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Abstract

We consider the Partitioning-Hub-Location-Routing Problem (PHLRP), a hub location problem in-
volving graph partitioning and routing features. PHLRP consists of partitioning a given network into
sub-networks, locating at least one hub in each sub-network and routing the traffic within the network
at minimum cost. This problem finds applications in deployment of an Internet Routing Protocol called
Intermediate System - Intermediate System (ISIS), and strategic planning of LTL ground freight distribu-
tion systems. We describe an Integer Programming (IP) formulation for solving PHLRP. We also explore
some valid inequalities for the IP formulation, which we take from the graph partitioning literature. We
test effectiveness of the IP formulation and the valid inequalities. Our experiments show that the valid
inequalities perform better than the XPRESS proprietary cuts.

Keywords: network design, telecommunication networks, hub-location, branch-and-cut.

1 Introduction

The problem of cost-effectively transferring a set of commodities (e.g., goods, people, data packages, etc.)
between source-destination pairs in a network (e.g., a freight distribution network, a rail network, an Internet
Protocol network, etc.) is common in many real life applications. Generally in such applications, some nodes
of the network are designated as hubs (i.e., transshipment or switching points). These hub nodes induce a
backbone of transfers throughout the network. The backbone, by aggregating the traffic flow corresponding
to several source-destination pairs, facilitates exploitation of economies of scale on the transfer costs. Hub
location problems, generally speaking, consist of finding in networks the hub locations (i.e., the backbone)
that would lead to optimal transfer costs. There are many variations of the hub location problems. We refer
the interested reader to two survey papers by Alumur and Kara [1], and by Campbell et al. [3].

In this paper we introduce yet another hub location problem, which involves “graph partitioning” and
“routing” features. Namely, we address the problem of partitioning a given network into sub-networks,
locating at least one hub in each sub-network and routing the traffic within the network at minimum cost.
This problem finds applications in deployment of an Internet Routing Protocol called Intermediate System
- Intermediate System (ISIS), and strategic planning of LTL ground (e.g., motor carriers, railways) freight
distribution systems. We refer the reader to the appendix of [10] for a detailed description of the ISIS
protocol, and to [11] for a detailed treatment of the technical specifications. For detailed introduction to LTL
freight distribution systems, see [2] and [6].

The article is organized as follows. In Section 2, we present a detailed description of the problem under
consideration. In Sections 3 and 4 we introduce and explore an IP formulation for solving it. In Sections 5 we
present some valid inequalities to strengthen our formulation. Finally, in Section 6 we report on numerical
experiments.
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(a) A network example

(b) An example of partitioning of the
network into areas

(c) Hubs located on the network

(d) An example of inter-area routing

(e) An example of inter-area routing

Figure 1: Partitioning, hub location and routing components of the problem on an example

2 Notation and problem definition

Assume that we are given a network (a digraph) D = (V,A) and a companion graph G = (V,E). Assume
that the arc set A is symmetric (i.e., (j, i) ∈ A for all (i, j) ∈ A) and for each pair of arcs (i, j), (j, i) in A,
there exists an edge {i, j} ∈ E with i < j.

Let (V1, V2, . . . , Vk) be a partitioning of V into subsets, i.e., V1, V2, . . . , Vk are disjoint subsets of V such
that V = ∪lVl. We assume that FL ≤ |Vl| ≤ FU for l = 1, 2, . . . , k, where FL and FU are some lower and
upper bound values on the sizes of subsets. Let Dl = (Vl, Al), l = 1, 2, . . . , k, be sub-networks of D induced
by V1, V2, . . . , Vk, respectively (see Figure 1(b)). In accordance with the ISIS terminology, in the rest of this
paper we refer to these sub-networks using the term area.

The use of the parameters FL and FU provides a control over the sizes and the number of areas we obtain
in the partition. That is, we employ these parameters to protect ourselves against extreme cases in the
solution, like very large areas or a very large number of small areas. In fact, partitioning the network into
areas of manageable size provides a protection against stability and convergence issues in ISIS (see Chapter
3 of [11] for a detailed treatment of ISIS stability and convergence issues). Capacity or economies-of-scale
concerns in freight distribution networks would also justify the use of such bounds on the area sizes.

We designate a subset H of nodes in V as hub nodes. We assume |H| ≤ Y , that is, Y is an upper bound
on the number of hubs we can locate in the network. We call the nodes in V −H the local nodes (see Figure
1(c)). We call DH = (H,AH), the sub-network of D induced by H, the backbone.

Let the set T contain all source-sink pairs which have traffic in-between. For each pair (u, v) ∈ T , we call
node u the source and node v the sink. Let du,v be the amount of required traffic flow between source-sink
pair (u, v) ∈ T . A non-negative cost cu,v

i,j is incurred when unit flow associated with the pair (u, v) ∈ T passes
through the arc (i, j) ∈ A. The total flow on an arc (i, j) can not exceed a capacity value Ci,j .

We assume that routing of traffic between (u, v) pairs in T is in accordance with the routing in ISIS
protocol (see Appendix). That is, routing in our problem complies with the following assumptions:

(A1) Inter-area traffic flows can be sent through an arc (i, j) only if (i, j) is on the backbone (i.e., (i, j) ∈ AH).

(A2) Intra-area traffic is realized over paths which entirely lie within the areas.
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(A3) Local nodes always use the same hub to send or receive inter-area flows.

The first assumption implies that two local nodes in different areas can not exchange traffic flows over an
arc that lies in-between. Local nodes in different areas can send flows to each other only through the hubs
located within their areas. We illustrate this in Figure 1(c) by displaying in dashed lines the inter-area arcs
which are adjacent to local nodes (i.e., the dashed arcs in this Figure are not used at all for transfers). It is
worth noting that one can also infer the following from assumptions (A1) and (A2):

• An area can exchange flows with the other areas only if it possesses a hub node (i.e., an area without
a hub would be isolated from the rest of the network).

• Hubs of areas with traffic demand in-between have to be connected to each other over the backbone.

• If the source and the destination of a traffic flow are in different areas, then the flow is first directed
towards the hub within the source area; subsequently, it is sent over the backbone towards the hub of
the destination area; finally, it is directed from this hub towards the destination node.

• If the source and the destination are in the same area, then the flow is simply sent over a path that is
entirely contained within the area.

Figures 1(d) and 1(e) display two examples of inter-area flows. Note that in Figure 1(d), the source and
the destination are in different areas and although there exists an arc in-between (shown dashed), the flow is
sent through the hubs.

Assumption (A3) has significance only if there are more than one hubs in an area. To see this, suppose
that area Dl retains at least two hubs, i.e., |Vl ∩ H| ≥ 2, and pick a local node u ∈ Vl − H in Dl. Then,
assumption (A3) implies that u is assigned to one of the hubs in Dl, say i ∈ Vl ∩ H, and always uses that
hub i to send or receive inter-area flows.

Having set the grounds, we are now ready to give an informal definition of our problem. Given the network
D = (V,A), it consists of:

1. partitioning D into areas D1, D2, . . . , Dk of size at least FL and at most FU (i.e., partitioning V into
subsets V1, V2, . . . , Vk such that FL ≤ |Vl| ≤ FU for l = 1, 2, . . . , k),

2. determining H (i.e., the hub nodes),

3. assigning every local router to a hub within its area (assumption (A3)),

4. routing the traffic for every (u, v) ∈ T in accordance with the assumptions (A1), (A2), and capacity
restrictions over the arcs,

5. with the objective of minimizing the total cost of routing.

In the sequel, we refer to this problem as the Partitioning-Hub-Location-Routing Problem (PHLRP ).
PHLRP has a graph (or network) partitioning component, a hub location component and a routing

component. We formulate the graph partitioning component (i.e., partitioning D into D1, D2, . . . , Dk of size
at least FL and at most FU ) as a size constrained graph partitioning problem, which is investigated by Özsoy
and Labbe ([8], [9]). We model the routing component using multi-commodity flow variables and constraints
(i.e., flow balance constraints, arc-capacity constraints).

The hub location component of PHLRP differs from the hub location problems explored in the literature.
According to Alumur and Kara [1], hub location problems in the literature are generally based on three
prevalent assumptions:

(B1) The hub network is complete with a link between every hub pair.

(B2) Cost of transfer between the hubs is less than the cost of transfer between non-hub nodes and hub
nodes (due to economies of scale).

(B3) No direct transfer (between two non-hub nodes) is allowed.
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On the other hand, we only keep assumption (B2) in the hub location component of PHLRP. We completely
relax assumption (B1), and we adopt a weaker version of assumption (B3).

Generally (B1) does not hold in the application context we consider. In fact, nodes in ground transporta-
tion networks are connected to each other over paths that traverse several intermediate nodes. Similarly,
in large Internet protocol networks (e.g. country wide large networks) setting up a physical link between
every hub, especially between the ones that are far apart, might prove very costly. Furthermore, in logistics
networks that involve many nodes or that span very large geographical areas, relaxing (B3) (i.e., permitting
transfers between non-hub nodes) might decrease transfer costs significantly. The large distances between the
non-hub nodes and the hubs in such networks would justify the use of inter-non-hub means for transfers. Such
direct transfers are allowed in ISIS protocol, too. Assumptions (A1) and (A2) account for a weaker version of
(B3) and impose that local transfers within the areas can be carried out directly (i.e., not necessarily through
hubs).

Note that assumptions (A1)-(A3) of PHLRP are not restrictive at all for ISIS deployment applications
and ground LTL freight distribution applications. On the contrary, the first two are necessary to ensure
aggregation of inter-area flows on the backbone and to protect the backbone from the burden of intra-area
flows.

Moreover, routing in ISIS naturally complies with (A3) because the nodes (which represent routers) know
only the topology of their areas, i.e., they are blind beyond the borders of their areas. Hence, while sending
out inter-area flows, a source router checks if the destination is in the same area as itself. If not, it just sends
the flow to the closest hub, no matter what the destination is. In other words, while sending out inter-area
flows, routers always minimize the local path within their areas, rather than the global path which extends
outside the area towards the destination.

Assumption (A3) has a significant justification in the LTL freight distribution applications, too. In fact,
aggregating the inter-area traffic corresponding to a node at a single hub is meaningful only if the fixed cost
of dedicating a vehicle to a path is high. For instance, given a local node u ∈ Vl − H in an area Dl, if we
split between i1, i2 ∈ Vl ∩H the corresponding inter-area traffic then we would have to dedicate one vehicle
to each of the paths from u to i1 and i2. This might prove costly if the associated fixed cost is rather high,
e.g., in rail networks. We do not explicitly account for fixed costs in this paper; however, assumption (A3)
allows us to take into consideration, albeit implicitly, this relevant fixed cost of dedicating a vehicle to a line.

We shall present now in the next section an IP formulation for the PHLRP. Subsequently, we shall describe
the exact algorithm we propose.

3 An IP Formulation for PHLRP

Our formulation is based on the idea of replicating the digraph D = (V,A) three times (see Figure 2(a)).
We refer to these replicates as layers. The sets of nodes and the arcs in the three layers are identical. In
addition, we define costless and uncapacitated inter-layer arcs between identical nodes of the subsequent
layers. Namely, there is an inter-layer arc from node i of Layer 1 (respectively, Layer 2) to node i of Layer 2
(respectively, Layer 3) for each i in V . Note that, unlike the arcs within the layers, the inter-layer arcs are
all in one direction. It is only possible to send flow from Layer 1 to Layer 2 and from Layer 2 to Layer 3, but
not in the opposite direction.

In our formulation, we impose that if the source and the sink nodes, say (u, v), lie in the same area, then
the flow starts at u and ends at v of Layer 1. Otherwise, if u and v lie in different areas, then the flow starts
at the source node u in Layer 1, passes through Layer 2 and ends at the sink node v of Layer 3 (see Figure
2(b)). We impose that no flow can pass through arcs that lie between nodes belonging to different areas.
Moreover, we impose that an inter-area flow can pass from one layer to another only through an inter-layer
arc corresponding to a hub.

We shall introduce now the variables of our IP formulation. We define the partitioning variables wu,v ∈
{0, 1}, for all u, v ∈ V such that u 6= v, as:

wu,v =
{

1, if u and v are in the same area;
0, otherwise.
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(a) The flow variables in the formulation. For the
sake of simplicity in illustration, only some of the
intra-layer and inter-layer arcs are displayed. Each
of the undirected links within the layers stands for
two arcs in opposite directions.

(b) Examples of intra-area and inter-area
flows in the formulation.

Figure 2: Three replicates (i.e., Layers 1, 2 and 3) of the network D in formulation (3.1).

We define the hub-location variables xu,v ∈ {0, 1}, for all u, v ∈ V , as:

xu,v =

 1, if node u is assigned to the hub v for exchanging flows
with outside of its area;

0, otherwise.

Setting xu,u to 1 or 0 implies designating node u as a hub or a local node, respectively.

We use the flow variables fu,v
i,j , gu,v

i,j , hu,v
i,j ∈ {0, 1}, for all (u, v) ∈ T and (i, j) ∈ A, to represent the flows

in Layers 1,2 and 3, respectively. Besides, we use the variables t1,u,v
i , t2,u,v

i ∈ {0, 1}, for all (u, v) ∈ T and
i ∈ V , to represent the inter-layer flows from Layer 1 to Layer 2 and from Layer 2 to Layer 3, respectively.
Specifically, we define fu,v

i,j as:

fu,v
i,j =

{
1, if the flow from u to v passes through the arc (i, j) in Layer 1;
0, otherwise.

This definition also applies to gu,v
i,j and hu,v

i,j , if ‘Layer 1’ is replaced by the appropriate layer label. Similarly,
we define t1,u,v

i as:

t1,u,v
i =

 1, if the flow from u to v passes from Layer 1 to Layer 2 over node i
(i.e., through the inter-layer arc (i, i) between the two layers);

0, otherwise.

This definition also applies to t2,u,v
i if the layer labels are changed accordingly.

Hereafter, we use the notation δ+(i) and δ−(i) to denote the outgoing and ingoing arcs of a node i in D,
respectively, i.e., δ+(i) = {(l1, l2) ∈ A : l1 = i} and δ−(i) = {(l1, l2) ∈ A : l2 = i}. The IP formulation can be

5



stated as follows:
min

∑
(u,v)∈T

∑
(i,j)∈A

cu,v
i,j du,v(fu,v

i,j + gu,v
i,j + hu,v

i,j ), (3.1a)

wu,v + wu,t − wv,t ≤ 1 ∀u, v, t ∈ V : u 6= v, u 6= t, v < t, (3.1b)∑
v∈V−{u}

wu,v ≤ FU − 1 ∀u ∈ V, (3.1c)

∑
v∈V−{u}

wu,v ≥ FL − 1 ∀u ∈ V, (3.1d)

∑
v∈V

xu,v = 1 ∀u ∈ V, (3.1e)

xu,v ≤ xv,v ∀u, v ∈ V : u 6= v, (3.1f)∑
u∈V

xu,u ≤ Y, (3.1g)

xu,v + xv,u ≤ wu,v ∀u, v ∈ V : u < v, (3.1h)

∑
(i,j)∈δ+(i)

fu,v
i,j −

∑
(i,j)∈δ−(i)

fu,v
i,j + t1,u,v

i =

 1 if i = u
0 if i ∈ V − {u, v}
−wu,v if i = v

∀(u, v) ∈ T, (3.1i)

∑
(i,j)∈δ+(i)

gu,v
i,j −

∑
(i,j)∈δ−(i)

gu,v
i,j + t2,u,v

i − t1,u,v
i = 0, ∀i ∈ V,∀(u, v) ∈ T, (3.1j)

∑
(i,j)∈δ+(i)

hu,v
i,j −

∑
(i,j)∈δ−(i)

hu,v
i,j − t2,u,v

i =

{
wu,v − 1 if i = v
0 if i ∈ V − {v} ∀(u, v) ∈ T, (3.1k)

t1,u,v
i ≤ xu,i ∀(u, v) ∈ T, ∀i ∈ V, (3.1l)

t2,u,v
i ≤ xv,i ∀(u, v) ∈ T, ∀i ∈ V, (3.1m)∑

(i,j)∈δ+(i)

gu,v
i,j ≤ xi,i ∀(u, v) ∈ T, ∀i ∈ V, (3.1n)

fu,v
i,j + fu,v

j,i + hu,v
i,j + hu,v

j,i ≤ wi,j ∀(u, v) ∈ T, ∀(i, j) ∈ E, (3.1o)∑
(u,v)∈T

du,v

(
fu,v

i,j + gu,v
i,j + hu,v

i,j

)
≤ Ci,j ∀(i, j) ∈ A. (3.1p)

The objective function (3.1a) stands for the total cost of routing the traffic within the network. Valid
partitioning of the network into areas is ensured by means of the constraints (3.1b), the so-called triangle
inequalities. These constraints, first used by Grötschel and Wakabayashi [7] for the clique partitioning
problem, guarantee that if two edges of a triangle lie within an area, the third edge lies within that same
area, too. Constraints (3.1c) and (3.1d) impose upper and lower bounds, FU and FL respectively, on the
sizes of the areas. Constraints (3.1e) ensure that each node is allocated to a hub to communicate with nodes
outside its area. Note that when xu,u = 1 for a node u, u cannot be allocated to a node other than itself
(i.e., xu,v = 0 for v ∈ V \ {u}); otherwise, when xu,u = 0, u is necessarily allocated to a hub. Constraints
(3.1f) prevents a local node from being assigned to a local node. Constraint (3.1g) imposes an upper bound
Y on the number of hubs that can be located in the network. Finally, constraints (3.1h) ensure that each
local node is assigned to a hub that lies within the same areas as itself.

Constraints (3.1i)-(3.1k) are the flow balance equations of Layers 1-3, respectively. These constraints
ensure that for each source-sink pair (u, v) ∈ T :

• u in Layer 1 sends out one unit of flow, and

• that one unit of flow is absorbed by

– v in Layer 1 if wu,v = 1 (i.e., if u and v are in the same area),

– v in Layer 3 if wu,v = 0 (i.e., if u and v are in different areas).

Constraints (3.1l) and (3.1m) ensure that an inter-area flow from a source u to a sink v gets onto the
backbone on the hub node to which the source is allocated and gets off the backbone on the hub node to
which the sink is allocated. The flow from u to v is allowed to pass from Layer 1 to Layer 2 over node i
only if i is a hub and the source u is allocated to i (i.e., only if xu,i = 1). Similarly, the flow is allowed to
pass from Layer 2 to Layer 3 over node i only if i is a hub and the sink v is allocated to i (i.e., xv,i = 1).
Constraints (3.1n) guarantee that the backbone is composed only of hubs. Specifically, in (3.1n), if a node
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is not a hub then it does not receive any flow from the other nodes in Layer 2. Constraints (3.1o) ensure
that the flows in Layer 1 and Layer 3 do not cut across area borders. Finally, constraints (3.1p) stand for
the capacity restrictions over the arcs.

It is worth noting that this formulation complies with the assumptions (A1)-(A3). In fact, constraints
(3.1n) and (3.1o) represent assumption (A1); constraints (3.1i) and (3.1o) represent assumption (A2); finally,
constraints (3.1e) stand for assumption (A3).

Note further that assumption (B2) of general hub location problems (i.e., transfers on the backbone costs
less per unit flow), can also be accommodated by replacing the cost coefficient of gu,v

i,j variables in the objective
function.

4 More on Formulation (3.1)

In this section, we show that some simplifications can be introduced in formulation (3.1) when capacity
constraints (3.1p) are relaxed.

In absence of capacity restriction on arcs, partitioning the network into areas and locating the correspond-
ing hubs are the main tasks to be performed for solving PHLRP. Once these tasks are accomplished (i.e.,
once D1, D2, . . . , Dk and DH are determined), allocation and routing can be carried out in a simple way.
In fact, when D1, D2, . . . , Dk and DH are known, routing of the traffic for each (u, v) ∈ T and allocation
of local nodes to hubs reduces to solving a shortest path problem in the aforementioned three-layer network
(see Figure 2(a)). This in turn suggests that in absence of capacity restriction on arcs, if variables wu,v and
xu,u take on integral values in an optimal solution of the LP relaxation of the formulation, the flow variables
fu,v

i,j , gu,v
i,j , hu,v

i,j , t1,u,v
i , t2,u,v

i and the allocation variables xu,v, u 6= v, would take on integral values as well.
In other words, if capacity restrictions are ignored, we can relax the integrality restrictions of the allocation
variables (i.e., xu,v with u 6= v) and the flow variables (i.e., fu,v

i,j , gu,v
i,j , hu,v

i,j , t1,u,v
l and t2,u,v

l for all (u, v) ∈ T ,
(i, j) ∈ A and l ∈ V ). Hence, only a small portion of variables in the formulation (i.e., only variables wu,v

and xu,u) need to be binary. This result is highlighted by the following lemma, which is taken from [10]. We
refer the interested reader to [10] for a complete proof.

Lemma 4.1. Let z =
(
x,w, f ,g,h, t1, t2

)
and let µ denote the number of variables in the IP formulation

introduced (i.e., µ = n2 +
(
n
2

)
+ 3|T ||A|+ 2n|T |). Further, let P denote the convex hull of feasible solutions

of the formulation, i.e.,

P = conv {z ∈ Rµ|z satisfies (3.1b)− (3.1o),
wu,v ∈ {0, 1} ∀u, v ∈ V : u < v

xu,v ∈ {0, 1} ∀u, v ∈ V

fu,v
i,j , gu,v

i,j , hu,v
i,j ∈ {0, 1} ∀(u, v) ∈ T, (i, j) ∈ A

t1,u,v
i , t2,u,v

i ∈ {0, 1} ∀(u, v) ∈ T, i ∈ V } .

Then,

P = conv {z ∈ Rµ|z satisfies (3.1b)− (3.1o),
wu,v ∈ {0, 1} ∀u, v ∈ V : u < v

xu,u ∈ {0, 1} ∀u ∈ V

xu,v ∈ [0, 1] ∀u, v ∈ V : u 6= v

fu,v
i,j , gu,v

i,j , hu,v
i,j ∈ [0, 1] ∀(u, v) ∈ T, (i, j) ∈ A

t1,u,v
i , t2,u,v

i ∈ [0, 1] ∀(u, v) ∈ T, i ∈ V } .

The absence of the capacity constraints (3.1p) also leads to a more compact formulation. In fact, con-
straints (3.1i) imply

∑
i∈V t1,u,v

i = 1 − wu,v for all (u, v) ∈ T . In any optimal solution, integrality of the
variables t1,u,v

i and wu,v implies, for each (u, v) ∈ T , the existence of at most one i ∈ V such that t1,u,v
i = 1.

Hence, the right-hand-sides of constraints (3.1l) can be replaced by xi,i, for all i ∈ V , i.e.,

t1,u,v
i ≤ xi,i ∀(u, v) ∈ T,∀i ∈ V. (4.1a)
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Similarly, we can also replace (3.1m) by

t2,u,v
i ≤ xi,i ∀(u, v) ∈ T,∀i ∈ V. (4.1b)

In turn, constraints (3.1e), (3.1f) and (3.1h) become independent of the rest of the formulation and the
corresponding allocation variables xu,v, u 6= v, become redundant so that they can be removed. The following
lemma from [10] highlights this result.

Lemma 4.2. If capacity restrictions are ignored, formulation (3.1) can be rewritten using constraints (3.1b)-
(3.1d), (3.1g), (3.1i)-(3.1k),(4.1a) and (4.1b).

The following proposition is a direct consequence of Lemmas 4.1 and 4.2.

Proposition 4.1. If capacity restrictions are ignored, formulation (3.1) reduces to the following:

min (3.1a)
s. to (3.1b)− (3.1d), (3.1g), (3.1i)− (3.1k), (4.1a) and (4.1b),
wu,v ∈ {0, 1} ∀u, v ∈ V : u < v,

xu,u ∈ {0, 1} ∀u ∈ V,

fu,v
i,j , gu,v

i,j , hu,v
i,j ∈ [0, 1] ∀(u, v) ∈ T, (i, j) ∈ A,

t1,u,v
i , t2,u,v

i ∈ [0, 1] ∀(u, v) ∈ T, i ∈ V.

5 Valid Inequalities

In this section we present some strong valid inequalities for the PHLRP. Özsoy and Labbé [9] show that these
inequalities we present below are facet defining under some conditions for the the Size Constrained Graph
Partitioning Polytope (SCGP), i.e., the polytope defined by inequalities (3.1b)-(3.1d). We refer the interested
reader to [8] and [9] for a detailed treatment of the SCGP polytope and the corresponding inequalities; in
the sequel we will just recall them.

As implied by Proposition 4.1, valid inequalities for SCGP are especially important for solving the un-
capacitated version of PHLRP. Because the partitioning variables wu,v are the only binary variables remaining
in the reduced form of formulation (3.1) given in Proposition 4.1.

Before proceeding with the inequalities, we need to introduce the notation we will be using hereafter
in this section. We denote the complete graph defined over the vertex set V by KV = (V,EV ). Let
Q ⊆ V and S ⊆ V . We denote the set of all edges in KV whose both endnodes are in Q by E(Q), i.e.,
E(Q) = {{i, j} ∈ EV : i, j ∈ Q}. The set of edges with one endnode in Q and the other endnode in S are
denoted by E(Q,S), i.e., E(Q,S) = {{i, j} ∈ EV : i ∈ Q, j ∈ S}. For any α ∈ R|EV | and F ⊆ EV , we denote∑

e∈F αe by α(F ).

The 2-partition inequalities Grötschel and Wakabayashi [7] first introduced the 2-partition inequalities
for the Clique Partitioning Polytope (CPP), i.e., the polytope defined by (3.1b). Such inequalities are defined
over two disjoint subsets S, T of V :

w(E(S, T ))− w(E(S))− w(E(T )) ≤ min{|S|, |T |} for S, T ⊂ V : S ∩ T = ∅. (5.1)

Grötschel and Wakabayashi prove that the 2-partition inequalities are facet defining for the CPP if and only
if |S| 6= |T |. Recently, Özsoy and Labbé [9] further investigated the 2-partition inequalities and stated the
conditions for which they are facet defining for SCGP polytope.

The lower general clique inequalities Chopra and Rao [4] introduced a family of valid inequalities for
the graph partitioning problem. Such inequalities can be adapted to SCGP polytope as follows. Let Q be a
subset of V such that |Q| >

⌊
|V |
FL

⌋
and

(
|Q|mod

⌊
|V |
FL

⌋)
6= 0. Moreover, let k, r, p and q be defined as follows:

• k =
⌊
|V |
FL

⌋
;

• r = |V | mod FL, i.e., |V | = kFL + r,
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• p =
⌊
|Q|
k

⌋
(p ≥ 1)

• q = (|Q| mod k) (q > 0).

Then, the following inequality is valid and facet defining (see [9]) for the SCGP polytope:

w(E(Q)) ≥ (k − q)
(

p

2

)
+ q

(
p + 1

2

)
. (5.2)

The upper general clique inequalities Let Q ⊆ V and consider the values φU
i computed as follows:

φU
i = max

{
φ ∈ Z+ | FL ≤ φ ≤ FU ,

⌊
Ri−1 − φ

FL

⌋
≥

⌈
Ri−1 − φ

φ

⌉}
, i = 1, . . . ,

⌈
|V |
FU

⌉
where R0 = |V | and Ri = Ri−1 − φU

i . Moreover, let kQ and nQ be defined as follows:

• kQ = max{i|
∑i

l=1 φU
l ≤ |Q|},

• nQ = |Q| −
∑kQ

l=1 φU
l .

Then, the following inequality is valid and facet defining (see [9]) for the SCGP polytope (see [8]):

w(E(Q)) ≤
kQ∑
l=1

(
φU

l

2

)
+

(
nQ

2

)
∀Q ⊆ V. (5.3)

Note that in the statement of this inequality, we adopt the convention that
(
0
2

)
=

(
1
2

)
= 0.

The cycle inequalities Conforti, Rao and Sassano [5] introduced the cycle inequalities for the equipartition
polytope. Such inequalities can be stated as follows. Let GC = (VC , EC) be a cycle in G, then

w(EC) ≤ |VC | − 2 (5.4)

is valid for the equipartition polytope, and is facet defining when |V | is odd and |VC | =
⌈
|V |
2

⌉
+ 1. Özsoy

and Labbé [9] further investigated the cycle inequalities and stated the conditions for which they are facet
defining for the SCGP polytope.

6 Numerical Results

In this section we analyze the performances of our model to tackle instances of PHLRP. Our experiments have
been motivated by two goals: (i) to estimate the maximum size of PHLRP instances that can be optimally
solved in a fixed amount of time, and (ii) to evaluate the benefits obtained from the inclusion of the valid
inequalities previously discussed. We shall describe now the nature of the instances analyzed, the separation
oracles used to implement the valid inequalities, and the results obtained.

6.1 Instances

We have carried out our experiments on a set of randomly generated PHLRP instances. We classify the
instances by:

• the network size |V |, i.e., the number of nodes in the network;

• the edge density, i.e., |E| divided by
(|V |

2

)
;

• the demand density, i.e., the ratio |T |/
(|V |

2

)
.
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For sake of simplicity in the following we denote the edge density by Ed, and the demand density by Dd.
We have considered instances having |V | equal to 9, 10, 12, 15, and 20 respectively. Moreover, we have

further considered three possible values for Ed, {0.3, 0.6, 0.9}, and three possible values for Dd, {0.3, 0.6, 1.0}.
Due to the randomness of the instance generation the Ed and Dd values of our instances generally may be
quite close but not exactly equal to the above values.

For each possible assignment of the network size, the edge density, and the demand density, we have
generated 10 PHLRP instances, leading to an overall number of 450 PHLRP instances downloadable at
http://homepages.ulb.ac.be/%7Efozsoy/.

6.2 Computational experimentation details

We have implemented the model by means of Xpress-MP Mosel 2 using Xpress Optimizer 18 running on
a Pentium 4, 3.2 GHz, equipped with 2 GByte RAM and operating system Gentoo release 7 (kernel linux
2.6.17). The running time was limited to a maximum of 3 hours.

PHLRP is a very difficult problem. For this reason, in our computational experimentation we considered
only the un-capacitated version of the problem, solution of which is already very hard and time-consuming
as will be seen in Section 6.3 and Tables 1, 2. We exploit the reduction implied by Proposition 4.1 and run
our experiments on this reduced version of formulation (3.1).

Our experiments consists of two different implementations:

• a Basic Implementation (hereafter indicated as BI) in which the Xpress Optimizer proprietary cuts are
activated and the valid inequalities (5.1)-(5.4) are deactivated;

• a Strengthened Implementation (hereafter indicated as SI) in which the Xpress Optimizer proprietary
cuts are deactivated and the valid inequalities (5.1)-(5.4) are activated.

The valid inequalities previously discussed are NP-hard problems, for this reason we have used heuristic
oracles to separate them. We shall describe now each separation oracle in detail.

Separation oracle for the 2-partition inequalities The 2-partition inequalities are separated by means
of a slightly modified version of the heuristic proposed by Grötschel and Wakabayashi [7] and Tcha et al.
[12]. Specifically, for every node v ∈ V we consider the set of nodes W := {v′ ∈ V \ {v} | 0 < w(v, v′) < 1}.
After imposing a random ordering Wo of the set W , we pick the first node v′ ∈ Wo, and we set T := {v′}.
Subsequently, for every node i ∈ Wo \ {v′} we set

T := T ∪ {i} if wij = 0 for all j ∈ T .

We check whether the set T constructed this way satisfies w(E(T )) > 1. If so we add the inequality
w(E(T )) ≤ 1.

Separation oracle for the lower general cliques inequalities The lower general clique inequali-
ties are separated by means of a heuristic algorithm working as follows. Before starting the exact search
we pre-compute the interval of feasible values for |Q| i.e., the values of |Q| such that |Q| >

⌊
|V |
FL

⌋
and(

|Q|mod
⌊
|V |
FL

⌋)
6= 0. During the exact search we choose at random a subset Q of V having a feasi-

ble cardinality |Q|, and we check whether w(E(Q)) < (k − q)
(
p
2

)
+ q

(
p+1
2

)
. If so we add the inequality

w(E(Q)) ≥ (k − q)
(
p
2

)
+ q

(
p+1
2

)
. We iterate this procedure for all the feasible values |Q|.

Separation oracle for the upper general cliques inequalities The upper general clique inequalities are
separated by means of a heuristic algorithm similar to the one used for the lower general cliques inequalities.
Before starting the exact search we pre-compute the values {φU

i }, i = 1, . . . , d |V |
FU

e. During the exact search

for all the values of |Q| = 1, . . . , b |V |
2 c we choose at random a subset Q of |Q| nodes of V and we check

whether w(E(Q)) >
∑kQ

l=1

(
φU

l
2

)
+

(
nQ

2

)
. If so we add the inequality w(E(Q)) ≤

∑kQ

l=1

(
φU

l
2

)
+

(
nQ

2

)
.
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Separation oracle for the cycle inequalities The cycle inequalities are separated by means of a heuristic
algorithm working as follows. For every node v ∈ V we set Vc := {v}, and we add the remaining nodes to Vc

by picking at random (φ1 − 1) nodes in V \ {v}. Subsequently, we check whether w(Ec) > φ1 − 2. If so we
add the inequality w(Ec) ≤ φ1 − 2.

6.3 Discussion

The performances obtained by both BI and SI are shown in Tables 1 and 2, respectively. Each row of the
tables represents a set of 10 instances characterized by the given network size, edge density and demand
density. The fourth, the fifth, and the sixth entries of each row evidence the average, the maximum, and the
minimum of the solution times needed to solve the corresponding set of 10 instances, respectively. Similarly,
the seventh, the eighth, and the ninth entries of each row evidence similar information about the gap (i.e.,
the difference between the Best Primal Bound (BPP) found and the value of linear relaxation at the root
node of the search tree, divided by BPP) for the corresponding set of instances. Finally, the last three entries
of each row evidence similar information about the number of nodes expanded in the search tree.

As general trend, SI is characterized by a solution time in average always smaller than BI, with a time
performance that degrades by increasing the dimension of the instance analyzed |V |. This phenomenon is
due to the fact that the generation of the Xpress proprietary cuts at each node of the search tree is in general
more time consuming than the generation of the valid inequalities (5.1)-(5.4). On the contrary, as seen in the
Nodes column of the Tables 1 and 2, the numbers of nodes expanded in the search trees of SI is much higher
than BI. This shows that the Xpress proprietary cut generation and separation procedure is more thorough
than the procedures we use to generate and separate the valid inequalities (5.1)-(5.4). One may suspect that,
by increasing the size of the instances, the search tree of SI might end up so large that the solution time of
SI could excess the solution time of BI. However, this seems not to be a real issue because in preliminary
experiments no formulation was able to tackle instances larger than 25 nodes within one computing day; even
in this case, SI performed better than BI.

As regard to the Gap columns of the Tables 1 and 2, the larger gap of SI is justified by the fact that
the pre-solving strategies have been deactivated in SI. In fact, preliminary experiments showed that better
performance can be achieved by SI when the pre-solving strategies is switched off. On the other hand,
preliminary experiments showed that the pre-solving strategies enhance the performance of BI, for this
reason it was switched on for BI.

A more detailed analysis shows that SI is able to solve instances of size 9 in at most 15 seconds with an
average time of at most 5 seconds. On the contrary, BI takes four times more than SI to solve the most
difficult instance of size 9 and in average up to five times more than SI to solve the same datasets. Similarly,
SI is able to solve instances of size 10 in at most 95 seconds with an average time of at most 22 seconds. On
the contrary, BI takes three times more than SI to solve the most difficult instance of size 10 and in average
up to four times more than SI to solve the same dataset. SI solves instances of size 12 in at most 675 seconds
with an average time of at most 107 seconds. On the contrary, BI takes 2.5 times more than SI to solve the
most difficult instance of size 12 and in average up to 3.7 times more than SI to solve the same dataset. SI
solves instances of size 15 in at most 5243 seconds with an average time of at most 805 seconds. On the
contrary, BI is unable to tackle the most difficult instances of size 15 within the limit time and in average
takes up to 4.7 times more than SI to solve the same dataset. Finally, both SI and BI are in general unable
to solve instances of size 20 within the limit time (3 hours). Specifically, SI is able to solve the first and the
third datasets in at most 6325 seconds, nevertheless the remaining datasets contain some instances which
need more than three hours to be solved. Moreover, none of the instances belonging to the last datasets were
solved within the limit time (see Table 4). On the contrary, BI is characterized by a higher percentage of
unsolved instances. Specifically, the percentage of unsolved instances approaches 0 when analyzing datasets
having edge density larger than 0.6 (see Table 3).

7 Conclusion

In this paper we consider the Partitioning-Hub-Location-Routing Problem (PHLRP), which is a hub location
problem with graph partitioning and routing features. We introduce an IP formulation for solving it, and
investigate further characteristics of this formulation for the un-capacitated case. We also test effectiveness
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BI
|V | Ed Dd Time (sec.) Gap (%) Nodes

Average Max Min Average Max Min Average Max Min

9 0.3 0.3 1.178 3.21 0.13 6.183 18.5888 0 4.900 17 0
9 0.3 0.6 1.376 5.66 0.06 1.206 6.36361 0 1.300 3 0
9 0.3 1 4.844 19.1 0.08 3.597 11.2566 0 3.200 13 0
9 0.6 0.3 3.127 7.68 0.17 4.938 14.9183 0 8.200 27 1
9 0.6 0.6 8.693 20.83 1.43 10.541 21.9765 1.65202 19.600 95 1
9 0.6 1 21.903 47.03 2.31 9.617 23.519 0.888299 28.600 97 1
9 0.9 0.3 5.052 14.04 0.9 8.705 15.198 0.782532 18.600 59 1
9 0.9 0.6 9.772 17.62 0.45 7.618 14.8799 0 14.400 39 1
9 0.9 1 27.005 61.75 2.95 7.248 13.3142 1.35227 21.800 91 1

10 0.3 0.3 4.082 9.2 0.31 7.516 23.4174 0 24.600 71 1
10 0.3 0.6 10.342 16.9 1.61 10.909 30.478 0 35.600 85 1
10 0.3 1 32.161 130.05 0.11 8.376 19.9038 0 43.100 213 0
10 0.6 0.3 7.826 11.86 3.07 6.943 13.4231 3.06962 31.200 75 5
10 0.6 0.6 19.740 52.32 6.97 8.234 19.8715 2.71859 47.000 185 9
10 0.6 1 81.607 150.68 25.25 11.308 16.8102 6.18679 97.800 211 13
10 0.9 0.3 13.998 37.47 2.98 8.104 15.3023 0.141476 43.400 137 7
10 0.9 0.6 34.675 76.81 11.86 9.515 16.1959 2.55618 79.400 227 5
10 0.9 1 91.252 280.81 15.02 9.905 17.8419 1.00561 94.200 389 1

12 0.3 0.3 34.303 93.73 2.51 7.420 13.7804 0.381655 89.600 287 1
12 0.3 0.6 56.244 125.91 19.22 9.037 19.0824 4.88025 56.600 141 7
12 0.3 1 163.730 774.4 34.94 7.748 15.421 0.181952 72.400 337 5
12 0.6 0.3 28.501 107.53 5.29 5.875 14.5091 1.25651 87.000 471 5
12 0.6 0.6 143.520 351.98 43.65 9.431 16.3633 3.04573 136.200 455 9
12 0.6 1 379.523 819.98 63.55 8.147 13.9666 1.91166 139.900 337 15
12 0.9 0.3 59.841 320.35 13.32 7.808 15.3416 1.74104 136.800 739 23
12 0.9 0.6 166.590 324.77 20.21 8.193 14.8881 1.84757 108.400 207 3
12 0.9 1 398.894 1693.35 32.42 7.237 14.8154 0.794988 107.400 579 1

15 0.3 0.3 133.914 397.32 31.59 5.486 9.27182 1.78006 152.400 469 11
15 0.3 0.6 1044.506 2387.84 108.46 7.875 12.413 2.72327 356.000 967 19
15 0.3 1 2382.889 5337.89 501.25 8.504 11.3151 3.89735 297.800 631 59
15 0.6 0.3 193.853 427.44 78.12 6.256 10.9274 2.27197 205.400 539 21
15 0.6 0.6 569.994 930.78 120.43 5.556 8.99907 1.8603 166.400 379 37
15 0.6 1 2641.774 10835.3 188.56 5.216 9.24387 2.01189 260.700 1176 9
15 0.9 0.3 351.339 749.08 37.53 7.263 9.63293 1.46339 320.800 631 31
15 0.9 0.6 2634.632 10819 260.95 7.469 13.6094 1.15943 584.900 2567 39
15 0.9 1 3801.558 10136.8 273.24 6.848 12.0653 2.14586 328.200 799 9

20 0.3 0.3 5153.653 10832.3 74.66 5.042 8.50953 1.18672 699.400 1457 7
20 0.3 0.6 9911.467 10935.5 3942.22 6.323 14.7954 1.57351 260.000 415 109
20 0.3 1 10703.338 11104.7 7632.17 9.649 32.7458 2.61005 83.100 108 57
20 0.6 0.3 5743.235 10849.3 2408.75 5.912 11.2135 1.33713 528.600 1141 227
20 0.6 0.6 10064.342 10979.3 2331.82 4.834 13.5294 0.638326 203.100 288 67
20 0.6 1 10882.537 11192.7 8718.96 12.283 29.6195 3.43702 74.400 96 56
20 0.9 0.3 8189.168 10841 1535.67 4.826 11.6135 0.348171 718.400 1090 105
20 0.9 0.6 10946.990 10976.4 10912 8.646 23.2627 0.395442 227.600 350 158
20 0.9 1 11185.799 11307.8 11054.9 9.382 22.6831 0.597229 74.800 135 51

Table 1: Results obtained by Xpress Optimizer with proprietary cut-strategy.
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SI
|V | Ed Dd Time (sec.) Gap (%) Nodes

Average Max Min Average Max Min Average Max Min

9 0.3 0.3 0.259 0.55 0.05 7.175 19.2707 0 5.600 13 1
9 0.3 0.6 0.444 1 0.02 2.826 11.3032 0 3.200 9 0
9 0.3 1 0.929 3.3 0.04 5.663 15.6252 0 8.000 33 0
9 0.6 0.3 0.755 1.99 0.09 5.488 16.6148 0 10.800 29 1
9 0.6 0.6 2.012 3.99 0.7 12.293 24.1318 3.50706 30.400 77 5
9 0.6 1 4.911 11.13 0.89 11.765 25.5876 2.11634 41.200 115 1
9 0.9 0.3 1.472 4.42 0.49 8.943 15.8677 1.33777 27.000 79 5
9 0.9 0.6 2.115 4.12 0.18 8.970 15.9507 0 20.000 51 1
9 0.9 1 5.134 14.68 1.93 9.833 16.7337 3.96084 31.800 123 3

10 0.3 0.3 1.332 3.7 0.09 7.622 23.8011 0 43.700 143 1
10 0.3 0.6 2.350 7.48 0.45 11.472 31.3654 0 42.800 169 1
10 0.3 1 8.327 44.65 0.06 10.052 21.7457 0 73.700 387 0
10 0.6 0.3 1.974 4.01 0.71 7.246 14.5422 3.33255 35.800 81 1
10 0.6 0.6 5.098 12.91 1.71 8.773 20.4081 3.11298 70.000 217 15
10 0.6 1 17.739 39.42 4.35 12.778 18.0462 7.20175 132.000 285 23
10 0.9 0.3 3.214 8.52 0.8 8.545 15.8594 0.141476 47.800 177 5
10 0.9 0.6 10.901 32.88 2.02 10.418 17.8768 3.12856 125.200 455 7
10 0.9 1 21.961 94.94 2.34 11.157 19.076 1.34333 142.200 647 1

12 0.3 0.3 8.574 22.66 0.82 7.941 14.7622 0.753457 129.200 403 1
12 0.3 0.6 13.150 29.72 2.99 10.791 21.5661 5.41576 124.800 349 11
12 0.3 1 28.762 179.67 1.43 9.455 19.6357 0 116.600 799 1
12 0.6 0.3 12.136 49.99 1.63 6.176 14.7709 1.42392 216.000 931 9
12 0.6 0.6 49.141 127.48 7.84 11.283 19.4915 3.77272 355.200 835 35
12 0.6 1 86.184 234.08 8.31 9.892 17.029 2.30431 237.600 745 7
12 0.9 0.3 17.528 93.44 2.02 8.097 15.414 1.78825 230.400 1111 19
12 0.9 0.6 32.798 61.3 5.32 9.380 15.7852 2.17027 158.000 353 3
12 0.9 1 106.726 674.53 3.62 8.807 17.9588 0.0320767 260.400 1787 1

15 0.3 0.3 23.443 52.84 4.72 5.042 9.48492 1.57925 143.000 339 15
15 0.3 0.6 140.459 384.32 18.09 7.500 11.4465 2.69284 409.200 1483 43
15 0.3 1 406.246 1390 47.83 9.566 14.3973 4.17014 525.300 1635 55
15 0.6 0.3 43.929 108.49 18.15 5.519 10.0754 2.51041 270.600 737 63
15 0.6 0.6 150.432 346.81 24.71 5.965 8.96121 2.40958 369.800 1059 37
15 0.6 1 585.383 3035.98 56.95 7.999 13.4062 2.51279 489.400 2369 39
15 0.9 0.3 112.585 248.24 11.16 6.926 9.08745 0.608663 569.900 1033 23
15 0.9 0.6 804.534 5242.47 46.31 9.179 14.7264 3.45587 1279.300 8538 43
15 0.9 1 706.995 1635.89 98.81 8.301 12.5914 3.3096 493.200 1300 35

20 0.3 0.3 1391.972 4904.51 33.02 8.977 13.3628 1.40949 1369.200 4010 29
20 0.3 0.6 8645.743 10822 756.09 5.704 11.7623 0.542981 2224.000 3552 463
20 0.3 1 7372.315 10845.5 1908.89 3.143 7.27825 0.001532 888.200 1564 191
20 0.6 0.3 2378.024 6324.98 559.9 10.558 15.8532 7.23804 1605.600 4087 275
20 0.6 0.6 7801.546 10833.6 410.37 3.102 7.15811 0.706479 1567.000 2370 143
20 0.6 1 10533.928 10905.6 8610.32 6.914 11.3189 3.44158 755.375 1067 517
20 0.9 0.3 6972.569 10816.4 698.53 5.050 12.1208 0.137965 2029.778 3548 281
20 0.9 0.6 10440.939 10868.2 8241.82 5.035 17.4275 0.250289 1011.111 1509 759
20 0.9 1 10932.791 10947.1 10905.3 7.386 25.2158 0.159251 510.500 639 411

Table 2: Results obtained by Xpress Optimizer using cuts (5.1)-(5.4) and deactivating proprietary cut strat-
egy.
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BI Ed
Dd 0.3 0.6 0.9
0.3 7/10 2/10 1/10
0.6 7/10 1/10 1/10
1.0 4/10 0/10 0/10

Table 3: Number of instances of size 20 solved by BI in function of the edge density Ed and demand density
Dd.

SI Ed
Dd 0.3 0.6 0.9
0.3 10/10 2/10 4/10
0.6 10/10 3/10 2/10
1.0 4/10 2/10 0/10

Table 4: Number of instances of size 20 solved by SI in function of the edge density Ed and demand density
Dd.

of some valid inequalities, which are already investigated by Özsoy and Labbe [9] for the size constrained
graph partitioning polytope, for solving the problem in a branch-and-cut algorithm.

We report on our computational experiments in XPRESS using our IP formulation. Our experiments
show that the valid inequalities we consider perform better than the XPRESS proprietary cuts in solving
PHLRP instances. However, so far, the IP model we present is unable to tackle instances larger than 20
nodes within 3 hours. The analysis of real life instances deserves further research effort.
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