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Cardiovascular disease (CVD) is a group of disorders affect-
ing the heart and blood vessels including coronary heart 

disease, stroke, hypertension, and peripheral arterial disease. 
CVD is caused by interactions of genetic, environmental, and 
lifestyle factors.1 During the past half century, prevention and 
treatment efforts have focused on modifiable CVD risk factors 
such as elevated blood cholesterol level, hypertension, type 2 
diabetes mellitus, and tobacco use. Although these targeted 
efforts have contributed to steady declines in CVD mortality 

over this time period, CVD remains the leading cause of death 
across the globe.2
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Genome-wide association studies (GWAS) have success-
fully identified thousands of single nucleotide polymorphisms 
(SNPs) that underlie CVD and its major risk factors.3 Many 
genetic loci appear to affect multiple phenotypes. One example 
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is the SH2B3 gene region on chromosome 12, which harbors 
variants that are associated with myocardial infarction4 and 
blood pressure5 and also with rheumatoid arthritis6 and type 
1 diabetes mellitus.7 Several common genetic variants associ-
ated with coronary artery disease (CAD) or myocardial infarc-
tion in GWAS also reveal associations with CVD risk factors 
and other complex traits,8 suggesting that these common 
genetic variants have multiple molecular functions or that they 
have a single molecular function with multiple downstream 
consequences. Although pleiotropic effects have been widely 
observed, their presence in relation to CVD and their down-
stream effects have not been evaluated systematically.

Despite the identification of thousands of common SNPs 
that are associated with an increased propensity toward CVD, 
the variants identified thus far explain only a small fraction 
of the overall genetic contribution to disease risk.9 It is likely 
that disease-promoting SNPs act by affecting the amino acid 
sequences of the corresponding coded proteins (ie, nonsyn-
onymous SNPs) or by altering mRNA expression levels (ie, 
expression quantitative trait loci [eQTLs]).10 A growing num-
ber of eQTLs have been found to be associated with human 
diseases.11 For example, multiple SNPs that were associated 
with blood lipid levels in GWAS were also found to be eQTLs 
for nearby genes (eg, in SORT1, PPP1R3B, and TTC39B),12 
suggesting that eQTLs play an important functional role.

We hypothesized that genetic variants influence CVD phe-
notypes by altering expression of genes and that systematic 
analysis of multiple traits might reveal high-order interactions 
of CVD and its risk factors.13,14 To that end, we built a CVD 
network using SNP-CVD phenotype associations and dis-
sected the relationships between genetic variants, gene expres-
sion, and CVD phenotypes. By integrating these 3 layers of 
information from >5000 Framingham Heart Study (FHS) par-
ticipants with deep phenotyping for CVD and extensive geno-
typing and gene expression profiling, we were able to study the 
role of genetic variation in relation to gene expression and to 
integrate this information across multiple complex CVD phe-
notypes. Our results revealed a dense network in which genetic 

variation was linked to gene expression and CVD phenotypes. 
We identified several modules that support the existence of 
pathways affected by genetic variants. We highlighted exam-
ples in which genetic variants may play a causal role in CVD 
and hypothesized that they affect CVD phenotypes by regulat-
ing (cis and trans) gene expression. Identifying these genetic 
variants that mediate gene expression may aid in understand-
ing biological mechanisms underlying CVD and in targeting 
therapies for its treatment and prevention.

Methods
Study Sample
Beginning in 1948, the FHS recruited participants from Framingham, 
MA, to undergo biennial examinations to investigate CVD and its risk 
factors.15 In 1971 and 2002, offspring (and their spouses) and adult 
grandchildren of the original cohort participants were recruited into 
the second- and third-generation cohorts, respectively. Collection of 
blood samples and RNA preparation were described previously.16 A 
total of 5257 participants from the offspring cohort (at examination 8) 
and third-generation cohort (at examination 2) who had both genome-
wide genotyping (institutional review board approval No. H-26671) 
and gene expression profiling (institutional review board approval 
No. H-27984) were included in this study (Figure 1).

Trait-Associated SNP
A total of 1512 SNPs associated in GWAS with 21 cardiovascular 
traits (Table 1) with the use of data from the database of Genotypes 
and Phenotypes (dbGaP)17 and the National Human Genome Research 
Institute GWAS catalog3 (at P≤5×10−8, downloaded in January 2014) 
were curated and matched with Framingham Affymetrix 550K array 
genotype data.18 The dbGaP resource lists results of GWAS whether 
published or not. The National Human Genome Research Institute 
GWAS catalog lists only published GWAS studies. Genotyping and 
quality control methods in the FHS have been described previously.18 
Briefly, SNPs were inputted to Minimac,19 an implementation of gen-
otype imputation software. SNP imputation combined genotype data 
with the HapMap CEU samples and then inferred genotypes proba-
bilistically on the basis of shared haplotype stretches between study 
samples and HapMap release 22 build 36. Imputation results were 
summarized as an “allele dosage,” defined as the expected number of 
copies of the minor allele at that SNP (a fractional value between 0 

Figure 1. Flowchart of integromic analysis. A total 
of 1512 single nucleotide polymorphisms (SNPs) 
associated with 21 cardiovascular disease (CVD) 
traits (at P≤5×10−8) were derived from database of 
Genotypes and Phenotypes and the National Human 
Genome Research Institute genome-wide association 
studies (GWAS) catalog. We built a CVD phenotype 
network by connecting 2 traits if they share the same 
GWAS SNP. Whole blood samples were collected 
from 5257 FHS participants. Genome-wide genotyping 
and mRNA expression levels were assayed. We 
correlated 1077 SNPs (after genotyping quality control 
of 1512 SNPs) with 17873 gene expression values to 
assess expression quantitative trait loci (eQTLs). We 
replicated these eQTLs in 2 large databases. We then 
built an eQTL network by connecting eQTLs to their 
associated genes and traits. We identified modules 
associated with different CVD traits within the network. 
Finally, we conducted mediation analyses to test 
whether the genetic effect appears to influence the 
CVD phenotype through effects of the eQTL (ie, GWAS 
SNP) on gene expression. BMI indicates body mass 
index; FHS, Framingham Heart Study; HDL-C, high-
density lipoprotein cholesterol; and LDL-C, low-density 
lipoprotein cholesterol.
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and 2) for each genotype. SNPs with imputed quality score (r2) <0.3 
or minor allele frequency <0.01 were filtered out, resulting in 1077 
SNPs for eQTL analysis.

Gene Expression
Whole blood was collected in PAXgene tubes (PreAnalytiX, 
Hombrechtikon, Switzerland) and frozen at −80°C. RNA was 
extracted from whole blood with the use of the RNA System Kit 
(Qiagen, Venlo, Netherlands), and mRNA expression profiling 
was assessed with the use of the Affymetrix Human Exon 1.0 ST 
GeneChip platform (Affymetrix Inc, Santa Clara, CA), which con-
tains >5.5 million probes targeting the expression of 17 873 genes. 
The Robust Multi-Array Average package20 was used to normalize 
the gene expression values and remove any technical or spurious 
background variation. Linear regression models were used to adjust 
for technical covariates (batch, first principal component, and resid-
ual of all probeset mean values).

Statistical Analysis
eQTL analysis was conducted with the use of the pedigreemm21 
package in R with gene expression as the dependent variable and 
genotype, sex, and age as independent variables. Technical covari-
ates and imputed whole blood cell counts (or proportions) were 
adjusted for with the use of a linear mixed effects model. Familial 
relatedness was modeled as a random effect. The cis effect for 
a given expression trait was defined by testing all SNPs located 
within 1 Mb upstream or downstream of the transcription start site 
of a gene (cis-eQTL). SNPs that were mapped to different chro-
mosomes from their associated gene transcripts were defined as 
trans-eQTLs. The false discovery rate22 was applied to account for 
multiple testing. SNPs at false discovery rate <0.05 were selected 
as significant eQTLs. For trans-eQTLs that were also cis-eQTLs, 
we examined whether the genes regulated in cis play a role in the 
regulation of the trans genes by conditioning on expression of the 
cis gene in the linear regression model. Mediation analysis was 
conducted with the use of the mediation package23 in R with SNP as 
the “exposure,” gene expression as the “mediator,” and phenotype 
as the “outcome.” A 100% proportion of mediation effect indicates 
that the entire association between a SNP and a phenotype (direct 
effect) is explained by changes in gene expression. The significant 
mediation effects were selected at a permutation P<0.0005 (based 
on 10 000 permutations).

Annotation and Enrichment Analysis of eQTLs 
With Encyclopedia of DNA Elements Data
The Encyclopedia of DNA Elements (ENCODE)24 cataloged many regu-
latory elements including DNase I hypersensitive regions profiled in 82 
cell lines, 149 transcription factor (TF) binding regions profiled in dif-
ferent cell lines resulting in a total of 406 different cell line–TF pairs, 
and 162 histone modification–cell line pairs (ENCODE January 21, 2011 
freeze). We used GLANET (publication in preparation, software avail-
able at https://github.com/burcakotlu/GLANET and documentation at 
https://glanet.readthedocs.org/en/latest/) to annotate our list of eQTLs by 
overlapping them with the ENCODE peak lists. We then evaluated the 
significance of the overlap using GLANET’s resampling-based enrich-
ment analysis. Specifically, we sampled multiple (n=100 000) random 
SNP sets matching in size and numbers per chromosome to the original 
eQTL SNP set and computed the size of the overlap for each random set. 
To account for systematic biases, our random sampling scheme took into 
account the “mappability” and guanine-cytosine content of the SNPs and 
matched the random SNP sets to the actual SNP set in terms of mappa-
bility and guanine-cytosine content. The collection of overlap statistics 
across multiple random samplings was then used to estimate an empiri-
cal null distribution for the overlap statistic. The resulting P values were 
adjusted for multiple testing using both the Benjamini Hochberg22 and 
Bonferroni correction methods. We used the FIMO tool from the MEME 
suite25 to assess whether the eQTLs disrupted the binding sites of the TFs 
that they were bound by in the ENCODE data.

In Silico Validation of eQTLs
Whole blood eQTLs were downloaded from the Blood eQTL 
Browser.11 This resource contains the results of an eQTL meta-
analysis from 5311 peripheral blood samples from 7 studies. To 
explore tissue-specific effects, we also collected and analyzed results 
from 53 eQTL population data sets (Table I in the online-only Data 
Supplement). These 53 data sets represent analyses from 24 pub-
lished manuscripts and 13 unpublished data sets reflecting >27 cell 
and tissue types.26 Cis- and trans-eQTLs from the present study were 
cross-referenced with significant eQTLs reported in the aforemen-
tioned data sets directly by matching SNP identifiers.

Network Construction and Modules Identification
On the basis of the SNP–trait relationships, we constructed a CVD 
network. In the network, each node corresponds to a CVD trait, and 
2 traits were connected to each other if they shared at least 1 SNP in 
GWAS. The width of each edge was weighted by the proportion of 
shared SNPs between traits. To explore relations between CVD traits 
and other complex traits (GWAS SNP P<5×10−8), we expanded the 
connections if SNPs associated with CVD traits were also found to be 
associated with other diseases in GWAS. Networks were visualized 
with the use of Cytoscape software.27

On the basis of SNP–gene expression associations, we constructed 
an eQTL network. The TFit (iterated Transfer-Fusion) algorithm with 
default parameters in the Clust&see28 plugin of Cytoscape was used 
to search for modules within this network. The TFit algorithm29 is 
based on modularity optimization, which uses a vertex transfer pro-
cedure at every level. Level 1 is the entire network; each node is 
assigned to its best adjacent cluster, as long as modularity increases. 
Then classic transfers were performed, and vertices belonging to the 
same cluster were merged.

Results
Genetic Variation Network for Complex CVD Traits
We restricted our analysis to 1512 significant GWAS SNPs 
associated (at P≤5×10−8) with 21 CVD traits listed in Table 1. 
Fifteen of the 21 CVD traits shared at least 1 SNP with 
another trait (Figure  2 and Table II in the online-only Data 
Supplement). Among the CVD traits, low-density lipoprotein 
cholesterol (LDL-C), high-density lipoprotein cholesterol 

Table 1.  Cardiovascular Disease Phenotypes Included in 
Analyses

Cardiovascular Disease Phenotypes
(Named by MeSH Terms)

Cardiovascular Disease Risk Factors
(Named by MeSH Terms)

• Aortic aneurysm, abdominal
• Atrial fibrillation
• �Cardiomegaly/cardiomyopathy 

dilated/heart failure
• �Carotid artery diseases/carotid 

stenosis
• �Coronary artery disease/

atherosclerosis/ coronary  
disease/myocardial infarction

• �Death sudden cardiac/arrhythmias 
cardiac

• Intracranial aneurysm
• Stroke
• �Venous thrombosis/venous 

thromboembolism

• �Cholesterol, LDL/cholesterol/
apolipoprotein B

• Cholesterol, HDL/apolipoprotein A
• Triglycerides/VLDL-C
• Lipoprotein (a)
• Coagulation
• Diabetes mellitus, type 1
• �Diabetes mellitus,  

type 2/glucose/insulin
• Diabetic retinopathy
• Smoking/tobacco
• �Body mass index/waist-hip  

ratio/obesity
• �Systolic/diastolic blood  

pressure/hypertension
• C-reactive protein/inflammation

HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; MeSH, 
Medical Subject Headings; VLDL-C, very low-density lipoprotein; and /, similar 
traits that were merged.
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(HDL-C), triglycerides, body mass index, type 2 diabetes 
mellitus, and blood pressure served as “hub” phenotypes that 
connected multiple CVD traits, mirroring epidemiological 
observations about the clustering of metabolic risk factors.30 
We found that C-reactive protein and LDL-C had a strong 
genetic connection via 6 shared SNPs (rs1260326 of GCKR, 
rs1800961 of HNF4A, rs2075650 of TOMM40, rs2650000 
of RPL12P33-NCRNA00262, rs4420638 of APOC1, and 
rs9987289 of PPP1R3B-TNKS). CAD and LDL-C had a 
strong genetic connection through 5 shared SNPs (rs11206510 
of BSND-PCSK9, rs599839 of PSRC1, rs12740374 and 
rs646776 of CELSR2, and rs964184 of ZNF259). We also 
identified some hub SNPs; for example, rs964184, an intronic 
variant in ZNF259, was associated in GWAS with HDL-C,31 
LDL-C,12 triglycerides,12 and CAD.4 rs1260326 (GCKR) was 
associated in GWAS with triglycerides,12 total cholesterol,12 
and C-reactive protein32; rs13107325 (SLC39A8) was associ-
ated in GWAS with blood pressure,5 body mass index,33 and 
HDL-C.12 We further considered SNPs in linkage disequilib-
rium with an index SNP. Two traits were connected if they 
shared the same GWAS SNP or proxy SNPs that are in high 
linkage disequilibrium (r2>0.8) with the index SNP. When 
modified through the inclusion of proxy SNPs, the CVD phe-
notype network encompassed 19 of the 21 CVD traits (Figure 
I in the online-only Data Supplement). Four traits (coagula-
tion, venous thrombosis, sudden cardiac death, and abdomi-
nal aortic aneurysm) with no connections by virtue of directly 
shared SNPs all had proxy SNPs in perfect linkage disequi-
librium (r2=1) with the index SNPs, and the combination of 

index and proxy SNPs identified new trait connections: coagu-
lation and venous thrombosis; sudden cardiac death and HDL 
cholesterol; and abdominal aortic aneurysm and CAD.

Expanding the connections across all 409 complex traits con-
taining genome-wide significant SNPs within dbGaP and the 
National Human Genome Research Institute GWAS catalog, we 
found that CVD-associated SNPs from GWAS were strongly 
linked with many other complex traits (Figure II in the online-
only Data Supplement). These associations include HDL-C and 
LDL-C with alcohol consumption, Alzheimer disease (Figure III 
in the online-only Data Supplement) and blood pressure with 
CD40 ligand, and resistin with vitamin K levels (Table III in the 
online-only Data Supplement). Using this approach, we found 
that the phenotype network linked by common SNPs may reveal 
unexpected genetic connections with numerous non-CVD traits.

Regulation of the Genetic Variation Network
At a minor allele frequency >0.01 and imputation r2>0.3, 
1077 genome-wide significant (P<5×10−8) SNPs from GWAS 
were available for analysis. At false discovery rate <0.05, we 
identified 370 cis-eQTLs (associated with expression of 400 
genes at P<10−4) and 44 trans-eQTLs (associated with expres-
sion of 76 genes at P<10−6; Table IV in the online-only Data 
Supplement). For 696 SNPs (65%) not associated with expres-
sion traits, we further tested the association between their 
perfect proxy SNPs (linkage disequilibrium r2=1 in SNAP)34 
and gene expression levels. Using proxy SNPs, we identified 
an additional 54 cis-eQTLs for 6 CVD trait–associated SNPs 
(Table V in the online-only Data Supplement).

To assess whether the eQTLs significantly overlap with reg-
ulatory regions, we performed annotation and enrichment anal-
ysis with the DNase, histone modification, and TF peaks from 
the ENCODE project (see Methods for details). We first anno-
tated each eQTL by intersecting the SNP locus with ENCODE 
peaks and then evaluated the significance of overlap with 

Figure 2. Cardiovascular disease phenotype network by virtue 
of shared genome-wide association study single nucleotide 
polymorphisms. Each node represents a cardiovascular 
disease trait, and 2 traits are connected if they share at least 
1 single nucleotide polymorphism in genome-wide association 
studies. The width of each line is weighted by the proportion of 
shared single nucleotide polymorphisms between 2 connected 
traits. HDL indicates high-density lipoprotein; and LDL, low-
density lipoprotein.

Figure 3. Reference and single nucleotide polymorphism 
(rs7528684) allele matches to the Nfkb sequence logo 
(Encyclopedia of DNA Elements [ENCODE] motif logo NFKB_
disc1 from http://compbio.mit.edu/encode-motifs/).

http://compbio.mit.edu/encode-motifs/


540    Circulation    February 10, 2015

functional elements using GLANET. This analysis revealed 
that the eQTLs are significantly enriched for DNase I hyper-
sensitive regions in 16 cell lines and 133 histone modification–
cell line pairs (Table VI in the online-only Data Supplement). 
Thirty of our eQTLs are located within 10 kb upstream of the 
transcription start site of the expressed gene associated with 
the corresponding SNP (Table VI in the online-only Data 
Supplement). Our annotation analysis indicated that all of 
these promoter eQTLs are within 1 or more histone modifica-
tion region, and 10 of them overlap with a TF peak. Notably, 
rs7528684, which is a cis-eQTL associated with expression of 
FCRL3, resides 2 kb upstream of the transcription start site 
of FCRL3 and is bound by Nfkb in the Gm12891 cell line. 
Our sequence analysis revealed that this SNP is an eQTL that 
might be regulating expression of FCRL3 by increasing bind-
ing affinity of the Nfkb binding site (Figure 3).

By connecting eQTLs and their associated genes, we built 
a SNP-gene association network (Figure IV in the online-only 

Data Supplement). Using the TFit algorithm,28 we identified 
13 modules containing >10 nodes (Table VII in the online-
only Data Supplement). These modules may reveal genetic 
pathways affecting CVD phenotypes. For example, SNPs 
associated with type 1 diabetes mellitus displayed cis associa-
tions with genes in 6p21 and trans associations with ROR1 
and CTLA4 (Figure 4A). Using gene set enrichment analysis, 
we found that these genes were significantly enriched for the 
KEGG type 1 diabetes mellitus pathway (P<10−6). Of note, 
GWAS and gene expression studies have identified associa-
tion between CTLA4 (DNA and mRNA level) and type 1 dia-
betes mellitus.35 In another module, rs964184 in ZNF259, 
which was associated in GWAS with HDL-C, LDL-C, triglyc-
erides,12,31 and CAD,4 was found to have cis associations with 
PCSK7, SIDT2, TAGLN, and BUD13 and trans associations 
with TMEM165, YPEL5, PPM1B, and OBFC2A (Figure 4B). 
Three linked SNPs in FADS1 (rs174546, rs174547, and 
rs174548; pairwise R2=0.80–0.97) were associated in GWAS 

Figure 4. Modules in the cardiovascular disease (CVD) expression quantitative trait loci (eQTL) network. Gray nodes represent CVD traits. 
Blue nodes represent single nucleotide polymorphisms (SNPs) associated with CVD traits in genome-wide association studies. Orange 
nodes represent genes whose expression is associated with SNPs in Framingham Heart Study participants. Gray edges represent SNP–
trait associations. Red edges represent cis associations between SNPs and gene expression. Green edges represent trans associations 
between SNPs and gene expressions. A, Type 1 diabetes mellitus eQTL module. B, rs964184 pleiotropic eQTL module. C, Lipids eQTL 
module. D, Coronary artery disease and smoking eQTL module. E, eQTLs associated with FDFT1. HDL indicates high-density lipoprotein; 
LDL, low-density lipoprotein; and LDLR, low-density lipoprotein receptor.
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with multiple lipids traits36; we found that these SNPs have 
cis associations with C11orf10, FADS1, FADS2, and FEN1 
and trans associations with LDLR and SREBF2 (Figure 4C). 
Using gene set enrichment analysis, we found that genes in 
these 2 modules are significantly enriched for lipid metabolic 
processes (P<10−6). rs1994016, rs3825807, and rs4380028 
(pairwise r2=0.52–0.87) in ADAMTS7 were associated in 
GWAS with CAD,4 whereas rs1051730 and rs2036527 (pair-
wise r2=0.90) in CHRNA3 were associated in GWAS with 
smoking.37,38 We discovered that these SNPs all displayed cis 
association with 3 genes (PSMA4, CHRNA5, CTSH). Variants 
in PSMA4 and CHRNA5 were found to be associated with 
chronic obstructive pulmonary disease and lung function.39 
The CHRNA5 variants were also found to be associated with 
nicotine and alcohol dependence.40 Expression levels of 
PSMA4 and CTSH were found to regulate immune function 
in type 1 diabetes mellitus.41 Therefore, the clustering of these 
3 genes with multiple disease-associated SNPs may explain 
in part the concurrence of CAD and chronic obstructive pul-
monary disease and the strong association between smoking, 
CAD, and diabetes mellitus (Figure 4D).

Reproducibility of eQTLs
To validate the eQTLs detected above, we first queried the 
Blood eQTL Browser11 meta-analysis of eQTL associations 
in nontransformed peripheral blood samples from 5311 indi-
viduals. A total of 240 cis-eQTLs and 25 trans-eQTLs from 
our data set were also detected as eQTLs in the Blood eQTL 
Browser database. Among them, 165 cis-eQTLs (69%) and 25 
trans-eQTLs (100%) were associated with expression of the 
same genes and showed the same directions of association as 
our eQTL findings. In addition, we found 7 cis-eQTLs from 
our results that were perfect proxies (r2=1) of eQTLs in the 
Blood eQTL Browser (Table VIII in the online-only Data 
Supplement). Because eQTLs are highly tissue specific,42 we 
further queried our multitissue eQTL databases, which inte-
grated 53 data sets from multiple tissues (see Methods for 
details). One hundred sixty-one cis-eQTLs from our data also 
were detected as eQTLs in this database (no trans-eQTLs were 
found). Among them, 116 cis-eQTLs (72%) were associated 
with the same genes across eQTL databases (Table IX in the 
online-only Data Supplement). rs17030613 in CAPZA1, asso-
ciated with blood pressure in GWAS,43 was associated with the 
expression of ST7L in our data and in 2 other tissues (brain 
and CD4+ lymph). Lower ST7L transcript levels were found to 
be associated with lower blood pressure in East Asian popu-
lations.43 In the FHS samples, we found that ST7L transcript 
levels were associated with diastolic blood pressure (P=0.023). 
rs1412444 in LIPA, associated with CAD in GWAS,44 was 
associated with expression of LIPA in our data and in 2 other 
tissues (blood and liver). rs2531995 in ADCY9 was associated 
with obesity in GWAS45 and with expression of ADCY9 in our 
data and in 4 other tissues (brain, blood, liver, and omentum).

SNP Effects on Gene Expression May Mediate 
Phenotype Variation
To test whether expression levels of genes regulated by eQTLs 
might explain the observed associations between eQTLs and 
phenotypes, we tested the association between expression of 

eQTL genes and 7 metabolic CVD phenotypes (body mass 
index, LDL-C, HDL-C, triglycerides [log-transformed], fast-
ing blood glucose, and systolic and diastolic blood pressure; 
Table 2) in 5257 FHS participants. We found several examples 
in which the expression level of the eQTL-associated gene was 
significantly associated with the same trait that was associated 
in GWAS with the index SNP (hypergeometric test P<0.001; 
Table 3). For 7 continuous CVD phenotypes that were avail-
able for analysis in the FHS, the eQTLs explained 0.5% to 5% 
of interindividual phenotype variation; in contrast, expression 
levels of the eQTL genes explained 4% to 13% of interindivid-
ual phenotype variation (Table 3). These results are consistent 
with the hypothesis that genetic variation affects phenotypes 
via effects on gene expression (see Figure 5 for an example).

To test whether the association of a SNP with a phenotype 
was potentially mediated via its effect on gene expression, 
we conducted mediation analysis to identify the proportion 
of the association between a SNP and its corresponding phe-
notype that was attributable to SNP-related changes in gene 
expression and subsequent differences in phenotype levels. At 
P<0.0005 for average causal mediation effects, we identified 
several potential mediation effects for HDL-C, LDL-C, and 
triglycerides (Table 4; no significant results were obtained for 
body mass index, fasting blood glucose, or blood pressure). 
For example, rs174546, rs174547, and rs174548 (intronic to 
FADS1) were found to be associated in GWAS with multi-
ple metabolic traits (HDL-C, triglycerides, and phospholip-
ids).31 For these SNPs, we found that 46% of their genetic 
effect on HDL-C, 59% of their genetic effect on LDL-C, and 
47% of their genetic effect on triglycerides were mediated 
through FADS1 expression (Table 4). In addition, as shown in 
Figure 4C, these 3 SNPs have trans associations with LDLR 
and SREBF2, which also demonstrate strong mediation effects 
on HDL-C, LDL-C, and triglycerides: LDLR (19% mediation 
for HDL-C, 29% mediation for LDL-C, and 15% mediation 
for triglycerides) and SREBF2 (19% mediation for HDL-C, 
28% mediation for triglycerides). rs964184 was reported to 

Table 2.  Clinical Characteristics of Framingham Heart Study 
Participants

Age, y 51.4 (15.7)

Male sex, % 46

Fasting blood glucose, mg/dL 100 (21.5)

Body mass index, kg/m2 27.5 (5.5)

Systolic blood pressure, mm Hg 121.7 (16.6)

Diastolic blood pressure, mm Hg 74.4 (9.9)

Total cholesterol, mg/dL 187.7 (36.3)

Triglycerides, mg/dL 116.4 (83.5)

HDL cholesterol, mg/dL 55.8 (17.0)

Hypertension,* % 40

Diabetes mellitus,* % 8.4

Lipid treatment, % 27.8

Values are mean (SD) unless indicated otherwise. HDL indicates high-density 
lipoprotein.

*Hypertension: systolic blood pressure ≥140 mm Hg or diastolic blood 
pressure ≥90 mm Hg or currently taking medication to treat elevated blood 
pressure. Diabetes mellitus: participants with fasting blood glucose ≥126 mg/
dL or currently taking medication to treat an elevated blood glucose level.
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be associated in GWAS with LDL-C, HDL-C, and CAD.4,12 
Mediation analyses revealed that a substantial proportion of 
its genetic effect on lipids is mediated through its trans asso-
ciation with expression of PPM1B (4% mediation of HDL-C 
and triglycerides) and YPEL5 (7% mediation of HDL-C and 
6% mediation of triglycerides). Because the expression levels 
of all of these genes were associated with HDL-C, LDL-C, or 
triglyceride levels, the module they constitute may represent 
an important target for lipid treatment.

Metabolite SNPs and CVD Traits
Metabolomic findings can be used to unravel novel biochemi-
cal mechanisms involved in a variety of disease processes, 
including atherogenesis. To identify genetic and biochemical 
underpinnings of our CVD network and pathways, we incorpo-
rated 170 genome-wide significant SNPs from 2 recently pub-
lished metabolomic GWAS.36,46 We found 13 SNPs that were 
shared between metabolites and the 21 CVD phenotypes in our 
network. As shown in Figure 6, several metabolites are associ-
ated with the 21 CVD traits in our network by virtue of shared 
GWAS SNPs. This was especially notable for lipid traits. For 
13 SNPs that were shared between metabolites and the CVD 
traits in our network (Figure 6), 6 of them were also associated 
with expression levels of genes (Table 5), including rs174548 
(FADS1), which was associated in GWAS with arachidonic 
acid (C20:4), a product regulated by FADS1, and with its 

substrate, dihomolinolenate. These eQTLs belong to 3 eQTL 
subnetworks (Figure 4A through 4C), suggesting genetic regu-
lation of intermediate metabolites or the lipid end-products in 
our pathways. When we further included perfect proxy SNPs 
(r2=1) for the index GWAS SNPs associated with metabolites 
and CVD traits, we identified 8 eQTLs for 3 metabolite SNPs 
(Table X in the online-only Data Supplement) that were asso-
ciated with additional CVD traits, including variants in ABO 
associated with venous thrombosis, CAD, and LDL-C.

Discussion
CVD is the consequence of the intricate interplay between 
multiple genetic variants, clinical risk factors, and envi-
ronmental factors. Our phenotype network, composed of 
pleiotropic SNPs, provided evidence of the shared genetic 
underpinnings of CVD and its risk factors. Our eQTL net-
work, which integrated SNPs, gene expression, and pheno-
type, identified several pathways affected by genetic variants 
associated with CVD and its major risk factors.

With the use of GWAS results alone, it is not possible to 
identify the causal variant, the causal gene, or the mechanism 
by which a SNP or nearby gene affects the phenotype. By 
integrating multidimensional data (ie, GWAS SNPs and gene 
expression analyses), we provide evidence that GWAS loci 
have strong associations (cis or trans) with expression levels of 
genes.47 We replicated our eQTL results in 2 large databases. 
The relatively low replication of some eQTLs from our data set 
in other databases may be attributable to the different genotyp-
ing and gene expression platforms (the Blood eQTL Browser 
used iIllumina arrays for SNPs and gene expression, whereas 
we used an Affymetrix array) or from the fact that our data set 
arose from a larger single cohort with uniform data collection 
techniques, whereas the Blood eQTL Browser relied on meta-
analysis of many separate data collection efforts. On the other 
hand, for the eQTLs identified both in our data and in other 
databases, we found a high concordance of SNP-gene asso-
ciations, further indicating that these eQTLs are replicable. 
Many of the genes associated with CVD SNPs were previously 
reported to be associated with CVD or its risk factors, includ-
ing FADS1, HMGCR, LPL, LDLR, and SREBF2. Moreover, we 
found a large number of eQTL-associated genes whose expres-
sion levels were also associated with a variety of CVD pheno-
types, suggesting the existence of 3-way relationships between 
genetic variants, gene expression, and phenotypes (Figure 5).

The underlying mechanism of downstream effects of dis-
ease-associated SNPs (trans-eQTL) has not yet been fully 

Table 3.  Cardiovascular Phenotypes and Proportion of 
Interindividual Variation Explained by Associated eQTLs and 
eQTL Genes in Framingham Heart Study Participants

Phenotype

Interindividual 
Variation Explained 

by eQTLs, %
(No. of eQTLs)

Interindividual 
Variation Explained  

by Expression of  
eQTL Genes, %  

(No. of eQTL Genes)

No. of eQTL  
Genes Also 

Associated With 
CVD Phenotype

Body mass index 3 (39) 6 (59) 29

Blood pressure
(SBP and DBP)

0.5 (DBP)
0.7 (SBP)(22)

4 (DBP)
4 (SBP) (47)

35 (27 for DBP  
and 21 for SBP)

HDL cholesterol 4 (60) 13 (89) 44

LDL cholesterol 3 (57) 13 (101) 30

Triglycerides 6 (50) 13 (60) 40

Fasting blood 
glucose

2 (89) 9 (183) 56

CVD indicates cardiovascular disease; DBP, diastolic blood pressure; eQTL, 
expression quantitative trait loci; HDL, high-density lipoprotein; LDL, low-density 
lipoprotein; and SBP, systolic blood pressure.

Figure 5. Example of triangular relations among 
phenotype, single nucleotide polymorphism, 
and gene expression. rs174546 (in FADS1) was 
associated with high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol 
(LDL-C), and triglycerides in genome-wide 
association studies (GWAS). This single nucleotide 
polymorphism was significantly associated with 
expression of LDLR in Framingham Heart Study 
participants (P=2.9×10−7). The expression of LDLR 
was also significantly associated with HDL-C, 
LDL-C, and triglyceride levels in Framingham Heart 
Study participants. eQTL indicates expression 
quantitative trait loci.
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Table 4.  Mediation Test Results

GWAS-
Associated 
Phenotype

Phenotype-Associated 
SNP From GWAS
(Mapped Gene)

Expressed Gene 
Associated With 
SNP (cis, trans)

SNP-Gene
R2

SNP-Gene  
P Value

Gene- 
Phenotype

R2

Gene- 
Phenotype  

P Value

SNP-Phenotype β
(Controlling for 

Expression)

Proportion of Mediation of 
SNP-Phenotype Association 

by Expression, %

HDL-C rs7120118
(NR1H3)

DDB2
(cis)

0.0069 1.7×10−9 0.0033 9.1×10−7 0.17 18.0

MADD
(cis)

0.015 2.6×10−19 0.0055 1.9×10−5 0.22 24.0

rs174546/rs174547/
rs174548
(FADS1)

FADS1
(cis)

0.046 9.4×10−56 0.0037 3.1×10−8 −0.45 45.8

SREBF2
(trans)

0.0054 8.9×10−8 0.015 2.2×10−24 −0.26 21.1

LDLR
(trans)

0.005 2.9×10−7 0.0084 1.1×1012 −0.21 18.6

rs964184
(ZNF259)

PPM1B
(trans)

0.0051 2.3×10−7 0.0017 6.1×10−5 −0.073 3.7

YPEL5
(trans)

0.0056 6.1×10−8 0.0085 1.5×10−12 −0.13 7.0

rs4759375
(SBNO1)

CDK2AP1
(cis)

0.0047 6.1×10−7 0.0074 1.6×10−6 0.26 10.1

rs3136441
(F2)

DDB2
(cis)

0.012 1.1×10−15 0.0033 9.1×10−7 0.30 32.4

rs2271293/rs16942887
(NUTF2/PSKH1)

DPEP2
(cis)

0.0061 1.3×10−8 0.015 5.9×10−16 0.41 23.2

SLC12A4
(cis)

0.0046 9.2×10−8 0.0035 4.6×10−4 0.14 8.3

HDL-C rs255049
(DPEP3)

DPEP2
(cis)

0.0084 2.5×10−11 0.015 5.9×10−16 0.38 43.7

SLC12A4
(cis)

0.0045 1.2×10−6 0.0035 4.6×10−4 0.11 13.3

LDL-C rs964184
(ZNF259)

PCSK7
(cis)

0.0038 7.0×10−6 0.0040 3.3×10−4 0.15 7.5

rs174546
(FADS1)

LDLR
(trans)

0.005 2.9×10−7 0.0034 9.6×10−13 −0.35 28.5

FADS1
(cis)

0.046 9.4×10−56 0.0018 4.4×10−7 −0.72 58.6

Triglycerides rs10761731
(JMJD1C)

CXCL5
(trans)

0.0061 1.4×10−8 0.012 2.9×10−15 −0.0063 17.0

ITGB3
(trans)

0.0062 1.2×10−8 0.011 1.3×10−11 −0.0042 11.8

AQ10
(trans)

0.0067 2.9×10−9 0.0044 3.3×10−5 −0.0046 12.8

ITGA2B
(trans)

0.0051 2.4×10−7 0.02 7.5×10−6 −0.0063 16.6

CLU
(trans)

0.005 2.7×10−7 0.022 9.9×10−23 −0.0066 17.6

rs174546/ rs174558
(FADS1)

FADS1
(cis)

0.046 9.4×10−56 0.0017 2.7×10−6 0.011 47.4

Triglycerides rs174546/ rs174558
(FADS1)

SREBF2
(trans)

0.0054 8.9×10−8 0.017 1.1×10−26 0.0074 27.6

LDLR
(trans)

0.005 2.9×10−7 0.0024 2.8×10−7 0.0038 15.1

rs4938303
(RPL15P15, BUD13)

PCSK7
(cis)

0.0041 3.64×10−6 0.0047 2.6×10−11 0.0035 5.0

rs651821
(APOA5)

SREBF2
(trans)

0.0047 6.4×10−7 0.017 1.1×10−26 0.014 9.8

rs964184
(ZNF259)

PPM1B
(trans)

0.0051 2.26×10−7 0.0087 3.0×10−19 0.0055 4.4

YPEL5
(trans)

0.0056 6.11×10−8 0.027 1.3×10−38 0.0071 5.7

GWAS indicates genome-wide association studies; HDL-C, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; R2, percent variance 
explained; SNP, single nucleotide polymorphism; and /, SNP in linkage disequilibrium (R2>0.8).
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characterized. It has been suggested that expressed cis-eQTL 
genes can act as master trans regulators.48 Among 31 eQTLs 
with both cis and trans associations, we found that only SNPs 
in the FADS1 region (rs174546, rs174547, and rs174548) lost 
significance for association with LDLR and SREBF2 after 
conditioning on expression of the corresponding cis genes (for 
expression of FADS1 and FADS2, see Table XI in the online-
only Data Supplement). Both the cis and trans associations 
were replicated in the Blood eQTL Browser, suggesting that 
the trans effects on LDLR and SREBF2 were mediated by 
FADS1 and FADS2 expression. Moreover, both the SNPs in 
GWAS and gene expression in our samples were associated 
with multiple lipids traits (HDL-C, LDL-C, and triglycerides), 

providing evidence of trans effects and implicating this cis-
trans eQTL module (Figure  4C) in the link between FADS 
gene variation and CVD risk.

Common variants from GWAS explained only a small fraction 
of interindividual trait variance, yet they may provide important 
biological or therapeutic insights. For example, common vari-
ants in the introns of HMGCR and NPC1L1 confer small effects 
on plasma LDL-C (3 and 2 mg/dL, respectively), but they have 
dramatic effects on LDL-C when targeted by statins or ezeti-
mibe, respectively.12 Using mediation testing, we found that the 
genetic effects of variants (rs12916, rs3846663, and rs12654264; 
pairwise R2=0.94–1.0) in HMGCR on LDL-C may be mediated 
through HMGCR expression (P=0.034, P=0.036, and P=0.044, 

Figure 6. Cardiovascular disease phenotype and metabolite network by virtue of shared genome-wide association study single 
nucleotide polymorphisms. Gray nodes represent cardiovascular disease traits. Red nodes represent metabolites. Two traits are 
connected if they share at least 1 single nucleotide polymorphism in genome-wide association studies. HDL-C indicates high-density 
lipoprotein cholesterol; and LDL, low-density lipoprotein.

Table 5.  eQTLs Among Metabolite-Associated GWAS Single Nucleotide Polymorphisms

eQTL
Gene Symbol  

and Locus
Metabolite Associated  

With eQTL
Traits Associated With  

eQTL in GWAS
Expressed Gene  

Associated With eQTL

rs1260326 GCKR
(2p23.3)

Glucose/mannose C-reactive protein;
triglycerides;

LDL cholesterol

NRBP1*

rs174547/
rs174548

FADS1
(11q12.2)

Arachidonate (20:4n6)/
dihomo-linolenate (20:3n3 or n6)

HDL cholesterol;
triglycerides

C11orf10*; FADS2*; FADS1*; FEN1*;  
LDLR†; SREBF2†

rs3184504 SH2B3 (12q24.12) Kynurenine Blood pressure;
type 1 diabetes mellitus

TRAFD1*; ALDH2*; HVCN1*; TCTN1*; ANKRD22†; 
ARHGEF40†; CD274†; FCGR1A†; GBP1†; GBP4†; 
GBP5†; GBP7†; IDS†; IFIT3†; IRF9†; MYADM†; 

PARP14†; PSMB9†; PSTPIP2†; RFX2†; RNF31†; 
SAMD9L†; SERPING1†; SRBD1†; STAT1†; 

TRIM22†; UBE2L6†; WDFY2†

rs7570971 RAB3GAP1 (2q21.3) 1,5-Anhydroglucitol (1,5-AG) LDL cholesterol MCM6*; R3HDM1*; IRF8†; TNFRSF21†; LILRA4†; 
SERPINF1†; DARS†

rs964184 ZNF259 (11q23.3) DAG 36:2/
TAG 56:3 /X-03094

HDL cholesterol BUD13*; PCSK7*; SIDT2*; TAGLN*; OBFC2A†; 
TMEM165†; PPM1B†; YPEL5†

rs651821 APOA5
(11q23.3)

Valine Triglycerides TAGLN*; SIDT2*; SREBF2†

eQTL indicates expression quantitative trait loci; GWAS, genome-wide association studies; HDL, high-density lipoprotein; and LDL, low-density lipoprotein.
*Denotes cis association with eQTL. 
†Denotes trans association with eQTL.
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respectively). This analysis also revealed several known as well 
as potentially novel therapeutic targets. For example, we found 
that the expression of PCSK7 was not only cis associated with 
rs964184, a pleiotropic SNP in ZNF259 that is associated in 
GWAS with HDL-C, LDL-C, triglycerides, and CVD risk,4,12 
but PCSK7 expression also was associated with LDL-C and tri-
glyceride levels in FHS participants. Thus, part of the genetic 
effect of rs964184 on LDL-C (8%) and triglycerides (5%) was 
mediated through expression of PCSK7, providing orthogonal 
support for this gene as a potential therapeutic target. Of note, 
a rare coding variant in PCSK7 was recently found to be asso-
ciated with HDL-C by analysis of exonic variants in individu-
als of African ancestry.49 Expression of another gene, FDFT1, 
revealed cis associations with SNPs associated in GWAS with 
HDL-C, LDL-C, triglycerides, and coronary disease (Figure 4E; 
light red represents long-range cis associations). The expres-
sion of FDFT1 was significantly associated with HDL-C and 
triglyceride levels (P=1.5×10−10 and 1.5×10−7, respectively) in 
FHS participants. Moreover, the mediation test for FDFT1 was 
significant (P<0.001 for average causal mediation effects) on 
HDL-C. A recent study found that expression of FDFT1 was 
significantly higher in atherosclerosis-resistant Japanese quail 
than in atherosclerosis-susceptible strains,50 suggesting that 
FDFT1 may represent another potential therapeutic target for 
the treatment of lipids and atherosclerotic CVD.

There are several limitations to this study. First, from this 
observational study, we can only infer the mediation effects 
of genetic variants. Causal relationships may be validated 
through randomized experiments or biological validation 
studies. Second, our gene expression data were derived from 
whole blood; some eQTLs may be highly tissue dependent. 
Therefore, the CVD modules and mediation effects may not 
be reflective of other tissues. Third, because each SNP only 
contributes a small effect on phenotypic variation, the combi-
nation of SNPs and their interactions may reveal a more com-
plete picture of disease mechanisms.

In summary, integrating published GWAS with genetic 
variants, gene expression, and phenotype data from >5000 
FHS participants allowed us to decipher the genetic architec-
ture that underlies CVD and its risk factors at the population 
level. The integration of 3 levels of data not only afforded 
plausible functional explanations for disease but also revealed 
promising therapeutic targets.
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Clinical Perspective
Cardiovascular diseases (CVDs) reflect a highly coordinated complex of traits. Although thousands of single nucleotide 
polymorphisms have been found to be associated with CVD traits, a key question that remains unanswered is as follows: 
How does DNA sequence variation cause disease? Answers to this question can be translated into new drug targets to 
improve patient care. In this study, we built a CVD network using single nucleotide polymorphism–CVD phenotype asso-
ciations. The shared single nucleotide polymorphisms between CVD risk factors provide evidence of a genetic explanation 
for the clustering of metabolic risk factors in the same individuals. We incorporated transcriptomic data into genetic and 
phenotype network analysis using data from 5257 Framingham Heart Study participants to dissect the relationships between 
genetic variants, gene expression, and CVD phenotypes. We identified several putatively causal genetic variants that appear 
to exert their function by altering expression of associated genes that in turn appear to promote interindividual variation in 
CVD phenotypes. These variants and pathways identified by this approach point toward novel therapeutic targets for the 
treatment and prevention of CVD.


