
Disk-Based Management of Interaction Graphs
Bu�gra Gedik and Rajesh Bordawekar

Abstract—In our increasingly connected and instrumented world, live data recording the interactions between people, systems, and

the environment is available in various domains, such as telecommunciations and social media. This data often takes the form of a

temporally evolving graph, where entities are the vertices and the interactions between them are the edges. An important feature of this

graph is that the number of edges it has grows continuously, as new interactions take place. We call such graphs interaction graphs. In

this paper we study the problem of storing interaction graphs such that temporal queries on them can be answered efficiently. Since

interaction graphs are append-only and edges are added continuously, traditional graph layout and storage algorithms that are batch

based cannot be applied directly. We present the design and implementation of a system that caches recent interactions in memory,

while quickly placing the expired interactions to disk blocks such that those edges that are likely to be accessed together are placed

together. We develop live block formation algorithms that are fast, yet can take advantage of temporal and spatial locality among the

edges to optimize the storage layout with the goal of improving query performance. We evaluate the system on synthetic as well as

real-world interaction graphs, and show that our block formation algorithms are effective for answering temporal neighborhood queries

on the graph. Such queries form a foundation for building more complex online and offline temporal analytics on interaction graphs.

Index Terms—Interaction graphs, storage and querying, disk layout

Ç

1 INTRODUCTION

GRAPHS are popular data structures used to represent
relationships between people, systems, and the envi-

ronment, where the vertices represent entities and the edges
represent the interactions among them. In many application
domains capturing, storing, and analyzing this graph struc-
ture is a key enabling capability. For instance, the graph
structure may represent the relationships in a social net-
work, where finding communities in the graph [8] can facili-
tate targeted advertising. In the telecommunications (telco)
domain, call details reports (CDRs) can be used to capture
the call relationships between people [26], and locating
closely connected groups of people can be used for generat-
ing promotions.

An important characteristic of many real-world graphs is
their temporal nature. For instance, the mention graph of
Twitter [35] gets a new edge every time a user mentions
another user in a tweet. As another example, the call graph
generated from CDRs in a telco application also evolves as
people make calls to each other. These kinds of graphs grow
forever, as users continuously interact with each other. In
other words, these are append-only graphs, where new
edges, and less often new vertices, are added as time pro-
gresses, but no deletions are made. We call such graphs
interaction graphs.

There are two major kinds of temporal analysis that can
be performed on interaction graphs. The first is online analy-
sis that requires access to the recent interactions, which can

often be captured by defining a sliding window [9] over the
stream of graph insertions. The second is offline analysis,
which requires analyzing the relationships captured by the
graph over a desired time range. Unlike online analysis, off-
line analysis requires storing the ever growing graph on
persistent storage. In this paper, we study graph storage
and querying techniques that facilitate efficient temporal
analysis over historical interaction graphs, as well as in-
memory caching to enable online analysis over their most
recent views.

Many graph algorithms rely on the fundamental opera-
tion of graph traversal and exhibit high access locality [33].
Given that a vertex is visited during a traversal, it is quite
likely that the neighbors of this vertex will be visited shortly
after. For instance, an n-hop breadth first search around a
vertex exhibits high locality. This observation has motivated
block-based disk layouts where the neighborlists of vertices
that are highly connected (e.g., form a community) are
placed into the same disk block [13]. This minimizes the
number of blocks read, which reduces I/O. It also avoids
the costly disk seeks, since chasing blocks often requires
seeking to different areas of the disk. However, the focus of
such work has been on static or slowly changing graphs.
Temporal nature of interaction graphs bring several new
challenges.

First, the ever growing nature of the graph requires con-
tinuously creating new data blocks. To capture the poten-
tially changing locality across vertices, we need to
continuously revise the grouping of vertices and create the
most suitable layout for different time frames. Second, the
evolving nature of the graph requires block formation deci-
sions to be made in an online manner. Offline graph parti-
tioning techniques, such as METIS [16], are not suitable for
handling online updates. As such, we need heuristic techni-
ques to make accurate placement decisions (placing edges
and vertices to blocks) in short time. Third, the system
should facilitate time range based access, in order to enable

� B. Gedik is with the Computer Engineering Department, Bilkent Univer-
sity, Bilkent, Ankara 06800, Turkey. E-mail: bgedik@cs.bilkent.edu.tr.

� R. Bordawekar is with the IBM T.J. Research Center, IBM Research,
Yorktown Heights, NY 10598. E-mail: bordaw@us.ibm.com.

Manuscript received 27 June 2013; revised 12 Nov. 2013; accepted 14 Dec.
2013. Date of publication 8 Jan. 2014; date of current version 26 Sept. 2014.
Recommended for acceptance by A. Singh.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2013.2297930

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2014 2689

1041-4347� 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



historic analysis performed at different time scales. Last but
not the least, the system should cache the recent window of
updates in memory to support online analysis.

To address these challenges we develop a system for
storing and querying interaction graphs. The system stores
the recent edges in-memory and continuously offloads
expired edges to the disk, removing them from the in-mem-
ory store. Expired edges are temporally buffered and writ-
ten to the disk in blocks. The creation of these blocks uses
an online algorithm that quickly and effectively determines
which edges should the placed together, taking into account
temporal as well as spatial locality. The key idea is to orga-
nize a block as one or more temporal neighborlists and use a
locality metric to heuristically place edges to disk blocks.
Additionally, we keep two index structures, in order to
effectively run temporal neighborhood queries on the
stored interaction graph. Using these indices and a buffer
manager placed over the edge data stored on disk, the sys-
tem makes it possible to reuse cached disk blocks, especially
given that the block formation is done with temporal and
spatial locality in mind.

This paper makes the following contributions:

� We develop a system for disk-based storage and
temporal querying of interaction graphs, supporting
both online (over a recent window) and offline (over
a historical view) graph analytics.

� We develop fast block formation algorithms that
maximize spatial and temporal locality for the stored
edges, improving the query I/O performance.

� We provide an evaluation of the system using syn-
thetic and real-world data, as well as a study of the
impact of various system parameters on its
performance.

The rest of the paper is organized as follows. Section 2
covers related work. Section 3 gives an overview of the data
model. Section 4 describes the system architecture. The
block formation algorithms are described in Section 5. Their
efficient implementations are described in Section 6. Sec-
tion 7 presets experimental evaluation and Section 8 con-
cludes the paper.

2 RELATED WORK

With the availability of large amounts of relationship and
interaction data, the topic of graph data management and
mining has enjoyed significant research interest. An over-
view is given by Aggarwal and Wang [1].

In many domains, such as social media and telecommu-
nications, the graphs used are dynamic and evolve over
time. Many mining algorithms rely on this temporal nature
to gain new insights, such as understanding how the struc-
ture and properties of the network change [19], [22], how
communities found in the graphs evolve over time [3], [34],
or how influence spreads through the social network [17].

From the perspective of data management systems, we
can divide the related work into to broad categories, i) in-
memory graph processing systems, and ii) graph storage
and querying systems. As an example of the former, Trinity
[31] is a distributed graph query engine that relies on a
memory cloud for storing the graph data and supports

online and offline queries over this data. Another example
is the in-memory, distributed graph data management sys-
tem from Mondal and Deshpande [25], which is optimized
to manage large-scale dynamically changing graphs and
supporting low-latency query processing over them. Differ-
ent than these systems, our work focuses on storing graphs
on disk. Due to continuous growth and historical storage
requirements of interaction graphs, keeping the entire
graph in memory could be costly. Furthermore, since not all
of the interactions are needed at any given time, storing all
of them in memory could also be wasteful.

In terms of disk based systems, GBASE [15] is relevant. It
is a large-scale graph management system based on Map/
Reduce [7]. The system employs a graph storage method
that relies on block compression to efficiently store homoge-
neous regions of graphs, and on a grid based technique to
efficiently place blocks into files. However, the system is not
designed for temporal graphs, and thus the notion of time
ranges do not exist.

Another relevant research effort is the work of Khurana
and Deshpande [18], which proposed a distributed system
for storing the history of dynamic graphs and answering
temporal snapshot queries over it. The system relies on a dis-
tributed hierarchical index structure that uses delta compu-
tations to compactly record historical information, and
support efficient retrieval of historical graph snapshots.
However, the data and query model is very different than
the ones being considered in this work. Given a time point
the system can return a snapshot of the graph for that time
point; and similarly, given multiple time points or a time
range, the system can return a series of snapshots represent-
ing the queried time points. This kind of interface is suitable
for analyzing dynamic relationship graphs, where each
edge has a valid time interval, and edges can be added or
removed (e.g., the following and followee relationship in
Twitter). This is similar to the valid time model from tempo-
ral databases literature [28]. In contrast, our work is focused
on interaction graphs (e.g., the mention graph in Twitter,
formed by mention tags found in Tweets connecting users
to each other), where each edge has a time stamp and not a
time interval associated with it. This is similar to the transac-
tion time model from temporal databases. The time range
queries supported by our system do not return graph snap-
shots, instead they return edges involved in interactions
within the given time range for the vertices of interest (more
like a neighborhood query).

A key contribution of our work is the online block forma-
tion algorithms used to group together temporally and spa-
tially close edges. A relevant work in this area is the disk
layout techniques proposed by Hoque and Gupta [13]. The
main idea is to use the community structure to optimize the
disk layout, so that graph traversals can be performed using
less I/O. There are two major differences from our work.
First, there is no temporal dimension, so time range based
querying is not a concern in their work. Second, their sys-
tem is batch based and does not support dynamic graphs.

There are also various systems for performing large-scale
graph analysis, with different programming models. These
include synchronous vertex programming pioneered by
Pregel [24], such as Apache Giraph [10]; asychronous vertex
programming pioneered by GraphLab [11], [20] and

2690 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2014



generalized iterated matrix-vector multiplication pioneered
by PEGASUS [14]. These works focus on analytical process-
ing and do not provide data management capabilities. Also
the focus is on large-scale graphs without a temporal
dimension.

Another line of related work is streaming graph process-
ing [2], [5], [37]. Rather than storing the entire history of the
graph, these works maintain an in-memory sketch to
answer queries approximately, with certain bounds.

3 MODEL

The interaction graph GðV;EÞ consists of a set of vertices (V )
and edges (E). The vertex set is mostly static, whereas the
edge set grows continuously. While new vertices can be
added, the rate of vertex (entitiy) addition is negligible com-
pared to the rate of edge (interactions) addition. Vertices
can be deleted, which means that no future edges incident
upon the deleted vertices are to be admitted to the graph.
Vertices can have vertex data associated with them as well,
denoted by dðvÞ for v 2 V .

The edges of an interaction graph are temporal. An edge is
denoted as e ¼ ðu; v; tÞ 2 E, where u 6¼ v, u; v 2 V and t is a
time stamp representing the occurrence time of the interac-
tion. The graph is bidirectional, which means that both out-
going and incoming edges are accessible from a vertex. The
edges cannot be deleted, as an interaction that has happened
in the past cannot be undone. The edges can have data asso-
ciatedwith them aswell, denoted by dðeÞ for e 2 E.

The system supports two kinds of fundamental query
operations on the graph, on top of which more advanced
graph analytics can be built. These are:

� Time range vertex query: Given a time interval ½ts; teÞ,
the goal is to find the list of vertices that have inci-
dent edges within time the interval.

� � Time range neighborhood query: Given a time interval
½ts; teÞ, and a vertex v, the goal is to find all incident
edges of the vertex within the time interval.

Neighborhood queries also have a selective version,
which supports specifying a filter on the edge data. Edges
that are not satisfying this filter are not returned in the
query results.

These are fundamental operations, because the first
one enables us to find the vertices that are active during
a given time interval, whereas the second one enables us
to perform traversals within a given time interval, start-
ing from a known vertex. For instance, in a CDR graph,
using a time range vertex query we can find all numbers
that were involved in a call during a given time interval.
For a given number in this set, we can issue a series of
time range neighborhood queries to trace the call
sequences that originally initiated from this number, but
disseminated to others.

4 SYSTEM ARCHITECTURE

We describe the basic architecture of our system.

4.1 Live and Historical Graphs

The system is divided into two main components, namely
the live graph component that is stored in memory, and the

historical graph component that is stored on the disk. The live
graph component contains the recent window of edges
added to the graph, whereas the historical graph contains all
the edges that are not in the recent window anymore. The
historical graph grows continuously, as expired edges flow
into it from the live graph. A FIFO buffer stores all the edges
in the window in time stamp order and facilitates expiring
edges from the live graph. The size of the live graph is
bounded by the number of edges kept in the FIFO. Fig. 1
shows this FIFO and the live graph on the left of the figure.

4.2 Expired Graph and Blocks

To facilitate the flow between the live graph and the his-
torical graph, the expiring edges are buffered in memory
and written to the disk in blocks. This buffer in-between
is named the expired graph, shown on the top right of
Fig. 1. When the size of the expired graph exceeds a
threshold, a block is created and written to the disk,
removing the edges contained within the block from the
expired graph.

The live graph, the expired graph, as well as the blocks
extracted from the expired graph are organized as a set of
temporal neighborlists. A temporal neighborlist contains a head
vertex and its neighbors restricted to a time interval. For-
mally, l ¼ hh ¼ v 2 V; e ¼ fðu; tÞ j ðv; u; tÞ 2 Egi represents a
temporal neighborlist. Here, the head vertex is l:h ¼ v, and
there exists several edges from v to other vertices, kept in the
list l:e. We keep the edges in l:e in time stamp order, from
oldest to the newest. A given edge ðu; v; tÞ appears in neigh-
borlists of both vertices it is incident upon, i.e.,
ðv; tÞ 2 l0 s.t. l0:h ¼ u and ðu; tÞ 2 l1 s.t. l1:h ¼ v. We refer to
the entries stored in the neighborlists as half edges. In sum-
mary, for each edge, there will always be two half edges.

Another important property of temporal neighborlists is
that, they are contiguous in time. Let us denote the smallest
time stamp in l:e as l:ts and the largest one as l:te. We denote
the neighborlist’s temporal interval as l:dt ¼ ½l:ts; l:te�. We
require that all edges ðv; u; tÞ that have a time stamp in the
neighborlist’s temporal interval, that is t 2 l:dt, are in l. That
is, l is a temporal slice over the entire time sorted neighbor-
list of the head vertex l:h.

4.3 Block Formation

A block, denoted by B 2 B, contains one or more temporal
neighborlists identified by their head vertices, that is
B ¼ fv 7! l j l:h ¼ vg. Importantly, the goal of block

Fig. 1. Architecture of the temporal storage and querying system for live
interaction graphs.

GEDIK AND BORDAWEKAR: DISK-BASED MANAGEMENT OF INTERACTION GRAPHS 2691



formation is to capture locality as much as possible. There
are two kinds of locality to be captured. The first one is tem-
poral locality: neighborlists that are from the same time inter-
val are grouped together into the same blocks. The second
one is spatial locality, that is neighborlists that are close to
each other with respect to having common graph edges are
co-located in the same blocks. Typically, the size of the block
is limited, that is sðBÞ � b, where b is the block size.

Improved locality for blocks has two main advantages.
First, performing traversals via time range neighborhood
queries require accessing edges within a time interval (tem-
poral locality) and following the connections between the
vertices requires visiting vertices that are close to each other
in the graph space (spatial locality). Thus, successful block
formation will reduce disk I/O. Second, since we use a
bidirectional graph, co-locating the two half edges corre-
sponding to an edge e in the same block also avoids storing
the same edge data dðeÞ twice. This also reduces the size of
the graph on disk.

4.4 Indexing over Historical Graphs

The blocks of the historical graph are stored in a backend
data store. The data store has a primary index that can
locate the file offset of a block on the disk using the block id
(denoted by iðBÞ for a block B). We use a block buffer to store
the frequently accessed blocks in memory. The buffer relies
on a LRU replacement policy.

We keep two secondary indexes to support time range
vertex and time range neighborhood queries. The first one
is the neighborhood query index. It maps, for each head vertex
in each block, the pair that contains the head vertex and the
end time stamp of its neighborlist list to the pair that con-
tains the block id for the head vertex and the start time
stamp of its edge list. For instance, if there is a temporal
neighborlist l in block B, with an edge list time range of
½l:ts; l:te�, then the index will contain a mapping from
ðl:h; l:teÞ to ðiðBÞ; l:tsÞ. Formally, the neighborhood query
index is a mapping:

In ¼ fðv; teÞ 7! ðiðBÞ; tsÞ jB½v�:dt ¼ ½ts; teÞ ^ v 2 B 2 Bg:

We implement In using an LSM-tree [27] for achieving
good update performance, but a traditional B-tree based
index suffices as well. To answer a time range neighborhood
query ðv; ½ts; teÞÞ, we do a search on the neighborhood query
index to find the entry with the vertex value of v and the
smallest end time stamp that is �ts. From there, we scan all
entries in order using a cursor, until we reach an entry
whose start time stamp is �te. For each entry scanned
(except the last), we load the block and include the edges
for the head vertex into the query result, as long as their
time stamp is in the query time range ½ts; teÞ.

The second index we maintain is the vertex query
index. It maps, for each head vertex in each block, the
temporal extent of its neighborlist to a pair containing
the block id and the head vertex itself. For instance, if
there is a temporal neighborlist l in block B, with an
edge list time range of ½l:ts; l:te�, then the index will con-
tain a mapping from ðl:ts; l:teÞ to ðiðBÞ; l:hÞ. Formally, the
vertex query index is a mapping:

Im ¼ fðts; teÞ 7! ðiðBÞ; vÞ jB½v�:dt ¼ ½ts; te� ^ v 2 B 2 Bg:

We implement Im using an index capable of answering
time range queries over the intervals being indexed. In par-
ticular, we use an R+-tree with a single effective dimension.
An alternative approach is to use a segment tree [6]. To
answer a time range vertex query for the time range ½ts; teÞ,
we do a search on the vertex query index to find all entries
whose time ranges intersect with that of the query time
range. For each entry returned, we add the head vertex to
the query result, with one exception: When the query time
range is strictly contained within the time range of the entry,
it is possible that the neighborlist represented by the entry
may not contain any edges within the given time range. For
entries like that, we use the block id to retrieve the block
from the disk and explicitly check if there is an edge in the
neighborlist that falls within the query interval. If not, the
head vertex is not added to the query result.

It is important to note that the neighborhood query index
is used to perform a search on non-overlapping intervals,
whereas the vertex query index is used to perform a search
on possibly overlapping intervals. That is why a B-tree-like
index that can answer range queries over single dimen-
sional values is sufficient to implement the former, whereas
the latter requires a spatial index. Also, our indexes cover
the entire history of the graph. If query time ranges are
known to have an upper limit, separate indexes could be
built for different time ranges, which will reduce the inser-
tion cost. We do not investigate this direction in our work.

The primary block index, the neighborhood query index,
and the vertex query index, together form the historical
graph. We also keep the vertex data. However, since vertex
data is mostly static, it is kept in a table indexed by the ver-
tex id, with an in memory LRU block cache placed on top of
it in order to accelerate the accesses to vertex data.

5 BLOCK FORMATION

In this section, we describe our block formation algorithm.
Recall that the goal of this algorithm is to form blocks that
exhibit high temporal and spatial locality.

5.1 Locality of Blocks

We define the locality of the block making use of two con-
cepts: conductance and cohesiveness.

Conductance is a metric commonly used for graph parti-
tioning [21]. In our context, it is defined as the ratio of the
number of dangling half edges to the total number of half
edges in the block. Dangling half edges are destined to verti-
ces whose temporal neighborlists are either not in the block
or do not contain the edge in question. Denoted by Cd, con-
ductance is formally defined as follows:

CdðBÞ ¼ jfðv; u; tÞ j Iðv; u; t; BÞ ^ :Iðu; v; t; BÞgjP
v2B jB½v�:ej ; (1)

Iðv; u; t; BÞ � v 7! l 2 B ^ ðu; tÞ 2 l:e:

Here, Iðv; u; t; BÞ is a Boolean predicate that evaluates to
true if v is a head vertex in blockB and contains the half edge

2692 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2014



ðu; tÞ in its neighborlist. Iðv; u; t; BÞ ^ :Iðu; v; t; BÞ is the set
of all dangling half edges. If all edges are internal to the
block B, then the conductance yields a value of 0. If all
edges are external to the block, then it yields a value of 1.

One might be tempted to use 1� CdðBÞ as a locality met-
ric. However, this does not work for interaction graphs, due
to their temporal nature. To see this consider the following
block that contains two edges and four half edges: B0

¼fv0!fðv1; t0Þg; v1!fðv0; t0Þg; v3!fðv4; t1Þg; v4!fðv3; t1Þgg.
The two edges ðv0; v1; t0Þ and ðv3; v4; t1Þ are not connected to
each other in any way. Yet, this block has a conductance
value of CdðB0Þ ¼ 0 and thus maximum locality of 1.

What is missing is the cohesiveness of the block. This is a
metric commonly used for finding highly connected
regions, or communities in graphs. In our context, we define
cohesiveness as the number of head vertex pairs that are
connected to each other via edges in the block, divided by
total number of head vertex pairs. Denoted by Ch, cohesive-
ness is formally defined as follows:

ChðBÞ ¼ jfðv; uÞ j 9t s.t. Iðv; u; t; BÞ ^ Iðu; v; t; BÞgj
jBj � ðjBj � 1Þ : (2)

In the running example, we have ChðdÞ ¼ 4
4	3 ¼ 1=3. It

should be clear that for interaction graphs, cohesiveness is
also not enough by itself as there could be many dangling
edges whose existence does not factor into the cohesiveness
metric. The impact of such dangling edges are captured by
the conductance metric. Cohesiveness and conductance are
complementary to each other.

As a result, we define the locality of a block, denoted by
L, as the geometric mean of cohesiveness and one minus
the conductance. That is:

LðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ChðBÞ � ð1� CdðBÞÞ

q
: (3)

5.2 The Block Formation Algorithm

To facilitate block formation, the expired graph is main-
tained as a hash table, denoted by H, where the keys are the
head vertices and the values are the temporal neighborlists.
We use H½v� to denote the temporal neighborlist of vertex v
in the expired graph. When the size sðHÞ reaches a thresh-
old of m �W , we remove a block’s worth of edges from H
and write the resulting block B to the disk. Here, W is the
size of the temporal edge FIFO and m 2 ½0; 1� is the relative
size of the expired graph.

For this purpose, we use a greedy algorithm. The algo-
rithm starts with an initial set of partial candidate blocks.
These initial candidates contain only a single temporal
neighborlist, with a single edge in it. At each greedy step,
the algorithm grows these partial candidate blocks by
considering several alternative expansions, and picking the
ones that provide the best improvement. For this purpose,
a utility metric based on locality is used. Once a partial
candidate block reaches the maximum block size, it is
inserted into a final candidate block list and the procedure
continues until no partial candidates remain. Finally, the
block among the final candidates with the best utility met-
ric is chosen.

Algorithm 1 shows the procedure used to construct the
next block. Once constructed, the block is removed from
the expired graph and is stored on the disk. Additionally,
the indexes In and Im are updated with new entries.

In Algorithm 1, as a first step the initCandidates()

method is called to come up with an initial set of vertices
that will be used to form the partial block candidates. The
parameter k is used to adjust the number of initial candi-
dates selected, and the parameter C is used to specify the
policy. The Algorithm 2 shows the five different policies
used. Random picks k random head vertices from H. Old
uses the k head vertices that have the oldest first edges in
their temporal neighborlists. New picks the ones with the
newest first edges. The Max policy picks the head vertices
with the longest temporal neighborlists and Min the ones
with the shortest.

Once the initial set of head vertices are determined, the
set of candidate partial blocks (S in the algorithm) are
formed by taking the first edge from the temporal neighbor-
lists of each head vertex. This results in k candidate partial
blocks. Rather than keeping the individual edges, each par-
tial block is organized as a mapping fv 7!tg from head verti-
ces to time stamps. We assume that a mapping v 7!t implies
that all edges in H½v�:e with time stamp � t are part of the
candidate partial block. The set S of candidate partial blocks
are then expanded until they all reach the maximum block
size, b, at which point they are added to the candidate final-
ized blocks list (F in the algorithm). The extendBlock()

GEDIK AND BORDAWEKAR: DISK-BASED MANAGEMENT OF INTERACTION GRAPHS 2693



procedure given in Algorithm 3 defines how a given candi-
date partial block is extended. Once the expansion is com-
plete, the best candidate block in F is chosen using the
locality metric L from Equation (3), by simply adapting it
for candidate blocks (where only the head vertex to time
stamp mappings are held). Finally, Algorithm 1 constructs
an explicit block from the best candidate block, and removes
edges that are contained in this block fromH.

The extendBlock() procedure aims at extending a candi-
date block P , while preserving the temporal and spatial
localities.

First, it finds all vertex-time stamp pairs ðv; tÞ for which
there exists a vertex u such that the two half edges corre-
sponding to the edge ðv; u; tÞ are both contained in the
expired graph (ðu; tÞ 2 H½v�:l ^ ðv; tÞ 2 H½u�:l), yet only the
half edge ðv; tÞ is in the candidate block (P ½u� � t ^ ðv 62
P _ t > P ½v�Þ). In other words, the half edge ðv; tÞ is cur-
rently dangling in the candidate block, as it is only con-
tained within the temporal neighborlist of u, but its half
edge pair ðu; tÞ is not within the temporal neighborlist of v.
This means that extending v’s temporal neighborlist up to
time stamp t in P is one potential expansion opportunity
that will remove a dangling edge. Removing a dangling
edge this way is a necessary condition for increasing locality
of the candidate block. However, it is not sufficient, since
extending the temporal neighborlist of v in P up to time
stamp t may bring in several new dangling edges into the
candidate block.

In the algorithm, the set of candidate expansions are rep-
resented by T . If an expansion opportunity in T results in
growing the block such that it exceeds the block size
(jP [ fv 7! tgj � b), then it is not a viable expansion. As a
result, we remove such expansions from T , resulting in a fil-
tered set R.

If R is empty, then we consider all single edge expan-
sions possible (these may include expansions that do not
remove any of the dangling edges). Finally, we pick the
expansion that maximizes our utility metric U . Formally:

UðP; ðv; tÞÞ ¼ LðP [ fv 7! tgÞ � LðP Þ
sðP [ fv 7! tgÞ � sðP Þ : (4)

In other words, the utility metric computes the improve-
ment in the locality metric per increase in the block size.
For a given expansion ðv; tÞ, the number of new edges
added can be computed by looking at all the edges in
H½v�:e that have a time stamp less than or equal to t but
larger than the current highest time stamp in v’s neigh-
borlist within P , that is P ½v�. For computing the increase
in size, we also consider the size cost of adding a new
head vertex to the block in case v 62 P .

5.3 Example Illustration

Fig. 2 illustrates an excerpt from the operation of the algo-
rithm. In the figure, we see the set of temporal neighborlists
from the expired graph. A partial candidate block is marked
on the expired graph using diagonal stripes. Recall that a
given edge ðu; v; tÞ appears as half edges in two different
temporal neighborlists in the expired graph. Specifically,
the ones for which u and v are the head vertices. As such,
every edge in the figure connects two neighborlists. The
half edges that are dangling are marked with empty circles
in the figure.

Recall that the core of the algorithm is to grow the candi-
date blocks. We consider expansions that add at least one
non-dangling half edge to the block. In the figure, we show
two such expansions. The first one increases the temporal
extent of one of the existing neighborlists in the candidate
block, whereas the second one adds a new neighborlist to
the candidate. In order to compute which one is a better
expansion, we have to first compute the current locality of
the candidate block.

Before the expansion, the candidate block has nine half
edges in total. Out of these nine half edges only three of
them are dangling and six are not dangling. As a result, the
conductance is given by Cd

0 ¼ 3=9 ¼ 1=3. Since all pairs of
neighborlists are connected by a non-dangling edge, the
cohesiveness is Cc

0 ¼ 3=3 ¼ 1. As a result, we have L0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch � ð1� CdÞp ¼ 0:817.

The first candidate expansion brings in only a single

edge, increasing the edge count to 10, and reduce the num-

ber of dangling edges to 2. This increases the locality value

to L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2=10

p ¼ 0:894 (no change to cohesiveness).

Since only one edge is added, the cost is increased by only

1. The utility metric is then given by U0 ¼ ð0:894� 0:817Þ=
1 ¼ 0:077.

The second candidate expansion brings in three half

edges. Among these one is a new dangling edge, whereas
the other two match the previously dangling edges in the

candidate block. As a result, after the expansion, there are

12 edges, two of which are dangling. The conductance is

Fig. 2. Illustration of the block formation algorithm.

2694 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2014



then given by Cc
1 ¼ 2=12 ¼ 1=6. Among the four head verti-

ces, five of the six pairs are connected, and as such the cohe-

siveness reduces to Ch
1 ¼ 5=6. The locality for this

expansion is given by L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 1=6Þ � ð5=6Þp ¼ 0:833.

Accordingly, the utility metric for this expansion is

U1 ¼ ð0:833� 0:817Þ=3 ¼ 0:005. As a result, the first expan-

sion is selected as the better alternative.

6 IMPLEMENTATION DETAILS

In this section, we describe the efficient implementation of
the algorithms described in Section 5. The block formation
algorithm needs to run fast, as the edges are continuously
flowing from the live graph to the historical graph, where
the block formation algorithm runs in-between, extracting
blocks from the expired graph.

So far we have described the block formation in general
terms, without paying attention to the computational costs.
To make the algorithm efficient, we need to avoid opera-
tions that require scanning the entire expired graph. There
are three steps in the algorithm that require attention with
respect to this. These are: i) the selection of the initial candi-
dates, ii) the selection of the head vertices for expansion,
and iii) the selection of the temporal extents for each head
vertex during expansion.

6.1 Observations

We make a few observations that help with efficient imple-
mentation of these steps.

Observation 1. For the Old candidate selection policy,
the creation of the initial candidate blocks can be
implemented efficiently by keeping a min heap on the
time stamps of the oldest edges in the neighborlists
associated with the head vertices in the expired graph.
When a new edge moves from the temporal edge
FIFO to the expired graph, no updates are needed to
this heap unless a new neighborlist has to be created.
When the block formation algorithm runs, as part of
the initial candidate formation (Algorithm 2) the min
heap can be used to locate the top k head vertices in
time logarithmic to the number of neighborlists in the
expired graph. When the block formation is complete,
for each neighborlist included in the block, their entry
in the min heap needs updating.

Observation 2. The selection of new head vertices for
expansion can be na€ıvely performed by considering all
head vertices in the expired graph. Note that this step is
performed during expansion of the candidate blocks
(Algorithm 3), which is called many times during the cre-
ation of the block (Algorithm 1), until all the candidate
blocks are all full. As a result, it is costly to iterate over
the head vertices of the expired graph. This is also unnec-
essary, as we are only interested in expansions that add
at least one non-dangling edge. This means that we are
looking for expansions that involve head vertices that
currently appear in the temporal neighborlists of the can-
didate block. As such, we can iterate over these vertices
while considering expansions, rather than the entire list
of head vertices in the expired graph.

Observation 3. In Algorithm 3, the most critical step is to
find all expansions of a given neighborlist that would
add at least one non-dangling edge to the candidate
block. A na€ıve implementation may consider all expan-
sions to determine the ones that satisfy this condition.
Given the expired graph H, the partial candidate block
B, and a head vertex v, the number of all possible expan-
sions is jH½v�:ej � jB½v�:ej. However, it wasteful to con-
sider all edges in this list. In particular, if t is the
maximum of the time stamps in the candidate block B,
that is t ¼ maxu 7!l2Bl:te, then all to be added edges with a
time stamp greater than t are guaranteed to be dangling.
This means that we can maintain the maximum time
stamp as part of the candidate block and limit the tempo-
ral extents of the expansions to this maximum.

Observation 4. In Algorithm 3, there are several possible
expansions and for each, the utility metric U is com-
puted. For two potential expansions ðv; t1Þ and ðv; t2Þ that
share their head vertices, most of the utility metric com-
putation is repeated. Assuming t1 < t2, the utility metric
for the second expansion can be computed by only con-
sidering the additional edges it brings. To achieve this,
the expansions are considered in head vertex and time
extent order, and the utility metric is computed incre-
mentally, avoiding repeated computation.

6.2 Structure of a Candidate Block

To support efficient implementation, we extend the candi-
date blocks with additional state. In particular, we maintain
the following:

The size of the block, the total edge count, the dangling
edge count, and the number of connected pairs of head ver-
tices are maintained, so that the utility function can be com-
puted incrementally (Observation 4).

A hash set containing the vertices present in the neigh-
borlists of the candidate block is maintained, so that the
head vertices to be used for new expansions can be quickly
determined (Observation 2).

Finally, a priority queue on the largest time stamps of
the candidate block’s neighborlists is maintained, so that
temporal extents of the potential expansions can be upper
bounded (Observation 3).

6.3 Operation of the Algorithm

With the new candidate block structure at hand, the
algorithm operates as follows, assuming the k initial partial
candidate blocks are determined (see Observation 1). First,
we iterate over the hash set containing the present vertices
in the block. For each vertex in the set, we consider extend-
ing its temporal neighborlist in the candidate block. If the
vertex is not present in the candidate block, we add a new
temporal neighborlist for it. To find potential expansions for
a head vertex, we start from the oldest edge in its neighbor-
list within the expired graph that is not already contained in
the candidate block, and consider extending the temporal
extent up to that edge’s time stamp. If the added edge is not
a dangling one, then we have a valid expansion. We con-
tinue this search process for immediately following edges
with increasing time stamps to find additional expansions.
Checking whether an edge considered for expansion is a

GEDIK AND BORDAWEKAR: DISK-BASED MANAGEMENT OF INTERACTION GRAPHS 2695



dangling edge or not requires checking the temporal extent
of the neighborlist associated with the other vertex incident
upon the edge (the one that is not the head vertex of the
neighborlist being expanded) within the candidate block.
We continue testing edges until we reach an edge whose
time stamp is higher than the highest time stamp contained
in the priority queue maintained over the time stamps of
the neighborlists of the candidate block.

Given an edge ðv; u; tÞ that satisfies these conditions, we
perform the expansion by adding all the edges that have a
time stamp smaller or equal to t from the expired graph’s
neighborlist (H½v�:e) to that of the candidate block’s (B½v�:e).
While the edges are added, we update the block size, edge
count, and the dangling edge count. This makes it possible
to compute the locality of the extended candidate block
incrementally. We then update the present vertices, as the
newly inserted edges can bring new vertices that were not
present in the neighborlists of the candidate block before.
Finally, the priority queue of time stamps is updated.

6.4 Time Complexity

The running time of the efficient implementation of the
block formation algorithm can be easily upper bounded.
The initial candidate list can be determined in time
Oðk � logNrÞ, where Nr is the number of neighborlists in the
expired graph. The k initial candidate blocks are expanded
at each step. In the worst case, each expansion can bring
only a single edge. If we denote the number of edges a block
can hold as Mb, then the block expansion is performed
Oðk �MbÞ times. A given expansion cannot test more than
Mb edges and each test requires logNb operations (due to
the time stamp updates), where Nb is the number of neigh-
borlists in the block. As such the computational complexity
of the algorithm is given by Oðk � ðlogNr þMb

2 � logNbÞÞ.
In practice, the algorithm achieves a running time

complexity closer to Oðk � ðlogNr þMb � logNbÞÞ, as the
number of potential expansions considered during the
candidate block expansion is much lower than the num-
ber of edges Mb, since the close temporal alignments of
the neighborlists will effectively cut the viable expan-
sions based on Observation 3.

7 EXPERIMENTAL EVALUATION

In this section we evaluate our system, with a special focus
on the impact of different blocking algorithms on the
performance.

7.1 Experimental Setup

We first provide details on our implementation, evaluation
environment, the data and query sets used, and the metrics
employed in our evaluation.

7.1.1 Implementation

Our implementation was done in C++ using LLVM 3.2 com-
piler. For the neighborhood query index, we use the Lev-
elDB library [23] and for the vertex query index, we use the
libspatialindex library [12] with a custom implementation
of an LRU buffer management policy. For workload genera-
tion, we use Boost Graph Library [32].

7.1.2 Environment

For the experiments, we used a machine with a 2:2GHz Intel
i7 processor that has 32 KB L1 data, 32 KB L1 instruction,
256 KB L2 (per core), 6 MB L3 (shared) cache, and 8 GB of
main memory. The processor has four cores, but our imple-
mentation only uses a single core (except for workload gen-
eration). The disk used is a 500 GB Toshiba SATA 5400RPM
disk. The operating system used was CentOS GNU/Linux
with the 2.6 kernel and ext4 filesystem. It is worth noting
that our evaluation heavily focuses on I/O impact of algo-
rithmic techniques, and not on absolute performance.

7.1.3 Data Sets

We use synthetically generated data sets as well as a real
data set from Twitter.

Synthetic data sets: We use an R-MAT-generated [4]
power-law graph with 100K nodes and 1M edges to gener-
ate 100M interactions. An exponentially distributed inter-
arrival time with a mean of 10 milliseconds is used for this
purpose. To generate interactions, we pick a random vertex
group using a Zipf distribution over 10K groups of vertices.
The higher the rank of a vertex group, the more likely it is
for the vertices in the group to initiate an interaction. Once
the vertex group is determined, we then pick a vertex uni-
formly at random from the group. This vertex becomes the
source vertex of the interaction. We pick the destination ver-
tex of the interaction uniformly at random from the neigh-
bors of the source vertex. Once a destination vertex is
chosen, it is temporarily moved to a vertex group with a
rank higher or equal to that of the vertex group of the source
vertex. The rank is selected uniformly at random. If and
when the destination vertex is selected as a source vertex in
the future, it is inserted back into its original vertex group.
The default value of the Zipf skew parameter is set to 1:5.
Setting it higher increases the temporal and spatial locality
of interactions.

Real data set: As the real data set, we use Twitter mes-
sages from the time interval 14 May-05 June 2013. The data
set contains messages from 500K most prolific Twitter users
from Turkey. Interestingly, the time interval during which
the data is collected coincides with the 2;013 protests in Tur-
key [30] that generated massive amount of discussion and
interaction in the social media. We convert the twitter data
into an interaction graph, as follows: If a tweet from user x
mentions another user y, then an interaction between x and
y is established. Additionally, a message sent by a user x
always generates an interaction between x and its virtual
pair x0. We add the tweet text as data to the interactions.

7.1.4 Queries

We use several kinds of queries to evaluate the perfor-
mance of block formation algorithms and our interaction
graph implementation. The first two are the fundamental
queries we introduced in Section 4: time range vertex
queries and time range neighborhood queries. These are
directly supported by the APIs provided by our interac-
tion graph library.

In addition to these, we support basic graph kernels over
the historical interactions. These are:

2696 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2014



� n-hop neighborhood: given a vertex and a time
range, find all interactions that are within n edges
away from the vertex.

� clustering coefficient [36]: given a time range, for all
vertices involved in interactions during that time
range, compute the clustering coefficient.

� n-step random walk: given a vertex and a time
range, perform a random walk of n steps over the
vertices and edges during that time range.

� page rank [29]: given a time range, for the sub-graph
consisting of vertices and edges within that time
range, compute the page rank of all vertices.

7.1.5 Metrics

In our evaluation, we rely on four metrics. The most funda-
mental ones are the amount of time taken and disk I/O per-
formed to answer queries. Another metric we use is the
throughput of edge insertion. Note that this depends not
only on the I/O cost, but also on the running time cost of
the block formation algorithm used. Finally, we use the stor-
age overhead as a metric.

7.1.6 Defaults

Table 1 gives the descriptions, default settings, and ranges
for the parameters we study in our experiments. The in-
memory live graph is large enough to store one million
interactions.

7.2 Micro Benchmarks

We use synthetic data sets to study the impact of various
workload, algorithm, and system parameters on the perfor-
mance of the system. In terms of the block formation algo-
rithms, we consider several alternatives. We name variations
of the algorithm described in Section 5, which differ in terms
of their initial candidate selection policies, as GE-Old, GE-
New,GE-Min,GE-Max, andGE-Rand.

In addition to these, we also include three additional
algorithms, which do not rely on candidate expansion.
These algorithms are called G-Old, G-Max, and G-Rand.
They iteratively pick one of the temporal neighborlists in
the expired graph and add the first half edge from that
neighborlist to the block. This continues until the block
is full. The G-Old approach picks the temporal neighbor-
list whose first edge is the oldest among all, G-Max picks
the one that has the largest size, and G-Rand picks one
uniformly at random.

7.2.1 Effectiveness of the Query Indexes

We first investigate the effectiveness of the vertex and
neighborhood query indexes. Fig. 3 plots the query

execution time (using the left y-axis) and the result size
(using the right y-axis) as a function of the size of the quer-
y’s time range. The results are plotted for both vertex
queries and edge queries (neighborhood queries).

We make two observations from the figure. First, the
increase in the query execution time is proportional to the
increase in the result size for edge queries, as we enlarge
query time ranges. This is expected as the number of edges
retrieved and thus the amount of I/O performed is propor-
tional to the query time extent.

Second, and more interestingly, the increase in the query
evaluation time is dis-proportionally high compared to the
increase in the result size for vertex queries, as we enlarge
the query time ranges. This is due to the fact that vertex
query index is designed to support arbitrarily small time
ranges in queries and as such the number of entries it visits
is proportional to the size of the query time range. However,
the number of vertices that have interactions during a given
time range eventually converges to the total number of ver-
tices. In other words, when a large time range is used, the
vertex query index retrieves various entries that do not con-
tribute to the end result, since the vertices retrieved are
already in the query result.

To support large query time ranges more efficiently, we
could easily create a smaller version of the vertex query
index that uses per day granularity for its time stamps. How-
ever, for most graph analytics, a time range vertex query is
run once, whereas the time range neighborhood queries are
run successively to traverse the edges of the vertices of inter-
est. As such, we do not further optimize vertex queries.

7.2.2 Locality and Block Formation Algorithms

Fig. 4 plots the locality metric (Section 5, Equation (3)) as a
function of the number of initial candidates for different
block formation algorithms. Note that algorithms that are
not based on block expansion do not rely on initial candi-
dates. As such, their results do not show variation as the
number of candidates is altered.

We make three main observations. First, the GE-Old
approach achieves the best locality values. The highest
locality achieved is 0:43, which is around 50 percent higher
than the closest one (GE-Rand and GE-Min). Second, we see
that algorithms that rely on expansion perform better in
terms of providing higher locality. Last, we see that increas-
ing the number of initial candidates provides improved
locality for the expansion based algorithms. This increase is
more pronounced for the GE-Old approach. Its locality

Fig. 3. Effectiveness of the vertex and neighborhood query indexes.

TABLE 1
Defaults Values for the Parameters Used

GEDIK AND BORDAWEKAR: DISK-BASED MANAGEMENT OF INTERACTION GRAPHS 2697



shows a 15 percent increase going from one candidates to 16
candidates. However, additional increase does not bring
further improvements. In fact, the locality is flat after eight
candidates, justifying our default setting of 10.

7.2.3 Query Performance of Blocking Algorithms

Figs. 5 and 6 plot the query execution time and the amount
of I/O performed during query execution, respectively, as a
function of the query time extent, for different block forma-
tion algorithms. The query used for these experiments and
others that follow are 3-hop neighborhood queries.

We observe that the GE-Old algorithm provides the low-
est query running time compared to other block formation
algorithms. In particular, the closest approach (GE-Rand)
has 70 percent higher running time compared to GE-Old,
and the worst approach (G-Rand) has 158 percent higher
running time. Results for I/O are even more pronounced,
closest approach having 98 percent higher I/O cost com-
pared to GE-Old.

7.2.4 Impact of the Expired Graph Size

Fig. 7 plots the I/O count (using the left y-axis) and
locality (using the right y-axis) as a function of the
expired graph size, for different query time extents. The
expired graph size is altered by changing the value of
the parameter m, which sets the size relative to that of
the temporal edge FIFO.

We observe that higher expired graph sizes provide
lower I/O. However, there is diminishing returns after
m ¼ 0:05. The impact of the expired graph size is very pro-
nounced for lower values and especially for the large query
extents. For instance, for query time range of around half an
hour, the I/O cost can be as much as 150 percent higher if
the expired graph size is not set properly. We see that the

default value of 0:1 provides good performance across dif-
ferent query time range values.

The figure also shows the reason why increasing
expired graph sizes improve the I/O performance.
Clearly, the locality is increasing as the expired graph size
increases. And similar to the I/O cost, the gains in locality
diminish after a certain size. The increased expired graph
size provides additional flexibility to the block formation
algorithm in terms of selecting the spatially close edges to
place together, which improves locality, and in turn the
query I/O performance.

7.2.5 Impact of Block Size on Query Performance

Fig. 8 shows query time as a function of the block size for
different query time ranges. We see that for large query
time ranges, smaller blocks provide better performance. For
small query time ranges, we observe that there is a optimal
block size at which the best performance is achieved. Note
that higher block sizes are expected to reduce the locality
(which we study shortly), and as such the increase in query
time with increasing block sizes is expected. On the other
hand, small block sizes have higher overhead with respect
to seek time and one-time overheads. This impact is more
pronounced for smaller query ranges because a large por-
tion of the retrieved edges in the block are not used (they
are not in the query time range).

Fig. 9 shows the per byte overhead (on the left y-axis) and
locality (on the right y-axis) as a function of the block size.
The per byte overhead is computed by assuming that the
entire graph is just an in memory interaction graph with no
overheads for blocking, no index for accelerating vertex
queries, and no index for neighborhood queries.

We make two observations from the figure. First, we ver-
ify our intuition that larger blocks have lower locality.

Fig. 5. Query time for different blocking algorithms.

Fig. 6. Query I/O for different blocking algorithms.

Fig. 7. Impact of expired graph size on query I/O.

Fig. 4. Locality of different block formation algorithms.

2698 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2014



Second, we see that small blocks have higher per byte over-
head. In particular, a 0:5K block can have up to 25 percent
higher space overhead on this example. The positive impact
of smaller block size on the locality and its negative impact
on space overhead together explain the tradeoff observed
earlier in Fig. 8.

7.2.6 Impact of Group Popularity Skew on Query

Performance

Fig. 10 plots the I/O cost of answering queries when using
an interaction graph that employs GE-Old blocking algo-
rithm relative to that of G-Rand algorithm. This value is plot-
ted on the left y-axis as a function of the skew in group
popularities, and for different query time ranges. A higher
skew implies that there are a small group of more fre-
quently interacting vertices in the graph. The graph also
plots the locality for the GE-Old and G-Rand algorithms,
using the right y-axis. Note that the locality is a property of
the historical graph stored on the disk and does not depend
on the query time ranges.

Looking at the localities, we observe that the GE-Old
block formation algorithm, which relies on candidate
expansion, is able to take advantage of the additional skew.
Its locality increases with increasing skew, even though the
rate is decreasing and eventually the locality flattens (after
z > 2:0). This is in contrast to G-Rand, which is unable to
take advantange of the skew, as it does not perform expan-
sion. The expansion step of GE-	 algorithms is particularly
effective in increasing the spatial locality of the blocks.

Looking at the relative I/O costs, we observe that the GE-
Old algorithm provides between 25 to 70 percent lower cost
compared to G-Rand. We also observe that the improvement
is more pronounced for smaller query time ranges. But even
for the half an hour query time range, we observe between

25 to 60 percent reduction in I/O cost over the range of
skew values considered. In general, higher skew brings bet-
ter improvement. But when the skew increases too much
(beyond z > 1:5 for most query time ranges), the relative
improvement lessens slightly.

7.2.7 Impact of Query Hops on I/O Performance

Fig. 11 plots the query I/O cost of the GE-Old blocking
algorithm relative to that of the G-Rand algorithm, as a
function of the number of hops in the query, for differ-
ent query time ranges.

We observe that the GE-Old algorithm provides
between 35 to 78 percent improvement in I/O cost com-
pared to G-Rand. Interestingly, the improvement is high-
est when the number of hops in the neighborhood query
is 2 (around 78 percent for all query time ranges), which
is a significant improvement compared to what is
observed for one hop only (between 35 to 45 percent for
different time ranges). As the number of hops is further
increased, the relative improvement decreases. For the
query time range of 2;048 seconds, it stabilizes at around
50 percent improvement, and for 32 seconds, it reaches
67 percent improvement at six hops. In general, the initial
increase in the improvement can be attributed to the sig-
nificant increase in the query result size. However, as the
number of hops increase, the number of additional inter-
actions added to the result set is diminishing. This means
that additional blocks are read, but just a few of the inter-
actions contained within contribute to the result. As a
result, there is less opportunity for GE-Old to best G-Rand.

7.2.8 Impact of Block Formation Complexity on

Throughput

Fig. 12 plots the throughput of edge insertion (on the left
y-axis) and locality (on the right y-axis), as a function of the

Fig. 9. Impact of block size on storage overhead.

Fig. 10. Impact of group popularity skew on performance.

Fig. 11. Impact of query hops on I/O performance.

Fig. 8. Query time as a function of the block size.

GEDIK AND BORDAWEKAR: DISK-BASED MANAGEMENT OF INTERACTION GRAPHS 2699



number of initial candidates used for the GE-Old algorithm.
It also plots the same measures for G-Rand, but since this
algorithm does not perform expansion, the number of initial
candidates does not impact performance.

Note that the throughput depends on two factors. The
first is the amount of I/O performed. If a block formation
algorithm leaves too many dangling edges, then the amount
of I/O will increase, since the edge data would be written
twice to the disk. Second, the throughput depends on the
complexity of the block formation algorithm. For instance,
GE-Old has a higher running time complexity compared to
G-Rand, since it performs the expansion step.

When using a single initial candidate, the GE-Old algo-
rithm achieves around 2
 the throughput of G-Rand. With
increasing number of candidates, the GE-Old starts to pro-
vide improved locality, which improves the query perfor-
mance as we have seen in the earlier experiments. Going
from one initial candidates to two brings down the through-
put only slightly, as the I/O is still the dominating factor.
As the number of initial candidates further increase, the
running time complexity starts dominating, resulting in
reduced throughput. However, it is important to note that
when the locality flattens (around 10 initial candidates), GE-
Old still has higher throughput compared to G-Rand. In
summary, GE-Old is able to provide better throughput
when the number of candidates is set to the smallest value
that maximizes the locality. Since there is no point in setting
the number of initial candidates any higher than 10, GE-Old
can provide its best query efficiency, while still providing
higher throughput than non-expansion based approaches.

For experiments using faster disks (e.g., SSDs), the run-
ning time performance of block formation may become a
concern, requiring a parallel implementation of block for-
mation. Since each initial candidate is expanded indepen-
dently, the block formation is trivial to parallelize. We leave
this study as a future work.

7.3 Analytic Kernels

We now look at the query performance using the Twitter
data set. Fig. 13 plots the I/O cost of GE-Old relative to
that of G-Rand, as a function of the query time range and
for different analytic kernels. The nhops-5 is a neighbor-
hood query with five hops, rwalk-20 is a random walk
with 20 steps, ccoef is clustering coefficient, and prank-1
is a single iteration of the page rank. More details can be
found in Section 7.1.

We observe that expansion based block formation pro-
vides effective reduction in query I/O. For page rank, the

improvement is 20 percent and not dependent on the query
time range. The clustering coefficient and n-hop neighbor-
hood queries show 40 to 30 percent reduction in I/O, with a
slight decrease in improvement as the query time extent
increases. Finally, random walk shows the lowest as well as
the highest improvements, ranging between 10 to 65 per-
cent. As the query time range increases, the improvement in
I/O increases for random walk, but with a decreasing rate.

In general, the ability of GE-Old to capture both spa-
tial and temporal localities enables it to reduce the query
I/O further, compared to G-Rand, which only captures
temporal locality.

7.4 Comparison to an RDBMS

To measure the relative performance of our solution com-
pared to a baseline approach, we used Postgres 9.2—an off-
the-shelve RDBMS that supports recursive SQL queries. We
defined a table clustered on time to keep the Tweets, over
which indexes are defined on from user, to user, and time
fields. The indexes are crucial in achieving good perfor-
mance, as a time range limited traversal using recursive
SQL relies on joins performed between the temporary result
table and the main table, where the join condition involves
a equality on from and to user fields and a range condition
on the time field.

We used the Twitter data set for this experiment. Com-
pared to our approach, Postgres was 3:2
 slower in insert-
ing the data. This is mostly because RDBMSs are not
optimized for streaming inserts. Multiple secondary indexes
we have used to speedup querying further exacerbates the
problem, due to the index update cost. On the other hand,
our approach has the I/O advantage of performing batch
inserts as blocks. Yet, our approach also has the CPU disad-
vantage of having to compute a good blocking before it can
write the block to disk.

Fig. 14 plots the relative improvement in query time for
n-hop temporal neighborhood queries, as a function of dif-
ferent time interval sizes, and for different values of n. For
small query time ranges, we see up to 60
 performance
with our approach, compared to Postgres. For small ranges,
the query result sizes as well as the I/O performed is small,
so the constant overheads of the RDBMS dominates. For
larger time ranges, the performance improvement with our
approach is around 10
, that is an order of magnitude.

Interestingly, the slowness of the RDBMS approach is not
due to poor index use or query planning. For instance, the
speedup is not too different for different number of hops
(more hops mean more joins). The key disadvantage of the

Fig. 13. IO cost for different graph analytic kernels.Fig. 12. Impact of block formation on throughput.

2700 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2014



RDBMS is that it is unable to store the interactions in an
order that considers both temporal and spatial locality. Our
approach achieves this by storing a set of temporal neigh-
borlists as a block, defining a metric that captures both
kinds of localities, and forming blocks using this metric to
minimize random accesses.

7.5 Summary

Our results show that the GE-Old algorithm provides the
best performance with respect to minimizing query I/O.
With the initial candidate size set to k ¼ 10, it can still
outperform the G-Rand algorithm in terms of the update
throughput it supports, while providing significantly bet-
ter query I/O performance. Further increasing k does not
bring much improvement in query I/O, but reduces the
update throughput. Thus, the default setting of k ¼ 10 is
a good one, and the performance is not sensitive to minor
changes around this ideal value. The relative size of the
expired graph in terms of the number of edges it holds
relative to the temporal edge FIFO, that is m, is best set to
a value close to 0:1, not going below 0:05. Larger values
do not bring any additional advantage in terms of query
I/O, unnecessarily increasing the memory requirements.
Too small values hurt the query I/O performance. In gen-
eral, the expired graph uses less than 5 percent extra
memory on top of the live graph and the temporal edge
FIFO. Finally, we advocate relatively small block sizes of
around 1-2 KB. This is because larger blocks hurt locality.
Block sizes smaller than 1K increase the storage overhead
too much and are best avoided.

Our system architecture is designed to handle streaming
interactions, as it uses an in-memory buffer to keep the
recent window of interactions. It also provides efficient que-
rying, since it employs smart blocking techniques to write
temporally and spatially local interactions to disk in
batches. The GE-Old algorithm we use for this purpose is
effective compared to other alternatives. The effectiveness
of GE-Old is more pronounced when the interactions exhibit
spatial locality (a community of users interact with each
other) and temporal locality (interactions happen close in
time). Our experiments show that Twitter mention graph
exhibits these characteristics.

8 CONCLUSION

We have developed a system that supports temporal stor-
age and querying of evolving interaction graphs. The sys-
tem maintains a buffer consisting of recent interactions in-

memory and continuously expires older interactions by
writing them to the historical graph stored on the disk.
Indexes are maintained over the historical graph to support
time range vertex and neighborhood queries, which can be
used to build higher level temporal graph analytics. We
introduced block formation algorithms that are used to opti-
mize the grouping of expired edges into blocks, such that
the temporal and spatial locality is increased, and as a result
query performance is improved. We have shown the effec-
tiveness of these algorithms using synthetic as well as real-
world interaction graphs. In particular, we have shown that
the block formation algorithms are able to reduce the I/O
required to answer queries as well as for writing the live
edges to disk, yet they are fast enough to avoid any diverse
effects on the edge insertion throughput.

REFERENCES

[1] C. Aggarwal and H. Wang, “Graph Data Management and Min-
ing,” A Survey of Algorithms and Applications, C. Aggarwal, ed.,
Springer, 2010.

[2] C.C. Aggarwal, Y. Li, P.S. Yu, and R. Jin, “On Dense Pattern Min-
ing in Graph Streams,” Proc. Very Large Databases Conf. (PVLDB),
pp. 975-984, 2010.

[3] T. Berger-Wolf and J. Saia, “A Framework for Analysis of
Dynamic Social Networks,” Proc. ACM Int’l Conf. Knowledge Dis-
covery and Data mining (SIGKDD), pp. 523-528, 2006.

[4] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A Recursive
Model for Graph Mining.” Proc. Fourth SIAM Int’l Conf. Data Min-
ing, 2004.

[5] G. Cormode and S. Muthukrishnan, “Space Efficient Mining of
Multi-Graph Streams,” Proc. ACM Int’l Symp. Principles of Database
Systems (PODS), pp. 271-282, 2005.

[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarz-
kopf., Computational Geometry: Algorithms and Applications.
Springer Verlag, 1997.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Process-
ing on Large Clusters,” Proc. USENIX Symp. Operating System
Design and Implementation (OSDI), pp. 137-150, 2004.

[8] S. Fortunato, “Community Detection in Graphs,” Physics Reports,
vol. 483, nos. 3-5, pp. 75-174, 2009.

[9] B. Gedik, “Generic Windowing Support for Extensible Stream
Processing Systems,” Software: Practice & Experience, Mar. 2013,
DOI: 10.1002/spe.2194.

[10] Apache Giraph, giraph.apache.org/, Retrieved June, 2013..
[11] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.

“PowerGraph: Distributed Graph-Parallel Computation on Natu-
ral Graphs,” Proc. USENIX Symp. Operating System Design and
Implementation (OSDI), pp. 17-30, 2012.

[12] M. Hadjieleftheriou, E.G. Hoel, and V.J. Tsotras, “SaIL: A Spatial
Index Library for Efficient Application Integration,” GeoInforma-
tica, vol. 9, no. 4, pp. 367-389, 2005.

[13] I. Hoque and I. Gupta, “Disk Layout Techniques for Online Social
Network Data,” IEEE Internet Computing, vol. 16, no. 3, pp. 24-36,
May/June 2012.

[14] U. Kang, C.E, Tsourakakis, and C. Faloutsos., “PEGASUS: A Peta-
Scale Graph Mining System - Implementation and Observations,”
Proc. IEEE Int’l Conf. Data Mining (ICDM), pp. 229-238, 2019.

[15] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos, “Gbase: A
Scalable and General Graph Management System,” Proc. ACM
Int’l Conf. Knowledge Discovery and Data mining (SIGKDD),
pp. 1091-1099, 2011.

[16] G. Karypis and V. Kumar., “Multilevel Graph Partitioning
Schemes,” Proc. Int’l Conf. Parallel Processing (ICPP), pp. 113-122,
1995.

[17] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the
Spread of Influence through a Social Network,” Proc. ACM
Int’l Conf. Knowledge Discovery and Data mining (SIGKDD),
pp. 137-146, 2003.

[18] U. Khurana and A. Deshpande., “Efficient Snapshot Retrieval
over Historical Graph Data,” Proc. IEEE Int’l Conf. Data Eng.
(ICDE), 2013.

Fig. 14. Speed-up of n-hop queries relative to RDBMS implementation.

GEDIK AND BORDAWEKAR: DISK-BASED MANAGEMENT OF INTERACTION GRAPHS 2701



[19] R. Kumar, J. Novak, and A. Tomkins, “Structure and Evolution of
Online Social Networks,” Proc. ACM Int’l Conf. Knowledge Discov-
ery and Data Mining (SIGKDD), pp. 611-617, 2006.

[20] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-Scale
Graph Computation on Just a PC,” Proc. USENIX Symp. Operating
System Design and Implementation (OSDI), pp. 31-46, 2012.

[21] F.T. Leighton and S. Rao, “Multicommodity Max-Flow Min-
Cut Theorems and Their Use in Designing Approximation
Algorithms,” J. ACM, vol. 46, no. 6, pp. 787-832, 1999.

[22] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph Evolution:
Densification and Shrinking Diameters,” ACM Trans. Knowledge
Discovery from Data, vol. 1, no. 1, pp. 2:1-2:41, 2007.

[23] leveldb - A Fast and Lightweight Key/Value Database Library by
Google, http://code.google.com/p/leveldb/, Retrieved Mar.
2012.

[24] G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski, “Pregel: A System for Large-Scale
Graph Processing,” Proc. ACM Int’l Conf. Management of Data
(SIGMOD), pp. 135-146, 2010.

[25] J. Mondal and A. Deshpande, “Managing Large Dynamic Graphs
Efficiently,” Proc. ACM Int’l Conf. Management of Data (SIGMOD),
pp. 145-156, 2012.

[26] A.A. Nanavati, G. Siva, G. Das, D. Chakraborty, K. Dasgupta, S.
Mukherjea, and A. Joshi, “On the Structural Properties of Massive
Telecom Call Graphs: Findings and Implications,” Proc. ACM Int’l
Conf. Information and Knowledge Management (CIKM), pp. 435-444,
2006.

[27] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The Log-Struc-
tured Merge-Tree (LSM-Tree),” Acta Informatica, vol. 33, no. 4,
pp. 351-385, 1996.

[28] G. Ozsoyoglu and R. Snodgrass, “Temporal and Real-Time Data-
bases: A Survey,” IEEE Trans. Knowledge and Data Eng., vol. 7,
no. 4, pp. 513-532, Aug. 1995.

[29] L. Page, S. Brin, R. Motwani, and T. Winograd, “The Pagerank
Citation Ranking: Bringing Order to the Web,” Technical Report
SIDL-WP-1999-0120 Stanford InfoLab, 1999.

[30] “Turkey Protests Spread from Istanbul to Ankara,
Euronews”, http://www.euronews.com/2013/05/31/turkey-
protests-spread-from-istanbul-to-ankara/,Retrieved June, 2013.

[31] B. Shao, H. Wang, and Y. Li, “Trinity: A Distributed Graph Engine
on a Memory Cloud,” Proc. ACM Int’l Conf. Management of Data
(SIGMOD), 2013.

[32] J.G. Siek, L.-Q. Lee, and A. Lumsdaine, Boost Graph Library, The:
User Guide and Reference Manual. Addison-Wesley, 2002.

[33] R. Steinhaus, “G-Store: A Storage Manager for Graph Data,”
master’s thesis, Univ. of Oxford, 2011.

[34] L. Tang, H. Liu, J. Zhang, and Z. Nazeri, “Community Evolution
in Dynamic Multi-Mode Networks,” Proc. ACM Int’l Conf. Knowl-
edge Discovery and Data Mining (SIGKDD), pp. 677-685, 2008.

[35] Twitter, http://www.twitter.com/, Retrieved Mar., 2012.
[36] D.J. Watts and S.H. Strogatz, “Collective Dynamics of

‘Smallworld’ Networks,” Nature, vol. 393, pp. 440-442, 1998.
[37] P. Zhao, C.C. Aggarwal, and M. Wang, “gSketch: On Query Esti-

mation in Graph Streams,” Proc. Very Large Databases Conf.
(PVLDB), pp. 193-204, 2011.

Bu�gra Gedik received the PhD degree in com-
puter science from Georgia Tech. He is currently
on the faculty of the Computer Engineering
Department, _Ihsan Do�gramacı Bilkent University,
Turkey. His research interests are in distributed
data-intensive systems, with a particular focus on
stream computing and big data technologies.

Rajesh Bordawekar received the MS and PhD
degrees in computer engineering from Syracuse
University. He is currently a research staff mem-
ber at the IBM T.J. Watson Research Center. His
research is on understanding the interactions
between applications, programming languages/
runtime systems, and computer architectures.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2702 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2014



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


