem and that there
is further opportunity to operate more efficiently if T is also considered as a decision variable. The decision on how long
to stay in the market is specifically important in the case of 𝜆1 > 0 where there is clearly a trade-off due to a decreasing
marginal revenue for the supplier, simultaneous with an increasing demand in time. We will start our analysis in the next
section by evaluating the components of expression (1) to obtain a closed form for the supplier’s expected profits in the
NP demand case. We will continue our analysis with a special case in Section 4, wherein the demand arrival process is
Poisson, that is, 𝜆1 = 0. The analysis for this special case will set foundations for the general setting, and the results will
establish additional motivation for taking T as a decision variable.

3. Development of the expected profit function

In this section, we evaluate the components of expression (1) to obtain a general expression for the supplier’s expected
profit function Π(Q,T). Note that the supplier’s revenue from the sale of regular items, earnings from the salvage value
of unsold items, and holding and lost-sale costs are all functions of the number of items demanded during a horizon of T
(i.e., N(T)). Therefore, these profit/cost terms are random variables, and we will compute their expectations conditioned on
N(T). The supplier’s manufacturing cost and the replenishment/development cost are independent of the actual realization
of demand. It follows that

E[Manufacturing cost] = cQ, and (2)

E[Replenishment cost] = K × 𝜅(Q), (3)

where 𝜅(Q) = 1 if Q > 0, and 𝜅(Q) = 0 if Q = 0. Unsold items at the end of the demand period can be salvaged with an
expected total earning of

E[Salvage Value] = E[E[Salvage Value|N(T)]]

=
Q∑

n=0

v(Q − n)P{N(T) = n}.
(4)

Each demand that arrives after the first Q units is lost. Therefore,

E[Lost-sale cost] = E[E[Lost-sale cost|N(T)]]

=
∞∑

n=Q+1

b(n − Q)P{N(T) = n}. (5)

The expected earnings from the sale of regular items is given by

E[Revenue] = E[E[Revenue|N(T)]] =
∞∑

n=0

E[Revenue|N(T) = n]P{N(T) = n}

=
Q∑

n=1

E

[
N(T)∑
i=1

(𝛼 − 𝛽Si)
||||||N(T) = n

]
P{N(T) = n}

+
∞∑

n=Q+1

E

[
Q∑

i=1

(𝛼 − 𝛽Si)
||||||N(T) = n

]
P{N(T) = n}.

(6)

Note that the aforementioned expression utilizes the fact that E[Revenue|N(T) = 0] = 0.
The expected holding costs during the period [0,T] are again calculated by conditioning on N(T). When the total demand

during [0,T] is 0, all of the Q items available at the beginning of the period incur a per unit holding cost of $h for T units
of time. For 1 ⩽ n ⩽ Q, an item sold at time Si(Si ⩽ T) incurs a total of $Si × h holding cost, and each of the end-of-period
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item incurs a total of $h × T holding cost. For Q < n < ∞, because all items are demanded during [0,T], each of them
incurs a total of $Si × h holding cost. Therefore,

E[Holding cost] = E[E[Holding cost|N(T)]] =
∞∑

n=0

E[Holding cost|N(T) = n]P{N(T) = n}

=
Q∑

n=1

E

[
N(T)∑
i=1

Sih + (Q − N(T))hT
||||||N(T) = n

]
P{N(T) = n}

+
∞∑

n=Q+1

E

[
Q∑

i=1

Sih
||||||N(T) = n

]
P{N(T) = n} + QhTP{N(T) = 0}.

(7)

Observe that the random variable Si, which refers to the arrival time of the ith demand appears in both expression (6) and
expression (7). We can simplify these two expressions using the concept of order statistics and the fact that N(t) follows
an NP process. Therefore, we next present a formal definition of order statistics and some previously established results
that we cite from the literature. The proofs of all other propositions and results derived in this paper are presented in the
Appendix. We begin by presenting a definition of order statistics.

Definition 1
Let Xi, i = 1, 2,… n be independent and identically distributed (i.i.d.) continuous random variables with common density
and distribution functions f (t) and F(t), respectively. Let Y1 = min{X1,X2,… ,Xn}, Yn = max{X1,X2,… ,Xn}, and in
general, Yk(1 ⩽ k ⩽ n) be the kth smallest value in {X1,X2,… ,Xn}. Then, Yk is called the kth-order statistic, and the set
{Y1,Y2,… ,Yn} is said to consist of the order statistics of {X1,X2,… ,Xn} [32, p. 345].

The general expression that we will derive for Π(Q,T) takes into account the NP demand. Once this expression is
obtained, the expected profit function for the Poisson demand case will be a straightforward application of it by substituting
𝜆1 = 0. Therefore, for future use and notational ease, we proceed with our discussion by listing some general results on
order statistics and preliminary information about NP processes.

(R1) [32, p. 346] Let {Y1,Y2,… ,Yn} be the order statistics of the i.i.d. continuous random variables X1,X2,… ,Xn with
the common probability distribution and probability density functions F(t) and f (t), respectively. Then FYk

(t) and
fYk
(t), the probability distribution and probability density functions of Yk, respectively, are given by

FYk
(t) =

n∑
i=k

(
n
i

)
F(t)i(1 − F(t))n−i, −∞ < t < ∞, and

fYk
(t) = n!

(k − 1)!(n − k)!
F(t)k−1f (t)(1 − F(t))(n−k), −∞ < t < ∞.

(8)

(R2) [33, pp. 78–79] For an NP process with intensity function 𝜆(t), we have

P{N(t + s) − N(t) = k} = e−m(t+s)+m(t) (m(t + s) − m(t))k

k!
, where

m(t) = ∫
t

0
𝜆(s)ds.

(9)

That is, N(t + s) − N(t) is Poisson distributed with mean m(t + s) − m(t). Observe that Poisson distribution is a
special case where m(t) = 𝜆t, and hence,

P{N(t + s) − N(t) = k} = e−𝜆s(𝜆s)k

k!
.

(R3) [34, pp. 227–228] Let T ⩾ 0 be fixed and U1,U2,… ,Un denote n i.i.d. random variables with common distribution

P{Ui ⩽ u} = m(u)
m(T)

0 ⩽ u ⩽ T . (10)
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Also, let Ū1, Ū2,… , Ūn denote the order statistics of U1,U2,… ,Un, and S1, S2,… , Sn be the event times in a NP

process with intensity 𝜆(⋅). Then, given N(T) = n, (S1, S2,… , Sn)
d
=
(
Ū1, Ū2,… , Ūn

)
.

On the basis of the concept of order statistics and utilizing the aforementioned results, we evaluate the supplier’s expected
revenue and holding costs given by expressions (6) and (7), respectively. The resulting simplified functions will be in
terms E

[
Ūi

]
, where Ūi denotes the ith-order statistics of n i.i.d. random variables U1,U2,… ,Un with common distribu-

tion P{Ui ⩽ u} = m(u)
m(T)

. Therefore, before introducing these results, we derive an expression for E
[
Ūi

]
in the following

proposition.

Proposition 1
When the demand follows an NP process with rate 𝜆(s) = 𝜆0 + 𝜆1s, the expected value of the kth-order statistics of
U1,U2,… ,Un defined in Result (R3) is given by

E
[
Ūk

]
= n!

(k − 1)!(n − k)!
2
(
𝜆0 + 𝜆1T∕2

)
T ∫

1

0

xk(1 − x)n−k

𝜆0 +
√

𝜆2
0 + 2𝜆1T(𝜆0 + 𝜆1T∕2)x

dx. (11)

Note that the integral term in expression (11) cannot be computed analytically. Therefore, it should be calculated numer-
ically. Utilizing the numerically computed value of expression (11), the supplier’s expected revenue can be obtained by
the following equality.

E[Revenue] =

(
𝛼 − 𝛽

(
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3

)
Q∑

n=1

nP{N(T) = n}

+
∞∑

n=Q+1

(
𝛼Q − 𝛽

Q∑
i=1

E
[
Ūi

])
P{N(T) = n}.

(12)

Similarly, the supplier’s expected holding cost can be found by utilizing the numerically computed value of expression (11)
in the following function.

E[Holding cost] = QhT × P{N(T) = 0} +
Q∑

n=1

(
QhT −

nTh
(
3𝜆0 + 𝜆1T

)
3
(
2𝜆0 + 𝜆1T

) )
P{N(T) = n}

+
∞∑

n=Q+1

h
Q∑

i=1

E
[
Ūi

]
P{N(T) = n}.

(13)

The derivations of expressions (12) and (13) are provided in Appendices A.2 and A.3.

4. An analysis of the special case of poisson demand: analytical and numerical results

In this section, we assume the demand arrival process is Poisson. This is a special case of the general setting where 𝜆1 = 0.
Recall that expressions (12) and (13) for the NP demand arrivals depend on E

[
Ūi

]
, which needs to be computed numerically

using Proposition 1. For the Poisson demand arrivals case, these expressions can be further simplified to obtain a closed
form for the supplier’s expected profits. In our analysis within this section, using this closed-form expression, we will
derive some analytical results on the system characteristics.

Note that the supplier’s expected manufacturing cost, expected replenishment cost, expected salvage value, and expected
lost-sale cost can again be computed using expressions (2), (3), (4), and (5), respectively. Our simplifications for the
expected revenue and expected holding costs will be based on evaluating E

[
Ūi

]
for Poisson demand arrivals and sub-

stituting the result into expressions (12) and (13). Before examining E
[
Ūi

]
, we would like to note that in the case of

Poisson demand arrivals, Result (R3) implies that, given N(T) = n, we have (S1, S2,… , Sn)
d
=

(
Ū1, Ū2,… , Ūn

)
where

Ū1, Ū2,… , Ūn are the order statistics of n i.i.d. random variables U1,U2,… ,Un distributed uniformly over [0,T]. Setting
𝜆1 = 0 in expression (11) and using some standard probability laws, it can be easily verified that

E
(
Ūk

)
= kT

n + 1
, 1 ⩽ k ⩽ n.
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Expressions (12) and (13) can be further simplified using the aforementioned equality and the fact that 𝜆1 = 0. The
resulting expressions for the supplier’s expected revenue and expected holding cost are presented in the following text
without their derivations. Specifically,

E[Revenue] =
Q∑

n=1

(
𝛼n − 𝛽nT

2

)
P{N(T) = n}

+
∞∑

n=Q+1

(
𝛼Q − 𝛽Q(Q + 1)T

2(n + 1)

)
P{N(T) = n},

(14)

and

E[Holding cost] = QhT × P{N(T) = 0} +
Q∑

n=1

(
QhT − hnT

2

)
P{N(T) = n}

+
∞∑

n=Q+1

hQ(Q + 1)T
2(n + 1)

P{N(T) = n}.

(15)

We have now calculated all of the terms of expression (1). Using expressions (2)–(5), (14), and (15), Π(Q,T) can explicitly
be written as

Π(Q,T) = −cQ − K × 𝜅(Q) + Q(v − hT)P{N(T) = 0}

+
Q∑

n=1

(
𝛼n − 𝛽nT

2
+ hnT

2
− QhT + (Q − n)v

)
P{N(T) = n}

+
∞∑

n=Q+1

(
𝛼Q − 𝛽Q(Q + 1)T

2(n + 1)
− hQ(Q + 1)T

2(n + 1)
− (n − Q)b

)
P{N(T) = n}.

(16)

In the next proposition, we provide a solution for maximizing Π(Q,T) over Q ∈ {0} ∪ Z
+ for a given value of T , that is,

Q∗(T). The solution is based on another function, which is denoted here as Π̄(Q,T). We define Π̄(Q,T) as a function over
all integers Z and all nonnegative real numbers. Its value is the same as Π(Q, T) in expression (16) excluding the second
term. That is, we have Π̄(Q,T) = Π(Q,T) + K × 𝜅(Q).

Proposition 2
Let Q̄ be the smallest Q ∈ {0} ∪ Z

+ such that

Π̄(Q + 1,T) − Π̄(Q,T) = −c + 𝛼 + b + (v − hT − 𝛼 − b)P{N(T) ⩽ Q}

− (𝛽 + h)(Q + 1)
𝜆0

P{N(T) ⩾ Q + 2} < 0.
(17)

If Π̄
(
Q̄, T

)
> K −

∑∞
n=1 nbP{N(T) = n}, then we have Q∗(T) = Q̄, else Q∗(T) = 0.

The aforementioned proposition can be used to find the optimal order quantity of a new product under a price skimming
strategy given the length of the selling period. If a time-based discounting is in place for liquidating an end-of-life-cycle
product, then the result stated in the proposition can be applied for the purpose of obtaining the order quantity in the last
replenishment for a given market exit time.

Next, we present an example illustrating the potential savings the supplier can achieve by considering T as a decision
variable.

Example 1
Consider a system with the following parameter values: c = 10, v = 5, b = 6, h = 0.5, 𝜆0 = 10, 𝛼 = 20, 𝛽 = 2,K = 20,
and T = 1.

The first row of Table IIT2 provides the optimal solution of the ordering problem corresponding to the aforementioned
example. Other rows of the table summarize the solution of the same problem for varying values of T . Considering the
length of the selling period T as a decision variable and optimally solving the ordering problem at each value of T , the
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Table II. Expected profits of the
supplier for varying values of T .

T Q∗(T) Π (Q∗(T),T)

1 12 46.233
2 22 100.825
3 31 133.827
4 40 144.977
5 48 135.06
6 55 105.669
7 61 59.887
8 63 3.676

supplier would want to produce 40 units and to be in the market for T = 4 units of time. In this case, the supplier’s
expected profits would increase from 46.233 to 144.977. Example 1 clearly shows that there is an incentive for the supplier
to carefully decide market exit time. Note that within this example, we used our earlier analysis to maximize the supplier’s
expected profits for a fixed value of T . In what follows, we will consider the problem of finding the value of T that maximizes
the supplier’s expected profits for a given value of the order quantity. The domain of T in our numerical analysis is limited
to those values for which the price is positive, that is, 0 < T <

𝛼

𝛽
. However, in order to obtain some evidence about how

the function Π(Q,T) behaves under very large values of T , in the next proposition, we momentarily assume that the upper
bound on T does not exist.

Proposition 3
Given a value of Q such that Q > 0, for very large values of T (i.e., as T → ∞), we have

Π(Q,T) ≈ −cQ − K + (𝛼 + b)Q − b𝜆0T − (𝛽 + h)Q(Q + 1)
2𝜆0

.

The aforementioned proposition suggests that for a given order quantity, there may exist large enough values of T

within
(

0, 𝛼
𝛽

)
such that the supplier’s expected profit function, as given in the proposition, is reached. In this case, the

expected profits decrease linearly with a slope of b𝜆0 with respect to T , because a time exists at which all the quantity
depletes. Staying in the market thereafter only increases the lost-sales costs. The lost-sales costs accumulate with the
constant demand rate, which is 𝜆0. Because price decreases over time, values of T for which the price is positive (i.e., T
s.t. 0 < T <

𝛼

𝛽
) may not be large enough for Proposition 3 to hold. We next present an instance in which the supplier’s

expected profits approach the function value in Proposition 3 within the domain of T .

Example 2
Consider a system with the following parameter values: c = 10, v = 5, h = 0.5, 𝜆0 = 0.5, 𝛼 = 170, 𝛽 = 2,K = 20. Assume
that Q is given as 10.

Figure 1 plots Π(10, T) for varying values of b for the instance stated in Example 2. As illustrated in Figure 1, typically,
Π(Q,T) decreases after a certain value of T for fixed Q. Figure 1 also demonstrates that b has a larger impact on the behavior
of Π(Q, T) at larger values of T . Four different values of b are considered. The optimum times to exit the market are 60.5,
29, 26.4, and 23.7 when b = 0, b = 10, b = 20, and b = 40, respectively. As the per unit lost-sale cost increases, it becomes
more risky to stay in the market for long, in terms of the expected costs. Therefore, as b increases, the optimum market
exit time decreases. Furthermore, the supplier’s expected profit is larger for smaller values of b, and the gap between the
expected profits under two different b values becomes larger as T increases.

Proposition 4
Given a value of Q such that Q > 0, for very small values of T (i.e., as T → 0), we have

Π(Q,T) ≈ −cQ − K + Qv − QhT +
(
𝛼 − 𝛽T

2
+ hT

2
− v

)
𝜆0T . (18)

Expression (18) can be interpreted as follows: 𝜆0T is the mean number of demand arrivals within (0,T). The average

price for an item sold during this period is
(
𝛼 − 𝛽T

2

)
; therefore, the expected revenue is

(
𝛼 − 𝛽T

2

)
𝜆0T . The average savings
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Figure 1. Supplier’s expected profits in Example 2 for varying b values.

from the holding cost of a sold item is hT
2

. In other words, an item sold would incur an extra average holding cost of hT
2

if it

remained unsold until the end of T time units. Therefore, 𝜆0T × hT
2

subtracted from QhT is the expected holding cost. The
average quantity that remains unsold at the end of T time units amounts to Q − 𝜆0T , and they are salvaged at $v per unit.
The manufacturing cost and the replenishment cost for a starting inventory of Q units are cQ and K, respectively. When all
these cost and revenue terms are considered, the supplier’s expected profits sum up to expression (18).

Recall from Section 1 that a price skimming strategy helps an inventor recover sunk costs rapidly. Let us assume that an
inventing company aims for a minimum target profit of $𝜋 with the sales of Q units in a short amount of time T . Proposition 4
suggests that the supplier’s sunk costs should at most be equal to −cQ+Qv−QhT +

(
𝛼 − 𝛽T

2
+ hT

2
− v

)
𝜆0T −𝜋 to achieve

target profit under the current pricing strategy and the market characteristics.
The next corollary that will be presented without a proof is a direct extension of Proposition 4 and follows from finding

the domain of Q for which expression (18) is positive.

Corollary 1
For very small values of T , the supplier has positive expected profits for order quantities Q such that

Q <

𝜆0T
(
𝛼 − 𝛽T

2
+ hT

2
− v

)
− K

c − v + hT
. (19)

Under a price skimming strategy, Corollary 1 provides an upper bound on the replenishment quantity in order for the
supplier to generate some positive profits after recovering sunk costs in a short amount of time. Corollary 1 also has an
implication within the context of liquidation—that is, it quantifies the maximum level of inventory to be replenished for a
soon-to-be-discontinued product.

Next, using a numerical example, we illustrate the behavior of Π(Q,T) with respect to T for a given Q considering
varying values of v.

Example 3
Consider a system with the following parameter values: c = 10, b = 6, h = 0.5, 𝜆0 = 0.5, 𝛼 = 170, 𝛽 = 2,K = 20. Assume
that Q is given as 40. Figure 2 shows a plot of Π(40, T) for v = 0, v = 2, v = 4, and v = 6.

As Figure 2 shows, Π(Q,T) is more sensitive to changes in v at small values of T . The reason is that when market exit
time is small, there is a better chance that some of the items are going to be unsold. As T becomes larger, the salvage value
v has no effect on the expected profits, as indicated by the convergence of the four expected profit curves in Figure 2. This
implies that the salvage value of unsold items is an important parameter for an inventor aiming to exit the market after
benefiting from high, short-term profits.

The following lemma further characterizes the behavior of the Π(Q,T) function with respect to T , for small enough
values of T .

Lemma 1
For a given value of Q such that Q > 0, it follows that
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Figure 2. Supplier’s expected profits in Example 3 for varying v values.

Figure 3. Illustration of the two cases of Lemma 1 on Example 4.

• if h ⩽ 𝛽,Π(Q,T) is a concave function of T for small enough values of T , and
• if h > 𝛽,Π(Q,T) is a convex function of T for small enough values of T .

Proof
The proof follows from taking the second-order partial derivative of expression (18) with respect to T .

Example 4
Consider a system with the following parameter values: c = 10, v = 5, b = 6, 𝜆0 = 0.5, 𝛼 = 170, 𝛽 = 2,K = 20. Assume
that Q is given as 20. Figure 3 shows a plot of Π(20, T) for h = 4 and for h = 0.5.

Figure 3 illustrates the two cases of Lemma 1 on Example 4 by considering two different values of h. Given that 𝛽 =
2, h = 0.5 refers to the case where h ≤ 𝛽, and hence, the supplier’s expected profit function is concave for small enough
values of T . Similarly, h = 4 refers to the case where h > 𝛽 so that the supplier’s expected profit function is convex for
small enough values of T .

Our analysis until this point concerned cases where either Q or T is given. Finding explicit expressions for the values
of Q and T that jointly maximize the supplier’s expected profit function is quite challenging because of the complexity of
expression (16). Therefore, we propose an algorithm that involves changing the value of T with increments of ΔT within a
bounded range of T . A similar approach was proposed by Axsäter [35] for a different problem to maximize a complicated
function with Poisson probabilities. Our algorithm utilizes Proposition 2 and the fact that 0 ⩽ T < 𝛼∕𝛽. Π∗ refers to the
supplier’s expected profits at the optimum solution.
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Algorithm I:

1. Set T = T∗ = 0,Q∗ = 0 and Π∗ = 0.
2. Set T = T + ΔT . If T ⩾ 𝛼∕𝛽, then stop.
3. Find the value of Q∗(T) using Proposition 2.
4. If Π(Q∗(T),T) > Π∗, then set T∗ = T ,Q∗ = Q∗(T) and Π∗ = Π(Q∗(T),T). Go to step 2.

It can be shown that the time complexity of the aforementioned algorithm is O ((Qu)(Tu∕ΔT)), where Qu and Tu are
upper bounds on Q and T . An upper bound on T is 𝛼∕𝛽, as suggested earlier. In the following section, we propose a
parametric upper bound on Q that depends on T . In case of Poisson demand arrivals, this upper bound assumes a finite
value for any T such that 0 < T < 𝛼∕𝛽, and approaches to a linear increasing function of T as T becomes larger. Because
T is bounded, the worst-case complexity of the aforementioned algorithm is inverse proportional to ΔT .

5. An analysis of the general case

In this section, we report the results of our analytical and numerical analysis for the general case, that is, 𝜆1 ≠ 0. In our
analysis in Section 4 for the case of Poisson demand arrivals (i.e., 𝜆1 = 0), we showed that market exit time is an important
decision variable that can increase the supplier’s expected profits when it is carefully decided. We also characterized
the behavior of the supplier’s expected profits with respect to market exit time under varying problem parameters. Our
objective in this section is to analyze how this behavior changes when demand arrivals are characterized by an NP process,
particularly under different levels of demand sensitivity. Recall that when the increase in demand due to the decrease in
price dominates the natural decrease in demand, we have 𝜆1 > 0. When the price decrease cannot help stimulate the
demand enough, such that demand continues to decline over time, we have 𝜆1 < 0. Therefore, for a particular setting, we
model the higher sensitivity of the demand with respect to changes in price by larger values of 𝜆1.

Because the price has to be positive, a natural upper bound on T is given by 𝛼

𝛽
, as in the special case of 𝜆1 = 0. If 𝜆1 < 0,

a second upper bound on T is implied by the fact that 𝜆0 + 𝜆1T > 0. That is, we also have T <
−𝜆0

𝜆1
. The next proposition

involves the case of 𝜆1 > 0 so that the only upper bound on T is 𝛼

𝛽
. However, in order to gain some insights on how the

function Π(Q,T) behaves under very large values of T , in the next proposition, we momentarily relax this constraint on T .

Proposition 5
If 𝜆1 > 0, given a value of Q such that Q > 0, for very large values of T , we have

E[Lost-sale cost] ≈ b

(
𝜆0T +

𝜆1T2

2

)
− bQ.

Similar to the implication of Proposition 3, it is natural to expect that for 𝜆1 > 0, there may exist a large enough value

of T within
(

0, 𝛼
𝛽

)
such that all the quantity is sold and the supplier only incurs lost-sale cost if he or she stays in the

market thereafter. The lost-sales cost in this case increases in quadratic proportion to T . The next example illustrates how
the supplier’s expected profits change with respect to T for varying values of per unit lost-sales cost b.

Example 5
Consider a system with the following parameter values: c = 10, v = 5, h = 0.5, 𝜆0 = 0.5, 𝜆1 = 0.01, 𝛼 = 170, 𝛽 = 2,K =
20. Assume that Q is given as 10. Figure 4 shows a plot of Π(10,T) for four different values of b.

The difference in how the per unit lost-sales cost affects the supplier’s expected profits in the case of Poisson demand
arrivals and NP demand arrivals when 𝜆1 > 0 can also be observed by comparing Figure 4 with Figure 1. Specifically,
the supplier’s expected profit in Figure 4 exhibits a concave decreasing behavior with respect to large T values, while it
displays a linear decreasing behavior in Figure 1. The magnitude of the total expected lost-sales cost for a given T under
different values of b can be quantified using Propositions 3 and 5.

The next proposition considers the case where market exit time attains very small values. An approximate analytical
expression for the supplier’s expected profits is given for this case.

Proposition 6
Given a value of Q such that Q > 0, for very small values of T

Π(Q,T) ≈ −cQ − K + Qv − QhT +

(
𝛼 −

(
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3
(𝛽 − h) − v

)(
𝜆0T +

𝜆1T2

2

)
. (20)
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Figure 4. Supplier’s expected profits in Example 5 for varying b values.

The interpretation of expression (20) is similar to that of expression (18). The expected number of items sold during
(0,T) is (

𝜆0T +
𝜆1T2

2

)
.

An item sold has an average value of (
𝛼 −

(
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3
𝛽

)
,

therefore, the expected revenue is (
𝛼 −

(
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3
𝛽

)(
𝜆0T +

𝜆1T2

2

)
.

The average savings from the holding cost of a sold item is((
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3
h

)
.

Therefore,

QhT −

((
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3
h

)(
𝜆0T +

𝜆1T2

2

)
is the expected holding cost that accumulates within (0,T). The expected number of items that are unsold is

Q −
(
𝜆0T +

𝜆1T2

2

)
,

and they are salvaged at a rate of $v. When all these cost and revenue terms are considered along with the manufacturing
cost and the replenishment cost, the supplier’s expected profits sum up to expression (20).

Assuming that an inventing company aims for a minimum target profit of $𝜋 with the sales of Q units in a short amount
of time T , a similar interpretation to the one for Proposition 4 applies to Proposition 6. That is, Proposition 6 implies that
the sunk costs of an inventing company should at most be equal to

− cQ + Qv − QhT +

(
𝛼 −

(
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3
(𝛽 − h) − v

)(
𝜆0T +

𝜆1T2

2

)
− 𝜋 (21)
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Figure 5. Supplier’s expected profits in Example 6 for varying 𝜆1 values.

to achieve target profit under the current pricing strategy and market characteristics.
As an analog to Corollary 1, the next corollary follows from Proposition 6 and applies to the case of NP arrivals.

Corollary 2
For very small values of T , the supplier has positive expected profits for order quantities Q such that

Q <

(
𝜆0T + 𝜆1T2

2

)(
𝛼 − (3𝜆0+2𝜆1T)T

(2𝜆0+𝜆1T)3 (𝛽 − h) − v
)
− K

c − v + hT
. (22)

Next, we present an example to illustrate how the supplier’s expected profits and the optimum market exit time change
under varying levels of demand sensitivity with respect to price changes. Recall that higher values of 𝜆1 for the same price
function are an indicator of higher demand sensitivity in this setting.

Example 6
Consider a system with the following parameter values: c = 10, v = 5, h = 0.5, 𝜆0 = 0.5, 𝛼 = 170, 𝛽 = 2,K = 20. Assume
that Q is given as 40.

Figure 5 illustrates Π(40,T) in Example 6 for five different values of 𝜆1 starting from −0.01 in increments of 0.005. As
seen in Figure 5, the supplier’s expected profits for the same value of T increase with larger 𝜆1. The optimum exit times
from the market are 34.9, 59.1, 77.3, 68, and 59.6 for 𝜆1 values of −0.01, −0.005, 0, 0.005, and 0.01, respectively. The
optimum exit time from the market initially exhibits an increasing pattern with respect to larger 𝜆1 values; however, after
a period, it starts to decrease. The largest value of optimum market exit time is 77.4 for 𝜆1 = −0.001. The reason for this
behavior is that longer time in the market may initially be an opportunity for the supplier to increase expected profits by
selling more due to higher demand associated with large 𝜆1 values. However, this opportunity diminishes after a certain
value of 𝜆1 and increasing demand rate leads to larger lost-sale cost thereafter. Therefore, for very large 𝜆1 values, it may
be better to exit the market soon, whereas for small 𝜆1 values, staying in the market for a while may be an opportunity to
increase expected profits.

In the next example, we illustrate the impact of discount per unit time, that is, 𝛽, on the supplier’s expected profits for
varying levels of T .

Example 7
Consider a system with the following parameter values: c = 10, v = 5, b = 6, h = 0.5, 𝜆0 = 0.5, 𝛼 = 170,K = 20. Assume
that Q is given as 40.

Figure 6 illustratesΠ(40,T) in Example 7 for three different values of the discount per unit time (i.e., for 𝛽 = 0.8, 𝛽 = 0.9,
and 𝛽 = 1) over 70.5 ⩽ T ⩽ 150.5. The example assumes that the corresponding rates of change in the demand intensity
(i.e., 𝜆1) are −0.002, −0.001, and 0 for 𝛽 = 0.8, 𝛽 = 0.9, and 𝛽 = 1, respectively. The figure shows that, at smaller
values of T (i.e., 70.5 ⩽ T ⩽ 99.5), the supplier’s expected profits are higher at a larger value of 𝛽 (i.e., 𝛽 = 1). For
100 ⩽ T ⩽ 127, 𝛽 = 0.9 leads to the largest expected profits, and for T ⩾ 127.5, 𝛽 = 0.8 results in the largest expected
profits. This implies that the policy of decreasing prices to attract more demand is particularly effective when the length
of the selling period is short. Taking both T and 𝛽 as decision variables, we find that the supplier’s expected profits are
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Figure 6. Supplier’s expected profits in Example 7 for varying 𝛽 values.

maximized when 𝛽 = 0.9 and T = 110.5. Furthermore, doing the same analysis by setting h to 0.1, we obtain 𝛽 = 0.8
and T = 132.5 as the optimum values of the decision variables. This implies that if holding costs are lower, the supplier is
better off by staying in the market longer and gradually lowering the price.

Our results in Proposition 5, Proposition 6, and Corollary 2 are based on extreme values of T . In the next proposition,
we propose an upper bound on the optimal value of Q given any T . Later, we will use this upper bound in developing an
algorithm to optimize the supplier’s expected profit function over Q and T jointly.

Proposition 7
Given a value of T , an upper bound on the optimal value of Q is

Qu = (𝛼 − v + hT)E[N(T)]
c − v + hT

. (23)

Algorithm II:

1. Set T = T∗ = 0,Q∗ = 0 and Π∗ = 0.
2. Set T = T + ΔT . If T ⩾ 𝛼∕𝛽, then stop.
3. For Q = 0 to Q = ⌊Qu⌋, if Π(Q, T) > Π∗, then set T∗ = T ,Q∗ = Q and Π∗ = Π(Q,T).
4. Go to step 2.

Similar to that of Algorithm I, the time complexity of the aforementioned algorithm is O ((Qu)(Tu∕ΔT)), where Qu and
Tu are upper bounds on Q and T . In case of NP arrivals, as E[N(T)] =

(
𝜆0T + 𝜆1T2

2

)
,Qu assumes a finite value for any

T such that 0 < T < 𝛼∕𝛽, and approaches to a polynomial increasing function of T as T becomes larger. Because T is
bounded, the worst-case complexity of the aforementioned algorithm is inverse proportional to ΔT .

6. Conclusions

In this paper, we have presented a model to analyze the ordering and market exit time decisions of an inventing company
that applies skimming as a pricing strategy. The product under consideration is a new and trendy one with a short life cycle
and high inventory holding costs. The market for the product is divided into different segments depending on the customers’
willingness to pay, and the prices are sequentially reduced for each customer segment [2, 4]. Considering that there may
also be a gradual decrease in customer interest in the product over time, we have modeled the demand pattern using an NP
process with a time-dependent rate. This approach has allowed us to take into account different types of demand intensity
(increasing, decreasing, or stable) while answering questions Q1–Q9 raised in Section 1 as we summarize later.

Price skimming helps companies with innovative products recover their sunk costs in a short time and before the compe-
tition steps in. Initially, the early adopters who are less sensitive to high prices are targeted. Our results have demonstrated
that if the supplier plans to stay in the market for a limited duration, then the quantity to be replenished in order to gener-
ate a profit is bounded (see Corollaries 1 and 2 as they relate to Q1). This bound highly depends on sunk costs besides the
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other inventory-related parameters of the problem. Furthermore, we have provided an explicit upper bound on the value
of sunk costs if the company is aiming to generate a target profit value in a short time (see Propositions 4 and 6 as well as
expression (21) as they relate to Q1).

Our findings have revealed that the supplier’s expected profit is very sensitive to how long the product is sold in the
market, and significant savings can be achieved if market exit time is carefully decided. With this premise, our analysis has
indicated that for a given level of initial inventory, there exists an optimal value of market exit time after which the supplier’s
expected profit is nonincreasing. In fact, we have shown that in the case of positive lost-sale cost, the supplier’s expected
profit is a unimodal function of time to exit the market (see Examples 2 and 5 as they relate to Q2). Our characterization
of the supplier’s expected profit function with respect to the market exit time is based on analytical and numerical results
for the general case as well as the special case of Poisson demand arrivals.

We have also analyzed how the supplier’s expected profit and the optimum market exit time change for varying levels of
demand sensitivity with respect to price (see Example 5 and Figure 4 as they relate to Q3). We have shown that increased
demand sensitivity may be an advantage for amplifying the expected profit under the optimal market exit time. Furthermore,
there exists a threshold value of demand sensitivity such that optimal market exit time increases up to the threshold value
and decreases afterward. This, in turn, implies that decreasing prices may be a good practice for companies to achieve more
profits in a short time if the demand is very sensitive to price. If the demand is not very sensitive to price, then extending the
market exit time offers the maximum advantage of price skimming. As a result of investigating Q4, we propose procedures
(Algorithms I and II) with worst-case time complexities for the supplier to make joint optimization decisions for market
exit time and replenishment quantity.

Our analysis may be useful for managing an end-of-life product by offering insights about questions Q5–Q9. Specifically,
Proposition 2 gives the optimal order quantity in the last replenishment of an end-of-life-cycle product for which market
exit time is known. Propositions 3 and 5 can be used to quantify the impact of delayed market exit times (or product
rollovers) on expected profits. Corollary 1 can be employed to find the maximum level of inventory to be replenished for
a soon-to-be-discontinued product to generate some positive profits. Moreover, Example 7 and Figure 6 illustrate that the
policy of decreasing prices to attract more demand is particularly effective when the length of the selling period is short.

Appendix A

A.1. Proof of Proposition 1

In order to calculate E
[
Ūk

]
, we use the density function of the kth order statistics of U1,U2,… ,Un. Recalling Result (R1),

this density function is given by

fŪk
(t) = n!

(k − 1)!(n − k)!
FU(t)k−1fU(t)(1 − FU(t))(n−k). (A.1)

FU(t) and fU(t) denote the distribution and density functions of Ui defined in Result (R3). Using expressions (9) and (10),
we have

FU(t) =
m(t)
m(T)

=
∫ t

0

(
𝜆0 + 𝜆1s

)
ds

∫ T
0

(
𝜆0 + 𝜆1s

)
ds

=
t
(
𝜆0 + 𝜆1t∕2

)
T
(
𝜆0 + 𝜆1T∕2

) , (A.2)

and

fU(t) =
𝜆0 + 𝜆1t

T
(
𝜆0 + 𝜆1T∕2

) . (A.3)

Substituting expressions (A.2) and (A.3) in expression (A.1) leads to

fŪk
(t) = n!

(k − 1)!(n − k)!

(
t(𝜆0 + 𝜆1t∕2)

T(𝜆0 + 𝜆1T∕2)

)k−1
𝜆0 + 𝜆1t

T(𝜆0 + 𝜆1T∕2)

(
1 −

t(𝜆0 + 𝜆1t∕2)
T(𝜆0 + 𝜆1T∕2)

)n−k

,

and hence, E
[
Ūk

]
is given by

n!
(k − 1)!(n − k)! ∫

T

0

(
𝜆0 + 𝜆1t

𝜆0 + 𝜆1t∕2

(
t(𝜆0 + 𝜆1t∕2)

T(𝜆0 + 𝜆1T∕2)

)k (
1 −

t(𝜆0 + 𝜆1t∕2)
T(𝜆0 + 𝜆1T∕2)

)n−k
)

dt. (A.4)
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In order to simplify the aforementioned integral, we define

x =
t
(
𝜆0 + 𝜆1t∕2

)
T
(
𝜆0 + 𝜆1T∕2

) , (A.5)

which leads to

𝜆1t2

2
+ 𝜆0t − T(𝜆0 + 𝜆1T∕2)x = 0.

The two real roots of the aforementioned expression are given by

t1,2 =
−𝜆0 ∓

√
𝜆2

0 + 2𝜆1T(𝜆0 + 𝜆1T∕2)x

𝜆1
.

Because we are interested in t > 0, we should have

t =
−𝜆0 +

√
𝜆2

0 + 2𝜆1T(𝜆0 + 𝜆1T∕2)x

𝜆1
,

and hence,

𝜆0 + 𝜆1t∕2 =
𝜆0 +

√
𝜆2

0 + 2𝜆1T(𝜆0 + 𝜆1T∕2)x

2
.

From expression (A.5), we have the following results:

• If t = 0, then x = 0,
• If t = T , then x = 1,
• (𝜆0 + 𝜆1t)dt = T(𝜆0 + 𝜆1T∕2)dx.

Therefore, expression (A.4) simplifies to

E
[
Ūk

]
= n

(k − 1)!(n − k)!
2(𝜆0 + 𝜆1T∕2)T ∫

1

0

xk(1 − x)k

𝜆0 +
√

𝜆2
0 + 2𝜆1T(𝜆0 + 𝜆1T∕2)x

dx.

■

A.2. Derivation of expression (12)

The derivation will follow by computing E[Revenue|N(T) = n] for 1 ⩽ n ⩽ Q and for Q < n < ∞ and utilizing these
results in expression (6).

For 1 ⩽ n ⩽ Q, using Result (R3) and the independence of N(T) and Si, we can write

E

[
N(T)∑
i=1

(𝛼 − 𝛽Si)
||||||N(T) = n

]
= E

[
n∑

i=1

(
𝛼 − 𝛽Ūi

)]
.

Observe that E
[∑n

1 Ūi

]
= E

[∑n
1 Ui

]
because the sum of n random variables, whether they are ordered or unordered, is the

same. This implies that for 1 ⩽ n ⩽ Q

E

[
n∑

i=1

(
𝛼 − 𝛽Ūi

)]
= 𝛼n − 𝛽E

[
n∑

i=1

Ui

]
.
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Using the density function of Ui given in expression (A.3), it can be easily shown that

E[Ui] =
(
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3
.

Therefore, for 1 ⩽ n ⩽ Q

E[Revenue|N(T) = n] = n

(
𝛼 − 𝛽

(
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3

)
. (A.6)

For Q < n < ∞, we can write

E

[
Q∑

i=1

(𝛼 − 𝛽Si)
||||||N(T) = n

]
= 𝛼Q − 𝛽E

[
Q∑

i=1

Ūi

]
. (A.7)

Note that the value of E
[
Ūi

]
in the aforementioned expression can be found using Proposition 1.

The rest of the derivation follows by utilizing expressions (A.6) and (A.7) in (6). ■

A.3. Derivation of expression (13)

The derivation will follow by computing E[Holding cost|N(T) = n] for 1 ⩽ n ⩽ Q and for Q < n < ∞ and utilizing these
results in expression (7).

For 1 ⩽ n ⩽ Q, using Result (R3) and the independence of N(T) and Si, we have

E

[
N(T)∑
i=1

Sih + (Q − N(T))hT
||||||N(T) = n

]
= E

[
n∑

i=1

Ūih + (Q − n)hT

]
= nhE[Ui] + (Q − n)hT

= nh

(
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3
+ (Q − n)hT

= QhT −
nTh

(
𝜆1T + 3𝜆0

)
3
(
2𝜆0 + 𝜆1T

) .

(A.8)

For Q < n < ∞,E[Holding cost|N(T) = n] should be computed using expression (11) and is given by

E[Holding cost|N(T) = n] = E

[
Q∑

i=1

Sih
||||||N(T) = n

]
= h

Q∑
i=1

E
[
Ūi

]
. (A.9)

The result follows by utilizing expressions (A.8) and (A.9) in (7). ■

A.4. Proof of Proposition 2

We will first show that Π̄(Q,T) is a strictly concave function of Q for all Q ∈ Z. Therefore, Π̄(Q,T) − K is also a strictly
concave function of Q in this range. This implies that its maximizer over Q ∈ {0} ∪ Z

+ is the smallest Q for which
Π̄(Q+1,T)−Π̄(Q,T) < 0. As we will show later, the condition Π̄(Q+1,T)−Π̄(Q,T) < 0 leads to inequality (17). Finally,
we will compare the supplier’s expected profits resulting from an order of size Q̄ with those of an order of size 0. That is,
if Π̄

(
Q̄,T

)
− K > Π(0,T), we will conclude that Q∗(T) = Q̄, else Q∗(T) = 0.
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Let us start with proving the concavity of Π̄(Q,T). Defining ΔΠ̄(Q,T) = Π̄(Q + 1,T) − Π̄(Q,T) and Δ2Π̄(Q,T) =
ΔΠ̄(Q + 1,T) − ΔΠ̄(Q,T), we will show that Δ2Π̄(Q,T) < 0. Using (16) and the fact that Π̄(Q,T) = Π(Q,T) + K × 𝜅(Q),
we have

ΔΠ̄(Q,T) = −c(Q + 1) + (Q + 1)(v − hT)P{N(T) = 0}

+
Q+1∑
n=1

(
𝛼n − 𝛽nT

2
+ hnT

2
− (Q + 1)hT + (Q + 1 − n)v

)
P{N(T) = n}

+
∞∑

n=Q+2

(
𝛼(Q + 1) − 𝛽(Q + 1)(Q + 2)T

2(n + 1)
− h(Q + 1)(Q + 2)T

2(n + 1)

−(n − Q − 1)

)
P{N(T) = n} + cQ − Q(v − hT)P{N(T) = 0}

−
Q∑

n=1

(
𝛼n − 𝛽nT

2
+ hnT

2
− QhT + (Q − n)v

)
P{N(T) = n}

−
∞∑

Q+1

(
𝛼Q − 𝛽Q(Q + 1)T

2(n + 1)
− hQ(Q + 1)T

2(n + 1)
− (n − Q)b

)
P{N(T) = n}.

After some cancellation and rearrangement of terms, the aforementioned expression can be written as

ΔΠ̄(Q,T) = −c + (v − hT)P{N(T) = 0} +
Q∑

n=1

(−hT + v)P{N(T) = n}

+
(
𝛼(Q + 1) − 𝛽(Q + 1)T

2
+ h(Q + 1)T

2
− (Q + 1)hT

)
P{N(T) = Q + 1}

+
∞∑

n=Q+2

(
𝛼 − 𝛽(Q + 1)T

(n + 1)
− h(Q + 1)T

(n + 1)
+ b

)
P{N(T) = n}

−
(
𝛼Q − 𝛽Q(Q + 1)T

2(Q + 2)
− hQ(Q + 1)

2(Q + 2)
− b

)
P{N(T) = Q + 1}.

Further rearrangement of the terms leads to

ΔΠ̄(Q,T) = −c +
Q∑

n=0

(v − hT)P{N(T) = n}

+
(
𝛼 − 𝛽(Q + 1)

Q + 2
− h(Q + 1)

Q + 2
+ b

)
P{N(T) = Q + 1}

+
∞∑

n=Q+2

(
𝛼 − 𝛽(Q + 1)T

n + 1
− h(Q + 1)T

n + 1
+ b

)
P{N(T) = n},

and hence,

ΔΠ̄(Q,T) = −c +
Q∑

n=0

(v − hT)P{N(T) = n}

+
∞∑

Q+1

(
𝛼 − 𝛽(Q + 1)T

n + 1
− h(Q + 1)T

n + 1
+ b

)
P{N(T) = n}.

(A.10)
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Now, on the basis of the aforementioned expression, we are ready to compute Δ2Π̄(Q,T).

Δ2Π̄(Q,T) =
Q+1∑
n=0

(v − hT)P{N(T) = n}

+
∞∑

Q+2

(
𝛼 − 𝛽(Q + 2)T

n + 1
− h(Q + 2)T

n + 1
+ b

)
P{N(T) = n}

−
Q∑

n=0

(v − hT)P{N(T) = n}

−
∞∑

n=Q+1

(
𝛼 − 𝛽(Q + 1)T

n + 1
− h(Q + 1)T

n + 1
+ b

)
P{N(T) = n},

which can be reduced to

Δ2Π̄(Q,T) = (v − hT)P{N(T) = Q + 1} +
∞∑

n=Q+2

(
− 𝛽T

n + 1
− hT

n + 1

)
P{N(T) = n}

−
(
𝛼 − 𝛽(Q + 1)T

Q + 2
− h(Q + 1)T

Q + 2
+ b

)
P{N(T) = Q + 1}.

It follows that

Δ2Π̄(Q,T) =
(

v − b − 𝛼 + 𝛽(Q + 1)T
Q + 2

− hT
Q + 2

)
P{N(T) = Q + 1}

−
∞∑

n=Q+2

(
𝛽T

n + 1
+ hT

n + 1

)
P{N(T) = n}.

Because v < b, we have v − b < 0. A condition of 𝛼 and 𝛽 is that 𝛼 − 𝛽T ⩾ 0. Therefore, −𝛼 + 𝛽T ⩽ 0, which in turn
implies that

−𝛼 + 𝛽(Q + 1)T
Q + 2

⩽ 0.

As a result, Δ2Π̄(Q,T) < 0, and hence, Π̄(Q,T) is a strictly concave function of Q. Therefore, as discussed earlier, the
maximizer of Π̄(Q,T) −K over Q ∈ {0}∪Z

+, which is the same as the maximizer of Π̄(Q,T) in this range, is the smallest
Q for which Π̄(Q + 1,T) − Π̄(Q,T) < 0. Now, we reduce expression (A.10) and provide different forms of it to write the
solution as described by the condition Π̄(Q + 1,T) − Π̄(Q,T) < 0.

Observe that expression (A.10) can be rewritten as

ΔΠ̄(Q,T) = −c + (v − hT)P{N(T) ⩽ Q} +
∞∑

n=Q+1

(
𝛼 − (𝛽 + h)T(Q + 1)

n + 1
+ b

)
P{N(T) = n}.

After substituting

P{N(T) = n} =
e−𝜆0T (𝜆0T)n

n!
in the aforementioned expression, we have

ΔΠ̄(Q,T) = −c + (v − hT)P{N(T) ⩽ Q} + (𝛼 + b)(1 − P{N(T) ⩽ Q}) − (𝛽 + h)(Q + 1)T
𝜆0T

∞∑
n=Q+1

e−𝜆0T (𝜆0T)(n+1)

(n + 1)!
,
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which leads to

ΔΠ̄(Q,T) = −c + 𝛼 + b + (v − hT − 𝛼 − b)P{N(T) ⩽ Q} − (𝛽 + h)(Q + 1)
𝜆0

∞∑
n=Q+2

e−𝜆0T (𝜆0T)n

n!
.

As a result,

ΔΠ̄(Q,T) = −c + 𝛼 + b + (v − hT − 𝛼 − b)P{N(T) ⩽ Q} − (𝛽 + h)(Q + 1)
𝜆0

P{N(T) ⩾ Q + 2}. (A.11)

Therefore, Q̄ is the smallest Q ∈ {0} ∪ Z
+ that satisfies

Π̄(Q + 1,T) − Π̄(Q,T) = −c + 𝛼 + b + (v − hT − 𝛼 − b)P{N(T) ⩽ Q} − (𝛽 + h)(Q + 1)
𝜆0

P{N(T) ⩾ Q + 2} < 0. (A.12)

Note that Q̄ is the maximizer of Π̄(Q,T) − K over Q ∈ {0} ∪ Z
+. In order the find the maximizer of Π(Q,T), that is, Q∗,

we should compare the expected profits at Q̄ and 0 to complete our proof. Using expression (16), we have

Π(0,T) = −
∞∑

n=1

nbP{N(T) = n}.

If Π̄
(
Q̄, T

)
−K > Π(0,T), then ordering Q̄ is more profitable for the supplier; otherwise, the supplier should order nothing.

■

A.5. Proof of Proposition 3

For Q > 0, it follows from expression (16) that

Π(Q, T) = − cQ − K + Q(v − hT)P{N(T) = 0}

+
Q∑

n=1

(
𝛼n − 𝛽nT

2
+ hnT

2
− QhT + (Q − n)v

)
P{N(T) = n}

+
∞∑

n=Q+1

(
𝛼Q − 𝛽Q(Q + 1)T

2(n + 1)
− hQ(Q + 1)T

2(n + 1)
− (n − Q)b

)
P{N(T) = n}.

For very large values of T , we have P{N(T) = n} ≈ 0 where 0 ⩽ n ⩽ Q. Therefore, Π(Q,T) is approximately given by

−cQ − K +
∞∑

n=Q+1

(
𝛼Q − 𝛽Q(Q + 1)T

2(n + 1)
− hQ(Q + 1)T

2(n + 1)
− (n − Q)b

)
P{N(T) = n}.

With the same reasoning, the aforementioned expression can be rewritten as

−cQ − K +
∞∑

n=0

(
𝛼Q − 𝛽Q(Q + 1)T

2(n + 1)
− hQ(Q + 1)T

2(n + 1)
− (n − Q)b

)
P{N(T) = n},

which further leads to

−cQ − K + 𝛼Q + bQ −
∞∑

n=0

(
(𝛽 + h)Q(Q + 1)T

2(n + 1)

)
P{N(T) = n} − b

∞∑
n=0

nP{N(T) = n}.

Note that
∑∞

n=0 nP{N(T) = n} = 𝜆0T . Therefore,

Π(Q,T) ≈ (−c + 𝛼 + b)Q − K − (𝛽 + h)Q(Q + 1)
2𝜆0

∞∑
n=0

e−𝜆0T (𝜆0T)n+1

(n + 1)!
− b𝜆0T .
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Because
∑∞

n=0
e−𝜆0T (𝜆0T)n+1

(n+1)!
= 1 − P{N(T) = 0}, it follows that

Π(Q, T) ≈ (−c + 𝛼 + b)Q − K − b𝜆0T − (𝛽 + h)Q(Q + 1)
2𝜆0

(
1 − e−𝜆0T

)
.

Using the fact that e−𝜆0T ≈ 0 for large values of T , we further have

Π(Q,T) ≈ (−c + 𝛼 + b)Q − K − b𝜆0T − (𝛽 + h)Q(Q + 1)
2𝜆0

.

■

A.6. Proof of Proposition 4

For Q > 0, 𝜅(Q) = 1 in expression (16). For very small values of T , we have P{N(T) = n} ≈ 0 where n ⩾ Q+1. Therefore,

Π(Q,T) ≈ −cQ − K + Q(v − hT)P{N(T) = 0}

+
Q∑

n=1

(
𝛼n − 𝛽nT

2
+ hnT

2
− QhT + (Q − n)v

)
P{N(T) = n}.

The aforementioned expression can be rewritten as

Π(Q, T) ≈ −cQ − K +
∞∑

n=0

(
𝛼n − 𝛽nT

2
+ hnT

2
− QhT + (Q − n)v

)
P{N(T) = n},

which further leads to

Π(Q,T) ≈ −cQ − K + Qv − QhT +
∞∑

n=0

n

(
𝛼 − 𝛽T

2
+ hT

2
− v

)
P{N(T) = n}.

Because
∑∞

n=0 nP{N(T) = n} = 𝜆0T , it follows that, for very small values of T

Π(Q,T) ≈ −cQ − K + Qv − QhT +
(
𝛼 − 𝛽T

2
+ hT

2
− v

)
𝜆0T .

■

A.7. Proof of Proposition 5

At very large values of T , we have P{N(T) = n} ≈ 0 for 0 ⩽ n ⩽ Q. Therefore, it follows from expression (5) that

E[Lost-sale cost] ≈
∞∑

n=0

b(n − Q)P{N(T) = n}.

Observe that
∑∞

n=0 nP{N(T) = n} is the expected number of events between time 0 and T . Expression (9) implies that, for an

NP process with rate 𝜆0+𝜆1t, the mean number of events within (0,T) is 𝜆0T+ 𝜆1T2

2
. We further have

∑∞
n=0 P{N(T) = n} = 1;

therefore, for very large values of T ,

E[Lost-sale cost] ≈ b

(
𝜆0T +

𝜆1T2

2

)
− bQ.

■
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A.8. Proof of Proposition 6

The proof will follow by simplifying expressions (4), (5), (12), and (13) using the fact that for very small values of T , we
have P{N(T) = n} ≈ 0 where n ⩾ Q + 1. Expressions (2) and (3) imply that for Q > 0, the expected manufacturing cost
and the expected replenishment cost are given by cQ and K, respectively.

Note that, because we have P{N(T) = n} ≈ 0 for n ⩾ Q + 1 at very small values of T , it follows that

E[Salvage Value] ≈
∞∑

n=0

v(Q − n)P{N(T) = n},

E[Lost-sale cost] ≈ 0,

E[Revenue] ≈

(
𝛼 − 𝛽

(
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3

) ∞∑
n=0

nP{N(T) = n},

E[Holding cost] ≈
∞∑

n=0

(
QhT −

nTh
(
3𝜆0 + 𝜆1T

)
3
(
2𝜆0 + 𝜆1T

) )
P{N(T) = n}.

We have
∑∞

n=0 nP{N(T) = n} = 𝜆0T + 𝜆1T2

2
and

∑∞
n=0 P{N(T) = n} = 1; therefore, the aforementioned first expression

and last two expressions can be further rewritten as

E[Salvage Value] ≈ vQ − v

(
𝜆0T +

𝜆1T2

2

)
,

E[Revenue] ≈

(
𝛼 − 𝛽

(
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3

)(
𝜆0T +

𝜆1T2

2

)
,

E[Holding cost] ≈ QhT −
Th

(
3𝜆0 + 𝜆1T

)
3
(
2𝜆0 + 𝜆1T

) (
𝜆0T +

𝜆1T2

2

)
.

Combining the aforementioned expressions with the manufacturing cost and the replenishment cost further leads to

Π(Q,T) ≈ −cQ − K + Qv − QhT +

(
𝛼 −

(
3𝜆0 + 2𝜆1T

)
T(

2𝜆0 + 𝜆1T
)

3
(𝛽 − h) − v

)(
𝜆0T +

𝜆1T2

2

)
.

■

A.9. Proof of Proposition 7

Consider a setting that is similar to ours in every aspect except for the following: (i) selling price of an item does not change
over time and is equal to 𝛼 and (ii) inventory holding costs are incurred only for items that remain unsold to the end of the
selling period. Note that this new setting is quite similar to that of the newsboy problem. The supplier’s expected profit
function in this new setting is given by the following expression:

G(Q,T) = (𝛼 − v + hT)E[N(T)] − (c − v + hT)Q − (𝛼 + b − v + hT)
∞∑

n=Q+1

(n − Q)P{N(T) = n}.

Because there is no decrease in selling price over time and inventory holding costs are incurred only for end-of-period
inventories, we have G(Q,T) ⩾ Π(Q,T) for all Q and T . Observe also that, given T ,G(Q,T) < 0 for Q ⩾ (𝛼−v+hT)E[N(T)]

c−v+hT
,

and hence, Π(Q,T) < 0 for Q ⩾ (𝛼−v+hT)E[N(T)]
c−v+hT

. This implies Qu = (𝛼−v+hT)E[N(T)]
c−v+hT

is an upper bound on the optimal value
of Q. ■
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