
This article was downloaded by: [Bilkent University]
On: 08 June 2015, At: 06:49
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

Stochastic Models
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/lstm20

Fitting Matrix Geometric Distributions by
Model Reduction
Nail Akara

a Electrical and Electronics Engineering Department, Bilkent
University, Bilkent, Turkey
Published online: 05 May 2015.

To cite this article: Nail Akar (2015) Fitting Matrix Geometric Distributions by Model Reduction,
Stochastic Models, 31:2, 292-315, DOI: 10.1080/15326349.2014.1003271

To link to this article:  http://dx.doi.org/10.1080/15326349.2014.1003271

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/15326349.2014.1003271&domain=pdf&date_stamp=2015-05-05
http://www.tandfonline.com/loi/lstm20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/15326349.2014.1003271
http://dx.doi.org/10.1080/15326349.2014.1003271
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Stochastic Models, 31:292–315, 2015
Copyright C© Taylor & Francis Group, LLC
ISSN: 1532-6349 print / 1532-4214 online
DOI: 10.1080/15326349.2014.1003271

FITTING MATRIX GEOMETRIC DISTRIBUTIONS BY MODEL

REDUCTION

Nail Akar

Electrical and Electronics Engineering Department, Bilkent University, Bilkent, Turkey

� A novel algorithmic method is proposed to fit matrix geometric distributions of desired order
to empirical data or arbitrary discrete distributions. The proposed method effectively combines two
existing approaches from two different disciplines: well-established model reduction methods used in
system theory and moment matching methods of applied probability that employ second-order discrete
phase-type distributions. The proposed approach is validated with exhaustive numerical examples
including well-known statistical data.

Keywords Discrete phase type distribution; Matrix geometric distribution; Model
reduction.

Mathematics Subject Classification 62G07; 78M34.

1. INTRODUCTION

Phase-type (PH) distributions, continuous or discrete, form a very gen-
eral class of distributions that have been successfully used in performance
modeling and queuing systems analysis in a wide variety of disciplines for the
last few decades. Continuous phase-type (CPH) distributions are described
in detail in Neuts[1] and Latouche and Ramaswami[2]. Examples that use
CPH distributions for stochastic modeling purposes but in different fields
can be found in Nielsen[3], Neuts and Meier[4], and Drekic et al.,[5] for
models of multiple access communication systems, reliability of systems, and
deficit distributions at ruin, respectively. CPH distributions have attracted
more attention than their discrete counterparts, namely discrete phase-
type (DPH) distributions, the latter first described in Neuts[6] along with
their properties and their use in queuing system modeling. Both CPH and
DPH distributions are closed under a number of operations. For example,
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Fitting Matrix Geometric Distributions 293

convolution, mixture, minimum, or maximum, of finite independent PH-
type distributions are also of PH-type; see, for example, Assaf and Levikson[7],
and O’Cinneide.[8] Other appealing features are their rational characteristic
functions and representability by a pair of matrices. The most popular ap-
proach is the matrix-analytical technique to solve queuing systems involving
PH-type distributions (Neuts[1], Asmussen[9], Latouche and Ramaswami[2]).

Matrix exponential (ME) distributions inherit most of the features, in-
cluding closure properties, of CPH distributions, but they are more gen-
eral than CPH; see Asmussen and O’Cinneide[10], Fackrell[11], and He and
Zhang[12]. ME distributions have rational Laplace transforms similar to CPH
distributions. However, they do not necessarily possess the probabilistic in-
terpretation that CPH distributions have. Still, it has been shown that queues
with ME-type arrival or service processes can also be analyzed using matrix-
analytical techniques as in Asmussen and Bladt[13], Akar[14], and Buchholz
and Telek[15]. Similar to the generalization of ME over CPH, matrix geo-
metric (MG) distributions generalize those of DPH-type; see Turin[16] and
Greeuw[17]. A non-negative integer-valued discrete random variable pos-
sesses an MG distribution that is characterized with a probability mass func-
tion (PMF) of the form p (k) = vT k−1h, k ≥ 1, p (0) = d for a row vector v,
column vector h, and a finite square matrix T whose size gives the order of
the MG distribution. Greeuw[17] uses the characterization of discrete phase-
type distributions by O’Cinneide[8] to provide distributions that are in MG
but not in DPH. Maier[18] presents an algorithm that constructs, from a given
rational function G(z), a discrete-time Markov chain whose absorption-time
distribution has G(z) as its probability generating function. MG distributions
have rational z-transforms, which makes it possible to employ matrix geomet-
ric techniques to solve queues involving matrix geometric distributions. As
an example, Akar[19] provides a numerical method to solve a discrete queu-
ing system offered with MG-type arrival and service processes. Esparza[20]

shows that the factorial moment distributions of MG-type distributions are
also of MG-type.

It is well-known that PH-type distributions are dense in the set of non-
negative distributions; any non-negative distribution can be arbitrarily well
approximated by a PH-type distribution. However, constructing PH distribu-
tions for this purpose with a given order is not straightforward, and various
methods have been proposed in the literature. EMpht is a program for fitting
phase-type distributions to data or parametric distributions. The expected
maximization (EM)-based approach of EMpht is described in Asmussen
et al.[21]. PhFit is a phase-type fitting tool described in Horváth and Telek[22].
PhFit fits arbitrary distributions or data not only by continuous but also dis-
crete PH-type distributions. Thümmler et al.[23] present a novel approach
for PH-type fitting with the EM algorithm and demonstrate improved accu-
racy compared with existing approaches. HyperStar is recently developed
and described in Reinecke et al.[24] for the purpose of making PH-type
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294 Akar

fitting simpler and user-friendly. A method to approximate matrix-
exponential distributions by Coxian distributions is proposed by He and
Zhang[25]. In addition, moment matching (MM) techniques are available to
match the moments of the approximating PH-type distribution to empiri-
cal moments or those of given distributions. Johnson and Taafe[26] present
a nonlinear programming (NLP) approach to the problem of matching
three moments to PH distributions by searching over two families of PH-type
distributions: mixtures of two Erlang distributions and continuous Coxian
distributions with real parameters. Second-order acyclic CPH or DPH distri-
butions are constructed to match the first three moments when possible, to
the empirical moments in Telek and Heindl[27]. Canonical representations
for discrete phase-type distributions of order 2 and 3 are given by Tapp and
Telek in Ref.[28], but this work does not focus on moment matching aspects
of such distributions. Horváth and Telek[29] present an iterative approach
to match an arbitrary number of moments with acyclic continuous PH-type
(APH) distributions for which the computational complexity increases ex-
ponentially with the order of the approximating APH. Therefore, relatively
high orders for the approximative APH may not be possible due to numeri-
cal issues. Phase-type approximations often require higher orders than their
ME counterparts, which has led to the work of Fackrell[30] in the context of
ME fitting.

A similar problem to PH fitting exists in the field of system theory in
the context of model reduction (MR). A linear shift-invariant multiple-input
multiple-output (MIMO) discrete-time system has the unit sample response
(or impulse response) matrix H (k) = CAk−1B, k ≥ 1, H (0) = D for suitable
matrices A, B, C, D and the size of the square matrix A gives the order of the
discrete-time system; see Kailath[31] for the general theory of linear systems.
In the case of a single input and single output (SISO), then we have the
scalar unit sample response h(k) = cAk−1b , k ≥ 1, h(0) = d, for a row vector
c, column vector b, and a finite square matrix A whose size n gives the
order of the underlying system, which is characterized with the quadruple
(c , A, b , d). On the other hand, a SISO linear time-invariant continuous-time
system has the scalar impulse response f (x) = ce Axb + dδ(x), x ≥ 0, where
δ(·) stands for the Dirac-delta function. This system is again characterized
with the quadruple (c , A, b , d) with order n being the size of the matrix
A. The transfer functions of these discrete-time and the continuous-time
systems are c(zI − A)−1b + d and c(s I − A)−1b + d, and their stabilites are
indicated by all eigenvalues of A being inside the unit circle, and the open
left half of the complex plane, respectively; see Kailath[31]. MR theory deals
with finding reduced order system models of order nr < n if the order n of
the given SISO or MIMO system (discrete- or continuous-time) at hand is
large; see Moore[32] and Antoulas et al.[33] for an overview of existing model
reduction techniques. Model reduction methods are mainly classified into
three classes of methods; see Gugercin and Antoulas[34]:

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
6:

49
 0

8 
Ju

ne
 2

01
5 



Fitting Matrix Geometric Distributions 295

• Singular value decomposition (SVD) methods
• Moment matching-based (or Krylov) methods
• SVD-Krylov methods

SVD-based methods preserve stability when applied to originally stable sys-
tems, and they provide global error bounds[32]. However, they are computa-
tionally more intensive (O(n3)) than those of Krylov methods (O(n2nr )) of
Bai[35], which match the so-called moments of the original transfer function
at various selected frequencies, i.e., the kth moment at σ ∈ C is given by
the kth derivative of the transfer function at σ . However, unlike the SVD-
based methods, Krylov methods do not guarantee stability, and error bounds
are not provided. Recently, there has been increased interest in SVD-Krylov
methods that benefit both from the stability and global error bound features
of SVD-based methods and efficient numerical implementation and moment
matching properties of Krylov methods; see Gugercin and Antoulas[34] and
Gugercin[36]. Stability preservation and moment matching are both crucial
for the purpose of fitting MG distributions; therefore, we focus on SVD-
Krylov methods in this paper. Moreover, not all linear systems satisfy the
external positivity constraint, i.e., h(k) ≥ 0 in discrete-time or f (x) ≥ 0 in
continuous-time, as would be in the case of MG or ME distributions; see
Grussler[37]. Model reduction techniques generally fail to produce an exter-
nally positive reduced-order model despite a start from an externally positive
high-order original system. For positivity preserving model reduction tech-
niques for continuous-time systems, we refer the reader to Li et al.[38] and
Grussler[37].

In this paper, we aim to fit an MG distribution of given order to data or we
approximate an arbitrary discrete distribution by MG. While most existing
fitting procedures involve CPH, DPH, and ME, the work on MG modeling
is not as mature, to the best of our knowledge. As opposed to EM- or MM-
based prevailing methods, we propose to use MR methods, in particular the
SVD-Krylov method proposed by Gugercin and Antoulas[34]. The reasons for
this choice are described below:

(a) The method of Gugercin and Antoulas[34] is specifically developed
for discrete-time systems as opposed to the majority of the studies
that concentrate on continuous-time systems,

(b) Being an SVD-Krylov method, the work in Ref.[34] matches nr desired
moments with a reduced model of order nr and preserve stability,
both of which are very critical for fitting MG distributions. This is in
contrast with pure Krylov methods that can match 2nr moments but
do not guarantee stability.

However, the method[34] alone does not guarantee external positivity,
which is also very critical in the MG-fitting setting. For the purpose of
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296 Akar

satisfying external positivity, we propose to use a mixture of the original dis-
tribution with a low-order model obtained by a particular MM-based method
by Telek and Heindl[27] that obtains a second-order DPH while matching the
first three moments when feasible; note that the first moment is always match-
able in Ref.[27]. Then, the MR method is allowed to apply to this mixture
rather than the original distribution. Subsequently, an iterative numerical
algorithm is presented to find the best such mixture (in terms of the l2 dis-
tance between the original distribution and that of its reduced-order model)
that produces an externally positive reduced-order model of order nr . Also
note that since the moments of a mixture are obtained through the mixture
of moments, any mixture (including the best one) matches the first three
moments provided that Ref.[27] can match them. The reason for choosing
the model produced by Ref.[27] in this mixture lies in its simplicity and the
explicit moment matching algorithm provided in it. Other low-order DPHs
(of order 3, for example) obtained by existing methods can also be used in
the proposed mixture, which we leave outside the scope of this paper. We
also propose to apply pre-smoothing on the original distribution, which is
shown to be beneficial when the original distribution possesses sharp edges.
The method we introduce in this paper can also be viewed as an external
positivity preserving model reduction technique for discrete time systems
and may potentially have applications beyond the field of applied probabil-
ity. The proposed MG fitting algorithm is tested for various scenarios, and
promising results have been obtained.

The paper is organized as follows. Section 2 describes the MG distribu-
tion in detail. Section 3 addresses the model reduction problem and the
numerical algorithm we propose. We present the numerical results in Sec-
tion 4. In the final section, conclusions are given.

2. PRELIMINARIES ON DISCRETE PHASE TYPE AND MATRIX

GEOMETRIC DISTRIBUTIONS

The following is based on Neuts[6], Akar[19], and Greeuw[17]. A discrete
phase-type (DPH) distribution is the distribution of time until absorption in
a discrete-state discrete-time Markov chain (DTMC) with n transient states
and one absorbing state. Let the transient states be numbered as 1, 2, . . . , n
and the absorbing state as n+ 1. The one step probability transition matrix
of this DTMC can then be partitioned as

P =
[

T h
0 1

]
, (1)

for an n× n sub-stochastic matrix T and an n× 1 vector h = (I − T)1, where
1 is a column vector of ones of appropriate size. The initial probability vector
can also be partitioned as (v, d) for a 1× n row vector v and a scalar d. We say
X ∼ DPH (v, T) and X is known to have a probability mass function (PMF)

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
6:

49
 0

8 
Ju

ne
 2

01
5 



Fitting Matrix Geometric Distributions 297

p X (k), k ≥ 0 of the form

p X (k) = P(X = k) =
{

vT k−1h, k ≥ 1,

d, k = 0,
(2)

and a probability generating function (PGF) gX (z) of the form

gX (z) = E [z−X ] = v(zI − T)−1h + d. (3)

A random variable (rv) X is said to possess a matrix geometric (MG) distri-
bution if the PMF is of the same form (2) but its parameters v, T , and h, do
not necessarily have the same probabilistic interpretation[20]. In this case, we
say X ∼ MG(v, T, h, d) and the size of the matrix T is called the order of the
MG distribution. This quadruple representation is said to be irreducible if
one cannot find another quadruple with lesser order satisfying (2). Actually,
an MG distribution has infinitely many quadruple representations using a
similarity transformation[17]. Clearly, DPH distributions form a subset of MG
distributions. The ith factorial moment f (i)

X , i ≥ 1 of an MG-distributed rv X
is given by Ref.[20]:

f (i)
X = E [X (X − 1) · · · (X − i + 1)] = i!v(I − T)−i−1T i−1h. (4)

By definition, the zeroth factorial moment f (0)
X = v(I − T)−1h + d = 1. The

ordinary ith moment m(i)
X = E [X i ], i ≥ 1 can be derived from the factorial

moments f ( j)
X , 1 ≤ j ≤ i and the zeroth moment m(0)

X = f (0)
X = 1.

Let XA ∼ MG(vA, TA, hA, dA) and XB ∼ MG(vB, TB, hB, dB) be indepen-
dent, and let X be an α-mixture of the ordered pair (XA,XB), i.e., p X (k) =
αp XA(k)+ (1− α)p XB (k), k ≥ 0, 0 < α < 1. In this case, we have

X ∼ MG
([

αvA (1− α)vB
]
,

[
TA 0
0 TB

]
,

[
hA
hB

]
, αdA + (1− α)dB

)
.

The parameter α is called the mixing coefficient. Moreover, the factorial
moments of X can be written as

f (i)
X = α f (i)

XA
+ (1− α) f (i)

XB
, i ≥ 0.

Also, let Y = XA + XB . Consequently, Y has a matrix geometric representa-
tion characterized with the quadruple:

Y ∼ MG
([

dBvA vB
]
,

[
TA 0
hBvA TB

]
,

[
hA

hBdA

]
, dAdB

)
.
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298 Akar

Let us now try to quantify if the PMFs p XA and p XB are close to each other.
For the purpose of quantifying proximity (or distance) between two distri-
butions, we propose to use the l2 (Euclidian) norm of (p XA − p XB ) :

dis t(XA, XB) = ||p XA − p XB ||2 =
( ∞∑

k=0

(p XA(k)− p XB (k))2

)1/2

as the l2 distance measure between the two PMFs XA and XB . Let X be the
original rv and Xr denote the rv corresponding to its reduced-order model.
In this case, the distance dis t(X, Xr ) represents the (modeling) error. For
other distance measures between two PMFs used in the literature, we refer
the reader to a comprehensive survey on distance measures[39].

Several well-known discrete distributions will be used in the numerical
examples throughout the paper. The rv X is said to have a discrete uniform
distribution characterized with parameter pair (u, w), i.e., X ∼ U ni f (u, w)
when

p X (k) = 1
(w − u+ 1)

, u ≤ k ≤ w , 0 ≤ u ≤ w ,

and zero otherwise. The rv X is said to possess a discrete triangular distribu-
tion (see Kokonendji et al.[40]) characterized with the parameter pair (u, w),
i.e., X ∼ Tr i(u, w) when

p X (k) = w + 1− |k − u|
(w + 1)2

, u− w ≤ k ≤ u+ w , u ≥ w ≥ 0,

and zero otherwise. In this case, u is called the center parameter, and w is
the arm parameter of the corresponding distribution. The rv X is binomial
distributed with parameter pair (N , p ), i.e., X ∼ Bin(N , p ), where gX (z) =
(1− p + p z−1)N , N ≥ 1, 0 < p < 1. The rv X is geometrically distributed
with the parameter p, i.e., X ∼ Geom(p ), when

p X (k) = (1− p )k−1p , k ≥ 1,

with E [X ] = 1/p .

3. FITTING MATRIX GEOMETRIC DISTRIBUTIONS

The problem studied in this paper is to find an integer-valued non-
negative rv Xr ∼ MG(vr , Tr , hr , dr ) of reduced order nr that mimics, in dis-
tribution, an original rv X ∼ MG(v, T, h, d) with order n such that nr < n.
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Fitting Matrix Geometric Distributions 299

Typically, nr � n, and we refer to this problem as model reduction. This
particular problem arises in the following representative scenarios:

a) The original MG-distribution order is undesirably high and order re-
duction is necessary,

b) The original distribution is obtained from observed data. For this pur-
pose, let us assume p X (k), 0 ≤ k ≤ K is available for some K which
is the largest observed data. Let uX (k) = 1−∑k

i=1
p X (i)

1−p X (0) , 1 ≤ k ≤ K
and uX (0) = 1. Also let vX (k) = uX (k)/uX (k − 1), 1 ≤ k ≤ K . Based
on the results presented in Alfa[41], one can show that X ∼ DPH (v, T)
with order K where

v(1) = 1− p X (0), v( j) = 0, j 	= 1,

T j, j+1 = vX ( j), 1 ≤ j < K, Ti, j = 0, j 	= i + 1.

c) The original distribution is not of MG-type but can well be approx-
imated by an MG distribution with potentially large orders. For this
purpose, let us assume the existence of an integer K such that
P(X > K) = ε for negligibly small ε. One can then approximate the
rv X by X̃ whose PMF can be given by

p X̃ (k) =
⎧⎨
⎩

p X (k)+ ε if k = K,

p X (k) if 0 ≤ k < K,

0 if k > K .

(5)

This method is called truncation. Since the order K will generally be
large, there may be a need for model reduction.

For the purpose of model reduction, the following goals are generally set:

i) It should hold that m(0)
Xr
= m(0)

X = 1.
ii) The I ≥ 1 moments of the original distribution and those of the reduced

model are the same, i.e., m(i)
Xr
= m(i)

X = 1 ≤ i ≤ I .
iii) We attempt to reduce the distance between the original PMF and that of

its reduced-order model where a distance measure given in Ref.[39] can
be used for this purpose. In this paper, we use the l2 distance between
two PMFs in the numerical examples.

We first describe two approaches from the existing literature to partially
attain these goals and then propose two new algorithms for further improve-
ment.
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300 Akar

3.1. Moment Matching Using a DPH of Second Order

In Telek and Heindl[27], a second-order DPH is constructed that at-
tempts to fit the first I = 3 moments of an original distribution. The DPH is
assumed to be acyclic, hence named ADPH. In this case, the sub-stochastic
matrix component is upper triangular; moreover, there is no probability
mass at zero. Telek and Heindl[27] provide permissible ranges for the fac-
torial moments within which it is feasible to construct a second-order DPH
that exactly matches the first three moments. In case this problem is not fea-
sible, an algorithm (referred to as ADPH2 in the current article) is provided
that suitably adjusts the original second and third factorial moments to be
matched so that the problem becomes feasible. With the adjusted moments,
one can construct an ADPH of second order that always matches the first
moment, and approximately matches the other two. For details on ADPH2,
the reader is referred to Ref.[27].

The ADPH2 algorithm assumes p X (0) = 0. Let p X (k), k ≥ 0 be the
PMF of the rv X with p X (0) 	= 0. Let X̃ with PMF p X̃ (k) be such that
p X̃ (0) = 0 and p X̃ (k) = p X (k)/(1− p X (0)), k ≥ 1. Since X̃ does not have
a probability mass at zero, one can employ ADPH2 on X̃ to construct
a second-order reduced model X̃r ∼ DPH (ṽr , T̃r ) for X̃ . Consequently,
Xr ∼ DPH ((1− p X (0))ṽr , T̃r ) yields a second-order model for the original
rv X while fitting the non-zero probability mass at zero. This is the approach
we will take in the current paper while still referring to it as ADPH2.

3.2. Moment Matching with Least Squares (MMLS)

The model reduction techniques of system theory attempt to reduce the
model order of a given linear shift-invariant dynamical system as opposed to a
distribution; see Moore[32] and Antoulas et al.[33]. A finite-dimensional shift-
invariant discrete-time dynamical system is characterized with the quadruple
(v, T, h, d) with order being the size of the matrix T if the unit sample
response of the system is in the form (2) but does not necessarily satisfy
the conditions for being a PMF. The reader is referred to Kailath[31] and
Chen[42] for linear dynamical systems and their state-space representations,
i.e., quadruple representations.

We now describe the particular model reduction method for discrete-
time systems by least squares based on the work of Gugercin and Antoulas[34],
which will also be the basic building block of our proposed approach. Al-
though, any set of complex numbers can be chosen for transfer function
moment matching, we limit ourselves to the two values σ = 0 and σ →∞
only. Let the original discrete-time rv X ∼ MG(v, T, h, d) with order n. We
are interested in finding Xr ∼ MG(vr , Tr , hr , dr ) with order nr < n. Let n(1)

r

and n(2)
r be such that nr = n(1)

r + n(2)
r , n(2)

r ≥ 1. We then define the n× nr
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Fitting Matrix Geometric Distributions 301

matrix Q whose column space denoted by C(Q) is given by

C(Q) = C([h, Th, T 2h, . . . , T n(1)
r −1h, (I − T)−1h, (I − T)−2h,

. . . , (I − T)−n(2)
r h]). (6)

Moreover, let O be the solution to the Stein equation, also referred to as a
discrete Lyapunov equation in Benner at al.[43]:

T T OT + vT v = O. (7)

Actually, O is the observability gramian of the dynamical system characterized
with (v, T, h, d). We also define

Z T = (Q T OQ)−1Q T O. (8)

Based on Gugercin and Antoulas[34], the representation Xr ∼
MG(vr , Tr , hr , dr ) = MG(vQ , Z T TQ , Z T h, d) provides a reduced-order
matrix geometric representation with order nr . However, the proposed
representation is not guaranteed to correspond to an actual PMF. Actually,
it is quite possible to have an integer j > 0 such that

vr T j−1
r hr < 0.

The reduced order model is known to have the following properties; see
Ref.[34]:

i) The first n(1)
r + 1 PMF values (starting from zero) are matched, i.e.,

p Xr (i) = p X (i), i = 0, 1, . . . , n(1)
r .

ii) The first n(2)
r moments (starting from zero) are matched, i.e.,

m(i)
Xr
= m(i)

X , i = 0, 1, . . . , n(2)
r − 1,

or equivalently the first n(2)
r factorial moments (starting from zero) are

matched, i.e.,

f (i)
Xr
= f (i)

X , i = 0, 1, . . . , n(2)
r − 1.

iii) The matrix Tr has all eigenvalues inside the unit circle and p Xr (k) =
vr T k−1

r hr does not grow without bounds as k →∞.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
6:

49
 0

8 
Ju

ne
 2

01
5 



302 Akar

iv) This model minimizes a certain l2 error between the original and re-
duced order systems when nr = n(1)

r
[34]. In this case, the model has been

shown in Ref.[34] to minimize ||âk � (p X (k)− p Xr (k))||2 where � de-
notes the convolution operator and âk = 0 for k > nr and the coeffi-
cients â j , j ≤ nr correspond to the coefficients of the denominator of
A(z) = vr (zI − Tr )−1hr + dr . For a proof of this statement and for de-
tails, the reader is referred to Gugercin and Antoulas[34].

v) The procedure does not require the explicit computation of any of the
moments.

vi) There is no guarantee that the reduced-order model corresponds to a
distribution even when the original model does. This arises especially
when the original PMF vanishes at a certain number of points and there
are sharp edges around these points, as will be shown in the numerical
examples.

Since the method has moment matching (properties i and ii) and least
squares minimization (property iv) features, we call the method MMLS
(moment matching with least squares) (referred to similarly in the origi-
nal paper[34]) throughout this article, and it is presented in Algorithm 1.
In Algorithm 1, the image of H spans a Krylov subspace, and it can be ob-
tained with a computational complexity of O(n2nr )[34]. The observability
gramian O is not only computationally more intensive, i.e., O(n3), but com-
puting a full-rank O is known to be ill-conditioned in large-scale settings; see
Penzl[45], Penzl[46], and Gugercin and Antoulas[34]. Although there are low-
rank Smith-type methods to produce low-rank approximations to the full
rank O with improved numerical stability such as Penzl[45], and Gugercin

Algorithm 1 The MMLS method

1: function MMLS(X ∼ MG(v, T, h, d), n(1)
r , n(2)

r )
2: Define the matrix H as

H =
[

h Th T 2h · · · T n(1)
r −1h (I − T)−1h (I − T)−2h · · · (I − T)−n(2)

r h
]

3: Find the QR decomposition (see [44]) of the matrix H , i.e., H =
QR ,where Q is orthogonal and R is upper-triangular. In Matlab, we
propose to use [Q,R] = qr(H).

4: Solve the discrete Lyapunov equation given in (7) for the matrix O.
In Matlab, we propose to use O=dlyap(TT,vTv).

5: Define the matrix Z as in identity (8).
6: vr ← vQ , Tr ← Z T TQ , hr ← Z T h, dr ← d
7: Return Xr ∼ MG(vr , Tr , hr , dr ) and the error e ← ||p X − p Xr ||2
8: end function
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Fitting Matrix Geometric Distributions 303

et al.[47], we calculate the full rank O in this paper via the discrete Lyapunov
equation (7).

The method we propose that combines ADPH2 and MMLS in order to
obtain a reduced-order distribution is described next.

3.3. Iterative Moment Matching with Least Squares (IMMLS)

Recall that we are interested in finding a rv Xr ∼ MG(vr , Tr , hr , dr ) of
reduced order nr given an original rv X ∼ MG(v, T, h, d) with order n such
that 2 < nr < n. If nr = 2, we propose to use the already-existing ADPH2
method. Let X2 ∼ (v2, T2, h2, d2) be the matrix geometric reduced order dis-
tribution found using ADPH2. Let X (α) be the α-mixture of the ordered pair
(X ,X2) and let X (α)

r ∼ MG(v(α)
r , T (α)

r , h(α)
r , d(α)

r ) be the reduced-order model
of X (α) with order nr using the MMLS algorithm for 0 < α < 1. We have two

observations: Stemming from property iv, as α→ 0, then X (α)
r

d→ X2 where
d→ denotes convergence in distribution. Therefore, we are guaranteed to

have a valid reduced-order model corresponding to a distribution as α→ 0.
On the other hand, as α→ 1, we take advantage of moment matching and
least squares features of the MMLS algorithm, but we are not guaranteed to
have a valid distribution. In this article, we propose to iteratively search for
the largest feasible α in the interval (0, 1) such that MG(v(α)

r , T (α)
r , h(α)

r , d(α)
r )

corresponds to a legitimate distribution unless MG(v(1)
r , T (1)

r , h(1)
r , d(1)

r ) pro-
duces one. In the latter case, there is no need for a search. In case needed,
the iterative search is done in the following manner. In the first step, we fix
α to zero and set β to a random number uniformly distributed in the inter-
val (α, 1) and check if MG(v(β)

r , T (β)
r , h(β)

r , d(β)
r ) corresponds to a legitimate

distribution. Then, we set α = β if a legitimate distribution is obtained with
lower error. Otherwise, α remains intact. This procedure is repeated for, at
most, S steps, which is called the search depth of the procedure. Note that
we cannot use the binary search algorithm in place of randomized search
since it is generally not true that there is a particular value of α below which
all produced reduced-order models are legitimate and others not.

To test whether a quadruple representation leads to a legitimate distri-
bution (which is essential to the search procedure), we propose to check if
the following holds for a given arbitrarily large integer Md :

DXr =
Md∑
i=0

p Xr (i)IXr (i) ≥ −ηd (9)

for some very small ηd ≥ 0 and the indicator function IXr (i) = 1 when
p Xr (i) < 0 and IXr (i) = 0 otherwise. Note that the deviation parameter DXr

provides a quantitative measure of how much Xr deviates from being an
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actual rv. When condition (9) is satisfied, then we say Xr has a legitimate
distribution. When ηd = 0 and as Md →∞, this test is exact. Obviously, the
use of a finite Md reduces the computation time for validation but at the
expense of a slight reduction in validation accuracy. On the other hand,
the choice of a non-zero ηd violates the definition for an exact distribution,
but this parameter can be used as an instrument to reduce modeling errors
despite a slight deviation from being an actual distribution. In case such
relaxing cannot be tolerated, the parameter ηd may be set to zero. We call
this method IMMLS (iterative MMLS), for which a pseudo-code is presented
in Algorithm 2.

The mixing coefficient found using this iterative procedure is denoted
by α, and the distance between the original PMF and its reduced model is
denoted by e representing the l2 error. If the resulting α is close to unity,
then the reduced-order model is dominated by the MMLS algorithm, and we
benefit substantially from its moment matching and least squares minimiza-
tion capabilities. For example, if α = 1, then the first n(1)

r + 1 PMF values
and the first n(2)

r − 1 ordinary moments are matched to those of the original

Algorithm 2 The IMMLS method

1: function IMMLS(X ∼ MG(v, T, h, d), n(1)
r , n(2)

r , ηd , Md , S)
2: Obtain Xr ∼ MG(vr , Tr , hr , dr )← MMLS(X ∼ MG(v, T, h, d), n(1)

r ,
n(2)

r )
3: α← 1, e ← ||p X − p Xr ||2
4: if DXr ≥ −ηd then
5: Goto Step 18
6: else
7: Obtain X2 ∼ (v2, T2, h2, d2) using the ADPH2 method.
8: α← 0, Xr ← X2, e ← ||p X − p X2 ||2
9: for i ← 1, S do

10: Pick β uniformly distributed in (α, 1)
11: Obtain X (β) as the β-mixture of the ordered pair (X ,X2)
12: Find Y ∼ MG(v0, T0, h0, d0)← MMLS(X (β), n(1)

r , n(2)
r ) and

calculate its error
13: if DY ≥ −ηd and error < e then
14: α← β, Xr ← Y , e ← ||p X − p Y ||2
15: end if
16: end for
17: end if
18: Return the mixing coefficient α, Xr ∼ MG(vr , Tr , hr , dr ), and the

error e .
19: end function
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Fitting Matrix Geometric Distributions 305

distribution. The least-squares property of the MMLS algorithm is addition-
ally effective in matching the original distribution. Note that for all values of
the mixing coefficient α, if ADPH2 matches the first three moments, then
the combined algorithm IMMLS using ADPH2 and MMLS also produces a
reduced-order distribution that also matches the first three moments but
also makes an attempt to approximately match higher-order moments with
increased values of α. With this matrix-analytical methodology, it is quite
possible to improve ADPH2 without sacrificing from its moment matching
capability.

We present two numerical examples to demonstrate the operational prin-
ciples of IMMLS while setting the algorithm parameters S = 50, ηd = 10−6,
and Md = 5000, and the reduced-order model parameters n(1)

r = 4 and
n(2)

r = 6 in both examples. In the first example, X ∼ Tr i(100, 40) and we
run ADPH2, MMLS, and IMMLS algorithms using MATLAB. With IMMLS,
we iteratively find the mixing coefficient α as 0.7913. The relevant perfor-
mance metrics, in particular, the first n(1)

r + 1 values of the PMF, namely
p Xr (k), 0 ≤ k ≤ 4, and the first n(2)

r factorial moments (starting from the
zeroth moment) f (i)

Xr
, 0 ≤ i ≤ 5, are tabulated in Table 1 for all the three

algorithms as well as the corresponding values for the original PMF. We re-
peat the same experiment in the second example with X ∼ U ni f (90, 110) in
which case IMMLS finds the mixing coefficient α to be 0.3821. The original
PMF as well as the PMFs obtained by ADPH2, MMLS, and IMMLS algorithms
are depicted in Figures 1 and 2 for the two examples, whereas the associ-
ated performance metrics for the latter example are presented in Table 1.
The machine epsilon is 2.22e-16 in MATLAB, and any value less than the

TABLE 1 Several performance metrics obtained by the ADPH2, MMLS, and IMMLS algorithms when
run with the test example X ∼ Tr i(100, 40).

IMMLS
ADPH2 MMLS α = 0.7913 Original PMF

p Xr (0) 0 0 0 0
p Xr (1) 0 4.4210e−16 2.6600e−16 0
p Xr (2) 4.0000e−04 8.0421e−16 8.3494e−05 0
p Xr (3) 7.8400e−04 1.2892e−15 1.6365e−04 0
p Xr (4) 1.1525e−03 5.1868e−16 2.4056e−04 0

f (0)
Xr

1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

f (1)
Xr

1.0000e+02 1.0000e+02 1.0000e+02 1.0000e+02

f (2)
Xr

1.4800e+04 1.0180e+04 1.1144e+04 1.0180e+04

f (3)
Xr

2.9106e+06 1.0534e+06 1.4410e+06 1.0534e+06

f (4)
Xr

7.1454e+08 1.1060e+08 2.3666e+08 1.1060e+08

f (5)
Xr

2.1036e+11 1.1762e+10 5.3215e+10 1.1762e+10

error ||p X − p Xr ||2 1.0195e−01 8.9433e−03 2.3652e−02 N/A

deviation DXr N/A −1.7687e−02 0 N/A
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FIGURE 1 The original PMF and the reduced order model PMFs with ADPH2, MMLS, and IMMLS
when Xr ∼ Tr i(100, 40) and n(1)

r = 4 and n(2)
r = 6.

machine epsilon in absolute value is reported as zero in Tables 1 and 2. We
have the following observations:

(i) ADPH2 matches only the first moment but approximately matches
the second and third moments in both examples. Actually, ADPH2
algorithm produced the same model for both examples due to the fact
that the second and third moments could not be matched by ADPH2,
and they are adjusted to the same values in both examples.

(ii) MMLS matches the first n(1)
r + 1 PMF values as well as the the first

n(2)
r − 1 ordinary moments. However, MMLS falls short of providing a

legitimate PMF in both examples.
(iii) IMMLS, as conjectured, provides a legitimate PMF (note the value of

DXr ) and its PMF and moment matching capability stand between that
of ADPH2 and MMLS.

(iv) The mixing coefficient of IMMLS is smaller, and, consequently, the
error with IMMLS is relatively higher in the second numerical example
that has sharp edges in the original distribution in comparison with
the first numerical example. When there are sharp edges in the PMF
of the original random variable, the absolute value of the deviation
parameter of the MMLS solution increases since the MMLS method
presents oscillatory behavior to capture the sharp edges. When sharp
edges are around zero, such oscillations violate positivity. Subsequently,
the IMMLS solution presents larger errors for the second example.

FIGURE 2 The original PMF and the reduced order model PMFs with ADPH2, MMLS, and IMMLS
when Xr ∼ U ni f (90, 110) and n(1)

r = 4 and n(2)
r = 6.
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Fitting Matrix Geometric Distributions 307

TABLE 2 Several performance metrics obtained by the ADPH2, MMLS, and IMMLS algorithms when
run with the test example X ∼ U ni f (90, 110).

IMMLS
ADPH2 MMLS α = 0.3821 Original PMF

p Xr (0) 0 0 0 0
p Xr (1) 0 0 0 0
p Xr (2) 4.0000e−04 0 2.4715e−04 0
p Xr (3) 7.8400e−04 0 4.8440e−04 0
p Xr (4) 1.1525e−03 0 7.1207e−04 0

f (0)
Xr

1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

f (1)
Xr

1.0000e+02 1.0000e+02 1.0000e+02 1.0000e+02

f (2)
Xr

1.4800e+04 9.9367e+03 1.2942e+04 9.9367e+03

f (3)
Xr

2.9106e+06 9.8109e+05 2.1733e+06 9.8109e+05

f (4)
Xr

7.1454e+08 9.6246e+07 4.7827e+08 9.6246e+07

f (5)
Xr

2.1036e+11 9.3807e+09 1.3356e+11 9.3807e+09

error ||p X − p Xr ||2 2.0429e−01 1.2739e−01 1.7373e−01 N/A

deviation DXr N/A −2.7899e−01 −4.3728e−08 N/A

3.4. Iterative Moment Matching with Least Squares and

Smoothing (IMMLSS)

Since sharp edges in the original PMF are problematic for IMMLS (as
demonstrated in the second numerical example of the previous subsec-
tion), there is an apparent need for performance improvement in obtaining
reduced-order models when sharp edges are present. In this article, we pro-
pose to smooth edges of the original PMF in the pre-processing stage and
then apply IMMLS on the smoothed model. For smoothing purposes, we
use in this article the two-sided rv Z [ f ] with p Z [ f ](k) = 1

2 f+1 ,− f ≤ k ≤ f ,
and then use the operation X [ f ] = max(0, X + Z [ f ]), which amounts to
smoothing gX (z) with a smoothing filter with windowing parameter f .
Moreover, the max operator in the above operation ensures that the rv
X [ f ] is non-negative. Other possible smoothing operations that can also
be used for edge smoothing are left outside the scope of this paper. If
X ∼ MG(v, T, h, d), then X [ f ] = max(0, X + Z [ f ]) is again of MG-type. Let
Y [ f ] ∼ U ni f (0, 2 f ). Then X + Y [ f ] ∼ MG(c , A, b , g) for some quadruple
(c , A, b , g) since the sum of MGs is also an MG (see Section 1). Finally,
X [ f ] ∼ MG(cA f , A, b , g +∑ f

i=1 cAi b). However, using a large smoothing pa-
rameter f also distorts the original PMF and may also lead to increased errors.
For this purpose, we propose an exhaustive search algorithm that applies
smoothers with different smoothing parameters on the original PMF and
finds a reduced model for each smoothed PMF. One of the reduced models
that is closest to (in the l2 sense) to the original PMF is then chosen. As an
illustrative example, we use the second test example (X ∼ U ni f (90, 110))
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FIGURE 3 (a) The error as a function of the smoothing parameter f (b) The PMF of the reduced-order
model, both for four different pairs of values for n(1)

r and n(2)
r .

of the previous subsection and employ PMF pre-smoothing with varying
parameter f . The reduced-order model’s error is depicted as a function of
parameter f for four different choices of the parameter pairs (n(1)

r , n(2)
r ) in

Figure 3a. Subsequently, for each of the four (n(1)
r , n(2)

r ) scenarios, the value
of f is chosen so as to minimize the modeling error. The PMFs obtained
with this approach are depicted in Figure 3b. We observe that smoothing is
helpful in terms of the reduction of the modeling error. The optimal value of
the smoothing parameter appears to depend on the model size. Moreover,
as far as minimization of error is concerned, it is more desirable to match
as many moments as possible as opposed to matching the PMF values in the
vicinity of zero.

Let F be a set of smoothing parameters and we present the pseudo-
code for IMMLSS (IMMLS and smoothing) in Algorithm 3 with the set F
being input to the function IMMLSS. In Algorithm 3, when IMMLSS calls
IMMLS, the error of using the model X [ f ]

r is always calculated by IMMLSS
as ||p X − p X [ f ]

r
||2 as opposed to ||p X [ f ] − p X [ f ]

r
||2.

4. NUMERICAL EXAMPLES

We provide numerical results using IMMLSS with the purpose of
constructing reduced-order MG distributions of a given order nr given
higher-order original distributions. Let X denote the original rv with PMF
p X (k), k ≥ 0. The IMMLSS algorithm parameters we use for all numerical
examples are presented in Table 3. We test the IMMLSS algorithm in the
following five numerical examples:
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Algorithm 3 The IMMLSS method

1: function IMMLSS(X ∼ MG(v, T, h, d), n(1)
r , n(2)

r , ηd , Md , S, F)
2: while f ∈ F do
3: Smooth X with a smoothing filter with parameter f to obtain

X [ f ] ∼ MG(v[ f ], T [ f ], h[ f ], d[ f ])
4: Obtain X [ f ]

r ∼ MG(v[ f ]
r , T [ f ]

r , h[ f ]
r , d[ f ]

r ), the mixing coefficient
α[ f ] ← IMMLS(X [ f ], n(1)

r , n(2)
r , ηd , Md , S)

5: e [ f ] ← ||p X − p X [ f ]
r
||2

6: end while
7: f ∗ ← arg min

f
{e [ f ], f ∈ F }

8: Return Xr ∼ MG(v[ f ∗]
r , T [ f ∗]

r , h[ f ∗]
r , d[ f ∗]

r ), the error e ∗ ← e [ f ∗], and
the mixing coefficient α∗ ← α[ f ∗]

9: end function

TABLE 3 Algorithm parameters used for IMMLSS in all numerical
examples

Md 5000
ηd 10−6

F {0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32}
ε 10−13

n(1)
r 2

S 50

4.1. Example 1

Let Xi , i = 1, 2, 3 be binomial distributed with parameter pair (Ni , p i ),
i.e., Xi ∼ Bin(Ni , p i ) and let Xi s be independent. Also let X be a tri-mixture
of Xi s, i.e., p X (k) =∑3

i=1 γi p Xi (k), k ≥ 0, γi ≥ 0,
∑3

i=1 γi = 1. We set N1 =
N2 = 1000, N3 = 3000, γ1 = 0.5, γ2 = γ3 = 0.25, p 1 = 0.18, p 2 = 0.24, p 3 =
0.04. For this example, E [X ] = 180. In this scenario, we first approximated
the original distribution of X by that of X̃ , which is obtained through X by
truncation with truncation parameter ε = 10−13 as in Eq. (5), which yields
n = 341 for the order of the MG representation for X̃ . We then run IMMLSS
operating on X̃ . The PMFs obtained with IMMLSS are depicted in Figure 4.
We observe that IMMLSS matches the entire PMF with increased model
order nr with high mixing coefficients, low smoothing parameter, and very
low error.

4.2. Example 2

In Example 2a, Xi ∼ U ni f (ui , wi ), i = 1, 2, Xi s are independent, and X
is a bi-mixture of Xi s, i.e., p X (k) =∑2

i=1 γi p Xi (k), k ≥ 0, γi ≥ 0,
∑2

i=1 γi = 1.
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We set u1 = 40, w1 = 60, u2 = 160, w2 = 240, γ1 = 1
2 which yields E [X ] =

125 and n = 240. Example 2b is the same as the previous example with u1 =
115, w1 = 135, u2 = 85, w2 = 165. As in Example 2a, E [X ] = 125. The PMFs
obtained by IMMLSS for Examples 2a and 2b are depicted in Figures 5 and 6,
respectively. Compared to the previous example, the smoothing parameter
f ∗ increased in both examples with much larger errors stemming from sharp
edges of the original PMF, especially around the horizontal axis. Edges that
are far from the horizontal axis are captured better as in Example 2b in
comparison with Example 2a; note the errors in both examples.

4.3. Example 3

Let Yi , i = 1, 2 be geometric distributed with parameter p i , i.e., Yi ∼
Geom(p i ), where p Yi (k) = (1− p i )k−1p i , 0 < p i < 1, k ≥ 1. We assume Yi s

FIGURE 4 The original PMF and the PMFs obtained by IMMLSS for three different values of nr and the
corresponding f ∗, α∗, e ∗ values for Example 1.

FIGURE 5 The original PMF and the PMFs of those obtained by IMMLS for three different values of nr
and the corresponding f ∗, α∗, e ∗ values for Example 2a.

FIGURE 6 The original PMF and the PMFs of those obtained by IMMLS for three different values of nr
and the corresponding f ∗, α∗, e ∗ values for Example 2b.
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Fitting Matrix Geometric Distributions 311

FIGURE 7 The original PMF and the PMFs of those obtained by IMMLS for three different values of nr
and the corresponding f ∗, α∗, e ∗ values for Example 3a.

FIGURE 8 The original PMF and the PMFs of those obtained by IMMLS for three different values of nr
and the corresponding f ∗, α∗, e ∗ values for Example 3b.

FIGURE 9 The original PMF and the PMFs of those obtained by IMMLS for three different values of nr
and the corresponding f ∗, α∗, e ∗ values for Example 3c.

are independent. Let Xi = Yi + hi where hi is fixed and non-negative. Let
X be a mixture of Xi s, i.e., p X (k) =∑2

i=1 γi p Xi (k), k ≥ 0, γi ≥ 0,
∑2

i=1 γi =
1. We set p 1 = 0.004, p 2 = 0.02, h1 = 50, h2 = 250, γ1 = 5/6 in Example 3a.
Examples 3b and 3c are the same as Example 3a except that h1 = 0 in
Example 3b and γ1 = 1/3, γ = 2/3, p 1 = 0.04 in Example 3c. The PMFs
obtained by IMMLSS for Examples 3a, 3b, and 3c are depicted in Figures 7,
8, and 9, respectively.

4.4. Example 4

The original rv X of order n = 1100 is obtained by Geyser data from
Azzalini and Bowman[48] by windowing. Actually, X represents the waiting
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FIGURE 10 The original PMF and the PMFs of those obtained by IMMLS for three different values of
nr and the corresponding f ∗, α∗, e ∗ values for Example 4.

time until the next eruption for which the time unit is set to 0.1 minutes.
The PMFs obtained by IMMLSS for Example 4 are depicted in Figure 10.

4.5. Example 5

The packet sizes in units of bytes used in a high-speed communications
link are obtained by MAWI (measurement and analysis on the WIDE In-
ternet) at samplepoint-F (a trans-Pacific link)[49]. The statistics we use are
the ones collected on the first working day of 2013 at 14:00. The smallest
(largest) packet size observed is 60 (1514) bytes. The original rv X repre-
senting the Internet packet sizes is obtained by smoothing original data with
parameter f = 32, which then yields a finite support distribution for X of
order n = 1546. The PMFs obtained by IMMLSS for Example 5 are depicted
in Figure 11.

4.6. Observations

We have the following observations:

• Smoothing the original distribution appears to be necessary, especially
when the original PMF vanishes at certain points and there are abrupt
jumps around these points; see, for example, Figures 5, 6, and 9. The
requirement for smoothing diminishes for the case of abrupt jumps else-
where; see Figure 8.

FIGURE 11 The original PMF and the PMFs of those obtained by IMMLS for three different values of
nr and the corresponding f ∗, α∗, e ∗ values for Example 4.
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• The error e ∗ decreases with reduced model order nr . Although the best
mixing coefficient α∗ generally appears to increase with reduced model
order nr , there are cases otherwise.
• The largest original MG order n we tried is n = 1546 for Example 5.

As explained before, the equation (7) is ill-conditioned for large-scale
problems, and for larger values of n and for values of nr exceeding 64,
we encountered Matlab warnings. Using low-rank approximations to the
gramian matrix O as part of IMMLSS in this numerically challenging
regime is left for future research.

5. CONCLUSIONS

A novel algorithmic method is proposed to fit matrix geometric distribu-
tions. The proposed method effectively combines two existing approaches
from two different disciplines, namely model reduction methods of system
theory and moment matching methods of applied probability. Promising
results have been obtained in several bi-modal and tri-modal scenarios and
for some well-known statistical data. Improving the numerical algorithm so
as to operate in more numerically challenging regimes including large-scale
problems and extension of the proposed method for fitting ME distributions
in continuous-time are considered as future work.
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