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Abstract Uncertain data streams can have tuples with both value and existential uncertainty.
A tuple has value uncertainty when it can assume multiple possible values. A tuple is exis-
tentially uncertain when the sum of the probabilities of its possible values is <1. A situation
where existential uncertainty can arise is when applying relational operators to streams with
value uncertainty. Several prior works have focused on querying and mining data streams
with both value and existential uncertainty. However, none of them have studied, in depth, the
implications of existential uncertainty on sliding window processing, even though it naturally
arises when processing uncertain data. In this work, we study the challenges arising from
existential uncertainty, more specifically the management of count-based sliding windows,
which are a basic building block of stream processing applications. We extend the semantics
of sliding window to define the novel concept of uncertain sliding windows and provide both
exact and approximate algorithms for managing windows under existential uncertainty. We
also show how current state-of-the-art techniques for answering similarity join queries can
be easily adapted to be used with uncertain sliding windows. We evaluate our proposed tech-
niques under a variety of configurations using real data. The results show that the algorithms
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used to maintain uncertain sliding windows can efficiently operate while providing a high-
quality approximation in query answering. In addition, we show that sort-based similarity
join algorithms can perform better than index-based techniques (on 17 real datasets) when
the number of possible values per tuple is low, as in many real-world applications.

Keywords Data stream processing - Sliding windows - Uncertainty management

1 Introduction

The strong demand for applications that continuously monitor the occurrence of interesting
events (e.g., road-tunnel management [39] and health monitoring [43]) has driven the research
in data stream processing systems [1,14,21,48]. In many of these application domains, the
data sources available for processing can be considered uncertain, because of the imprecisions
that arise from the inherent inaccuracy of sensor devices, or of external data manipulations
like privacy-preserving data transformations [19].

The uncertainty of a stream data item (or tuple) can be twofold: (i) value uncertainty,
and (ii) existential uncertainty. A tuple has value uncertainty when its value is represented
by either a Probability Density Function (PDF) [49] or by discrete samples [4]. In the latter
case, each sample is called a possible value and has an existential probability associated
with it (indicating the chance that the tuple assumes the associated possible value). In this
work, we represent value uncertainty with discrete samples and their respective occurrence
probabilities. A tuple has existential uncertainty when the sum of the existential probabilities
of its possible values is <1.

Modeling tuples with value and existential uncertainty has several advantages. From an
engineering perspective, a programmer can feed uncertain data directly into the system,
without explicitly preprocessing data and forcing data approximations. From an applica-
tion requirements perspective, maintaining possible values allows the application to provide
results with confidence intervals. Simply averaging values and eliminating the uncertainty
may lead to misleading results, as this technique does not take into account the distribution
of the data.

Monitoring of offshore drilling operations is an example application where data sources
are uncertain and the accuracy of the results is crucial [38]. Oil companies want to avoid shut-
ting down operations as much as possible. To detect when operations must indeed be stopped,
such companies deploy monitoring systems to collect real-time sensor measurements, such
as pressure, temperature, and mass transport along the well path. Streaming applications
process the sensor data through prediction models, which generate alarms and warnings with
an associated confidence. This confidence can be seen as the existential uncertainty associated
with the event.

Another example application where result accuracy is key is the monitoring of car trajecto-
ries via GPS tracking devices by insurance companies. When customers install such tracking
devices in their cars, they share the GPS data with the insurance company in exchange for pre-
mium discounts. The company can use such data to derive car trajectories and driving habits
of customers, which are then used to offer bigger discounts to safe drivers. An important
metric regarding safe driving is the amount of time (or the number of consecutive samples)
by which two cars are apart from each other and whether this time is below a safety limit. As
shown in previous work [8], the exact location of a car in a highly urbanized area is uncertain,
as GPS provides inaccurate data in such scenarios. As a result, the position of a car can be
modeled as a set of possible locations with attached probabilities (i.e., a value uncertain tuple).
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This set can be obtained by correlating GPS data with road network data. Similarly, particle
filters have been used by prior studies [35] and [34] to derive the location of moving objects
based on the GPS signal. The particle filters can be used as weighted samples to represent
the distribution of the object location. The set can then be used to estimate many possible
distance measures to cars nearby. By filtering samples in which the distance between cars is
above the safety limit, we obtain a stream of tuples that is existentially uncertain. Discarding
value and existential uncertainty can lead to the following two possible outcomes: (i) tag-
ging safe drivers as unsafe, which results in the insurance company increasing the premium
unfairly and a significant risk of losing clients; (ii) unsafe drivers tagged as safe, resulting in
the insurance company decreasing the premium and risking its own profit model.

Current research in processing uncertain data streams focuses mostly on the development
of specific stream operators (e.g., joins [30,33] and aggregates [26]) and specific queries (e.g.,
top-k [27,51] and clustering [3]) that can operate in the presence of value uncertainty. These
works are not designed with the integration into current general-purpose stream processing
engines in mind. This is because they ignore the challenges arising from operator compo-
sition (different operators are connected to form an operator graph), which is a common
development paradigm when writing streaming queries [1,24,37]. One such challenge is to
consider streams with existential uncertainty. Existential uncertainty arises when applying
certain transformations to streams with value uncertainty. For example, tuples may be gen-
erated when an event is triggered. If the event is uncertain, then the new tuple may not exist
in some possible world instantiation.

As aresult, the regular sliding windows can over-estimate the window size, not considering
the possibility that some data values do not exist in the window.

Processing streams with existential uncertainty has an impact on window management,
which is one of the basic building blocks of stream processing algorithms [1,20,27,33].
Windows are often used by streaming algorithms that require access to the most recent history
of a stream, such as aggregations, joins, and sorts. Windows can have different behaviors
(e.g., tumbling and sliding) and configurations (e.g., size). Window sizes can be defined based
on time (e.g, all tuples collected in the last x seconds) or based on a count (e.g., last x tuples).
Count-based windows are especially useful for coping with the unpredictable incoming rate
of data streams. By limiting the size of the windows, developers can ensure that the memory
consumed by the operator can be bounded. In existentially certain streams, establishing the
boundaries of a window is trivial, since every tuple processed is guaranteed to be present in
the stream. However, how should one manage such windows considering that in existentially
uncertain streams, it is not guaranteed that a tuple is indeed present in a given window bound?

We note that the characteristics of the data streams may vary over time and a constant,
and larger window size may lead to over-estimates of the desired window size, eventually
causing undesired and unexpected effects. In this study, we investigate this problem.

1.1 Contributions

In this paper, we tackle three main challenges emerging from developing applications that
process uncertain data streams. The first is to model existential uncertainty in order to support
operator composition in the presence of value uncertainty. We address this challenge by
considering existential uncertainty in our stream processing model and by extending the
definition of sliding windows to take into account its uncertain boundaries. We consider this
to be a first step toward developing applications via operator composition.

The second challenge is to provide an efficient implementation of an uncertain sliding
window in terms of both memory space and computational time required, so that it can be
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used in streaming applications with stringent performance requirements. To this effect, we
provide an algorithm for managing count-based sliding windows by modeling its size as
a discrete random variable that has a Poisson-binomial distribution, which we then use to
obtain an estimate of the window size based on the current contents of the window.

The third challenge is to have streaming operators that are efficient in the presence of both
value and existential uncertainty. As an example, we adapt a state-of-the-art similarity join
technique to uncertain sliding windows. In addition, we introduce a simple sort-based join
algorithm that is competitive in many realistic scenarios.

The main contributions of this paper are as follows:

— We demonstrate how streams with value uncertainty can lead to existential uncertainty
and vice versa, after stream operator transformations;

— We provide a formal definition of uncertain sliding windows, which serves as a basic
building block for generic stream processing operators that need to maintain recent tuples
as state;

— We provide exact and approximate algorithms for managing existentially uncertain sliding
windows;

— We show that previous existing state-of-the-art similarity join techniques can be easily
adapted to operate on uncertain sliding windows.

— We present an experimental evaluation on real-world datasets, and show improvement
(on all 17 datasets) over a state-of-the-art approach [33] adapted to handle existential
uncertainty.

The rest of this paper is organized as follows. We discuss related work in Sect. 2. Uncertain
data streams are introduced in Sect. 3. In Sect. 4, we describe a model that allows for efficient
processing of sliding windows with uncertain data. In Sect. 5, we describe how uncertain
sliding windows can be used by aggregate and join operators. In Sect. 6, we describe efficient
join algorithms for uncertain data streams, including a sort-based algorithm specifically
designed for similarity matching of uncertain data. Our experimental evaluation is presented
in Sect. 7, and in Sect. 8, we discuss some possible extensions. Section 9 concludes the paper.

2 Related work

Inthe lastdecade, several database and stream processing systems with support for uncertainty
have been proposed [6,13,15,17,27,28,42,45,46], eventually leading to two emerging tuple
models.

The x-tuple model [6] represents uncertain tuples by multiple alternatives and their respec-
tive occurring probabilities. If the sample probabilities do not sum up to one, there exist pos-
sible instantiations of the uncertain stream where the tuple does not exist. Uncertain tuples
are processed according to the possible world semantics [23].

In the attribute model [17,42], uncertainty is more fine-grained, and it refers to single tuple
attributes. An uncertain attribute is represented by a random variable whose distribution is
assumed to be known. The distribution may be continuous or discrete, and it is fully described
by its Probability Density Function (PDF). The baseline formalization of this model fails
to capture correlations among attributes. Extensions have been proposed to address this
limitation [42].

In this study, we adopt the x-tuple model. This choice is motivated by the following
observations. First, it can capture correlations among attributes without considering more
complex extensions (i.e., making explicit the tuple distribution by means of a set of drawn
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samples). Second, it supports both value uncertainty and existential uncertainty of tuples.
Third, real-world uncertain data are often provided by means of discrete samples drawn from
unknown distributions. Fourth, possible world semantics provide an intuitive bridge between
semantics of stream operators in certain data streams and their respective adaptations for
uncertain data streams. Last but not the least, we observe that applying stream operators to
uncertain streams can lead to complex distributions that do not have a closed form. This
requires capturing data stream dynamics by reasoning on complex distributions, relying on
methods like Monte Carlo estimation, which usually cannot be performed efficiently.

In what follows, we give an overview of relevant work in the literature on processing data
streams with uncertainty, adopting the uncertainty models described above.

Lian and Chen [33] propose novel techniques for answering similarity matching queries
between uncertain data streams. Methods for spatial and probabilistic pruning are used to
filter the search space efficiently. The two data streams are processed through a pair of sliding
windows, and candidate matches are identified by the sliding window contents. This study
is orthogonal to our proposal, and it is used to evaluate the effectiveness of our techniques.

Diao et al. [17] propose a data stream processing system that supports uncertainty modeled
by continuous random variables. It also contributes two real-world use cases, namely object
tracking on RFID networks and monitoring of hazardous weather conditions.

Ré et al. [40] propose an event processing system for probabilistic event streams by using
Markovian models to infer hidden (possibly correlated) variables, e.g., a person’s location
from RFID readings. It is worth noting that this system can produce output events that are
existentially uncertain.

Dallachiesa et al. [13] perform an extensive experimental and analytical comparison of
methods for answering similarity matching queries on uncertain time series.

In[11], an augmented R-tree indexes a dataset of spatial points with existential uncertainty.
The authors represent existential uncertainty by independent probability values associated
with the indexed points. Intermediate nodes maintain aggregate statistics, summarizing the
existential probabilities of the indexed points in their subtrees. Augmented R-trees sup-
port probabilistic range queries, reporting only matching points with existential probabilities
higher than a user-defined threshold.

In [27], the authors propose a general framework to answer top-k queries on uncertain
data streams. Each item in the data stream exists with some independent probability. Given
a user-defined sliding window size, possible worlds are enumerated and the top-k items are
identified accordingly to different possible semantics supported by the model. The window
size is fixed, and it is used to enumerate all possible worlds.

In [32], the authors consider the problem of identifying frequent itemsets in uncertain
data streams. Uncertain data streams are processed through a sliding window containing a
fixed number of batches (each batch contains a fixed number of transactions). The existential
probability of each transaction is represented by an independent probability value. Also in
this study, the window size is fixed, and it does not change over time.

Zhang et al. [52] propose an efficient method to maintain skylines over uncertain data
streams. A skyline is a set of items that are not dominated by any other item. An item i
dominates item j if it is “better” than j in at least one tuple attribute and not “worse” than j
in all the other tuple attributes. The definitions of “better”” and “worse” are domain-specific.
The skyline is maintained over a sliding window. The window size is fixed. The probability
for each item to belong to the skyline is then estimated by enumerating all the possible worlds.
Only skyline items with probability higher than a user-defined thresholds are reported.

CLARO and PODS [26,45] are a probabilistic data stream processing systems that rep-
resent continuous-valued attributes using Gaussian mixture models. Formal semantics for

@ Springer



164 M. Dallachiesa et al.

relational processing are presented for operators including joins and aggregates. Exact result
distributions for aggregates based on characteristic functions and exact closed forms are
presented. The authors acknowledge that these algorithms may be impractical because the
time complexity grows exponentially in the number of input tuples, and propose approxi-
mated schemes. Joins are evaluated by using cross-product semantics or the novel concept
of probabilistic views, that is used to derive closed form join result distributions in the form
of Gaussian mixture models. Existential uncertainty of tuples is recognized as an important
issue that requires extensions to the current proposal, using expensive computational methods
such as Monte Carlo simulations.

In the aforementioned papers, the occurrence probabilities of items in a data stream do
not affect the sliding window size. The window size is fixed and does not depend on data
uncertainty. In our study, we extend the semantics of sliding window query processing by
referring to the window size as the number of truly existing tuples in the uncertain data stream.
Our contribution is a basic building block for processing sliding windows on uncertain data
streams, and it is orthogonal to past studies. As shown in Sect. 6, previous works on streaming
operations with sliding windows can be easily adapted to accommodate our extensions.

Although in this work, we focus on existential uncertainty in data streams, similar forms
of structural uncertainty have been investigated also on linked data, where the connections
between different entities are uncertain [12,22]. These models can be used for link prediction
and collective classification. However, they haven’t been designed to estimate the number of
existing links, and they cannot be easily applied to our problem definition.

In this work, we take advantage of previously developed methods for efficiently evaluating
the CDF of Poisson-binomial distributions, e.g., the sum of n independent Bernoulli trials.
Some methods include Bernecker et al. [7], which propose an algorithm with time cost O n?)
based on dynamic programming, and Sun et al. [44], which propose an algorithm based on
divide-and-conquer with time cost O (nlog2n). Other approximation algorithms also exist
[9,47].

We use one exact method (RF1) and three approximations (Poisson, Normal, and Refined
Normal Approximations), as reviewed in [25]. Independence is a simplifying assumption
widely used in prior studies on uncertain data management [2].

We observe that in our data model, the parameters of the Poisson-binomial distribution
can be easily derived from the existential probabilities. In particular situations where this
information is not available, a simplified data model can be adopted and the distribution
parameters must be estimated. In [16], the authors propose an algorithm which learns Poisson-
binomial distributions with e-accuracy from input samples.

Hierarchical Markov models and conditional random fields have been used to learn and
infer a user’s daily movements [35] from noisy sensor measurements. Our proposal can be
used in these applications to model more accurately the imprecise location of users by filtering
out noise using sliding windows and aggregate operators.

3 Uncertain data streams
3.1 Preliminaries

A data stream S is a sequence of tuples s;, where 0 < i < n and n € N. We refer to i as
the index of a tuple in a stream. Without loss of generality, a tuple s; is a d —dimensional
real-valued point.! We define a subsequence of stream S as S; jj = (s;, ..., 5;). We define

I Each dimension can be considered as an attribute.
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Fig.1 Example of an uncertain data stream, where uncertainty is modeled by repeated weighted measurements
and tuples are one-dimensional points. Weights are encoded using transparency, i.e., lighter points occur with
lower probability

a count-based sliding window W (S, w) as the subsequence Sy, +1,;], where 7 is index of
the most recent tuple received from stream S and w € N indicates the size of the window.
When not implicit from the context, we refer to data streams without uncertainty as certain
data streams.
An uncertain data stream U is a sequence of uncertain tuples u;, where 0 < i < 5 and
n € N.Tuple u; isrepresented by a set of [ possible materializations, i.e., u; = {u; 1, ..., U }.
If [u;| > 1, then the tuple has value uncertainty. A sample materialization u; ; € u; occurs
with a given probability Pr(u; ;). The existential probability Pr(u;) of tuple u; is defined
as
Pr(u) = Priuj). M

Ui, jE€U;

Tuple u; is said to exist in stream U if Pr(u;) = 1. If Pr(u;,) <1, tuple u; is considered
existentially uncertain. Figure 1 shows an example of an uncertain data stream, where each
tuple is represented by three weighted samples.

In the rest of this section, we show that applying commonly used stream transformations
to uncertain data streams can (i) introduce existential uncertainty from value uncertainty, and
(ii) introduce value uncertainty from existential uncertainty.

3.2 From value to existential uncertainty

We use a filter stream operator to illustrate how value uncertainty may cause existential
uncertainty. Filter operators are widely deployed to discard non-interesting data, noisy tuples,
and outliers.

Given a certain data stream S, a filter operator f.(S) accepts an input stream S and produces
an output stream 7 s.t. s; € T iff's; meets the user-defined condition c. In particular, we have
T CS.

With uncertain data streams, a filter operator must consider that a tuple may assume
multiple values. When an input tuple #; from an uncertain data stream U gets processed, the

filter operator f.(U) produces an output stream V. An output tuple vy € u; s.t. the samples
u; j meeting the user-defined condition c are retained, while all other samples are dropped
(i.e., filtered out). For ease of exposition, we assume that tuples u; exhibit value uncertainty
only and thus Pr(u;) = 1. If a subset of possible assignments for tuple u; is filtered out, the
produced output tuple vy exhibits existential uncertainty, since Pr(vr) < 1.
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Fig. 2 Example of an uncertain sliding window. Bounding intervals drawn using dashed lines represent the
sliding window content, whereas light colored bars represent existentially uncertain tuples

3.3 From existential to value uncertainty

As described in Sect. 1, operators that use sliding windows in their logic are influenced by
existential uncertainty. This is because the sliding window boundary becomes uncertain, thus
leading to uncertain output values. To illustrate this problem, we consider a sliding window
aggregate operator performing a summation.

Given a certain data stream S and a sliding window W (S, w), an aggregate produces a
new stream data item 7, by summing up the attribute values of the last w incoming tuples
from stream S. Given that the incoming tuple is s,, the resulting tuple #, is defined as
y=8p+ -+ Sp—w+l-

In the presence of uncertain input data, the aggregate must consider the uncertainty of
sliding windows. Given an uncertain input stream U, an aggregate operator processes incom-
ing uncertain tuples through sliding window W (U, w). Assuming that there is at least one
tuple u; that is existentially uncertain (Pr(u;) < 1), there is a set of possible worlds for
the content of the sliding window W (U, w). For example, if one tuple within the last w
tuples does not exist, then we must account for it by including one more tuple from U to
the window content. If there is a second tuple within the last w tuples which is existentially
uncertain, then there is a window that considers the possible world with two more tuples
from U’s history. Note that there are multiple possible summations for the same sliding
window. This means that the stream generated by the aggregate operator has value uncer-
tainty.

Figure 2 shows an example of the content of an uncertain sliding window of size 13 in
an aggregate operator. We represent each tuple in the uncertain data stream as a bar, which
indicates the minimum and maximum values of the tuple attribute. The window contains two
tuples that are existentially uncertain (u, 3 and u, ). In this example, the sliding window has
four different materializations. The bounding intervals in the figure represent three different
window boundaries corresponding to these materializations. This results in an output tuple
that can have up to four different summation values and their corresponding probabilities.

4 Uncertain sliding windows

In this section, we formalize the semantics for count-based uncertain sliding windows. We
stress that in past studies, uncertain data streams are processed through regular sliding win-
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Table 1 Symbols used in the

paper and their explanations Symbol Description
U Data stream
u; ity tuple in U
n Index of most recent tuple in U
W, w) Sliding window over data stream U of size w
W(U , W) Distribution of sliding window W (U, w)
\W(U, w)| Count of existing tuples in W(U, w)
o Probabilistic threshold
B Similarity threshold

dows. In our study, we investigate the implications of the marriage between sliding window
processing and existential uncertainty. The user-defined window size refers to the number
of truly existing points according to the possible world semantics. Intuitively, the number of
tuples actually maintained in the sliding window can overflow the user-defined window size
due to the existential uncertainty of some tuples.

Uncertain sliding windows can be used as building blocks for common streaming opera-
tors, such as joins, as we will show later in Sect. 5.

In Table 1, we summarize the most important symbols used in the rest of the paper.

4.1 Modeling uncertain sliding windows

Given an uncertain data stream U, a windowed stream operator processes incoming tuples
through sliding window W (U, w) where w is the window size. When all tuples in U are
existentially certain, the sliding window boundaries are managed in a straightforward manner,
i.e., when the operator inserts a new tuple into a full window, it also evicts the oldest tuple
from the window.

When some tuples in U are existentially uncertain, the boundaries of the sliding window
become uncertain, as shown in the example in Fig. 2. To model this boundary, we first define
W(U , w) as the subsequence of tuples in a materialization of W (U, w). This subsequence
can be considered as a random variable whose sample space is the set of all possible window
materializations corresponding to W (U, w). We denote this subsequence’s size as | W U, w)|,
which is a discrete random variable.

When a stream operator processes uncertain tuples through a sliding window of length
w, the number of tuples in some materializations of the window may not reach the window
length w, i.e., Pr(| W(U, w)| = w) < 1. Considering the sliding window semantics and the
uncertainty model with possible world semantics, more tuples from the history of U must
be included into the sliding window to account for existential uncertainty. More formally,
exactly w existentially certain tuples (i.e., u; € U s.t. Pr(u;) = 1) must be kept inside the
sliding window. As an example, in Fig. 2, two tuples in W (U, w) are existentially uncertain.
As a result, two more existentially certain tuples are included in the sliding window (u;—14
and u,_15). Now, the window contains at least w tuples, regardless of the existence of the
uncertain ones (#,—¢ and u,_3).

Intuitively, we want to substitute the sliding window W(U , w) with W(U ,w’), where
w’ > w represents the number of tuples kept in the window W (U, w) and the following
holds:

Pr(W U, w)| = w) = 1. Q)

@ Springer



168 M. Dallachiesa et al.

This equation has two problems. First, each possible materialization of W (U, w’) may have
a different number of tuples in it. Thus, the probability that the number of tuples existing in
the window is exactly w is not guaranteed to reach one. Instead, we need to make sure that
each possible materialization has at least w tuples. We observe that with increasing values
of w’, the probability Pr(| W(U , w")| > w) approaches to one. This leads to a refinement of
the probabilistic condition in Eq. (2), as follows:

Pr(WU,w')| > w) =1 A w'minimal. 3)

The second problem is that if all tuples in U are existentially uncertain, the value of w’
in W(U , w") approaches to the total size of U (or infinity) when Eq. (3) must hold. Thus,
our definition of an uncertain sliding window, denoted as W (U, w, ), bounds the number
of tuples to be kept in a window (that is w’) by introducing a probabilistic threshold «, as
follows:

PrW(U,w')| > w) > a A w'minimal. )

As the number of tuples kept in the window increases, the probability that less than w tuples
exist within W (U, w’) approaches to zero. When this probability reaches 1 — «, we do not
need to keep any additional tuples in the window, according to Eq. (4). Thus, « serves as a
probabilistic bound that limits w’.

We note that Eq. 4 can be used to define a sliding window whose number of tuples is
w with a known level of confidence, «. Similar formulations of probabilistic thresholds to
bound uncertainty have been proposed in prior studied, such as for range queries and nearest
neighbor searches in [10]. In the following, we will consider this definition to define the
probabilistic bounds of uncertain sliding windows.

4.2 Processing uncertain sliding windows

Given a certain data stream S and sliding window W (S, w), new tuples are processed as
follows. Whenever a new tuple s; comes in, (i) the operator adds s; to the content of sliding
window W and (ii) if [W| > w, then the operator evicts tuple s; from window W, where
Vaew J < k,ie., s; is the oldest tuple in W. The eviction policy is deterministic. Once W
reaches the desired user-defined length w, the operator evicts exactly one tuple every time a
new tuple comes in.

With uncertain data streams, we substitute regular sliding windows with uncertain sliding
windows. Given an uncertain data stream U, an operator processes an uncertain sliding
window W (U, w, «), as defined in Algorithm 1. The key point here is the eviction procedure,
which may evict more than one tuple at a time.

Algorithm 1 uncert-evict
Input: U, w,

Output: W (U, w, o)

1: WU, w,a) <0

2: loop

3: if new tuple u from U then

4 WU, w,a) < WU, w, ) U {u}

5 while Pr(|W (U, w' — 1)| > w) > « do

6: WU, w,a) < WU, w,a)\ {u} s.t. u is the oldest tuple in W (U, w, «)
7 end while

8: endif

9: end loop
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The algorithm evaluates the probabilistic condition defined in Eq. (4) on the window
content without the oldest tuple, that is using w’ — 1 rather than w’ in |W (U, w’)|, where w’
is the number of tuples currently kept in the window W (U, w, «). If the condition is met,
the algorithm evicts the oldest tuple, since the window has sufficient content without it. The
test is iterated, evicting as many tuples as possible. This ensures that the resulting window is
minimal.

To evaluate Pr(|W(U ,w' — 1)| > w) in Algorithm 1, we need a model for the random
variable |W(U ,w’ — 1)] in terms of its cumulative distribution function (CDF):

Pr(|W(U, w-D>w)=1- Pr(lW(U, w -1 <w-1). 4)

The random variable |W(U ,w’ — 1)| can be seen as the sum of independent Bernoulli
trials, where the success probabilities of the trials are mapped to the existential probabilities
of the tuples. Formally, let /; be a random indicator associated with tuple u; of stream U,
where 0 < i < 7 and 7 is the most recent tuple index. We have

I; ~ Bernoulli(Pr(u;)), (6)

where Pr(u;) is the existential probability of tuple u; as defined in Eq. (1). As a simplify-
ing assumption, we assume that random indicators /; are independent. The distribution of
|[W (U, w' — 1)| is known as Poisson-binomial and is defined as follows:

n
WU, w'-Dl= > I )

i=n—w'+2

In some real-world scenarios, existential probabilities Pr(u;) may not be independent
and could be seen as observations from an unknown Markovian process. For example, bursts
of missing tuples can be described using this model. However, many times, stream opera-
tors don’t have direct access to tuple correlation information [40] and process new tuples
independently as they come in. In this work, we assume that windowed operators consider
each tuple independently, and, as such, window sizes can be modeled as a Poisson-binomial
distribution. The Poisson-binomial distribution has been used for modeling purposes with
similar assumptions in reliability theory and fault tolerance [31] as well as in many other
application areas [18].

In the subsequent sections, we describe algorithms and efficient online approximation
schemes to compute the CDF of IW(U ,w)l.

4.3 The Poisson-binomial distribution

We first look at computing the exact CDF. Let Iy, .. ., I,, be n independent Bernoulli random
variables with success probabilities pi, ..., p,. Then, the random variable N = >*_, I; is
Poisson-binomial distributed. The probability mass function (PMF) Pr(N = k) is defined
as:

PriN=ky= > []r []0-rd ®)

AeFiicA icAc

where Fj is the set of all subsets of k integers that can be selected from {1, ..., n} and
A€ ={1,...,n}\A. The CDF Pr(N < k) is defined as follows:
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k
Pr(N <k) = z Pr(N =i). 9)
i=0

Since Fy in Eq. (8) contains (Z) = n!/((n — k)! - k!) elements, its enumeration becomes
unfeasible as n increases. Hence, we need efficient techniques for computing the CDF of a
Poisson-binomial random variable.

We consider the RFI recursive formulation, as reviewed in [25], to compute the exact
PMF Pr(N = k). Given X; = Z'l./zl I;, Pr(N = k) = Pr(X,, = k) can be reformulated
using the following decomposition:

PriX;=D)=0—-pj)-PriXj1=0) +pj-PriXj-1=1-1), (10)

with boundary conditions Vg>;=0, Pr(Xo = 1) = 0, and ¥,,> j=0, Pr(X; = 0) = [[/_,(1 —
pi). If the jth Bernoulli trial is a success, we need [ — 1 successes from the remaining / — 1
trials to reach / successes in total. Otherwise, we need / successes from the remaining trials.

The RF1 algorithm can be implemented efficiently by determining the values M;; =
Pr(X; = 1) of matrix M in a bottom-up manner. Similarly, one can compute the CDF
Pr(N < k) by summing up the relevant cells of the matrix M, that is, Pr(N < k) =
Z;(:o M.

More efficient exact algorithms (as reported in Sect. 2) have computational time cost of
O (n), where n is the number of tuples currently maintained in the sliding window (where
n >> k). However, they remain computationally expensive, given that the CDF must be
evaluated several times within Algorithm 1. Experiments in Sect. 7.2 show that the loss in
accuracy due to the approximated estimations of the Poisson-binomial distribution CDF is
negligible. We use RF'1 as a baseline to assess the performance of approximated schemes,
which are briefly reviewed in the rest of this section.

4.4 Efficient approximations of the Poisson-binomial distribution

Hong [25] reviews some approximations for the Poisson-binomial distribution N, namely
Poisson, normal, and refined normal. These approximations are obtained by combining the
Poisson and Normal distributions with statistics such as mean (i), standard deviation (o),
and skewness (). These statistics are defined as follows:

uw = E(N)=sum,, (1)

o =+/Var(N) = /sumg, (12)
1

y = Skewness(N) = —sumy, (13)
o

where sum, = > ', pi, sume = > i pi - (1 — p;) and sumy, = >0 pi - (1 — p;) -
(1 — 2p;). As described in Sects. 4.2 and 4.3, we use the Poisson-binomial distribution
to model |W( U, w’)|. Whenever an operator appends new tuples or evicts old tuples from
sliding window W (U, w, «), this distribution changes. We observe that statistics u, o, and
y can be efficiently maintained over time by adding and removing components from the
sums sum,,, Sumy, and sum,, at the cost of simple additions and subtractions. In particular,
when a new tuple is appended to the stream, the computational time cost of updating these
statistics is O (k) where k is the number of evicted tuples. This is a key characteristic of these
approximations, which allows their efficient use in streaming algorithms.
For completeness, we briefly cover these approximations [25]:
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Poisson Approximation The Poisson-binomial distribution is approximated with the Pois-
son distribution as N ~ Poisson(u). Consequently,

1k exp(—p)

k
Pr(N <k)~ Z .

i=1

(14)

Normal Approximation The Poisson-binomial distribution is approximated with the Nor-
mal distribution, thanks to the central limit theorem, as follows:

PrN <k) ~ ® (W) , (15)

where ®(x) is the CDF of the standard normal distribution.

Refined Normal Approximation The Poisson-binomial distribution is approximated again
via the Normal distribution, but this time the skewness is taken into account to improve the
approximation accuracy. The CDF for the refined normal approximation is given as follows:

Pr(N 5k)mG(@), (16)

where 5

y(l —x7)p(x)
6 9

where @ (x) and ¢ (x) are, respectively, the PDF and the CDF of the standard normal distri-

bution.

G(x) = d(x) + (17)

5 Adapting stream operators to handle data uncertainty

Windowed stream operators reviewed in Sect. 2 do support uncertain data streams. However,
they operate using sliding windows as defined over regular data streams. In this section, we
discuss how they can be adapted to use uncertain sliding windows, investigating the impli-
cations on operator semantics. As a driving example, we consider the problem of answering
similarity join queries over uncertain data streams [33].

The similarity join operator correlates similar tuples from two input data streams. When
the operator receives a new tuple, it evaluates whether the tuple is similar to any of the
other tuples residing in the sliding window of the opposing stream. Similarity joins are used
in many applications, including detection of duplicates in web pages, data integration, and
pattern recognition.

More formally, the similarity join between two certain data streams S and 7 is denoted
by § <y T. Two tuples s; € S and t; € T are similar if their distance is less than or
equal to the user-defined distance threshold €. Tuples from S and T are maintained by sliding
windows W (S, w) and W (T, w). Whenever the similarity join operator receives a new tuple
s; from stream S, it appends the following sequence of tuples T’ to the output stream:

T = {(s;, tj) | Dist(s;, tj) < EeENTj € W(T, w)}, (18)

where ¢; is any tuple in W (T, w) that meets the similarity condition. New tuples received from
stream 7 are processed similarly. Figure 3 shows an example of a similarity join operator.
The similarity join operator between uncertain data streams U and V is denoted by
U > w,a,p V, where € and w are the match distance threshold and the sliding window
size, respectively. Parameters o and B are the probabilistic sliding window bound and the
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Fig. 3 Example of a similarity join between certain data streams. Interval bar displays tuples in W (T, w)
that are similar to s, | based on the distance threshold €. Blue (dark) and red (light) dots represent the values
of the two streams to be joined

match probability threshold, respectively. Given an uncertain sliding window W(V, w, «),
whenever a new point u; € U comes in, the join operator appends to the output stream the
sequence of uncertain points V' defined as follows:

V' = {(u;, Vi) s.t.v; € WV, w,a) A Pr(match(u;,v;)) > B}, (19)

where v; is any tuple in W(V, w, ) that meets the similarity condition match(u;, v;) with
sufficient probability.

The operator constructs the candidate output tuple (u;, v;).o by pairing all matching
samples (u; g, vj,1) as:

Wi, Vj)oa = {(Ui g, vj1) s.t.dist(uj g, vj1) < €}. (20)

To evaluate the match probability, we first evaluate whether v; is existentially certain. If so,
then the match probability Pr(match(u;,v;)) is equal to the probability of the matching
samples, namely Pr(matchgs(u;, v;)), which is calculated as follows:

Pr(matChs(ui,vj)) = Z Pr(u; ) - Pr(vj_l). 21)
(Wi ke 0j, D)€W, Tj)oa
When tuple v; is existentially uncertain, then the match probability is computed as follows:

Pr(match(u;,v;)) = Pr(v; € W[w](V, w') A matchg (u;, v;j)), (22)

where W[w](V, w’) is the subsequence of most recent w tuples within W(V, w’). This leads
to the following:

Pr(match(u;, vj)) = Pr(v; € W[w](\/, w))) -
Pr(match(ui, v;) | v; € W (V, w). (23)

With the simplifying assumption that existential uncertainty and tuple values are independent,
we have:

Pr(match(ui, vj)) = Pr(vj € W[w](V, w))) -
Pr(matchg(u;,v;))/Pr(vj). 24)
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In Eq. (24), tuple v; exists within W[u,](v, w’) iff it exists in V and less than w tuples exist
within the sequence of tuples v 1, ..., v, that are more recent than v;. Formally, we have:

Pr(vj € Wy (V,w')) = Pr(vj) - PrqW(V,n — j)| <w — 1), (25)

where n — j is the number of tuples in the window that are more recent than v;. Finally, we
have:

Pr(match(u;,vj)) = Pr(W(v, n—pI<w-1)-
Pr(matchgs(u;, vj)) (26)

Note that Pr(IW(V, n—j) < w — 1) is the CDF of the Poisson-binomial distribution.
Efficient methods for its evaluation have been discussed in Sect. 4.3.

6 Efficient similarity join processing

The performance of similarity joins using uncertain sliding windows can be improved by
combining the probabilistic thresholds on the window size and on the match probability. We
present a novel upper bound of the match probability based on this idea. Besides, we discuss
an adaptation of state-of-the-art similarity join methods [33] to uncertain sliding windows.
Finally, we conclude presenting a simple yet effective sort-based similarity join algorithm
that can be competitive in real-world scenarios.

6.1 Upper-bounding the match probability

As described in Sect. 5, we denote a similarity join operator for uncertain data streams U and
V as U ><¢ y,a,p V, where € is the match distance threshold, w is the sliding window size,
« is the probabilistic threshold on the sliding window bound, and 8 is the match probability
threshold. Whenever the operator receives a new tuple v € V, it matches v against the
uncertain sliding window W (U, w, «). If a matching pair exists with probability higher than
or equal to B, the operator appends the tuple to its output stream.

We observe that if o approaches 1 and all tuples in U exhibit existential uncertainty, then
the probability that the oldest tuple in sliding window W (U, w, o) exists in a materialization
of the window approaches to zero:

lim Pr (-1 € WU, w) =0. (27)
a—

From Eq. (19), we conclude that W (U, w, @) tends to be oversized if 8 is large, since
the older tuples in the window are not likely to produce any matches with high probability.
This motivates a revision of the eviction policy as presented in Algorithm 1 for maintaining
uncertain sliding windows such that it also takes 8 into account.

From Eq. (26), we have Pr(|W(U, w’ — 1)] < w) as an upper bound for the match
probability Pr(match(v, u’)), where u’ is the oldest tuple in W(U, w,a, B) and v € V
is the tuple, we are currently processing against the window defined on U. As a result,
Pr(| W(U ,w —1)| < w) < B can be used as a secondary eviction condition for discarding
tuples from the window, in place of Pr(match(v, u’)) < B. Algorithm 2 shows the updated
window eviction policy. This policy results in smaller uncertain sliding windows and an
overall performance improvement.
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Algorithm 2 uncert-evict-beta
Input: U, w, o, B

Output: W (U, w, «, B)

1. WU, w,a,B) <@

2: loop

3: if new tuple u from U then

4 WU, w,a, ) < WU, w,a, B) U {u}

5 while Pr(|W(U, w’ — 1| > w) > min(e, 1 — B) do

6: WU, w,a, B) <~ WU, w,a, B)\ {u'} s.t. u is the oldest tuple in W(U, w, a, B)
7 end while

8: endif

9: end loop

In Algorithm 2, we use the following derivation to bring the eviction conditions into the
same form and avoid repeated computation:

PrqWU, w' — | <w)=1— Pr(WU, w — 1)| > w)

N N 28
PrqWU,w' — 1] <w) < B=Pr(WU,w — 1| >w)>1-8. %)

If the oldest tuple in the uncertain window exists in materializations of the window among
the first w tuples with insufficient probability, then it cannot result in a match with tuples from
the opposing stream. And thus, it can be discarded from the window. § serves as a lower
bound for the aforementioned sufficient probability. Note that in contrast to Algorithm 1,
here, we consider the « and g probabilistic constraints together, using a single formula (see
Algorithm 2, line 5).

6.2 Pruning the similarity search space

In the following, we present different strategies to prune the search space.

6.2.1 Index-based pruning

Lian et al. [33] propose pruning methods for similarity join operators that process value-
uncertain data streams by creating bounding regions based on the samples available in each
tuple. In their method, uncertain tuples u; are summarized by hyper-spherical bounding
regions o;. Hypersphere o; for tuple u; is an approximated minimum enclosing ball of a
subset of its samples. Bounding regions o; are then indexed in a grid index that reflects the
sliding window content.

A grid index is a spatial index data structure that partitions the space into a regular grid.
An object to be indexed is associated with the partition in the grid whose region overlaps with
the spatial coordinates of the object. A search in the grid index identifies the partitions that
overlap with the search region and returns the objects associated with the matching partitions.

In the context of a spatial index, a grid (a.k.a. “mesh”, also “global grid” if it covers the
entire surface of the globe) is a regular tessellation of a manifold or 2D surface that divides it
into a series of contiguous cells, which can then be assigned unique identifiers and used for
spatial indexing purposes. A wide variety of such grids have been proposed or are currently
in use, including grids based on “square” or “rectangular” cells, triangular grids or meshes,
hexagonal grids and grids based on diamond-shaped cells.

Given uncertain input streams U and V, two grid indexes Gy and Gy are maintained over
time. Whenever a new tuple u; comes in, the operator matches it against the tuples indexed
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in Gy . The algorithm safely prunes tuples v; s.t. Dist(o;, 0j) > € since they cannot produce
any match. The operator then processes the retained tuples as in Egs. (20) and (21) to produce
output matches.

A grid index is used to quickly discard a large fraction of candidate tuples. The effec-
tiveness of grid indexing depends on the sparseness of the data. If all pairs of tuple samples
are, on average, far away from each other, the bounding regions tend to be distant and the
pruning strategy works well. Conversely, when at least one pair of samples is close by, then
the pruning is ineffective.

Multi-dimensional data is supported in a straightforward manner for low number of dimen-
sions [33].

Although the methods proposed by Lian et al. have not been designed to be used with
uncertain sliding windows, they can be adapted into the similarity join operator as presented in
Sect. 5. In particular, uncertain sliding windows are used instead of regular sliding windows,
and candidate matches are also filtered according to the upper-bound match probability
presented above (Sect. 6.1). In the rest of the paper, we refer to our adaptation of methods
in [33] as Index-Match.

6.2.2 Sort-based pruning

As an alternative to spatial pruning based on a grid index, we propose a simple yet effective
pruning strategy based on sorting, called Sort-Match. The key advantage of sort-join algo-
rithms with uncertain data is that they are less sensitive to the presence of one or only a few
matching tuple samples for a given tuple pair.

The Sort-Match algorithm relies on redblack trees. A redblack tree is a binary search tree
with one extra attribute for each node: the color, which is either red or black. The assigned
colors satisfy certain properties that force the tree to be balanced. When new nodes are inserted
or removed in the tree, the tree nodes are rearranged to satisfy the conditions. Redblack trees
offer worst-case guarantees for insertion time, deletion time, and search time.

Whenever the join operator receives a new tuple u; € U, it inserts the tuple into
WU, w, «, B) and inserts the tuple samples u; y € u; into a redblack tree RBy. When
the operator evicts tuple u; from W (U, w, «, B), it removes the tuple samples u; x € u; from
RBy.

By maintaining one redblack tree per sliding window, the join operator can efficiently
identify which tuples in the sliding window are a match to the incoming tuple. Whenever the
operator receives tuple u; € U, it searches the redblack tree R By of the opposing stream for
all tuples with values in the interval [u; j —€, u; j+¢€],foreach sample u; ; € u;.Note that the
samples in R By represent the content of sliding window W (V, w, «, 8). Thus, all matching
samples lie between search interval bounds. Once all samples are identified, the operator
groups the samples by their tuple indices. After that, the operator computes the matching
probability of each tuple and evaluates whether it satisfies the 8 condition, as discussed in
Sect. 5. The operator outputs all tuples satisfying the distance and probabilistic constraints.

The Sort-Match algorithm cannot be easily adapted to multi-dimensional data. One can
overcome this limitation by using linear mapping transformations such as the z-curve or the
Hilbert space filling curve [36].

7 Experimental evaluation

In this section, we compare how well the various approximations work for modeling uncer-
tain sliding windows under different settings, in terms of both accuracy and performance.
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Table 2 Experiment parameter
configuration ranges. Default

values are indicated in bold

Parameter

Range

No. of samples per tuple
Sliding window size (w)
Existential uncert. o
Value uncert. o

Stream length

o Probabilistic threshold
B Probabilistic threshold
€ Distance threshold

[5,...,10, ..., 50]

[100, ..., 500, ..., 1, 000]
[0.025,...,0.1, ..., 0.25]
[0.1,...,0.5, ..., 1]

2000

[0.5,...,0.95, ..., 1]
[0.1,...,0.5,...,0.9]
Selectivity close to 0.05 %

Furthermore, we experimentally compare the efficiency of different pruning approaches for
implementing a similarity join operator that processes data streams with value and existential
uncertainties.

We implemented all techniques in C++ and ran the experiments on a Linux machine
equipped with an Intel Xeon 2.13GHz processor and 4GB of RAM. For all results, we report
the averages of the measurements obtained from 15 independent runs, as well as the 95 %
confidence intervals.

For all experiments, we use the parameter configurations described in Table 2. When not
explicitly stated, we use the default configuration value (shown in bold).

7.1 Datasets

In our experiments, we generate uncertain data streams by using time series datasets that con-
tain certain tuples (i.e., one exact value per tuple). We introduce uncertainty through pertur-
bation, similar to prior work [5,13,33,41,49]. We introduce value uncertainty by considering
uniform, normal, and exponential error distributions with zero mean and varying standard
deviation within [0.1, 1.0]. We introduce existential uncertainty by sampling from uniform,
normal, and exponential distributions with varying standard deviation within [0, 0.25]. Since
existential uncertainty may range within interval (0, 1), we restrict these distributions to this
range.” Intuitively, the higher the standard deviation, the higher the probability of having
tuples with low probability of existence. Samples outside the required range are discarded
(rejection sampling).

We use 17 real-time series datasets from the UCR classification [29], which represent a
wide range of application domains. These are S0words, Adiac, Beef, CBF, Coffee, ECG200,
FISH, FaceAll, FaceFour, Gun_Point, Lighting2, Lighting7, OSULeaf, OliveOil, Swedish-
Leaf, Trace, and synthetic_control. We generate streams by sampling random subsequences
from all datasets. By sampling subsequences, we capture the temporal correlation that may
appear across neighboring points.

7.2 Poisson-binomial distribution approximations

In this section, we compare how the different approximations of the Poisson-binomial distri-
bution (Sect. 4.4) can affect the content of the uncertain sliding window. These experiments
only consider the existential uncertainty of the tuples, since their results do not depend on
the actual tuple values.

2 The uniform distribution over [0, x] has a fixed standard deviation that is only dependent on x. To vary the
standard deviation, we adapt the value of x (for o = 0.25, x ~ 0.87).
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7.2.1 Accuracy

This experiment evaluates the accuracy of the three approximations of the Poisson-binomial
distribution, namely Poisson, Normal, and Refined Normal. This helps us to evaluate the
error that each approximation can yield when calculating the CDF in Eq. 26.

We measure the accuracy in terms of the Root Mean Square Error (RMSE), as follows:

RMSE(n)

_ \/ S (edfv ) — cdf k) 00

n

where n is the number of Bernoulli random variables in the Poisson-binomial distribution
N =", X;,and cdfy(k), cdf}, (k) are, respectively, the exact and approximated CDFs
of N. Note that the value of n represents the number of tuples kept in the window (w’), and
cdfn (k) is proportional to the probability that the k + 1/ most recent tuple (say u;, where
i = n — k) exists in a window of size w, i.e., Pr(u; € W[wJ(U, w’)). Figure 4 shows the
RMSE results (y-axis) when applying the different approximations for different window sizes
(x-axis). Each graph displays the RMSE results when sampling the existential uncertainty
values for each tuple from the normal distribution. Results for uniform and exponential distri-
butions are very similar and omitted for brevity. The graph also shows the confidence interval
for each measurement. From Fig. 4, we can see that the Refined Normal approximation pro-
vides the lowest RMSE independent of the distribution used to assign existential uncertainty
values. We also notice that all approximations exhibit lower quality when the window size
is small (w < 100). This is expected behavior according to the central limit theorem. In
conclusion, the exact computation of the CDF (RF1) should be preferred if the window size
(w) is below 100, otherwise the Refined Normal approximation provides the best accuracy
compromise (RMSE < 0.002).
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Fig. 4 RMSE of different Poisson-binomial approximations for different window sizes, and with existential
uncertainty, distribution standard deviation set to 0.1 (Normal distribution). The approximation with lowest
error is the Refined Normal, independent of the distribution used for assigning tuple existential uncertainties.
The figure also shows the low precision of the approximations for small window sizes
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Fig.5 Time consumed by each CDF computation under different window sizes. Refined Normal and Normal
approximations provide the lowest cost

7.2.2 Performance

This experiment compares the performance of the different methods for obtaining the Poisson-
binomial CDF. We evaluate the computational cost of the exact algorithm (RF1) and the three
approximations (Poisson, Normal, and Refined Normal). Computing the CDF efficiently is
critical for a performant implementation of uncertain sliding windows. This is because there
are multiple CDF computations on the critical path of the operator logic.

Figure 5 shows the time consumed per CDF computation (y-axis) under different window
sizes (x-axis). The figure shows the results when we sample the tuple existential uncertainty
values from a uniform distribution with standard deviation of 0.1. We observe that while
the time required by the RF1 algorithm increases quadratically as window sizes increase,
the time consumed by approximated schemes increase linearly. The Poisson approximation
is the most computationally intensive among the approximations. The time consumed by
the Normal and the Refined Normal are almost indistinguishable from each other. Note that
the time consumed for RF1 is small for small window sizes, which indicates that an exact
CDF solution can be used for small windows (w < 100) to achieve accurate probability
computations with low performance cost. This is especially important when considering that
for small windows, approximation techniques provide poor accuracy (Fig. 4). Similar trends
have been obtained when using different statistical distributions (normal and exponential) and
different standard deviations for the existential uncertainty. We omit these results for brevity.

We observe that all methods require an absolute time below 3 milliseconds to evaluate the
CDF function for window sizes up to 1,000. However, the data throughput supported by each
technique varies considerably. For example, the Refined Normal method, when compared to
RF1, provides nearly 100 times better performance.

7.3 Uncertain sliding windows for sum aggregation
In this section, we present our results on the evaluation of the sum aggregation on uncertain

data streams. Given an uncertain sliding window W (V, w, «), the sum operator is defined as
follows. Whenever a new point #; € U comes in, a new tuple v; is appended to the output
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stream. Tuple v; is represented by a single instantiation, whose value is defined as the sum
of the average values of the tuples within the window boundaries.

In Fig. 9, we compare the output stream of the sum aggregation operator when using an
uncertain sliding window W (V, w, «) and a regular sliding window W (V, w) on the Coffee
dataset. Similar results have been obtained with the other datasets and are omitted for brevity.
The experiment uses a standard deviation for existential uncertainty of 0.1, and a standard
deviation for value uncertainty of 0.5. We fix the number of samples per tuple to 10 and vary
the o probabilistic threshold between 0.5 and 1. We report the average absolute percentage
change of the output tuple values ranging the window size (w) between 200 and 1,000. Given
that sum; is the value of the sum obtained using the regular sliding window and that sum ;
is the value of the sum obtained using the uncertain sliding window, the absolute percentage
change between sum; and sum  is defined as |[sum; — sum |/|sum;| then multiplied by
100. The reported value is obtained by averaging the absolute percentage change across all
the window shifts. The results show that the regular sliding windows are constantly over-
estimating the window size, not considering the possibility that some data values do not exist
in the window, which is exactly what the uncertain sliding window model accounts for. The
value of the tuples in the stream may be negative, this is why sums don’t always get larger
as we consider more tuples. We observe that with window size w = 200, there are very
large differences, with differences of up to 1,800 % in the values of the output stream. For
sufficiently small windows, such as w = 200, the sums are affected more by changes in the
stream tuple values. In contrast, on larger windows, the sums tend to be more stable as posi-
tive and negative tuple values balance each other. We further note that tuning the probabilistic
threshold alpha is a critical choice and depends on the particular application scenario. For
example, in case of sum aggregations, the produced values may deviate significantly, and a
large value of alpha is recommended.

7.4 Uncertain sliding windows for similarity join

In this section, we report our results on maintaining uncertain sliding windows within a
similarity join operator. We evaluate our approach in terms of accuracy, performance, and
memory footprint. We also report the efficiency of the pruning techniques for the join operator.

7.4.1 Accuracy

As shown in Fig. 5, the performance for computing approximated results of the Poisson-
binomial CDF is significantly superior to the performance of calculating an exact solution,
suggesting that approximations should almost always be favored in comparison with the exact
solution. As a result, we must understand how much the approximations may affect the output
of a given operator when compared to the exact solution. In case of window management,
approximations may result in a tuple being improperly included or excluded from the sliding
window. The effect of these two situations on the join operator is that it may lead to the
generation of an output tuple that should not be in the result (false positive), or to the failure
of generating an output tuple that should be in the result (false negative). The approximations
can also introduce errors in the existential uncertainty values of the output tuples.

To evaluate the effect of the CDF approximation in the results, we use the F1 score, which
is an accuracy measure based on the precision and recall measures. Precision is defined as
the percentage of uncertain tuples generated by the join which are truly matching. Recall
is defined as the percentage of the truly matching uncertain tuples found by the join using
approximate CDF computation.
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We compute precision and recall whenever the join operator processes a new input tuple.
The computation weighs the contribution to precision and recall of each output tuple (u;, v;)iq
by its probabilistic distance to the exact answer as follows:

1= |Pr((ui, v)ea) — Pr'((ui, vj)e)l, (30)

where Pr((u;, vj)s) and Pr'((u;, vj)s) are the existential probabilities of the output tuple
on the exact and on the approximate answers, respectively. Intuitively, the loss in accuracy
of the probabilities of existence in output tuples impacts the precision and recall metrics. We
report the average and 0.95 confidence intervals on the F1 score, precision, and recall.

Figure 6 shows the F'1 score when the join operator uses the three different CDF approx-
imations with varying window sizes (w). This experiment shows the results for data streams
exhibiting uniform existential uncertainty with standard deviation & = 0.1. The graph shows
that the results of the join operator when using the Refined Normal and the Normal approx-
imation methods are nearly the same as the ones provided by the exact solution when the
window size is bigger than 80. The average F'1 scores for the Refined Normal, Normal, and
Poisson approximations are, respectively, 0.99, 0.98, and 0.47. As expected from the previous
experiments (Fig. 4), the Poisson approximation has very inaccurate output and should not be
used for a join computation. We obtained similar trends when measuring the F'1 score using
normal and exponential distributions for existential uncertainty. In addition, we observed
that the amount of existential uncertainty (varied by increasing the standard deviation for all
distributions) does not affect the F'1 score when the window size is larger than 80 (similar
to Fig. 6). This means that the proposed uncertain sliding window is robust to changes in the
distribution of the existential uncertainty. The graphs for the last two observations are not
shown for brevity.

Figures 7 and 8 report precision and recall for the same experiment, respectively. The
figures show that both the Normal and Refined Normal approximations have a small false
positive and false negative rates when windows are bigger than 80. The results also show that
while recall and precision measurements are very close for the Normal and Refined Normal
approximations, the precision for the Poisson approximation is up to 20 % higher than recall.

1 = T | J—— ® = e
B &
0.8 r |
g 08r P
w
L 04t . % ]
' |
Refined normal —s=—
Normal +---a---
0 ! ! | . ) _ Poisson :ox---
20 40 60 80 100 120 140 160 180 200

Window size

Fig. 6 F1 score for the similarity join operator when comparing the use of CDF approximations. Join using
Normal and Refined Normal approximations provide results very similar to an exact solution
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Fig. 7 Precision for the similarity join operator when using CDF approximations
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Fig. 8 Recall for the similarity join operator when using CDF approximations

In conclusion, the Refined Normal method provides the highest accuracy among the
approximate schemes. We use it in all of the following experiments.

We note that, in case of similarity joins or filter operators, an user may prefer to have a
large value for alpha to reduce the probability of false negatives. e.g., with alpha = 0.95,
the probability to miss a matching tuple is reduced to <0.05 %.

7.4.2 Memory footprint

Memory usage for uncertain sliding windows can be measured in terms of the actual number of
tuples maintained over time (w’). In Fig. 10, we report the actual sliding window sizes (y-axis)
when processing uncertain data streams that have existential uncertainty values sampled
from a uniform distribution with standard deviation varying within [0.025, 0.25]. The figure
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W(V, w) with an uncertain sliding window W (V, w, «) for different configurations of window size w when
varying the o probabilistic threshold
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Fig. 10 Actual size of uncertain sliding windows when varying the existential uncertainty standard deviations
(o). Memory footprint increases as the existential uncertainty standard deviation increases

includes results for different uncertain sliding window logical sizes (i.e., w). The results show
that the actual size of the sliding window increases as the standard deviation increases. This
is because there is more variability in the existential uncertainty values, leading the algorithm
to maintain bigger window sizes to maintain the desired « threshold. The results also show
that the memory overhead is, on average, 8§2.97 % when the standard deviation is 0.25 and
6.12 % when it is 0.025.

Figure 11 reports the actual sliding window size values (w’) when varying the a prob-
abilistic threshold and the logical window size (w) is 500. The figure shows the results
when the tuple existential uncertainty is drawn from a uniform distribution with standard
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deviations of 0.05, 0.1, 0.15, and 0.2. Similar to Fig. 10, we observe that the actual size
of the sliding window increases as the standard deviation increases. We also observe that
the window size is not that sensitive to the « value when o € [0.5, 0.98], since the win-
dow size increases, on average, only 4.83 % when comparing the window size at « = 0.5
and o = 0.98. The actual window size has a steep increase when o = 1.0. At this point,
the uncertain sliding window must have at least w tuples in it that are existentially certain.
Assuming a window size of 500 (default value), the window must have at least 500 tuples that
are existentially certain. Since in our experiments the standard deviation of the existential
uncertainty is always above zero, we expect that the sliding window will grow, in the worst-
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Fig. 11 Actual size of uncertain sliding windows when varying the probabilistic threshold & and the existential
uncertainty o. Window size is more sensitive to o than «. It also presents a steep increase as « approaches to
1
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Fig. 12 Ratio of uncertain sliding window lengths maintained by eviction policies uncert-evict-beta and

uncert-evict when varying the o probabilistic threshold. uncert-evict-beta policy maintains windows that are
up to 18 % smaller
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case approaching the full stream history. In practice, the probability that 500 tuples exist is
reached before including the complete stream history because of the numerical imprecision in
the computation of the CDF of the normal distribution in the Refined Normal approximation
method.

Figure 12 shows the results when comparing the eviction policies uncert-evict and uncert-
evict-beta reported in Algorithms 1 and 2. The sliding window size w is fixed to 500 and
the parameter « varies in the range [0.5, 1] (x-axis). The graph y-axis shows the sliding
window ratio r = wy,, /w,, where w;, and w;, are the the number of tuples maintained
in the uncertain sliding windows by the uncert-evict-beta and uncert-evict eviction policies,
respectively. The same experiment has been repeated for 8 € [0.5, 0.99].

We observe that uncertain sliding windows maintained by the uncert-evict-beta eviction
policy are up to 18 % smaller than those maintained by the uncert-evict eviction policy. The
uncert-evict-beta algorithm shows more benefit when « has larger values. When « is close to
one, a larger number of tuples are maintained in the uncertain sliding window. However, their
probability of being within the sliding window boundary is very low, and below 8. These
results hold when varying the B probabilistic threshold.

These results show that the two key factors that impact memory footprint are (i) the amount
of existential uncertainty in the input tuples, and (ii) the « threshold. As expected, larger actual
sliding window sizes result in operators that are computationally more expensive.

7.4.3 Performance of pruning strategies

This section reports the performance of the spatial pruning technique Index-Match and the
proposed sort-based pruning Sort-Match. We compare the running time of both techniques to
the naive solution (labeled baseline), which searches for matching tuples exhaustively (i.e.,
does not prune the search space).

Figure 13 shows the results for our first experiment, in which we compare the processing
time per tuple of the three algorithms on the Coffee dataset. The experiment uses a standard
deviation for existential uncertainty of 0.1, and a standard deviation for value uncertainty
of 0.5. We fix the number of samples per tuple to 10 and vary the sliding window size

60
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40 |
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£
© 30
£
=
20
101 baseline —— |
Index-Match =---x---
.. ., ., SomtMaich -

100 200 300 400 500 600 700 800 900 1000
Window size (w)

Fig. 13 Performance of pruning strategies when varying the sliding window size. Sort-Match outperforms
Index-Match for different window sizes
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Fig. 15 Average time performance of different pruning strategies when processing different datasets

(w) between 100 and 1,000. The results show that the baseline algorithm has the worst
performance, followed by the Index-Match and Sort-Match methods.

We observe that Index-Match behaves as the baseline when tuples cannot be pruned.
On the other hand, Sort-Match never behaves as the baseline, since it focuses on matching
samples without enumerating all possible sample pair combinations. We observed similar
trends with other datasets and omit these results for brevity.

Figure 14 shows the processing time per tuple of the three algorithms on the Coffee dataset
when varying the number of samples between 2 and 30. The experiment uses a standard
deviation for existential uncertainty of 0.1, and a standard deviation for value uncertainty of
0.5. The window size (w) is fixed to 500.

We observe that Sort-Match performs better than Index-Match when the number of samples
is low—up to 20 % when the number of samples is 16. In many real-world applications, the
number of available samples is rather limited, ranging between 4 and 12 (e.g., in WiFi-based
localization services [50], multiple reader RFID systems [53], and wireless sensor deploy-
ments [39]). For applications like the ones mentioned above, the low number of samples is
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dictated by the installations and the hardware used in these installations. In these applica-
tions, Sort-Match is a promising and suitable solution. When the number of samples is very
large, sort-based similarity joins cannot compete with similarity joins based on indexing data
structures, such as Index-Match. For such cases, we recommend the use of Index-Match.

Figure 15 reports the processing time per tuple when using a sliding window of size
w = 500 for all datasets. On average, the time per processed tuple in ms is 32.72 for
baseline, 32.13 for Index-Match, and 27.51 for Sort-Match. The results show that Sort-Match
consistently performs better than Index-Match for all datasets. In this setup, Sort-Match
provides an average performance improvement of 16 % over Index-Match.

8 Extensions

In this section, we briefly discuss the implications of existential and value uncertainty on time-
based and attribute-delta-based sliding windows, as well implementation considerations for
integrating the techniques introduced in this paper into a stream processing engine.

8.1 Other sliding window policies

A time-based sliding window, denoted by W;;,.(S, t), keeps the last ¢ seconds worth of
tuples. Since tuple timestamps are certain, existential uncertainty does not affect time-based
sliding windows.

An attribute-based sliding window, denoted by W ,, , (S, d), keeps the most recent tuples
such that the difference between the attribute a value of the oldest and the newest tuple is not
more than d (the delta invariant). In the case of attribute-delta sliding windows, to decide
whether the oldest tuple needs to be evicted or not, we need to compute the probability that
it breaks the delta invariant. This probability is 1 — Hvey(l — Pr(y)), where Y is the set of
tuples that cause violating the invariant with respect to the oldest tuple. It is straightforward
to add value uncertainty into the picture.

8.2 Integration into system S

We are working on integrating uncertain data streams, as defined in Sect. 3, into Sys-
tem S [21]—an industrial-strength data stream processing engine. This involves three key
changes. First, the tuple model is being updated to introduce the notion of value and exis-
tential uncertainty. Second, the windowing library is being updated to manage uncertain
boundaries. And finally, the relational operator toolkit is being enhanced with operators that
can work in the presence of value and existential uncertainty.

9 Conclusions and future work

The problem of processing uncertain data streams has attracted lots of attention in the past
years and has found many interesting applications across diverse domains.

In many of these applications, the uncertainty arises from the value uncertainty present
in the data sources. However, as we have shown in this paper, there is a tight relationship
between value uncertainty and existential uncertainty when composing stream operators, one
inducing the other based on the topology at hand.

In this study, we investigated the implications of existential uncertainty on managing
sliding windows. In past studies, the window size was taken fixed, and it did not depend on
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data uncertainty. We extended the semantics of sliding window processing by modeling the
window size as the number of truly existing tuples with probabilistic guarantees. To the best
of our knowledge, this problem has not been addressed before.

Interestingly, previous works on stream operators that can handle value uncertainty are
mostly orthogonal to our contributions and can easily be adapted to use our extensions. To
illustrate this, we discussed the adaptation of a state-of-the-art similarity join algorithm to
use uncertain sliding windows. We also presented a novel pruning strategy that can be used
to efficiently maintain uncertain sliding windows.

We evaluated the performance of the proposed techniques on many real data streams. The
results show that the algorithms used to maintain uncertain sliding windows can efficiently
operate while providing a high-quality approximation in query answering. Based on our
results, Sort-Match provides better time performance than Index-Match, when the number
of tuple samples is low, as is the case for many real-world applications.

We believe that several stream mining applications can benefit from the proposed approach.
Algorithms such as finding quantiles, heavy hitters, and frequent itemsets over sliding win-
dows can be extended to support uncertain data streams by using our proposal as a foundation
for more advanced analytics. We plan to carefully study the details of these research directions
in our future work.
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