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Abstract Network-on-Chip (NoC) architectures and three-dimensional (3D) inte-
grated circuits have been introduced as attractive options for overcoming the barriers
in interconnect scaling while increasing the number of cores. Combining these two
approaches is expected to yield better performance and higher scalability. This paper
explores the possibility of combining these two techniques in a heterogeneity aware
fashion. Specifically, on a heterogeneous 3D NoC architecture, we explore how dif-
ferent types of processors can be optimally placed to minimize data access costs.
Moreover, we select the optimal set of links with optimal voltage levels. The experi-
mental results indicate significant savings in energy consumption across a wide range
of values of our major simulation parameters.
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1 Introduction

International technology roadmap for semiconductors (ITRS) projects that the number
of cores will continue to increase [1]. As the number of cores increase, interconnect
between these cores becomes a major concern. This is even more pronounced when
the number of cores is beyond 16 since buses are no longer an option due to physical
limitations.Network-on-Chip (NoC) [2] architectures have beenproposed to overcome
the limitations by using switches and dedicated links between the nodes.

Similarly, 3D Integration is another way of improving interconnection perfor-
mance/energy, where multiple device layers are stacked together (3D IC) [3]. This
trend is driven mostly by greater density, that is, three-dimensional integrated circuits
(3D ICs) is one of the only ways to meet the demand for increased transistor density.
In addition to the density, 3D ICs also provide heterogeneous integration, on-chip
interconnect length reduction, modular and scalable design. NoC architectures have
been extended to the third dimension by the help of through silicon vias (TSVs) [4–6].
3D NoCs have the potential to achieve better performance with higher scalability and
lower power consumption [2,7].

Heterogeneity could be at different levels. We, specifically, consider (within the 3D
NoC) different types of cores in terms of performance, area, and energy consumption.
Having different kinds of cores within the 3D NoC enables a better match for each
application according to its processing needs and memory requirements.

There exist several important problems to consider in a heterogeneous 3D CMP
connected via an NoC. However, among these, we focus on the problem of node
placement, link shut-down, and power management in a heterogeneous NoC based
CMP using a compiler analysis technique combined with integer linear programming
(ILP). Our specific contributions are:

• An approach that achieves placement of heterogeneous processor cores within
the available chip area to minimize data communication and energy.

• An ILP based approach that decides the set of active and powered down links in
a heterogeneous 3D NoC for a given application.

• A technique that decides the voltages/frequencies of the active links if the under-
lying architecture supports link voltage/frequency scaling.

• An approach that divides the mesh into islands and manages link power con-
sumption at an island granularity.

• An experimental evaluation of the proposed ILP based approach using the appli-
cations from various benchmarks.

As technology moves towards heterogeneous chip multiprocessors, one of the chal-
lenging problems in the context of 3DNoC systems is the placement of processor cores
within the available chip area. Focusing on such a heterogeneous 3D NoC, this paper
explores how different types of processors can be placed tominimize data access costs.

The remainder of this paper is structured as follows. Section 2 gives the related
work on heterogeneous 3D NoCs. Section 3 discusses the overview of our approach.
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The details of our ILP (integer linear programming) based formulation are given in
Sect. 4, and an experimental evaluation is presented in Sect. 5. The paper is concluded
in Sect. 6.

2 Related work

3D technologies and the motivation for moving from 2D to 3D is explained in [8].
Vivet et al. [9] present 3D NoC as a promising solution for increased modularity and
scalability. They show that an efficient implementation can increase the bandwidth
while simplifying the assembly process. 3D NoC topologies explored in [2], where
they compare 3D NoC to 2D NoC considering physical constraints.

Ebrahimi et al. [10] discuss how 3D architectures with a large number of TSVs
can be built using mesh-based topologies. In [11], authors not only reduce the com-
munication delay, but also improve the thermal behavior in a 3D NoC architecture.
Coskun et al. [12] propose a dynamic thermally-aware job scheduling technique for
3D architectures to reduce the thermal problems at very low performance cost. AFRA
[13] introduces a low cost reliable routing for 3D mesh NoCs. Wu et al. [14] propose
a scalable 3D global routing using integer programming. Ozturk et al. [15] explore
how processor cores and data blocks can be placed in a 3D architecture.

Our approach is different from these previously proposed techniques since we
propose to use heterogeneous processing elements in a 3D NoC architecture and
apply voltage scaling both at communication links as well as processing elements.
A preliminary version of this work was presented in PDP 2013 [16], where we only
target the placement of heterogeneous processors on a 3DNoCarchitecture. This paper
extends the work presented in PDP 2013 by including communication link energies.
Specifically, we shutdown some of the links or voltage scale them if voltage scaling is
available. Moreover, we selectively form voltage islands to reduce the area overheads
introduced by voltage scaling circuitry. To the best of our knowledge, this is the first
work which performs communication energy optimization for heterogeneous 3DNoC
architectures.

3 Overview of our approach

After a parallelization step, we analyze the set of processor nodes that communicate
with each other and this information is then forwarded to the ILP solver. ILP solver
determines the set of communication links that should be used. Our approach max-
imizes the number of unused links and reduces the voltages and frequencies of the
used links. Figure 1 illustrates the high level view of a heterogeneous 3D NoC based
CMP. While different layers of 3D NoC is connected through TSVs, nodes are con-
nected with network switch/router (represented by R). In the same figure, processor
is represented by CPU and memory hierarchy is represented by MH . Each node is
connected to its north, south, west and east via the network switches.

In this work, we do not focus on the hardware implementation of link shut down and
link voltage scaling; rather we assume that link voltage scaling and link shut down are
available as indicated by the previous studies. There are potential overheads, such as
area and power, associated with implementing such a scheme. However, as indicated
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Fig. 1 3D NoC based CMP architecture

by prior studies, the overheads are minimal [17]. We quantify and elaborate these
overheads in the experimental evaluation section.

In order to distribute the data among the processors, we need two types of infor-
mation: the private data accessed by each processor and the amount of data shared
across the processors. We obtain these through representing the data accessed by each
processor and each processor pair using Presburger formulas and counting them.

4 ILP formulation

Our goal in this section is to present an ILP formulation of the problem of minimizing
data communication energy of a given application. This is achieved through optimal
placement of nodes in a 3D NoC and through communication link utilization. We use
a commercial tool [18] to solve our ILP problem.

Energy consumed can be considered in twomain categories: actual communication
energy represented with EComm and link energy represented with ELink . We discuss
these in the following subsections.

4.1 Communication energy consumption

In this subsection, we consider the dynamic communication energy required to execute
a given application. We use several decision variables to formulate the problem using
ILP. For instance, location of a node n is captured by L variable. More specifically,
Ln
x,y,z , indicates whether node n is on the grid location (x, y, z).
Wecapture the distance between twonodes byusingbinary variablesdxi, j,x ,dyi, j,y ,

dzi, j,z , where they indicate the distances on x-axis, y-axis, and z-axis, respectively.
Distances between nodes can easily be captured using the location binary variables.

We express the layer-to-layer distance as:

dzi, j,z ≥ Li
x1,y1,z1 + L j

x2,y2,z2 − 1, z = |z1 − z2|. (1)

Similarly, for in-layer distances dx and dy are also captured. Our cost function is
defined as the sum of the data communication loads in both vertical and horizontal
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dimensions.More specifically, we denote the total data communication usingCommH

and CommV for horizontal, and vertical communication costs, respectively:

CommH =
E∑

e=1

N∑

i=1

N∑

j=1

DX∑

k=1

Ae,i, j × dxi, j,k × k

+
E∑

e=1

N∑

i=1

N∑

j=1

DY∑

k=1

Ae,i, j × dyi, j,k × k. (2)

CommV =
E∑

e=1

N∑

i=1

N∑

j=1

DZ∑

k=1

Ae,i, j × dzi, j,k × k. (3)

Affinity, expressed with Ae,i, j , indicates the communication load between the nodes
i and j during epoch e. Note that, in the above expressions, we sum over all the
epochs (1 . . . E) present in the application. Therefore, our communication energy
consumption due to actual communication can be expressed as:

EComm = CommH + θ × CommV . (4)

Note that, in expression 4, the difference between horizontal and vertical communi-
cation costs is captured by the θ parameter which is conservatively set to 0.2 in our
baseline implementation. More specifically, accessing a data from a neighboring node
on the same layer is five times costlier than accessing a neighbor on a different layer.
While the former requires in-layer communication channels, the latter uses TSVs.
Although we use 0.2 as the default value, the θ parameter can be exercised and the
most suitable value can be obtained.

4.2 Link energy consumption

This part of the ILP formulation corresponds to the link energy consumption required
for keeping links active/inactive. In order to capture the participation of a node in a
communication within epoch e, we use Xe,i , where Xe,1 denotes the first node, and
Xe,n denotes the last node. For each communication pattern, we use a different set of
Xe,i variables.We distinguish these variables by using the signature of the pattern, that
is [a, b], representing the communication from node a to node b. More specifically,
binary variable X [a,b]

e,i indicates whether node i is used for the communication from a
to b during epoch e.

We decide whether a node participates at the communication by using X [a,b]
e,i vari-

able. More specifically, a node participates at the communication if a neighbor is part
of this communication and the link connecting these two nodes is active (not shut-
down).We use a different 0–1 variable to capture the activity of a link. Inmathematical
terms, for all neighboring nodes in the 3D NoC, we have:
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Ee,i→ j =
⎧
⎨

⎩

1, if link between Xe,i and Xe, j

is active during epoch e
0, otherwise.

Recall that, in our 3D NoC based CMP architecture, there are bi-directional links
between neighboring nodes denoted by i → j . These links can be active in one epoch
of the program and inactive during the next one. This enables us to control the 3D
NoC according to different epoch communication patterns.

As explained earlier, in order to include a node in a communication activity, we
need to ensure that a neighbor is part of the communication and the connecting link
is active. These constraints can be expressed as follows:

X [a,b]
e,i ≥ X [a,b]

e, j + Ee,i,→ j − 1, ∀e, i, j, a, b,

where i and j are neighbors. (5)

Nodes that are on the borders of the 3D NoC have a subset of these constraints
(depending on their specific locations).

We also need to capture the link state transitions (i.e., shutdowns and star-
tups). It might be possible to hide the performance overhead due to these activa-
tions/deactivations by using a preactivation strategy (i.e., by activating a link slightly
ahead of time before it is really needed so that it will be ready when it is needed). How-
ever, the energy overheads occurred due to such activities cannot be hidden. To capture
this overhead, we use ACe,i→ j and DCe,i→ j for activation (startup) and deactivation
(shutdown), respectively.

Since we shut down some of the communication links in the mesh based 3D NoC
architecture and try to reduce the number of links used, our ILP based technique may
return a solution that demands a higher link sharing than the original case. This, in
turn, can affect the performance of the application and, eventually, result in higher
energy consumption. Therefore, we limit the number of communications exercising
the same communication link (within a given epoch).

In order to count the number of communication patterns that exercise a given link,
we need to capture the links that are used for implementing each communication
pattern. To achieve this, we define:

UE [a,b]
e,i→ j =

⎧
⎨

⎩

1, if link X [a,b]
e,i, j is used

for communication(e, [a, b])
0, otherwise

We next give our link energy cost function as the sum of the active communication
links, which are captured by the Ee,i→ j binary variables. More specifically, our link
energy function can be expressed as follows:

Elink =
E∑

e=1

n∑

i=1

n∑

j=1

Wmax∑

w=1

Ee,i→ j + α × ACe,i→ j

+β × DCe,i→ j (6)
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In the above expression, α and β capture the weights of link activation and deacti-
vation, respectively (i.e., architecture specific transition costs).

Using both communication energy and link energy, we can express the objective
function as

min Ecomm + Elink . (7)

4.3 Discussion

Recall that, our goal so far is to shut down as many communication links as possible
to reduce energy consumption (under performance bounds). We can further increase
energy savings by scaling voltages and frequencies of the active links whenever it is
possible to do so. Voltage/frequency scaling of communication links should be done
with care though, as it can increase communication latencies significantly. However,
our observation is that, the communication patterns in a given epoch of a communica-
tion graph can be divided into two groups: critical communication(s) and non-critical
communications. The former represents the communications that last the longest,
whereas the latter represents the remaining ones. In fact, in most communication
epochs, there is only a single critical communication. A key observation is that; non-
critical communications can be delayed as long as their latency do not exceed that of
the critical communication(s). Therefore, the energy consumption of the active links,
onto which non-critical communications are mapped, can be reduced through volt-
age/frequency scaling. With this observation, we modify our problem formulation to
include voltage/frequency scaling in the communication links.

This part of our approach starts with the communication link information returned
by the link shutdown approach explained in the previous section (i.e., the set of
used/unused links). Using this input, we identify the critical communication patterns
and scale voltages and frequencies of the links that are used for non-critical commu-
nications.

We formulated this approach bymodifying the variables captured by binary variable
Ee,i→ j . Recall that, earlier, this variable is used to indicate whether the associated link
is on or off. To formulate voltage scaling, we expand this binary variable to Ee,v,i→ j

to indicate whether the given link is assigned voltage level v (and the corresponding
frequency). In other words, we have:

Ee,v,i→ j =
⎧
⎨

⎩

1, if link between Xe,i and Xe, j

is at voltage levelvduring epoch e
0, otherwise

We are assuming that there are V discrete voltage/frequency levels, and at any point
during the course of execution, a communication link can have a single voltage level.
In order to enforce this last requirement, we need to include the following constraint:

V∑

v=1

Ee,v,i→ j = 1, ∀e, i, j . (8)
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In addition to variable Ev,i→ j , we need to modify UE [a,b]
e,i→ j to include different

voltage levels, for different neighboring nodes:

UE [a,b]
e,v,i→ j =

⎧
⎪⎪⎨

⎪⎪⎩

1, if link between X [a,b]
e,i − X [a,b]

e, j is used for
communication (e, [a, b]) and this link
is at voltage level v

0, otherwise

For each voltage level v, we use a predetermined communication latency overhead
associated with that specific voltage level due to the decrease in the frequency. In
our formulation, this latency overhead is given by O(v) for voltage level v. The
O(v) variables depend on the discrete voltage levels available and their corresponding
frequencies.Basedon this variable, the latencyoverhead associatedwith a linkbetween
two nodes for a specific pattern and epoch (given as input) can be obtained as follows:

T (e, p) =
n∑

i=1

n∑

j=1

V∑

v=1

UE [a,b]
e,v,i→ j

×Le,a,b × K × O(v), ∀(e, a, b). (9)

In the above expression T (e, p) indicates the latency incurred to perform the com-
munication for pattern [a, b] in epoch e. On the other hand, K represents the latency
of communicating a unit (of data) through a communication link, whereasUE [a,b]

e,v,i→ j

indicates if link between X [a,b]
e,i –X [a,b]

e, j is running on voltage level v for pattern [a, b]
in epoch e. Our goal here is to limit the latency of each and every communication
pattern occurring in an epoch with the original latency of that epoch (Te). Note that
this last value is dictated by the critical communication pattern as explained earlier.
This constraint enables us to voltage scale only the (links used by the) communication
patterns that are not in the critical path within an epoch. Since we do not voltage scale
for the patterns that are in the critical path, we will not incur any additional perfor-
mance overhead due to voltage scaling. It is important to note that, if desired, this
formulation can easily be modified to work under a performance degradation bound;
that is, allowing a certain increase in the latency of the critical communication pattern.

T [a,b](e) ≤ Te, ∀(e, a, b). (10)

Apotential overhead introducedby link voltage scaling is the area overhead incurred
by the voltage/frequency scaling circuit required for every link in the 3DNoC. In order
to reduce this area overhead, recent architectures define voltage regions (also called
voltage islands [19]), which use the same voltage level for a certain region of the 3D
NoC. This way, instead of using one voltage/frequency scaling circuit per link, we
are able to use one scaling circuit per region, thereby saving considerable amount of
die area. We can extend our baseline formulation by introducing a new voltage level
variable for each region, Re,v,r .
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Re,v,r =
⎧
⎨

⎩

1, if region r is at voltage
level v during epoch e

0, otherwise

We assume that the region information (partitioning) is given as input to our ILP
formulation, which basically specifies the links and nodes that are part of each region.
For each region, we need to assign a unique voltage level as in the case of a link (in
our baseline formulation). We can write:

V∑

v=1

Re,v,r = 1, ∀e, r . (11)

The next question to address is how to select the voltage level for a specific region.
In our implementation, we conservatively select the highest voltage level (when all
the links within that region are considered) in order not to introduce any performance
overhead which could be caused by a critical path in a given pattern.

Re,v1,r × v1 ≥ Ee,v2,i→ j × v2, ∀e, v1, v2, r, i, j
where v1 ≥ v2 and i → j ∈ r. (12)

Above formulation assigns the highest voltage level (among those demanded by
the links in the region) to the region. Additionally, we need to modify the constraint
given before as follows:

UE [a,b]
e,v,i→ j ≥ X [a,b]

e,i + X [a,b]
e, j

+Re,v,r − 2, ∀e, r, i, j, a, b, v such that i → j ∈ r. (13)

This constraint ensures that UE [a,b]
e,v,i→ j values are assigned such that the region’s

voltage level is used for that specific link given by i → j .
Note that, in our ILP formulation, we employ area and distance as two main con-

straints, whereas performance, energy, and communication bandwidth and other pos-
sible constraints are left out. For example, depending on the switch present in a node,
bandwidth available to the connected links will be limited. Our ILP formulation, in
its current form, does not cover this constraint. However, our formulation can easily
be modified to include such constraints. In addition to additional constraints, our ILP
formulation can also be modified to optimize for a different objective function instead
of data communication energy.

5 Experimental evaluation

To test the effectiveness of our ILP-based approach, we performed experiments using
a set of array-based applications. The compiler part of our approach (interprocessor
communication extraction) has been implemented using SUIF [20]. We used Xpress-
MP [18] as our ILP solver. The solution times we experienced varied between 27.4 s
and 4.6 min (over 90 % of our compilation times are spent within the ILP solver).
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Table 1 Our simulation
parameters and their default
values

Parameter Value

Types of processor cores 4

Number of blocks 24

Number of layers 2

Temperature bound 110

θ 0.2

3D NoC size 2 layers of 5 × 5 Mesh

Mesh node 2-issue CPU / 16 KB local memory

Number of voltage levels 4

Voltage range [0.8 V, 1.4 V]

Voltage switching latency 200 ns

Voltage switching energy 2.2 nJ

Link activation latency 650 ns

Link activation energy 9.0 nJ

Packet header size 3 flits

Flit size 39 bits

We used Orion [21], an architectural level dynamic power simulator that is capa-
ble of providing detailed power estimates and performance results, to simulate link
power consumption behavior. We enhanced the simulator with static (leakage) power
models. While our main focus in this work is on reducing communication energy con-
sumption through accurate node placement, link shutdown, and link voltage/frequency
scaling, it is also important to consider the chip-wide energy impact, including not
only communication energy but also computation and memory access energies as
well. Using the default simulation parameters shown in Table 1 and a complete sim-
ulation environment that uses both SIMICS (for processor simulation) and Orion
(for network simulation), we found that the 3D NoC energy consumption constitutes
about 29 % of total on-chip energy consumption for our benchmarks, assuming that
each CPU can issue two instructions at each cycle, and has 32KB software-managed
local memory. As a result, one can expect decent chip-wide savings if the 3D NoC
energy consumption can be cut significantly. Table 2 gives important statistics on our
benchmark codes. In this table, the third and fourth columns show the total number
of communication messages issued at the source code level and total inter-processor
communication volume, respectively. The next column lists the link energy consump-
tion when no power management scheme is employed, and the last column gives
the total execution cycles for the benchmarks. The numbers under the fifth and sixth
columns are obtained using the default values of the simulation parameters listed in
Table 1.

Figure 2 gives the energy consumption results when our approaches are used.
Unless otherwise stated, in this and all other graphs that show energy, the results
are given as normalized values, with respect to the case where no node placement
and no link energy optimization is applied. Also, as our performance bound, we set
Slimit to the average number of messages that share a link in the original case (with-
out any rerouting). The first bar in Fig. 2 shows the results when only link shutdown
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Table 2 Benchmarks used in our experimental evaluation

Name Benchmark description Communication Execution
cycles (×106)

Messages count Volume (KB) Energy (mJ)

go go-playing program 1,084 137.53 0.53 96.52

m88ksim a chip simulator 3,351 489.22 2.36 324.82

compress in-memory version of
the UNIX utility

1,627 228.52 0.79 106.08

li Xlisp interpreter 1,283 178.94 0.69 296.13

ijpeg image compres-
sion/decompression

3,427 449.07 1.58 239.49

vortex an object oriented database 4,108 486.71 1.63 279.73

tomcatv vectorized mesh generation 1,786 235.75 0.85 114.56

swim shallow water equations 2,025 256.34 0.92 186.62

su2cor Monte-Carlo method 3,654 479.89 1.73 249.03

hydro2d Navier Stokes equations 1,606 203.26 0.73 189.14

mgrid 3D potential field 1,928 243.77 0.88 171.91

applu partial differential
equations

3,218 424.92 1.53 236.58

turb3d turbulence modeling 4,457 536.29 1.98 301.47

apsi Weather prediction 1,196 157.15 0.57 261.84

fpppp Gaussian series for
quantum chemistry

4,056 487.89 1.67 254.70

wave5 Maxwell’s equations 4,362 505.45 1.82 273.16

Fig. 2 Energy consumption results with the default simulation parameters. LS: link shutdown; LS + VS:
link shutdown followed by voltage scaling

(Sect. 4) and node placement is used, and the second bar gives the results when both
link shutdown and voltage/frequency scaling are used (Sect. 4) on top of an optimal
node placement. As mentioned earlier, these results include the overheads incurred
by our schemes. We see that the average energy savings with link shutdown only and
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Fig. 3 Impact of the number of voltage/frequency levels. The last bar, for each benchmark, captures
continuous scaling

combined scaling/shutdown are 26.27 and 38.50 %, respectively. Although we do not
present detailed performance results, with the performance bound mentioned above,
our approach incurred only around 1.5 % performance degradation on average; the
leakage impact of this is also included in our energy results. Even when preactivation
is not employed, the average performance overhead was only 1.7 %.

In our first set of sensitivity experiments, we study the impact of the number of
voltage/frequency levels on our energy savings. Recall that the default number of
voltage/frequency levels was 4. Figure 3 gives the results when the number of volt-
age/frequency levels is varied between 2 and 16. In obtaining the results with k volt-
age/frequency levels, we divided the [0.8 V, 1.4 V] voltage range into k and, for each
voltage value, we used the corresponding frequency value. The graph in Fig. 3 also
shows the results of a hypothetical case with continuous voltage scaling in the range
[0.8 V, 1.4 V], i.e., when we have an infinite number of voltages (with their corre-
sponding frequencies) available in that range. We see from these results that, while
increasing the number of voltage/frequency levels initially brings substantial benefits,
the additional savings start to diminish dramatically when we reach a certain number
(of levels). In fact, the results with 16 voltage/frequency levels and infinite number
of levels are almost the same (with the average energy savings of 53.22 and 54.14 %,
respectively).

Our next set of experiments is designed to investigate the impact of the 3DNoC size
on our results. The original mesh size used in our experiments so far was two layers
of 5 × 5. First, we only change the NoC size in a layer while keeping the number of
layers fixed at 2. The results shown in Fig. 4 indicate that the savings from both link
shutdown and voltage scaling increase as we increase the mesh size. This is because
an increased mesh size results in more sparse use of communication links (i.e., the
links usage frequency gets reduced), thereby creating better opportunities for both
link shutdown and voltage scaling. We see from these results that the average energy
savings with a 7 × 7 mesh 3D NoC are 34.53 and 45.56 % for link shutdown and
voltage scaling, respectively.
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Fig. 5 Impact of the number of
layers in 3D NoC
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Next, we explore the effect of number of layers, while keeping theNoC sizewithin a
layer as 5× 5. Figure 5 shows the energy savings when the number of layers vary from
1 to 5. As can be seen from this figure, with a single layer (a 2D NoC), there are still
energy savings but it is a lot less compared to higher number of layers. As the number
of layers increase energy savings also increase, however the energy reductions brought
by an additional layer keeps dropping. Note that, we do not apply any temperature
bound in implementing these multiple layers which can potentially drop these savings
further.

We now study the impact of dividing the mesh into islands and managing link
power consumption at an island granularity (as discussed at the end of Sect. 4). That
is, the links in each island are assigned a single voltage/frequency, in order tominimize
the potential area/placement overheads of having too many voltage/frequency scaling
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Fig. 6 Impact of the number of voltage islands

circuits (when we have a separate circuit for each and every link). The graph in Fig. 6
shows the results when we have only two islands (i.e., the mesh area is divided into
two parts, and the links in a given island are controlled together using a single scaling
circuit) and five islands (i.e., each row in the 5 × 5 mesh has its own scaling circuit).
The graph also reproduces the results with our default configuration where each link
is controlled independently. We see from these results that, as expected, a smaller
number of islands translate to lower energy savings. However, we also see that even
with two islands, the average energy savings obtained through voltage scaling is about
17 %; that is, link voltage scaling is still quite effective.

The savings achieved by our results also depend on the code and data mapping
scheme used. Recall that our default mapping schemes have been explained earlier in
Sect. 3. To study the impact of a different mapping, we also performed experiments
when the data manipulated by the application are mapped to the memories of the
CMP nodes in a fashion different from our default mapping (the computation mapping
though still used the owner-computes rule). We found that the results with these new
mappings are within (2 %) of those obtained using our original mapping. Also, since
our approach uses profile data for integer benchmarks, we performed experiments
with different inputs for these benchmarks and found that our results are consistent
(within 1 %) across different input sets (we tried three different input sets for each
integer benchmark).

We, next, compare the savings obtained using our approach to those obtained using
two heuristic schemes. Figure 7 presents the average energy savings (over all bench-
mark codes in our experimental suite) using the default values of our simulation para-
meters. The specific link shutdown heuristic used is from [22] and the specific voltage
scaling heuristic is from [23]. We see from this figure that, while the heuristic schemes
perform very well, there is still a gap between them and the ILP based schemes, moti-
vating for further research on developing better heuristics. This gap increases with the
heterogeneous case as opposed to the homogeneous case.
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Fig. 7 Comparison of the ILP based schemes with heuristic approaches
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Fig. 8 Area overheads normalizedwith respect to no energy optimization case. LS: link shutdown;LS+VS:
link shutdown followed by voltage scaling

We evaluate the effect of link energy optimization on area with varying mesh sizes
in Fig. 8. The area overheads are estimated using an implementation on an FPGA.
As can be seen from this graph, voltage scaling require substantial circuits to support
voltage and frequency changes. Therefore, area overhead of link shutdown and voltage
scaling is much more compared to only applying link shutdown (4.2 versus 14.3 %
for a 7 × 7 mesh).

Our last set of experiments compare the performance degradation caused by the pro-
posed schemes. Figure 9 shows the performance overhead normalized with respect to
no energy optimization case. Performance overhead (increase in the execution latency)
due to link shut down (LS) is higher compared to voltage scaling (LS + VS) due to
delays inherent in state transitions between on and off states. Our schemes are accom-
panied with minimal impact on performance, ranging from 6.2 to 19.7 % for LS and
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Fig. 9 Performance overheads normalized with respect to no energy optimization case. LS: link shutdown;
LS + VS: link shutdown followed by voltage scaling

from 0.3 to 7.4% for LS +VS. Note that, we obtain the aforementioned energy savings
with no degradation in network throughput.

6 Conclusion

Global interconnect problem has become more important with the increase in the
number of processor cores in chip multiprocessing. 3D designs and NoC architectures
have been unified as 3D NoCs to overcome the interconnect scaling bottleneck. We
try to map heterogeneous processors onto the given 3D chip area with minimal data
communication costs. Moreover, we try to achieve link power reduction through com-
munication link shutdown and voltage/frequency scaling. We formulated this problem
using ILP and solved it using a commercial solver. Our experiments show that the ILP
based schemes generate very impressive results as far as energy reduction is concerned.
Our approach also provides a bar against heuristic schemes.
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