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Unitary Precoding and Basis Dependency of MMSE
Performance for Gaussian Erasure Channels

Ayça Özçelikkale, Serdar Yüksel, and Haldun M. Ozaktas

Abstract—We consider the transmission of a Gaussian vector
source over a multi-dimensional Gaussian channel where a
random or a fixed subset of the channel outputs are erased.
Within the setup where the only encoding operation allowed is
a linear unitary transformation on the source, we investigate
the MMSE performance, both in average, and also in terms of
guarantees that hold with high probability as a function of the
system parameters. Under the performance criterion of average
MMSE, necessary conditions that should be satisfied by the
optimal unitary encoders are established and explicit solutions
for a class of settings are presented. For random sampling of
signals that have a low number of degrees of freedom, we
present MMSE bounds that hold with high probability. Our
results illustrate how the spread of the eigenvalue distribution
and the unitary transformation contribute to these performance
guarantees. The performance of the discrete Fourier transform
(DFT) is also investigated. As a benchmark, we investigate the
equidistant sampling of circularly wide-sense stationary(c.w.s.s.)
signals, and present the explicit error expression that quantifies
the effects of the sampling rate and the eigenvalue distribution
of the covariance matrix of the signal.

These findings may be useful in understanding the geometric
dependence of signal uncertainty in a stochastic process. In
particular, unlike information theoretic measures such asentropy,
we highlight the basis dependence of uncertainty in a signal
with another perspective. The unitary encoding space restriction
exhibits the most and least favorable signal bases for estimation.

Index Terms—random field estimation, compressive sensing,
discrete Fourier Transform.

I. I NTRODUCTION

We consider the transmission of a Gaussian vector source
over a multi-dimensional Gaussian channel where a random or
a fixed subset of the channel outputs are erased. We consider
the setup where the only encoding operation allowed is a linear
unitary transformation on the source.

A. System Model and Formulation of the Problems

In the following, we present an overview of the system
model and introduce the family of estimation problems which
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will be considered in this article. We first present a brief
description of our problem set-up. We consider the following
noisy measurement system

y = Hx+ n = HUw + n, (1)

wherex ∈ CN is the unknown input proper complex Gaussian
random vector,n ∈ CM is the proper complex Gaussian
vector denoting the measurement noise, andy ∈ C

M is
the resulting measurement vector.H is theM × N random
diagonal sampling matrix. We assume thatx andn are statisti-
cally independent zero-mean random vectors with covariance
matricesKx = E[xx†], andKn = E[nn†], respectively. The
components ofn are independent and identically distributed
(i.i.d.) with E[nini†] = σ2

n > 0.

The unknown signalx comes from the modelx = Uw,
whereU is aN×N unitary matrix, and the components ofw
are independently (but not necessarily identically) distributed
so thatKw = E[ww†] = diag(λ1, . . . , λN ). U may be inter-
preted as the unitary precoder that the signalw is subjected
to before going through the channel or the transform that
connects the canonical signal domain and the measurement
domain. Hence the singular value decomposition ofKx is
given byKx = UKwU

† = UΛxU
† � 0 where the diagonal

matrix denoting the eigenvalue distribution of the covariance
matrix of x is given byΛx = Kw = diag(λ1, . . . , λN ). We
are interested in the minimum mean-square error (MMSE)
associated with estimatingx (or equivalently w), that is
E[||x − E[x|y]||2= E[||w − E[w|y]||2. Throughout the article,
we assume that the receiver has access to channel realization
information, i.e. the realization of the random sampling matrix
H .

We interpret the eigenvalue distribution ofKx as a measure
of the low dimensionality of the signal. The case where most
of the eigenvalues are zero and the nonzero eigenvalues have
equal values is interpreted as the counterpart of the standard,
exactly sparse signal model in compressive sensing. The case
where most of the power of the signal is carried by a few
eigenvalues, is interpreted to model the more general signal
family which has aneffectivelylow degree of freedom. Yet, we
note that our model is different from the classical compressive
sensing setting. Here we assume that the receiver knows the
covariance matrixKx, i.e. it has full knowledge of the support
of the input.

Our investigations can be summarized under two main
problems. In the first problem, we search for the best unitary
encoder under the performance criterion of average (over
random sampling matrixH) MMSE.

http://arxiv.org/abs/1111.2451v4
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Problem P1(Best Unitary Encoder For Random Channels):
Let UN be the set ofN × N unitary matrices:{U ∈ CN :
U †U = IN}. We consider the following minimization problem

inf
U∈UN

EH
[

ES [||x− E[x|y]||2]
]

, (2)

where the expectation with respect to the random measurement
matrix and the expectation with respect to random signals
involved is denoted byEH [.], andES [.], respectively.

In the second avenue, we will regard the MMSE per-
formance as a random variable and consider performance
guarantees that hold with high probability with respect to
random sampling matrixH . We will not explicitly cast this
problem as an optimal unitary precoding problem as we have
done in Problem P1. Nevertheless, the results will illustrate
the favorable transforms through the coherence parameter
µ = maxi,j |uij |, which is extensively used in the compressive
sensing literature [1], [2], [3].

Problem P2 (Error Bounds That Hold With High Proba-
bility): Let tr(Kx) = P . Let D(δ) be the smallest number
satisfying

∑D
i=1 λi ≥ δP , where δ ∈ (0, 1] and λ1 ≥

λ2, . . . ,≥ λN . Assume that the effective number of degrees of
freedom of the signal is small, so that there exists aD(δ) small
compared toN with δ close to1. We investigate nontrivial
lower bounds (i.e. bounds close to 1) on

P

(

ES [||x− E[x|y]||2] < fP2(Λx, U, σ
2
n)

)

(3)

for some functionfP2(.) which denotes a sufficiently small
error level given total power of the unknown signal,tr (Kx),
and the noise levelσ2

n.

B. Literature Review and Main Contributions

In the following, we provide a brief overview of the related
literature. In this article, we consider the Gaussian erasure
channel, where each component of the unknown vector is
erased independently and with equal probability, and the
transmitted components are observed through Gaussian noise.
This type of model may be used to formulate various types
of transmission with low reliability scenarios, for example
Gaussian channel with impulsive noise [4], [5]. This mea-
surement model is also related to the measurement scenario
typically considered in the compressive sensing framework[6],
[7] under which each component is erased independently and
with equal probability. The only difference between these two
models is the explicit inclusion of the noise in the former.
In this respect, our work contributes to the understanding
of the MMSE performance of such measurement schemes
under noise. Although there are compressive sensing studies
that consider scenarios where the signal recovery is done by
explicitly acknowledging the presence of noise, a substantial
amount of the work focuses on the noise-free scenario. A
particularly relevant exception is [8], where the authors work
on the same setting as the one in our article with Gaussian
inputs. This work considers the scenario under which the
signal support is not known whereas we assume that the signal
support is known at the receiver.

The problem of optimization of precoders or input covari-
ance matrices is formulated in literature under different perfor-
mance criteria: When the channel is not random, [9] considers
a related trace minimization problem, and [10] a determinant
maximization problem, which, in our formulation, correspond
to optimization of the MMSE and mutual information per-
formance, respectively. [11], [12] formulate the problem with
the criterion of mutual information, whereas [13] focuses
on the MMSE and [14] on determinant of the mean-square
error matrix. [15], [16] present a general framework based on
Schur-convexity. In these works the channel is known at the
transmitter, hence it is possible to shape the input according to
the channel. When the channel is a Rayleigh or Rician fading
channel, [17] investigates the best linear encoding problem
without restricting the encoder to be unitary. [18] focuses
on the problem of maximizing the mutual information for a
Rayleigh fading channel. [4], [5] consider the erasure channel
as in our setting, but with the aim of maximizing the ergodic
capacity. Optimization of linear precoders are also utilized in
communications applications, for instance in broadcasting of
video over wireless networks where each user operates under
a different channel quality [19].

In Section III-B and Section III-C, we investigate how the
results in random matrix theory mostly presented in compres-
sive sampling framework can be used to find bounds on the
MMSE associated with the described measurement scenarios.
We note that there are studies that consider the MMSE in
compressive sensing framework such as [8], [20], [21], [22],
which focus on the scenario where the receiver does not know
the location of the signal support (eigenvalue distribution). In
our case we assume that the receiver has full knowledge of
the signal covariance matrix, hence the signal support.

Contributions of the paper. In view of the above literature
review, our main contributions can be summarized as follows:
We formulate the problem of finding the most favourable uni-
tary transform under average (over random sampling) MMSE
criterion (Problem P1). We investigate the convexity properties
of this optimization problem, obtain necessary conditions
of optimality through variational equalities, and solve some
special cases. Among these we have identified special cases
where DFT-like unitary transforms (unitary transforms with
|uij |2= 1

N ) are optimal coordinate transforms. We also show
that, in general, DFT is not the optimal unitary transform.
For the noiseless case, we have also observed that the identity
transform turns out to be universally the worst unitary trans-
form regardless of the eigenvalue decomposition.

On Problem 2, under the assumption of known signal sup-
port, our results quantify the error associated with estimating a
signal with effectively low degree of freedom from randomly
selected samples, in theℓ2 framework of MMSE estimation
instead of theℓ1 framework of typical compressive sensing
results. The performance guarantees for signals that have
strictly low degree of freedom follows from recent random
matrix theory results in a straightforward manner. We present
MMSE performance guarantees that illustrate the trade-off
between the eigenvalue distribution of the covariance matrix
of the signal (effective number of degrees of freedom) and the
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unitary transform (spread of the uncertainty in the channel).
Although there are a number of works in compressive sensing
literature that consider signals with low effective degreeof
freedom (see for instance [23, Sec 2.3], and the references
therein) our findings do not directly follow from these results.
As a benchmark, we investigate the case whereU is the DFT
matrix and the sampling is done equidistantly. In this case,
the covariance matrix is circulant, and the resulting signal
x is referred as circularly wide-sense stationary, which is a
natural way to model wide-sense stationary signals in finite
dimension. We present the explicit MMSE expression in this
case. Although this result comes from simple linear algebra
arguments, to the best of our knowledge they do not appear
elsewhere in the literature.

Our results show that the general form of error bounds
that hold with high probability are the same with the error
expression associated with the equidistant sampling of band
pass c.w.s.s. signals, but with a lower effective SNR term.
The loss in the effective SNR may be interpreted to come
through two multiplicative loss factors, one due to random
sampling, (which is present even when all the insignificant
eigenvalues are zero), and the other due to the presence of
nonzero insignificant eigenvalues.

C. Motivation

Our motivation for studying these problems, in particular
our focus on the best unitary precoders, is two-fold.

In the first front, we would like to characterize the impact
of the unitary precoder on estimation performance, since such
restrictions occur in both physical contexts and applications.
Optimization of linear precoders or input covariance matrices
arises naturally in many signal estimation and communica-
tion applications including transmission over multiple input
multiple output (MIMO) channels, for instance with unitary
precoders [24], [25]. Our restriction of the transformation
matrix to a unitary transformation rather than a more general
matrix (say a noiselet transform) is motivated by some possible
restrictions in the measurement scenarios and the potential nu-
merical benefits of unitary transforms. In many measurement
scenarios one may not be able to pass the signal through an
arbitrary transform before random sampling, and may have
to measure it just after it passes through a unitary transform.
Using more general transforms may cause additional complex-
ity or may not be feasible. Possible scenarios where unitary
transformations play an important role can be given in the
context of optics: The propagation of light is governed by
a diffraction integral, a convenient approximation of which is
the Fresnel integral, which constitutes a unitary transformation
on the input field (see, for instance [26]). Moreover, a broad
class of optical systems involving arbitrary concatenations
of lenses, mirrors, sections of free space, quadratic graded-
index media, and phase-only spatial light modulators can be
well represented by unitary transformations [26]. Hence ifone
wants to estimate the light field by measuring the field after it
propagates in free space or passes through such a system, one
has to deal with a unitary transform, but not a more general
one. Furthermore, due to their structure, unitary transforms

have low complexity numerical implementations. For instance,
the DFT which is among the most favourable transforms for
high probability results is also very attractive from numerical
point of view, since there is a fast algorithm with complexity
N log(N) for taking the DFT of a signal.

Our second, and primary motivation for our work comes
from the desire to understand the geometry of statistical
dependence in random signals. We note that the dependence
of signal uncertainty in the signal basis has been considered
in different contexts in the information theory literature. The
concepts that are traditionally used in the information theory
literature as measures of dependency or uncertainty in signals
(such as the number of degrees of freedom, or the entropy)
are mostly defined independent of the coordinate system in
which the signal is to be measured. As an example one
may consider the Gaussian case: the entropy solely depends
on the eigenvalue spectrum of the covariance matrix, hence
making the concept blind to the coordinate system in which
the signal lies in. On the other hand, the approach of applying
coordinate transformations to orthogonalize signal components
is adopted in many signal reconstruction and information
theory problems. For example the rate-distortion function
for a Gaussian random vector is obtained by applying an
uncorrelating transform to the source, or approaches such as
the Karhunen-Loéve expansion are used extensively. Also,the
compressive sensing community heavily makes use of the
notion of coherence of bases, see for example [1], [2], [3].
The coherence of two bases, say the intrinsic signal domain
ψ and the orthogonal measurement systemφ is measured
with µ = maxi,j |uij |, U = φψ providing a measure of
how concentrated the columns ofU are. Whenµ is small,
one says the mutual coherence is small. As the coherence
gets smaller, fewer samples are required to provide good
performance guarantees.

Our study of the measurement problems in this article
confirms that signal recovery performance depends substan-
tially on total uncertainty of the signal (as measured by the
differential entropy); but also illustrates that the basisplays
an important role in the measurement problem. The total
uncertainty in the signal as quantified by information theoretic
measures such as entropy (or eigenvalues) and the spread of
this uncertainty (basis) reflect different aspects of the depen-
dence in a signal. Our framework makes it possible to study
these relationships in a systematic way, where the eigenvalues
of the covariance matrix provide a well-defined measure of
uncertainty. Our analysis here illustrates the interplay between
these two concepts.

Before leaving this section, we would like to discuss the role
of DFT-like transforms in our setting. In Problem P2 we will
see that, in terms of the sufficiency conditions stated, DFT-like
unitary matrices will provide the most favorable performance
guarantees, in the sense that fixing the bound on the probability
of error, they will require the least number of measurements.
We also note the following: In compressive sensing literature,
the performance results depend on some constants, and it is
reported in [23, Sec. 4.2] that better constants are available for
the DFT matrix. Moreover, for the DFT matrix, it is known
that the technical condition that states the nonzero entries of
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the signal has a random sign pattern which is typical of such
results can be removed [23, Sec. 4.2].1 Hence the current
state of art in compressive sensing suggests the idea that the
DFT is the most favorable unitary transform for such random
sampling scenarios. Yet, we will see that for Problem P1, DFT
is not, in general an optimal encoder within the class of unitary
encoders.

D. Preliminaries and Notation

In the following, we present a few definitions and notations
that will be used throughout the article. Lettr (Kx) = P .
Let D(δ) be the smallest number satisfying

∑D
i=1 λi ≥ δP ,

where δ ∈ (0, 1]. Hence forδ close to one,D(δ) can be
considered as an effective rank of the covariance matrix and
also the effective number of “degrees of freedom” (DOF) of
the signal family. Forδ close to one, we drop the dependence
on δ and use the term effective DOF to representD(δ). A
closely related concept is the (effective) bandwidth. We use
the term “bandwidth” for the DOF of a signal family whose
canonical domain is the Fourier domain, i.e. whose unitary
transform is given by the DFT matrix.

The transpose, complex conjugate and complex conjugate
transpose of a matrixA is denoted byAT, A∗ and A†,
respectively. Thetth row kth column entry ofA is denoted by
atk. The eigenvalues of a matrixA are denoted in decreasing
order asλ1(A) ≥ λ2(A), . . . ,≥ λN (A).

Let
√
−1 = j. The entries of theN × N DFT matrix are

given byvtk = 1√
N
ej

2π
N tk, where0 ≤ t , k ≤ N − 1. We note

that the DFT matrix is the diagonalizing unitary transform
for all circulant matrices [29]. In general, a circulant matrix
is determined by its first row and defined by the relationship
Ctk = C0 modN (k−t), where rows and columns are indexed by
t andk, 0 ≤ t , k ≤ N − 1, respectively.

We now review the expressions for the MMSE estimation.
Under a given measurement matrixH , by standard arguments
the MMSE estimate is given byE[x|y] = x̂ = KxyKy

−1y,
where Kxy = E[xy†] = KxH

†, and Ky = E[yy†] =
HKxH

† + Kn. We note that sinceKn ≻ 0, we have
Ky ≻ 0, and henceK−1

y exists. The associated MMSE can
be expressed as [30, Ch2]

(4a)ES [||x − E[x|y]||2] = tr(Kx −KxyK
−1
y K†

xy)

(4b)= tr(Kx)− tr(KxH
†(HKxH

† +Kn)
−1HKx)

(4c)= tr(UΛxU
†)

− tr(UΛxU
†H†(HUΛxU

†H† +Kn)
−1HUΛxU

†)

Let B = {i : λi > 0}, and letUB denote theN × |B| matrix
formed by taking the columns ofU indexed byB. Similarly,
let Λx,B denote the|B|×|B| matrix by taking the columns
and rows ofΛx indexed byB in the respective order. We

1We note that there are some recent results that suggest that the results
obtained by the DFT matrix may be duplicated for Haar distributed unitary
matrices: limiting distributions of eigenvalues of Haar distributed unitary
matrices and the DFT matrix behave similarly under random projections, see
for instance [27], and the eigenvalues of certain sums (for instance, ones like
in the MMSE expression) involving Haar distributed unitarymatrices can be
obtained from the eigenvalues of individual components andare well-behaved
[8], [28].

note thatU †
BUB = I|B|, whereas the equalityUBU

†
B = IN

is not true unless|B|= N . Also note thatΛx,B is always
invertible. The singular value decomposition ofKx can be
written asKx = UΛxU

† = UBΛx,BU
†
B. Hence the error may

be rewritten as

ES [||x− E[x|y]||2]

= tr(UBΛx,BU
†
B)− tr(UBΛx,BU

†
BH

†(HUBΛx,BU
†
BH

†

+Kn)
−1HUBΛx,BU

†
B)

(5a)
= tr(Λx,B)

− tr(Λx,BU
†
BH

†(HUBΛx,BU
†
BH

†+Kn)
−1HUBΛx,B)

(5b)= tr ((Λ−1
x,B +

1

σ2
n

U †
BH

†HUB)
−1)

where (5a) follows from the identitytr(UBMU †
B) =

tr(MU †
BUB) = tr(M) with an arbitrary matrixM with

consistent dimensions. Here (5b) follows from the fact that
Λx,B and Kn are nonsingular and the Sherman-Morrison-
Woodbury identity, which has the following form for our case
(see for example [31] and the references therein)

K1 −K1A
†(AK1A

† +K2)
−1AK1

= (K−1
1 +A†K−1

2 A)−1,

whereK1 andK2 are nonsingular.
Here is a brief summary of the rest of the article: In

Section II, we formulate the problem of finding the most
favorable unitary transform under average MMSE criterion
(Problem P1). In Section III, we find performance guarantees
for the MMSE estimation that hold with high probability
(Problem P2). Our benchmark case for the high probability
results, the error associated with the equidistant sampling
of circularly wide-sense stationary signals, is presentedin
Section III-A. We conclude in Section IV.

II. AVERAGE MMSE

In this section, we investigate the optimal unitary precoding
problem with the performance criterion of average (with
respect to random sampling matrixH) MMSE. In Section III,
we will focus on MMSE guarantees that hold with high
probability (w.r.t.H).

We assume that the receiver knows the channel information,
whereas the transmitter only knows the channel probability
distribution. We consider the following measurement strate-
gies: a) (Random Scalar Gaussian Channel:) H = eTi ,
i = 1, . . . , N with probability 1

N , where ei ∈ RN is the
ith unit vector. We denote this sampling strategy withSs.
b) (Gaussian Erasure Channel) H = diag(δi), whereδi are
i.i.d. Bernoulli random variables with probability of success
p ∈ [0, 1]. We denote this sampling strategy withSb.

Let UN be the set ofN ×N unitary matrices:{U ∈ CN :
U †U = I}. We consider the following minimization problem

inf
U∈UN

EH
[

ES [||x− E[x|y]||2]
]

, (6)

where the expectation with respect toH is over admissible
measurement strategiesSs or Sb. Hence we want to
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determine the best unitary encoder for the random scalar
Gaussian channel or Gaussian erasure channel.

We note that [4] and [5] consider the erasure channel model
(Sb in our notation) with the aim of maximizing the ergodic
capacity. Their formulations let the transmitter also shape the
eigenvalue distribution of the source, whereas ours does not.

We note that by solving (6) for the measurement scheme
in (1), one also obtains the solution for the generalized the
set-upy = HV x+ n, whereV is any unitary matrix: LetUo
denote an optimal unitary matrix for the scheme in (1). Then
V †Uo ∈ UN is an optimal unitary matrix for the generalized
set-up.

A. First order necessary conditions for optimality

Here we discuss the convexity properties of the optimization
problem and give the first order necessary conditions for
optimality. We note that we do not utilize these conditions for
finding the optimal unitary matrices. The reader not interested
in these results can directly continue on to Section II-B.

Let the possible sampling schemes be indexed by the
variable k, where 1 ≤ k ≤ N for Ss, and 1 ≤ k ≤ 2N

for Sb. Let Hk be the corresponding sampling matrix. Letpk
be the probability of thekth sampling scheme.

We can express the objective function as follows

EH,S [||x− E[x|y]||2]

= EH [tr ((Λ−1
x,B +

1

σ2
n

U †
BH

†HUB)
−1)]

(7)=
∑

k

pk tr ((Λ
−1
x,B +

1

σ2
n

U †
BH

†
kHkUB)

−1).

The objective function is a continuous function ofUB. We also
note that the feasible set defined by{UB ∈ CN×|B| : U †

BUB =
I|B|} is a closed and bounded subset ofCn, hence compact.
Hence the minimum is attained since we are minimizing a
continuous function over a compact set (but the optimumUB
is not necessarily unique).

We note that in general, the feasible region is not a
convex set. LetU1, U2 ∈ UN and θ ∈ [0, 1]. In general
θU1 + (1 − θ)U2 /∈ U

N. For instance letN = 1, U1 = 1,
U2 = −1, θU1+(1−θ)U2 = 2θ−1 /∈ U1, ∀ θ ∈ [0, 1]. Even
if the unitary matrix constraint is relaxed, we observe thatthe
objective function is in general neither a convex or a concave
function of the matrixUB. To see this, one can check the
second derivative to see if∇2

UB
f(UB) � 0 or ∇2

UB
f(UB) �

0, wheref(UB) =
∑

k pk tr ((Λ
−1
x,B + 1

σ2
n
U †
BH

†
kHkUB)

−1).
For example, letN = 1, U ∈ R, σ2

n = 1, λ > 0,
and p > 0 for Sb. Then f(U) =

∑

k pk
1

λ−1+U†H†
kHkU

can be written asf(U) = (1 − q)λ + q 1
λ−1+U†U

, where
q ∈ (0, 1] is the probability that the one possible measurement
is done. That isq = 1 for Ss, and q = p for Sb. Hence
∇2
Uf(U) = q 2 3U2−λ−1

(λ−1+U2)3 , whose sign changes depending on
λ, andU . Hence neither∇2

Uf(U) � 0 nor∇2
Uf(U) � 0 holds

for all U ∈ R.
In general, the objective function depends only onUB, not

U . If UB satisfyingU †
BUB = I|B|, with |B|< N is an optimal

solution, then a properly chosen set of column(s) can be added
to UB so that a unitary matrixU is formed. Any suchU will
have the same objective value withUB, and hence will also
be an optimal solution. Therefore it is sufficient to consider
the constraint{UB : U †

BUB = I|B|}, instead of the condition
{U : U †U = IN}, while optimizing the objective function.
We also note that ifUB is an optimal solution,exp(jθ)UB is
also an optimal solution, where0 ≤ θ ≤ 2π.

Let ui be theith column ofUB. We can write the unitary
matrix constraint as follows:

u†iuk =

{

1, if i = k,

0, if i 6= k.
(8)

with i = 1, . . . , |B|, k = 1, . . . , |B|. Since u†iuk = 0, iff
u†kui = 0, it is sufficient to considerk ≤ i. Hence this
constraint may be rewritten as

eTi (U
†
BUB − I|B|)ek = 0, (9)

with i = 1, . . . , |B|, k = 1, . . . , i. Here ei ∈ R|B| is the ith

unit vector.
We note that constraint gradients (gradients of the con-

ditions in (9)) are linearly independent for any matrixUB
satisying U †

BUB = IB [32]. Hence the linear indepen-
dence constraint qualification (LICQ) holds for any feasi-
ble UB [33, Defn.12.4]. Therefore, the first order condition
∇UBL(UB, ν, υ) = 0 together with the conditionU †

BUB = IB
is necessary for optimality [33, Thm 12.1], whereL(UB, ν, υ)
is the Lagrangian for some Lagrangian multiplier vectorsν,
andυ. The Lagrangian can be expressed as follows

L(UB, ν, υ) =
∑

k

pk tr ((Λ
−1
x,B +

1

σ2
n

U †
BH

†
kHkUB)

−1)

+
∑

(i,k)∈γ̄
νi,ke

T
i (U

†
BUB − I|B|)ek

+
∑

(i,k)∈γ̄
ν∗i,ke

T
i (U

T
BU

∗
B − I|B|)ek

+

|B|
∑

k=1

υke
T
k (U

†
BUB − I|B|)ek, (10)

whereνi,k ∈ C, (i, k) ∈ γ̄ andυk ∈ R, k ∈ {1, . . . , |B|} are
the Lagrange multipliers. Herēγ is defined as the following set
of pairs of indices̄γ = {(i, k)|i = 1, . . . , |B|, k = 1, . . . , i−
1}.

The first order necessary condition∇UBL(UB, ν, υ) = 0
can be expressed more explicitly as follows:

Lemma 2.1: The following condition is necessary for
optimality

∑

k

pk(Λ
−1
x,B +

1

σ2
n

U †
BH

†
kHkUB)

−2U †
BH

†
kHk

=
∑

(i,k)∈γ̄
νi,keke

T
i U

†
B +

∑

(i,k)∈γ̄
ν∗i,keie

T
kU

†
B

+

|B|
∑

k=1

υkeke
T
kU

†
B, (11)
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with νi,k and υk Lagrange multipliers as defined above,
taking possibly different values.

Proof: The proof is based on the guidelines for optimization
problems and derivative operations involving complex vari-
ables presented in [34], [35], [36]. Please see [32] for the
complete proof.

Remark 2.1: For Ss, we can analytically show that
this condition is satisfied by the DFT matrix and the identity
matrix. It is not surprising that both the DFT matrix and the
identity matrix satisfy these equations, since this optimality
condition is the same for both minimizing and maximizing the
objective function. We show that the DFT matrix is indeed
one of the possibly many minimizers for the case where the
values of the nonzero eigenvalues are equal in Lemma 2.3. The
maximizing property of the identity matrix in the noiselesscase
is investigated in Lemma 2.4.

In Section III, we show that with the DFT matrix, the MMSE
is small with high probability for signals that have small
number of degrees of freedom. Although these observations
and the other special cases presented in Section II-B may
suggest the result that the DFT matrix may be an optimum
solution for the general case, we show that this is not the case
by presenting a counterexample where another unitary matrix
not satisfying|uij |2= 1/N outperforms the DFT [Lemma
2.7].

B. Special cases

In this section, we consider some related special cases. For
random scalar Gaussian channel, we will show that when
the nonzero eigenvalues are equal any covariance matrix
(with the given eigenvalues) having a constant diagonal is
an optimum solution [Lemma 2.3]. This includes Toeplitz
covariance matrices or covariance matrices with any unitary
transform satisfying|uij |2= 1/N . We note that the DFT
matrix satisfies|uij |2= 1/N condition, and always produces
circulant covariance matrices. We will also show that for
both channel structures, for the noiseless case (under some
conditions) regardless of the entropy or the number of degrees
of freedom of a signal, the worst coordinate transformationis
the same, and given by the identity matrix [Lemma 2.4].

For the general Gaussian erasure channel model, we will
show that when only one of the eigenvalues is nonzero (i.e.
rank of the covariance matrix is one), any unitary transform
satisfying|uij |2= 1/N is an optimizer [Lemma 2.5]. We will
also show that under the relaxed conditiontr(K−1

x ) = R,
the best covariance matrix is circulant, hence the best unitary
transform is the DFT matrix [Lemma 2.6]. We note that
Ref. [5] proves the same result under the aim of maximiz-
ing mutual information with a power constraint onKx, i.e.
tr (Kx) ≤ P . Ref. [5] further finds the optimal eigenvalue
distribution, whereas in our case, the condition on the trace of
the inverse is introduced as a relaxation, and in the original
problem we are interested, the eigenvalue distribution is fixed.

In the next section, we will show that the observations
presented in compressive sensing literature implies that the

MMSE is small with high probability when|uij |2= 1/N .
Although all these observations may suggest the result that
the DFT matrix may be an optimum solution in the general
case, we will show that this is not the case by presenting a
counterexample where another unitary matrix not satisfying
|uij |2= 1/N outperforms the DFT matrix [Lemma 2.7].

Before moving on, we note the following relationship be-
tween the eigenvalue distribution and the MMSE. LetH ∈
RM×N be a sampling matrix formed by taking1 ≤ 3M ≤ N
rows from the identity matrix. Assume thatΛx ≻ 0. Let the
eigenvalues of a matrixA be denoted in decreasing order as
λ1(A) ≥ λ2(A), . . . ,≥ λN (A). The MMSE can be expressed
as follows (5b)

(12a)E[||x− E[x|y]||2] = tr ((Λ−1
x +

1

σ2
n

U †H†HU)−1)

(12b)=

N
∑

i=1

1

λi(Λ
−1
x + 1

σ2
n
U †H†HU)

(12c)

=

N
∑

i=M+1

1

λi(Λ
−1
x + 1

σ2
n
U †H†HU)

+

M
∑

i=1

1

λi(Λ
−1
x + 1

σ2
n
U †H†HU)

(12d)≥
N
∑

i=M+1

1

λi−M (Λ−1
x )

+
M
∑

i=1

1

λi(Λ
−1
x + 1

σ2
n
U †H†HU)

(12e)≥
N
∑

i=M+1

1

λi−M (Λ−1
x )

+

M
∑

i=1

1
1

λN−i+1(Λx)
+ 1

σ2
n

(12f)=
N
∑

i=M+1

λN−i+M+1(Λx) +
N
∑

i=N−M+i

1
1

λi(Λx)
+ 1

σ2
n

(12g)=

N
∑

i=M+1

λi(Λx) +

N
∑

i=N−M+1

1
1

λi(Λx)
+ 1

σ2
n

,

where we have used case (b) of Lemma 2.2 in (12d),
and the fact thatλi(Λ−1

x + 1
σ2U

†H†HU) ≤ λi(Λ
−1
x ) +

1
σ2 λ1(U

†H†HU) = λi(Λ
−1
x ) + 1

σ2 in (12e).

Lemma 2.2: [4.3.3, 4.3.6, [37]] LetA1, A2 ∈ CN×N

be Hermitian matrices. (a) LetA2 be positive semi-definite.
Thenλi(A1+A2) ≥ λi(A1), i = 1, . . . , N. (b) Let the rank of
A2 be at mostM , 3M ≤ N . Thenλi+M (A1+A2) ≤ λi(A1),
i = 1, . . . , N −M.

This lower bound in (12g) is consistent with our intuition:
If the eigenvalues are well-spread, that isD(δ) is large in
comparison toN for δ close to 1, the error cannot be made
small without making a large number of measurements. The
first term in (12g) may be obtained by the following intuitively
appealing alternative argument: The energy compaction prop-
erty of Karhunen-Loève expansion guarantees that the best
representation of this signal withM variables in mean-square
error sense is obtained by first decorrelating the signal with
U † and then using the random variables that correspond to
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the highestM eigenvalues. The mean-square error of such a
representation is given by the sum of the remaining eigenval-
ues, i.e.

∑N
i=M+1 λi(Λx). Here we make measurements before

decorrelating the signal, and each component is measured
with noise. Hence the error of our measurement scheme is
lower bounded by the error of the optimum scheme, which
is exactly the first term in (12g). The second term is the
MMSE associated with the measurement scheme in whichM
independent variables with variances given by theM smallest
eigenvalues ofΛx are observed through i.i.d. noise.

Lemma 2.3: [Scalar Channel: Eigenvalue Distribution
Flat] Let tr(Kx) = P . Assume that the nonzero eigenvalues
are equal, i.e.Λx,B = P

|B|IB. Then the minimum average
error for Ss is given by

P − P

|B| +
1

1 + P
N

1
σ2
n

P

|B| , (13)

which is achieved by covariance matrices with constant
diagonal. In particular, covariance matrices whose unitary
transform is the DFT matrix satisfy this property.

Proof: (Note that if none of the eigenvalues are zero,
Kx = I regardless of the unitary transform, hence the
objective function value does not depend on it.) The objective
function may be expressed as (7)

EH,S [||x− E[x|y]||2]

=
N
∑

k=1

1

N
tr (

|B|
P
IB +

1

σ2
n

U †
BH

†
kHkUB)

−1

(14)=
P

|B|

N
∑

k=1

1

N
(|B|−1 + (1 +

P

|B|
1

σ2
n

HkUBU
†
BH

†
k)

−1)

=
P

|B| (|B|−1) +

N
∑

k=1

P

|B|
1

N
(1 +

P

|B|
1

σ2
n

e†kUBU
†
Bek)

−1,

where in (14) we have used Lemma 2 of [17]. We now consider
the minimization of the following function

N
∑

k=1

(1 +
P

|B|
1

σ2
n

e†kUBU
†
Bek)

−1 =

N
∑

k=1

1

1 + P
|B|

1
σ2
n

|B|
P zk

=

N
∑

k=1

1

1 + 1
σ2
n
zk
, (15)

where(UBU
†
B)kk = |B|

P (Kx)kk = |B|
P zk with zk = (Kx)kk.

Here zk ≥ 0 and
∑

k zk = P , since tr (Kx) = P . We
note that the goal is the minimization of a convex function
over a convex region. We note that the function in (15) is a
Schur-convex function ofzk’s. This follows from, for instance,
Prop. C1 of [38, Ch. 3] and the fact that1/(1 + (1/σ2

n)zk)
is convex. Together with the power constraint, this reveals
that the optimumzk is given by zk = P/N . We observe
that this condition is equivalent to require that the covariance
matrix has constant diagonal. This condition can be always
satisfied; for example with a Toeplitz covariance matrix or with
any unitary transform satisfying|uij |2= 1/N . We note that

the DFT matrix satisfies|uij |2= 1/N condition, and always
produces circulant covariance matrices. ✷

Lemma 2.4: [Worst Coordinate Transformation] We
now consider the random scalar channelSs without noise, and
consider the following maximization problem which searches
for the worst coordinate system for a signal to lie in:

sup
U∈UN

E[
N
∑

t=1

[||xt − E[xt|y]||2]], (16)

wherey = xi with probability 1
N , i = 1, . . . , N andtr(Kx) =

P .

The solution to this problem is as follows: The maximum
value of the objective function isP − P/N . U = I achieves
this maximum value.

Remark 2.2: We emphasize that this result does not
depend on the eigenvalue spectrumΛx.

Remark 2.3: We note that when some of the eigenvalues
of the covariance matrix are identically zero, the eigenvectors
corresponding to the zero eigenvalues can be chosen freely (of
course as long as the resulting transformU is unitary).

Proof: The objective function may be written as

E[
N
∑

t=1

[||xt − E[xt|y]||2]]

=
1

N

N
∑

i=1

N
∑

t=1

E[||xt − E[xt|xi]||2]] (17)

=
1

N

N
∑

i=1

N
∑

t=1

(1 − ρ2i,t)σ
2
xt
, (18)

where ρi,t =
E[xtx

†
i ]

(E[||xt||2]E[ ||xi||2])1/2
is the correlation coeffi-

cient betweenxt and xi, assumingσ2
xt

= E[||xt||2] > 0,
σ2
xi

> 0. (Otherwise one may setρi,t = 1 if i = t, and
ρi,t = 0 if i 6= j.) Now we observe thatσ2

t ≥ 0, and
0 ≤ |ρi,t|2≤ 1. Hence the maximum value of this function
is given by ρi,t = 0, ∀ t, i s.t. t 6= i. We observe that any
diagonal unitary matrixU = diag(uii), |uii|= 1 (and also
any Ū = UΠ, whereΠ is a permutation matrix) achieves this
maximum value. In particular, the identity transformU = IN
is an optimal solution.

We note that a similar result holds forSb: Let y = Hx.
The optimal value ofsupU∈UN EH,S [||x − E[x|y]||2], where
the expectation with respect toH is overSb is (1−p) tr (Kx),
which is achieved by anyUΠ, U = diag(uii), |uii|= 1, Π is
a permutation matrix. ✷

Lemma 2.5: [Rank 1 Covariance Matrix] Suppose
|B|= 1, i.e. λk = P > 0, andλj = 0, j 6= k, j ∈ 1, . . . , N .
The minimum error underSb is given by the following expres-
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sion
E[

1
1
P + 1

σ2
n

1
N

∑N
i=1 δi

], (19)

where this optimum is achieved by any unitary matrix whose
kth column entries satisfy|uik|2= 1/N , i = 1, . . . , N .

Proof: Let v = [v1, . . . , vn]
T, vi = |uki|2, i = 1, . . . , N ,

whereT denotes transpose. We note the following

E[tr (
1

P
+

1

σ2
n

U †
BH

†HUB)
−1]

= E[
1

1
P + 1

σ2
n

∑N
i=1 δi|uki|2

] (20)

= E[
1

1
P + 1

σ2
n

∑N
i=1 δivi

]. (21)

The proof uses an argument in the proof of [18, Thm. 1],
which is also used in [17]. LetΠi ∈ RN×N denote the
permutation matrix indexed byi = 1, . . . , N !. We note
that a feasible vectorv satisfies

∑N
i=1 vi = 1, vi ≥ 0,

which forms a convex set. We observe that for any suchv,
weighted sum of all permutations ofv, v̄ = 1

N !

∑N !
i=1 Πiv =

( 1
N

∑N
i=1 vi)[1, . . . , 1]

T = [ 1N , . . . ,
1
N ]T ∈ RN is a constant

vector and also feasible. We note thatg(v) = E[ 1
1
P + 1

σ2
n

∑
i δivi

]

is a convex function ofv over the feasible set. Hence
g(v) ≥ g(v̄) = g([1/N, . . . , 1/N ]) for all v, and v̄ is the
optimum solution. Since there exists a unitary matrix satisfying
|uik|2= 1/N for any givenk (such as any unitary matrix
whosekth column is any column of the DFT matrix), the
claim is proved. ✷

Lemma 2.6: [Trace constraint on the inverse of the
covariance matrix] LetK−1

x ≻ 0. Instead of fixing the
eigenvalue distribution, let us consider the relaxed constraint
tr(K−1

x ) = R. LetKn ≻ 0. Then an optimum solution for

argmin
K−1

x

EH,S [||x− E[x|y]||2] (22)

= argmin
K−1

x

EH [(tr(K−1
x +

1

σ2
n

H†K−1
n H)−1]

underSb is a circulant matrix.

Proof: The proof uses an argument in the proof of [5, Thm.
12], [4]. Let Π be the following permutation matrix,

Π =











0 1 · · · 0
0 0 1 0 · · ·
...

. . .
...

1 · · · 0 0











. (23)

We observe thatΠ and Πl (lth power of Π) are uni-
tary matrices. We form the following matrixK̄−1

x =
1
N

∑N−1
l=0 ΠlK−1

x (Πl)†, which also satisfies the power con-
straint tr (K̄−1

x ) = R. We note that sinceK−1
x ≻ 0, so is

K̄−1
x ≻ 0, henceK̄−1

x is well-defined.

E

[

tr

(

(
1

N

N−1
∑

l=0

ΠlK−1
x (Πl)† +

1

σ2
n

H†K−1
n H)−1

)]

≤ 1

N

N−1
∑

l=0

E

[

tr

(

(ΠlK−1
x (Πl)† +

1

σ2
n

H†K−1
n H)−1

)]

(24)

=
1

N

N−1
∑

l=0

E

[

tr

(

(K−1
x +

1

σ2
n

(Πl)†H†K−1
n HΠl)−1

)]

(25)

=
1

N

N−1
∑

l=0

E

[

tr

(

(K−1
x +

1

σ2
n

H†K−1
n H)−1

)]

(26)

= E

[

tr

(

(K−1
x +

1

σ2
n

H†K−1
n H)−1

)]

(27)

We note thattr((M +K−1
n )−1) is a convex function ofM

over the setM ≻ 0, since tr(M−1) is a convex function
(see for example [39, Exercise 3.18]), and composition with
an affine mapping preserves convexity [39, Sec. 3.2.2]. Hence
(24) follows from Jensen’s Inequality applied to the summa-
tion forming K̄−1

x . (25) is due to the fact thatΠls are unitary
and trace is invariant under unitary transforms. (26) follows
from the fact thatHΠl has the same distribution withH .
Hence we have shown that̄K−1

x provides a lower bound for
arbitraryK−1

x satisfying the power constraint. SincēK−1
x is

circulant and also satisfies the power constrainttr (K̄−1
x ) = R,

an optimumK−1
x is also circulant. ✷

We note that we cannot follow the same argument for the
constrainttr(Kx) = P , since the objective function is concave
in Kx over the setKx ≻ 0. This can be seen as follows:
The error can be expressed asE[||x − E[x|y]||2] = tr (Ke),
whereKe = Kx − KxyK

−1
y K†

xy. We note thatKe is the
Schur complement ofKy in K = [Ky Kyx;Kxy Kx], where
Ky = HKxH

† + Kn, Kxy = KxH
†. Schur complement

is matrix concave inK ≻ 0, for example see [39, Exercise
3.58]. Since trace is a linear operator,tr(Ke) is concave inK.
SinceK is an affine mapping ofKx, and composition with an
affine mapping preserves concavity [39, Sec. 3.2.2],tr(Ke) is
concave inKx.

Lemma 2.7: [DFT is not always optimal] The DFT
matrix is, in general, not an optimizer of the minimization
problem stated in(6) for the Gaussian erasure channel.

Proof: We provide a counterexample to prove the claim of
the lemma: An example where a unitary matrix not satisfying
|uij |2= 1/N outperforms the DFT matrix. LetN = 3. Let
Λx = diag(1/6, 2/6, 3/6), andKn = I. Let U be

U0 =





1/
√
2 0 1/

√
2

0 1 0

−1/
√
2 0 1/

√
2



 (28)

HenceKx becomes

Kx =





1/3 0 1/6
0 1/3 0
1/6 0 1/3



 (29)

We write the average error as a sum conditioned on the
number of measurements asJ(U) =

∑3
M=0 p

M (1 −
p)3−MeM (U), where eM denotes the total error of all
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cases whereM measurements are done. Lete(U) =
[e0(U), e1(U), e2(U), e3(U)]. The calculations reveal that
e(U0) = [1, 65/24, 409/168, 61/84] whereas e(F ) =
[1, 65/24, 465/191, 61/84], whereF is the DFT matrix. We
see that all the entries are the same with the DFT case, except
e2(U0) < e2(F ), wheree2(U0) = 409/168 ≈ 2.434524 and
e2(F ) = 465/191 ≈ 2.434555. HenceU0 outperforms the
DFT matrix.

We note that our argument covers any unitary matrix that
is formed by changing the order of the columns of the DFT
matrix, i.e. any matching of the given eigenvalues and the
columns of the DFT matrix:U0 provides better performance
than anyKx formed by using the given eigenvalues and any
unitary matrix formed with columns from the DFT matrix.✷

III. MMSE B OUNDS THAT HOLD WITH HIGH

PROBABILITY

In this section, we focus on MMSE bounds that hold
with high probability. As a preliminary work, we will first
consider a sampling scenario which will serve as a benchmark
in the subsequent sections: estimation of a c.w.s.s. signal
from its equidistant samples. Circularly wide-sense stationary
signals provide a natural analogue for stationary signals in
the finite dimension, hence in a sense they are the most
basic signal type one can consider in a sampling setting.
Equidistant sampling strategy is the sampling strategy which
one commonly employs in a sampling scenario. Therefore,
the error associated with equidistant sampling under c.w.s.s.
model forms an immediate candidate for comparing the error
bounds associated with random sampling scenarios.

A. Equidistant Sampling of Circularly Wide-Sense Stationary
Random Vectors

In this section, we consider the case wherex is a zero-mean,
proper, c.w.s.s. Gaussian random vector. Hence the covariance
matrix of x is circulant, and the unitary transformU is fixed,
and given by the DFT matrix by definition [29].

We assume that the sampling is done equidistantly: Every
1 out of ∆N samples are taken. We letM = N

∆N ∈ Z, and
assume that the first component of the signal is measured, for
convenience.

By definition, the eigenvectors of the covariance matrix is
given by the columns of the DFT matrix, where the elements of
kth eigenvector is given byutk = 1√

N
ej

2π
N tk, 0 ≤ t ≤ N − 1.

We denote the associated eigenvalue withλk, 0 ≤ k ≤ N − 1
instead of indexing the eigenvalues in decreasing order.

Lemma 3.1: The MMSE of estimatingx from the
equidistant noisy samplesy as described above is given by
the following expression

E[||x − E[x|y]||2] (30)

=

M−1
∑

k=0

(

∆N−1
∑

i=0

λiM+k −
∆N−1
∑

i=0

λ2iM+k
∑∆N−1

l=0 (λlM+k + σ2
n)

)

Proof: Proof is provided in Section A.
A particularly important special case is the error associated

with the estimation of a band-pass signal:

Corollary 3.1: Let tr(Kx) = P . Let the eigenvalues be
given as λi = P

|B| , if 0 ≤ i ≤ |B|−1, and λi = 0, if |B|≤
i ≤ N − 1. If M ≥ |B|, then the error can be expressed as
follows

E[||x− E[x|y]||2] = 1

1 + 1
σ2
n

P
|B|

M
N

P (31)

We note that this expression is of the form 1

1+SNRP , where

SNR= 1
σ2
n

P
|B|

M
N . This expression will serve as a benchmark

in the subsequent sections.

B. Flat Support

We now focus on MMSE bounds that hold with high prob-
ability. In this section, we assume that all nonzero eigenvalues
are equal, i.e.Λx,B = P

|B|I|B|, where|B|≤ N . We will con-
sider more general eigenvalue distributions in Section III-C.
We present bounds on the MMSE depending on the support
size and the number of measurements that hold with high
probability. These results illustrate how the results in matrix
theory mostly presented in compressive sampling framework
can provide MMSE bounds. We note that the problem we
tackle here is inherently different from theℓ1 set-up considered
in traditional compressive sensing problems. Here we consider
the problem of estimating a Gaussian signal in Gaussian noise
under the assumption the support is known. It is known that
the best estimator in this case is the linear MMSE estimator.
On the other hand, in scenarios where one refers toℓ1
characterization, one typically does not know the support of
the signal. We note that there are studies that consider the
unknown support scenario in a MMSE framework, such as
[8], [20], [21], [22].

We consider the set-up in (1). The random sampling opera-
tion is modelled with aM×N sampling matrixH , whose rows
are taken from the identity matrix as dictated by the sampling
operation. We letUMB = HUB be theM × |B| submatrix
of U formed by taking|B| columns andM rows as dictated
by B andH , respectively. The MMSE can be expressed as
follows (5b)

ES [||x− E[x|y]||2]

= tr ((Λ−1
x,B +

1

σ2
n

U †
BH

†HUB)
−1)

=

|B|
∑

i=1

1

λi(
|B|
P IB + 1

σ2
n
U †
MBUMB)

=

|B|
∑

i=1

1
|B|
P + 1

σ2
n
λi(UMB

†UMB)
. (32)

We see that the estimation error is determined by the eigen-
values of the matrixU †

MBUMB . We note that many results in
compressive sampling framework make use of the bounds on
the eigenvalues of this matrix. We now use one of these results
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to bound the MMSE performance. The discussion here may
not be surprising for readers who are familiar with the tools
used in the compressive sensing community, since the analysis
here is related to recovery problems with high probability.
However, this discussion highlights how these results are
mimicked with the MMSE criterion and how the eigenvalues
of the covariance matrix can be interpreted as measure of
low effective degree of freedom of a signal family. We note
that different eigenvalue bounds in the literature can be used,
we pick one of these bounds from the literature to make the
constants explicit.

Lemma 3.2: Let U be anN × N unitary matrix with√
N maxk,j |uk,j |= µ(U). Let the signal have fixed supportB

on the signal domain. Let the sampling locations be chosen
uniformly at random from the set of all subsets of the given
sizeM , M ≤ N . Let noisy measurements with noise power
σ2
n be done at theseM locations. Then for sufficiently large
M(µ), the error is bounded from above with high probability:

ES [||x− E[x|y]||2] < 1

1 + 1
σ2
n

0.5M
N

P
|B|

P (33)

More precisely, if

M ≥ |B|µ2(U)max(C1 log|B|, C2 log(3/δ)) (34)

for some positive constantsC1 andC2, then

P(ES [||x− E[x|y]||2] ≥ 1

1 + 1
σ2
n

0.5M
N

P
|B|

P ) ≤ δ. (35)

In particular, when the measurements are noiseless, the error
is zero with probability at least1− δ.

Proof: We first note that‖UMB
†UMB − I‖< c implies

1 − c < λi(UMB
†UMB) < 1 + c. Consider Theorem 1.2 of

[1]. Suppose thatM and |B| satisfies (34). Now looking at
Theorem 1.2, and noting the scaling of the matrixU †U = NI
in [1], we see thatP (0.5MN < λi(UMB

†UMB) < 1.5MN ) ≥
1− δ. By (32) the result follows.

For the noiseless measurements case, letε = ES [||x −
E[x|y]||2], andAσ2

n
be the event{ε < σ2

n
|B|

σ2
n

|B|
P + 0.5M

N

} Hence

lim
σ2
n→0

P(Aσ2
n
) = lim

σ2
n→0

E[1Aσ2
n
] (36)

= E[ lim
σ2
n→0

1Aσ2
n
] (37)

= P(ε = 0) (38)

where we have used Dominated Convergence Theorem to
change the order of the expectation and the limit. By (35)
P(Aσ2

n
) ≥ 1 − δ, henceP(ε = 0) ≥ 1 − δ. We also note that

in the noiseless case, it is enough to haveλmin(U
†
MBUMB)

bounded away from zero to have zero error with high proba-
bility, the exact value of the bound is not important. ✷

We note that when the other parameters are fixed, as
maxk,j |uk,j | gets smaller, fewer number of samples are
required. Since

√

1/N ≤ maxk,j |uk,j |≤ 1 , the unitary
transforms that provide the most favorable guarantees are the
ones satisfying|uk,j |=

√

1/N . We note that for any such

unitary transform, the covariance matrix has constant diagonal
with (Kx)ii = P/N regardless of the eigenvalue distribution.
Hence with any measurement scheme withM , M ≤ N
noiseless measurements, the reduction in the uncertainty is
guaranteed to be at least proportional to the number of
measurements, i.e. the error satisfiesε ≤ P − M

N P .

Remark 3.1: We note that the coherence parameter
µ(U) takes the largest value possible for the DFT:µ(U) =√
N maxk,j |uk,j |= 1. Hence due to the role ofµ(U) in the

error bounds, in particular in the conditions of the lemma
(see (34)), the DFT may be interpreted as one of the most
favorable unitary transforms possible in terms of the suffi-
ciency conditions stated. We recall that for a c.w.s.s. source,
the unitary transform associated with the covariance matrix
is given by the DFT. Hence we can conclude that Lemma 3.2
is applicable to these signals. That is, among signals with a
covariance matrix with a given rectangular eigenvalue spread,
c.w.s.s. signals are among the ones that can be estimated with
low values of error with high probability with a given number
of randomly located measurements.

We finally note that using the argument employed in
Lemma 3.2, one can also find MMSE bounds for the adverse
scenario where a signal with random support is sampled
at fixed locations. (We will still assume that the receiver
has access to the support set information.) In this case the
results that explore the bounds on the eigenvalues of random
submatrices obtained by uniform column sampling, such as
Theorem 12 of [2] or Theorem 3.1 of [40], can be used in
order to bound the estimation error.

1) Discussion: We now compare the error bound found
above with the error associated with equidistant sampling
of a low pass circularly wide-sense stationary source. We
consider the special case wherex is a band pass signal with
λ0 = · · · = λ|B|−1 = P/|B|, λ|B| = . . . = λN−1 = 0. By
Corollary 3.1, if the number of measurementsM is larger than
the bandwidth, that isM ≥ |B|, the error associated with the
equidistant sampling scheme can be expressed as

E[||x− E[x|y]||2] = 1

1 + P
|B|

1
σ2
n

M
N

P. (39)

Comparing (33) with this expression, we observe the follow-
ing: The expressions are of the same general form,1

1+cSNRP ,

where SNR, P
|B|

1
σ2
n

M
N , with 0 ≤ c ≤ 1 taking different

values for different cases. We also note that in (33), the choice
of c = 0.5, which is the constant chosen for the eigenvalue
bounds in [1], is for convenience. It could have been chosen
differently by choosing a different probabilityδ in (35). We
also observe that effective SNR takes its maximum value
with c = 1 for the deterministic equidistant sampling strategy
corresponding to the minimum error value among these two
expressions. In random sampling case,c can only take smaller
values, resulting in larger and hence worse error bounds. We
note that one can choosec values closer to 1, but then the
probability these error bounds hold decreases, that is better
error bounds can be obtained at the expense of lower degrees
of guarantees that these results will hold.
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The result of Lemma 3.1 is based on high probability
results for the norm of a matrix restricted to random set of
coordinates. For the purposes of such results, the uniform
random sampling model and the Bernoulli sampling model
where each component is taken independently and with equal
probability is equivalent [6], [7], [41]. For instance, thederiva-
tion of Theorem 1.2 of [1], the main step of Lemma 3.2,
is in fact based on a Bernoulli sampling model. Hence the
high probability results presented in this lemma also hold for
Gaussian erasure channel of Section II (with possibly different
parameters).

C. General Support

In Section III-B, we have considered the case in which some
of the eigenvalues of the covariance matrix are zero, and allthe
nonzero eigenvalues have the same value. This case may be
interpreted as the scenario where the signal to be estimatedis
exactly sparse. In this section, our aim is to find error bounds
for estimation of not only sparse signals but also signals that
are close to sparse. Hence we are interested in the case where
the signal has small number of degrees of freedom effectively,
that is when a small portion of the eigenvalues carry most of
the power of the signal. In this case, the signal may not strictly
have small number of degrees of freedom, but it can be well
approximated by such a signal.

We note that the result in this section makes use of a novel
matrix theory result, and provides fundamental insights into
problem of estimation of signals with small effective number
of degrees of freedom. In the previous section we have used
some results in compressive sensing literature that are directly
applicable only when the signals have strictly small number
of degrees of freedom (“insignificant” eigenvalues ofKx are
exactly equal to zero.) In this section we assume a more
general eigenvalue distribution. Our result enables us draw
conclusions when some of the eigenvalues are not exactly
zero, but small. The method of proof provides us a way to
see the effects of the effective number of degrees of freedom
of the signal (Λx) and the incoherence of measurement domain
(HU ), separately.

Before stating our result, we make some observations on
the related results in random matrix theory. Consider the
submatrices formed by restricting a matrixK to random
set of its rows, or columns;R1K or KR2 whereR1 and
R2 denote the restrictions to rows and columns respectively.
The main tool for finding bounds on the eigenvalues of
these submatrices is finding a bound onE||R1K − E[R1K]||
or E||KR†

2 − E[KR†
2]||[2], [40], [42]. In our case such an

approach is not very meaningful. The matrix we are inves-
tigating Λ−1

x + (HU)†(HU) constitutes of two matrices: a
deterministic diagonal matrix with possibly different entries
on the diagonal and a random restriction. Hence we adopt
another method: the approach of decomposing the unit sphere
into compressible and incompressible vectors as proposed by
M. Rudelson and R. Vershynin [43].

We consider the general measurement set-up in (1) where
y = Hx + n, with Kn = σ2

nIM , Kx ≻ 0. The s.v.d. ofKx

is given asKx = UΛxU
†, whereU ∈ CN×N is unitary and

Λx = diag(λi) with
∑

i λi = P , λ1 ≥ λ2, . . . ,≥ λN . M
components ofx are observed, where in each draw each com-
ponent of the signal has equal probability of being selected.
Hence the sampling matrixH is aM ×N , M ≤ N diagonal
matrix, which may have repeated rows. This sampling scheme
is slightly different than the sampling scheme of the previous
section where the sampling locations are given by a set chosen
uniformly at random from the set of all subsets of{1, . . . , N}
with sizeM . The differences in these models are very slight
in practice, and we chose the former in this section due to the
availability of partial uniform bounds on||HUx|| in this case.

Theorem 3.1: Let D(δ) be the smallest number sat-
isfying

∑D
i=1 λi ≥ δP , where δ ∈ (0, 1]. Let λmax =

maxi λi = CSλ
P
D andλi < CIλ

P
N−D , i = D + 1, . . . , N . Let

µ(U) =
√
N maxk,j |uk,j |. LetN/D > κ ≥ 1. Let ǫ ∈ (0, 1),

θ ∈ (0, 0.5], andγ ∈ (0, 1). Let

M/ln(10M) ≥C1 θ
−2µ2κD ln2(100κD) ln(4N) (40)

M ≥C2 θ
−2µ2κD ln (ǫ−1) (41)

1 <0.5ρ2κ (42)

ρ ≤(1− γ)
CκD

CκD + 1
, (43)

where

CκD = (1− θ)0.5
(

M

N

)0.5

. (44)

Then the error will satisfy

P

(

E[||x− E[x|y]||2] (45)

≥ (1 − δ)P +max(
P

CI
,

1
1
CS

λ

+ 1
σ2
n
γ2CκD

2 P
D

P )

)

≤ ǫ

where

CI = (0.5ρ2κ− 1)
0.5ρ2

CIλ

N −D

N
. (46)

HereC1 ≤ 50 963 andC2 ≤ 456.

Remark 3.2: As we will see in the proof, the eigenvalue
distribution plays a key role in obtaining stronger bounds:In
particular, when the eigenvalue distribution is spread out, the
theorem cannot provide bounds for low values of error. As
the distribution becomes less spread out, stronger bounds are
obtained. We discuss these points after the proof the result.

Proof: The error can be expressed as follows (5b)

E[||x− E[x|y]||2]

= tr ((Λ−1
x +

1

σ2
n

(HU)†HU)−1) (47)

=
N
∑

i=1

1

λi(Λ
−1
x + 1

σ2
n
(HU)†HU)

(48)

=

N−D
∑

i=1

1

λi(Λ
−1
x + 1

σ2
n
(HU)†HU)

(49)

+

N
∑

i=N−D+1

1

λi(Λ
−1
x + 1

σ2
n
(HU)†HU)
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≤
N−D
∑

i=1

1

λi(Λ
−1
x )

+

N
∑

i=N−D+1

1

λi(Λ
−1
x + 1

σ2
n
(HU)†HU)

(50)

≤
N−D
∑

i=1

λN−i+1(Λx) +D
1

λmin(Λ
−1
x + 1

σ2
n
(HU)†HU)

(51)

=

N
∑

i=D+1

λi(Λx) +D
1

λmin(Λ
−1
x + 1

σ2
n
(HU)†HU)

, (52)

where (50) follows from case (a) of Lemma 2.2.
Hence the error may be bounded as follows

E[||x− E[x|y]||2] (53)

≤ (1 − δ)P +D
1

λmin(Λ
−1
x + 1

σ2
n
(HU)†HU)

.

The smallest eigenvalue ofA = Λ−1
x + 1

σ2
n
(HU)†HU is

sufficiently away from zero with high probability as noted in
the following lemma:

Lemma 3.3: Under the conditions stated in Theorem
3.1, the eigenvalues ofA = Λ−1

x + 1
σ2
n
(HU)†(HU) are

bounded from below as follows:

P( inf
x∈SN−1

x†Λ−1
x x+

1

σ2
n

x†(HU)†HUx (54)

≤ min(CI
D

P
,

1

CSλ
P
D

+
1

σ2
n

γ2CκD
2)) ≤ ǫ.

Here SN−1 denotes the unit sphere wherex ∈ SN−1 if x ∈
CN , and ||x||= 1.

The proof of this lemma is given in Section B of the
Appendix.

We now conclude the argument. Let us call the right-hand
side of the eigenvalue bound in (54)λ̄min. Then (54) states
that P(λmin(A) > λ̄min) ≥ 1 − ǫ, and hence we have the
following: P( 1

λmin(A) < 1
λ̄min

) ≥ 1 − ǫ. Together with the
error bound in (53), we haveP(E[||x − E[x|y]||2] < (1 −
δ)P +D 1

λ̄min
) ≥ 1− ǫ, and the result follows. ✷

We now discuss the error bound that Theorem 3.1 provides.
The expression in (45) can be interpreted as an upper bound on
the error that holds with probability at least1− ǫ. The bound
consists of a(1 − δ)P term and amax term. This(1 − δ)P
term is the total power in the eigenvalues that are considered
to be insignificant (i.e.λi such thati /∈ D = {1, . . . , D}). This
term is a bound for the error that would have been introduced
if we had preferred not estimating the random variables
corresponding to these insignificant eigenvalues. Since inour
setting we are interested in signals with effectively small
number of degrees of freedom, henceδ close to 1 for D
much smaller thanN, this term will be typically small. Let
us now look at the term that will come out of the maximum
function. When the noise level is relatively low, thePCI

term
comes out of themax term. Together with theρ and κ
whose choices will depend onD, order of magnitude of this
term substantially depends on the value of the insignificant

eigenvalues. This term may be interpreted as an upper bound
on the error due to the random variables associated with the
insignificant eigenvalues acting as noise for estimating ofthe
random variables associated with the significant eigenvalues
(i.e. λi such thati ∈ D). Hence in the case where the noise
level is relatively low, the random variables associated with the
insignificant eigenvalues become the dominant source of error
in estimation. By choosingκ andγ appropriately, this term can
be made small provided thatD is small compared toN , which
is the typical scenario we are interested in. When the noise
level is relatively high, the second argument comes out of the
max term. Hence for relatively high levels of noise, system
noisen rather than the signal components associated with the
insignificant eigenvalues becomes the dominant source of error
in the estimation. This term can be also written as

1
1
CS

λ

+ 1
σ2
n
γ2CκD

2 P
D

P =
1

1
CS

λ

+ 1
σ2
n
γ2(1− θ)MN

P
D

P (55)

=
1

1
CS

λ

+ γ2(1− θ)SNR
P, (56)

where SNR= 1
σ2
n

P
D
M
N . We note that the general form of

this expression is the same as the general form of the error
expression in Section III-B (see (39)), where the error bound
is of the general form 1

1+cSNRP , where c ∈ (0, 1]. In
Section III-B, the case where the signal have exactly small
number of degrees of freedom withD is considered, in which
caseCSλ = 1, δ = 1 andD = |B|. We observe that here, there
are two factors that forms the effective SNR lossc = γ2(1−θ).
A look through the proof (in particular, Lemma B.2 and
Lemma B.3) reveals that the effective SNR loss due to(1−θ)
factor is the term that would have been introduced if we were
to work with signals whereκD eigenvalues are equal and
nonzero, and the others zero. This factor also introduces a loss
of SNR due to considering signals withκD, κ > 1 insteadD
nonzero eigenvalues. Theγ2 term may be interpreted as an
additional loss due to working with signals for whichλi such
that i /∈ D are not zero.

IV. CONCLUSIONS

We have considered the transmission of a Gaussian vector
source over a multi-dimensional Gaussian channel where a
random or a fixed subset of the channel outputs are erased.
The unitary transformation that connects the canonical signal
domain and the measurement space played a crucial role in
our investigation. Under the assumption the estimator knows
the channel realization, we have investigated the MMSE per-
formance, both in average, and also in terms of guarantees that
hold with high probability as a function of system parameters.

We have considered the sampling model of random era-
sures. We have considered two channel structures: i) random
Gaussian scalar channel where only one measurement is
done through Gaussian noise and ii) vector channel where
measurements are done through parallel Gaussian channels
with a given channel erasure probability. Under these channel
structures, we have formulated the problem of finding the
most favorable unitary transform under average (w.r.t. random
erasures) MMSE criterion. We have investigated the convexity
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properties of this optimization problem, and obtained neces-
sary conditions of optimality through variational equalities. We
were not able to solve this problem in its full setting, but we
have solved some related special cases. Among these we have
identified special cases where DFT-like unitary transforms
(unitary transforms with|uij |2= 1

N ) turn out to be the
best coordinate transforms, possibly along with other unitary
transforms. Although these observations and the observations
of Section III-B (which are based on compressive sensing
results) may suggest that the DFT is optimal in general, we
showed through a counterexample that this is not the case
under the performance criterion of average MMSE.

In Section III, we have focused on performance guarantees
that hold with high probability. We have presented upper
bounds on the MMSE depending on the support size and
the number of measurements. We have also considered more
general eigenvalue distributions, (i.e. signals that may not
strictly have low degree of freedom, but effectively do so),
and we have illustrated the interplay between the amount of
information in the signal, and the spread of this information
in the measurement domain for providing performance guar-
antees.

To serve as a benchmark, we have considered sampling of
circularly wide-sense stationary signals, which is a natural way
to model wide-sense stationary signals in finite dimension.
Here the covariance matrix was circulant by assumption, hence
the unitary transform was fixed and given by the DFT matrix.
We have focused on the commonly employed equidistant
sampling strategy and gave the explicit expression for the
MMSE.

In addition to providing insights into the problem of unitary
encoding in Gaussian erasure channels, our work in this
article also contributed to our understanding of the relationship
between the MMSE and the total uncertainty in the signal as
quantified by information theoretic measures such as entropy
(eigenvalues) and the spread of this uncertainty (basis). We
believe that through this relationship our work also sheds light
on how to properly characterize the concept of “coherence of
a random field”. Coherence, a concept describing the overall
correlatedness of a random field, is of central importance in
statistical optics; see for example [44], [45] and the references
therein.
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APPENDIX A
NOTES ON EQUIDISTANT SAMPLING OF C.W.S.S. SIGNALS

We believe that error expressions related to the equidistant
sampling of the c.w.s.s. signals can be also of independent
interest. Hence we further elaborate on this sampling scenario
in this section. We first present the result for the noiselesscase
and then give the relevant proofs, including that of Lemma 3.3
which is for the noisy sampling case.

A. Equidistant sampling without noise

Our set-up is the same with Section III-A except here we
first consider the case where there is no noise so thaty = Hx.
We now present an explicit expression and an upper bound for
the mean-square error associated with this noiseless set-up.

Lemma A.1: Let the model and the sampling strategy
be as described above. Then the MMSE of estimatingx from
these equidistant samples can be expressed as

E[||x− E[x|y]||2] (57)

=
∑

k∈J0

(

∆N−1
∑

i=0

λiM+k −
∆N−1
∑

i=0

λ2iM+k
∑∆N−1

l=0 λlM+k

),

whereJ0 = {k :
∑∆N−1

l=0 λlM+k 6= 0, 0 ≤ k ≤ M − 1} ⊆
{0, . . . ,M − 1}.

In particular, choose a set of indicesJ ⊆ {0, 1, . . . , N−1}
with |J |=M such that∀i, j, 0 ≤ i, j ≤ ∆N − 1, i 6= j

jM + k ∈ J ⇒ iM + k /∈ J (58)

with 0 ≤ k ≤M − 1. Let PJ =
∑

i∈J λi. Then the MMSE is
upper bounded by the total power in the remaining eigenvalues

E[||x− E[x|y]||2] ≤ 2(P − PJ ). (59)

In particular, if there is such a setJ so thatPJ = P , the
MMSE will be zero.

Remark A.1: The set J essentially consists of the
indices which do not overlap when shifted byM .

Remark A.2: We note that the choice of the setJ is not
unique, and each choice of the set of indices may provide a
different upper bound. To obtain the lowest possible upper
bound, one should consider the set with the largest total
power.

Remark A.3: If there exists such a setJ that has the
most of power, i.e.PJ = δP , δ ∈ (0, 1], with δ close to 1,
then 2(P − PJ) = 2(1 − δ)P is small and the signal can
be estimated with low values of error. In particular, if such
a set has all the power, i.e.P = PJ , the error will be zero.
A conventional aliasing free setJ may be the set of indices
of the band of a band-pass signal with a band smaller than
M . It is important to note that there may exist other setsJ
with P = PJ , hence the signal may be aliasing free even if
the signal is not bandlimited (low-pass, high-pass etc) in the
conventional sense.

Proof: Proof is given in Section A-B of the Appendix.
We observe that the bandwidth (or the effective degrees

of freedom) turn out to be good predictors of estimation
error in equidistant sampling scenario. On the other hand,
the differential entropy of an effectively bandlimited Gaussian
vector can be very small even if the bandwidth is close toN ,
hence may not provide any useful information with regards to
estimation performance.

We now compare our error bound with the related results
in the literature. In the following works, similar problems
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with signals defined onR are considered: In [46], mean-
square error of approximating a possibly non-bandlimited
wide-sense stationary (w.s.s.) signal using sampling expansion
is considered and a uniform upper bound in terms of power
outside the bandwidth of approximation is derived. Here we
are interested in the average error over all points of theN
dimensional vector. Our method of approximation of the signal
is possibly different, since we use the MMSE estimator. As a
result our bound also makes use of the shape of the eigenvalue
distribution. [47] states that a w.s.s. signal is determined
linearly by its samples if some set of frequencies containing
all of the power of the process is disjoint from each of its
translates where the amount of translate is determined by the
sampling rate. Here for circularly w.s.s. signals we show a
similar result: if there is a setJ that consists of indices which
do not overlap when shifted byM , and has all the power, the
error will be zero. In fact, we show a more general result for
our set-up and give the explicit error expression. We also show
that two times the power outside this setJ provides an upper
bound for the error, hence putting a bound on error even if it
is not exactly zero.

B. Proof of Lemma A.1

We remind that in this sectionutk = 1√
N
ej

2π
N tk, 0 ≤ t , k ≤

N − 1 and the associated eigenvalues are denoted withλk
without reindexing them in decreasing/increasing order. We
first assume thatKy = E[yy†] = HKxH

† is non-singular.
The generalization to the case whereKy may be singular is
presented at the end of the proof.

The MMSE for estimatingx from y is given by [30, Ch.2]

E[||x− E[x|y]||2] = tr(Kx −KxyK
−1
y K†

xy)

(60)= tr(Λx − ΛxU
†H†(HUΛxU

†H†)−1HUΛx).

We now considerHU ∈ CM×N ,

(HU)lk =
1√
N
ej

2π
N (∆Nl)k =

1√
N
ej

2π
M lk, (61)

where0 ≤ l ≤ N
∆N − 1, 0 ≤ k ≤ N − 1. We observe that

for a given l, ej
2π
M lk is a periodic function ofk with period

M = N
∆N . Hence,lth row of HU can be expressed as

(HU)l: =
1√
N

[ej
2π
M l[0...N−1]]

=
1√
N

[ej
2π
M l[0...M−1]|. . . |ej 2π

M l[0...M−1]].

Let UM denote theM × M DFT matrix, i.e. (UM )lk =
1√
M
ej

2π
M lk with 0 ≤ l ≤M−1, 0 ≤ k ≤M−1. HenceHU

is the matrix formed by stacking∆N M ×M DFT matrices
side by side

HU =
1√
∆N

[UM |. . . |UM ]. (62)

Now we consider the covariance matrix of the observations
Ky = HKxH

† = HUΛxU
†H†. We first expressΛx as a

block diagonal matrix as follows

Λx =













λ0 0 · · · 0

0 λ1
...

...
. . .

...
0 · · · 0 λN−1













=













Λ0
x 0̄ · · · 0̄

0̄ Λ1
x

...
...

. . .
...

0̄ · · · 0̄ Λ∆N−1
x













.

where0̄ ∈ RM×M denotes the matrix of zeros. HenceΛx =
diag(Λix) with Λix = diag(λiM+k) ∈ RM×M , where0 ≤ i ≤
∆N − 1, 0 ≤ k ≤M − 1. We can writeKy as

Ky = HUΛxU
†H†

=
1√
∆N

[UM |. . . |UM ] diag(Λix)







U †
M
...
U †
M







1√
∆N

=
1

∆N
UM (

∆N−1
∑

i=0

Λix)U
†
M

We note that
∑∆N−1

i=0 Λix ∈ RM×M is formed by summing
diagonal matrices, hence also diagonal. SinceUM is theM ×
M DFT matrix, Ky is again a circulant matrix whosekth

eigenvalue is given by

λy,k =
1

∆N

∆N−1
∑

i=0

λiM+k, 0 ≤ k ≤M − 1. (63)

HenceKy = UMΛyU
†
M is the eigenvalue-eigenvector decom-

position ofKy, whereΛY = 1
∆N

∑∆N−1
i=0 Λix = diag(λy,k).

There may be aliasing in the eigenvalue spectrum ofKy

depending on the eigenvalue spectrum ofKx and∆N . We also
note thatKy may be aliasing free even if it is not bandlimited
(low-pass, high-pass, etc.) in the conventional sense. We note
that sinceKy is assumed to be non-singular,λy,k > 0. K−1

y

can be expressed as

K−1
y = (UMΛyU

†
M )−1

= UM diag(
1

λy,k
)U †

M

= UM diag(
∆N

∑∆N−1
i=0 λiM+k

)U †
M .

We are now ready to consider the error expression in (60). We
first consider the second term, that is

tr(ΛxU
†H†K−1

y HUΛx)

= tr(
1√
∆N







Λ0
xU

†
M

...
Λ∆N−1
x U †

M






(UMΛ−1

y U †
M )

× 1√
∆N

[UMΛ0
x|. . . |UMΛ∆N−1

x ])
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=

∆N−1
∑

i=0

1

∆N
tr(ΛixΛ

−1
y Λix)

=

∆N−1
∑

i=0

M−1
∑

k=0

λ2iM+k
∑∆N−1
l=0 λlM+k

Hence the MMSE becomes

E[||x− E[x|y]||2]

=

N−1
∑

t=0

λt −
∆N−1
∑

i=0

M−1
∑

k=0

λ2iM+k
∑∆N−1

l=0 λlM+k

=

M−1
∑

k=0

∆N−1
∑

i=0

λiM+k −
∆N−1
∑

i=0

M−1
∑

k=0

λ2iM+k
∑∆N−1
l=0 λlM+k

=

M−1
∑

k=0

(

∆N−1
∑

i=0

λiM+k −
∆N−1
∑

i=0

λ2iM+k
∑∆N−1

l=0 λlM+k

).

We note that we have now expressed the MMSE as the sum
of the errors inM frequency bands. Let us define the error at
kth frequency band as

ewk =
∆N−1
∑

i=0

λiM+k −
∆N−1
∑

i=0

λ2iM+k
∑∆N−1

l=0 λlM+k

, (64)

where0 ≤ k ≤M − 1. Hence the total error is given by

E[||x− E[x|y]||2] =
M−1
∑

k=0

ewk .

That proves the expression for the error. We now consider the
upper bound. Before moving on, we study a special case:

Example A.1: Let ∆N = 2. Then

ewk = λk + λN
2
+k −

λ2k + λ2N
2
+k

λk + λN
2
+k

=
2λkλN

2
+k

λk + λN
2
+k

.

Hence 1
ewk

= 1
2 (

1
λN

2
+k

+ 1
λk

). We note that this is the MMSE

for the following single output multiple input system

zk =
[

1 1
]

[

sk0
sk1

]

, (65)

where sk ∼ N (0,Ksk), with Ksk = diag(λk, λN
2
+k).

Hence the random variables associated with the frequency
components atk, andN2 +k act as interference for estimating
the other one. We observe that for estimatingx we haveN2
such channels in parallel.

We may boundewk as

ewk =
2λkλN

2
+k

λk + λN
2
+k

≤
2λkλN

2
+k

max(λk, λN
2
+k)

= 2min(λk, λN
2
+k).

This bound may be interpreted as follows: Through the scalar
channel shown in (65), we would like to learn two random
variablessk0 andsk1 . The error of this channel is upper bounded
by the error of the scheme where we only estimate the one with

the largest variance, and don’t try to estimate the variablewith
the small variance. In that scheme, one first makes an error
of min(λk, λN

2
+k), since the variable with the small variance

is ignored. We may lose anothermin(λk, λN
2
+k), since this

variable acts as additive noise for estimating the variablewith
the larger variance, and the MMSE associated with such a
channel may be upper bounded by the variance of the noise.

Now we choose the set of indicesJ with |J |= N/2 such
that k ∈ J ⇔ N

2 + k /∈ J andJ has the most power over all
such sets, i.e.k + arg max

k0∈{0,N/2}
λk0+k ∈ J , where0 ≤ k ≤

N/2− 1. Let PJ =
∑

k∈J
λk. Hence

E[||x− E[x|y]||2] =
N/2−1
∑

k=0

ewk ≤ 2

N/2−1
∑

k=0

min(λk, λN
2
+k)

= 2(P − PJ ).

We observe that the error is upper bounded by2× (the power
in the “ignored band”).

We now return to the general case. Although it is possible to
consider any setJ that satisfies the assumptions stated in (58),
for notational convenience we choose the setJ = {0, . . . ,M−
1}. Of course in general one would look for the setJ that has
most of the power in order to have a stricter bound on the
error.

We consider (64). We note that this is the MMSE of
estimatingsk from the output of the following single output
multiple input system

zk =
[

1 · · · 1
]







sk1
...

sk∆N−1






,

wheresk ∼ N (0,Ksk), with Ksk as follows

Ksk = diag(σ2
ski
)

= diag(λk, . . . , λiM+k, . . . , λ(∆N−1)M+k).

We define

P k =

∆N−1
∑

l=0

λlM+k , 0 ≤ k ≤M − 1

We note that
∑M−1

k=0 P k = P .
We now boundewk as in the∆N = 2 example

ewk =
∆N−1
∑

i=0

λiM+k −
∆N−1
∑

i=0

λ2iM+k
∑∆N−1
l=0 λlM+k

=
∆N−1
∑

i=0

(λiM+k −
λ2iM+k

P k
)

= (λk −
λ2k
P k

) +
∆N−1
∑

i=1

(λiM+k −
λ2iM+k

P k
)

≤ (P k − λk) +
∆N−1
∑

i=1

λiM+k

= (P k − λk) + P k − λk
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= 2(P k − λk),

where we have usedλk − λ2
k

Pk = λk(P
k−λk)
Pk ≤ P k − λk since

0 ≤ λk

Pk ≤ 1 andλiM+k − λ2
iM+k

Pk ≤ λiM+k since
λ2
iM+k

Pk ≥ 0.
This upper bound may interpreted similar to the Example A.1:
The error is upper bounded by the error of the scheme where
one estimates the random variable associated withλk, and
ignore the others.

The total error is bounded by

E[||x− E[x|y]||2] =
M−1
∑

k=0

ewk ≤
M−1
∑

k=0

2(P k − λk)

= 2(
M−1
∑

k=0

P k −
M−1
∑

k=0

λk)

= 2(P − PJ).

Remark A.4: We now consider the case whereKy may
be singular. In this case, for MMSE estimation, it is enough to
useK+

y instead ofK−1
y , where+ denotes the Moore-Penrose

pseudo-inverse [30, Ch.2]. Hence the MMSE may be expressed
as tr(Kx − KxyK

+
y K

†
xy). We haveK+

y = (UMΛyU
†
M )+ =

UMΛ+
y U

†
M = UM diag(λy,k

+)U †
M , whereλ+y,k = 0 if λy,k =

0 andλ+y,k = 1
λy,k

otherwise. Going through the calculations
with K+

y instead ofK−1
y reveals that the error expression

remains essentially the same

E[||x− E[x|y]||2]

=
∑

k∈J0

(

∆N−1
∑

i=0

λiM+k −
∆N−1
∑

i=0

λ2iM+k
∑∆N−1

l=0 λlM+k

),

whereJ0 = {k :
∑∆N−1
l=0 λlM+k 6= 0, 0 ≤ k ≤ M − 1} ⊆

{0, . . . ,M − 1}. We note that∆Nλy,k =
∑∆N−1

l=0 λlM+k =
P k.

C. Proof of Lemma 3.1

The proof of Lemma 3.1 follows from the proof of
Lemma A.1 as follows: We first note that in the noisy case
Kxy = KxH

†, as in the noiseless case. We also note that in
the noisy case,Ky is given byKy = HKxH

† + Kn. Now
the result is obtained by retracing the steps of the proof of
Lemma A.1, which is given in Section A-B, withKy replaced
by the above expression, that isKy = HKxH

† +Kn.

APPENDIX B
PROOF OFLEMMA 3.3

Our aim is to show that the smallest eigenvalue ofA =
Λ−1
x + 1

σ2
n
(HU)†HU is bounded from below with a sufficiently

large number with high probability. That is, we are interested
in

inf
x∈SN−1

x†Λ−1
x x+

1

σ2
n

x†(HU)†HUx. (66)

To lower bound the smallest eigenvalue, we adopt the approach
proposed by [43]: We consider the decomposition of the unit

sphere into two sets, compressible vectors and incompressible
vectors. We recall the following from [43]:

Definition B.1: [pg.14, [43]] Let |supp(x)| denote the
number of elements in the support ofx. Let η, ρ ∈ (0, 1).
x ∈ C

N is sparse, if |supp(x)|≤ ηN . The set of vectors
sparse with a givenη is denoted bySparse(η). x ∈ SN−1 is
compressible, ifx is within an Euclidean distanceρ from the
set of all sparse vectors, that is∃ y ∈ Sparse(η), d(x, y) ≤ ρ.
The set of compressible vectors is denoted byComp(η, ρ).
x ∈ SN−1 is incompressible if it is not compressible. The set
of incompressible vectors is denoted byIncomp(η, ρ).

Lemma B.1: [Lemma 3.4, [43]] Letx ∈ Incomp(η, ρ).
Then there exists a setψ ⊆ {1, ..., N} of cardinality |ψ|≥
0.5ρ2ηN such that

ρ√
2N

≤ |xk|≤
1√
ηN

, ∀k ∈ ψ. (67)

The set of compressible and incompressible vectors pro-
vide a decomposition of the unit sphere, i.e.SN−1 =
Incomp(η, ρ)

⋃

Comp(η, ρ) [43]. We will show that the
first/second term in (66) is sufficiently away from zero for
x ∈ Incomp(η, ρ)/ x ∈ Comp(η, ρ) respectively. The pa-
rametersρ and η = κD/N , κ > 1 are going to be chosen
appropriately to satisfy the conditions of Lemma 3.3.

As noted in [43], for any square matrixA

P( inf
x∈SN−1

x†Ax ≤ C) ≤ P( inf
x∈Comp(η,ρ)

x†Ax ≤ C)

+ P( inf
x∈Incomp(η,ρ)

x†Ax ≤ C). (68)

We also note that

inf
x∈Incomp(η,ρ)

x†Λ−1
x x+ x†

1

σ2
n

(HU)†HUx

≥ inf
x∈Incomp(η,ρ)

x†Λ−1
x x

= inf
x∈Incomp(η,ρ)

||Λ−1/2
x x||2, (69)

and

inf
x∈Comp(η,ρ)

x†Λ−1
x x+ x†

1

σ2
n

(HU)†HUx

≥ 1

λmax
+ inf
x∈Comp(η,ρ)

x†
1

σ2
n

(HU)†HUx

=
1

λmax
+

1

σ2
n

( inf
x∈Comp(η,ρ)

||HUx||2), (70)

whereλmax = maxi λi and the inequalites are due to the fact
thatΛ−1

x , H†H are both positive-semidefinite.
We now recall the following result from [23], which ex-

presses the eigenvalue bound for sparse vectors.

Lemma B.2: [23, Theorem 8.4] LetU be anN × N
unitary matrix with µ =

√
N maxk,j |uk,j |. Let ǫ ∈ (0, 1),

θη ∈ (0, 0.5]. If

M/ln(10M) ≥C1 θ
−2
η µ2κD ln2(100κD) ln(4N) (71)

M ≥C2 θ
−2
η µ2κD ln ǫ−1 (72)
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Then,

P ( inf
x∈Sparse(η)

||HUx||2≤ (1− θη)
M

N
||x||2) ≤ ǫ. (73)

HereC1 ≤ 50 963, C2 ≤ 456 and η = κD/N .
We now show that this result can be generalized to an

eigenvalue bound for compressible vectorsx ∈ Comp(η, ρ),
whereρ will be appropriately chosen.

Lemma B.3: Let the conditions of Lemma B.2 hold. Let
CκD = (1− θη)

0.5(MN )0.5. Chooseρ such that

ρ ≤ (1− γ)
CκD

CκD + 1
, (74)

where0 ≤ γ ≤ 1. Then,

P ( inf
x∈Comp(η,ρ)

||HUx||≤ γ CκD) ≤ ǫ. (75)

Proof: We will adopt an argument in the proof of [43,
Lemma 3.3]. That is, we will show that the eventEc that
||HUx||≤ γ CκD for somex ∈ Comp(η, ρ), implies the event
Es that ||HUv||≤ CκD||v|| for somev ∈ Sparse(η) (for ρ
appropriately chosen). Note thatP (Es) ≤ ǫ by Lemma B.2.
If Ec impliesEs, then we haveP (Ec) ≤ P (Es) ≤ ǫ, which
is the desired result in (75).

We first note that everyx ∈ Comp(η, ρ) can be written as
x = y + z, wherev = y/||y||, v ∈ Sparse(η) and ||z||≤ ρ.
Hence we have the following

||HUy|| ≤ ||HUx||+||HUz||
≤ ||HUx||+||z||
≤ γCκD + ρ

where we have used the fact that||HUz||≤ ||HU || ||z||≤
||z||, and the assumption||HUx||≤ γCκD. Since ||y||≥
|||x||−||z|||= 1− ρ, we can also write the following

||HU y

||y|| ||≤
γ CκD + ρ

1− ρ
. (76)

Let us now chooseρ as stated in the condition of the lemma.
Then we have||HUv||≤ CκD for somev ∈ Sparse(η), ||v||=
1. Hence we have shown that the eventEc implies the event
Es. This proves the claim in (75). ✷

We have now established a lower bound for
infx∈Comp(η,ρ)||HUx||2 that holds with high probability. We
now turn our attention to incompressible vectors. For this
purpose, we consider (69). We note that none of the entities
in this expression is random. We note the following

inf
x∈Incomp(η,ρ)

||Λ−1/2
x x||2 = inf

x∈Incomp(η,ρ)

N
∑

i=1

1

λi
|xi|2

≥
∑

i∈ψ

1

λi

ρ2

2N
, (77)

where the inequality is due to Lemma B.1. We observe that in
order to have this expression sufficiently bounded away from
zero, the distribution of1λi

should be spread enough.

Let us assume thatλi < CIλ
P

N−D , for i = D + 1, . . . , N ,
whereCIλ ∈ (0, 1). Let 0.5ρ2ηN = 0.5ρ2κD > D. Then we
have

inf
x∈Incomp(η,ρ)

||Λ−1/2
x x||2

≥
∑

i∈ψ

1

λi

ρ2

2N

≥ (|ψ|−D)
N −D

CIλP

0.5ρ2

N

≥ (0.5ρ2κD −D)
0.5ρ2

CIλ

N −D

N

1

P

≥ CI
D

P
, (78)

where we have used|ψ|≥ 0.5ρ2κD, and CI is defined
straightforwardly as in (46).

We will now complete the argument to arrive at
P(infx∈SN−1 x†Ax ≤ C) ≤ ǫ, where C is defined as
min( 1

σ2
n
(γ CκD)

2 + 1
λmax

, DP CI), with λmax parametrized

as λmax = Csλ
P
D . By (69) and (78), we have

P(infx∈Incomp(η,ρ) x†Ax < CI
D
P ) = 0. By (70) and Lemma

B.3, we have P(infx∈Comp(η,ρ) x†Ax ≤ 1
σ2
n
(γ CκD)

2 +
D
Cs

λP
) ≤ ǫ. The claim of Lemma 3.3 follows from (68).
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[9] T. Başar, “A trace minimization problem with applications in joint
estimation and control under nonclassical information,”Journal of
Optimization Theory and Applications, vol. 31, no. 3, pp. 343–359, 1980.

[10] H. S. Witsenhausen, “A determinant maximization problem occurring in
the theory of data communication,”SIAM Journal on Applied Mathe-
matics, vol. 29, no. 3, pp. 515–522, 1975.

[11] Y. Wei, R. Wonjong, S. Boyd, and J. Cioffi, “Iterative water-filling for
Gaussian vector multiple-access channels,”IEEE Trans. Inf. Theory,
vol. 50, pp. 145 – 152, Jan. 2004.

[12] F. Perez-Cruz, M. Rodrigues, and S. Verdu, “MIMO Gaussian channels
with arbitrary inputs: Optimal precoding and power allocation,” IEEE
Trans. Inf. Theory, vol. 56, pp. 1070 –1084, Mar. 2010.

[13] K.-H. Lee and D. Petersen, “Optimal linear coding for vector channels,”
IEEE Trans. Commun., vol. 24, pp. 1283 – 1290, Dec. 1976.

[14] J. Yang and S. Roy, “Joint transmitter-receiver optimization for multi-
input multi-output systems with decision feedback,”IEEE Trans. Inf.
Theory, vol. 40, pp. 1334 –1347, Sept. 1994.

[15] D. Palomar, J. Cioffi, and M. Lagunas, “Joint Tx-Rx beamforming
design for multicarrier MIMO channels: a unified framework for convex
optimization,” IEEE Trans. Signal Process., vol. 51, pp. 2381 – 2401,
Sept. 2003.



18

[16] D. Palomar, “Unified framework for linear MIMO transceivers with
shaping constraints,”IEEE Commun. Lett., vol. 8, pp. 697 – 699, Dec.
2004.
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