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Unitary Precoding and B

asis Dependency of MMSE

Performance for Gaussian Erasure Channels
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Abstract—We consider the transmission of a Gaussian vector
source over a multi-dimensional Gaussian channel where a
random or a fixed subset of the channel outputs are erased.
Within the setup where the only encoding operation alloweds
a linear unitary transformation on the source, we investigde
the MMSE performance, both in average, and also in terms of
guarantees that hold with high probability as a function of the
system parameters. Under the performance criterion of aveage
MMSE, necessary conditions that should be satisfied by the
optimal unitary encoders are established and explicit soltions
for a class of settings are presented. For random sampling of
signals that have a low number of degrees of freedom, we
present MMSE bounds that hold with high probability. Our
results illustrate how the spread of the eigenvalue distribtion
and the unitary transformation contribute to these performance
guarantees. The performance of the discrete Fourier trangfrm
(DFT) is also investigated. As a benchmark, we investigatehe
equidistant sampling of circularly wide-sense stationary(c.w.s.s.)
signals, and present the explicit error expression that quatifies
the effects of the sampling rate and the eigenvalue distriiion
of the covariance matrix of the signal.

These findings may be useful in understanding the geometric
dependence of signal uncertainty in a stochastic processn |
particular, unlike information theoretic measures such asentropy,
we highlight the basis dependence of uncertainty in a signal
with another perspective. The unitary encoding space resiction
exhibits the most and least favorable signal bases for estetion.

Index Terms—random field estimation, compressive sensing,
discrete Fourier Transform.

|. INTRODUCTION
We consider the transmission of a Gaussian vector sou

ksel, and Haldun M. Ozaktas

will be considered in this article. We first present a brief
description of our problem set-up. We consider the follayin
noisy measurement system

y=Hzx+n=HUw+n, (1)

wherez € CV is the unknown input proper complex Gaussian
random vector,n, € CM is the proper complex Gaussian
vector denoting the measurement noise, and= CM is
the resulting measurement vectéf. is the M x N random
diagonal sampling matrix. We assume thandn are statisti-
cally independent zero-mean random vectors with covagianc
matricesK, = E[zz'], and K,, = E[nn'], respectively. The
components of. are independent and identically distributed
(i.i.d.) with E[n;n;] = 02 > 0.

The unknown signak: comes from the modet = Uw,
whereU is a N x N unitary matrix, and the componentsof
are independently (but not necessarily identically) disted
so thatK,, = E[ww'] = diag(\1,...,A\y). U may be inter-
preted as the unitary precoder that the sigmalk subjected
to before going through the channel or the transform that
connects the canonical signal domain and the measurement
domain. Hence the singular value decomposition/of is
given by K, = UK,,U" = UA,UT = 0 where the diagonal
matrix denoting the eigenvalue distribution of the covacia
matrix of z is given by A, = K,, = diag(A\1,...,An). We
are interested in the minimum mean-square error (MMSE)
associated with estimating (or equivalently w), that is
Eldlz — E[z|y]||*= E[||w — E[w|y]||*. Throughout the article,

over a multi-dimensional Gaussian channel where a random"4¢ assume that the receiver has access to channel realizatio
a fixed subset of the channel outputs are erased. We consi@grmation, i.e. the realization of the random samplingnma

the setup where the only encoding operation allowed is atine/?-

unitary transformation on the source.

A. System Model and Formulation of the Problems

We interpret the eigenvalue distribution &f, as a measure
of the low dimensionality of the signal. The case where most
of the eigenvalues are zero and the nonzero eigenvalues have

In the following, we present an overview of the systerequal values is interpreted as the counterpart of the stdnda
model and introduce the family of estimation problems whiclxactly sparse signal model in compressive sensing. The cas
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where most of the power of the signal is carried by a few
eigenvalues, is interpreted to model the more general kigna
family which has areffectivelylow degree of freedom. Yet, we
note that our model is different from the classical compvess
sensing setting. Here we assume that the receiver knows the
covariance matrix¥<,, i.e. it has full knowledge of the support

of the input.

Our investigations can be summarized under two main
problems. In the first problem, we search for the best unitary
encoder under the performance criterion of average (over
random sampling matri¥{/) MMSE.
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Problem P1(Best Unitary Encoder For Random Channels): The problem of optimization of precoders or input covari-
Let UN be the set ofN x N unitary matrices{U € CV : ance matrices is formulated in literature under differearfqr-
UTU = In}. We consider the following minimization problemmance criteria: When the channel is not randarh, [9] consider

i 9 a related trace minimization problem, and][10] a determtinan
it B [Eslllz — Elzly]II)] (@) maximization problem, which, in our formulation, corresgo
optimization of the MMSE and mutual information per-
mance, respectively. [11], [12] formulate the problerithw
the criterion of mutual information, whereas [13] focuses
on the MMSE and[[14] on determinant of the mean-square

In the second avenue, we will regard the MMSE pegrror matrix. [15], [16] present a general framework based o
formance as a random variable and consider performargehur-convexity. In these works the channel is known at the
guarantees that hold with high probability with respect t@ansmitter, hence it is possible to shape the input acegridi
random sampling matri¥{. We will not explicitly cast this the channel. When the channel is a Rayleigh or Rician fading
problem as an optimal unitary precoding problem as we haygannel, [[1F] investigates the best linear encoding proble
done in Problem P1. Nevertheless, the results will i”uetl’awithout restricting the encoder to be unitar[l[]_B] focuses
the favorable transforms through the coherence paramed@rthe problem of maximizing the mutual information for a
p = max; j|u;;|, which is extensively used in the compressivRayleigh fading channel.[4][5] consider the erasure clehn
sensing literature [1][2][]3]. as in our setting, but with the aim of maximizing the ergodic

Problem P2 (Error Bounds That Hold With High Proba-Ccapacity. Optimization of linear precoders are also wdian

bility): Let tr(K,) = P. Let D(5) be the smallest numbercommunications applications, for instance in broadcgstin
satisfying "2 A, > 6P, where§ € (0,1] and A\, > video over wireless networks where each user operates under

where the expectation with respect to the random measurtenfn
matrix and the expectation with respect to random sign
involved is denoted b¥|[.], andEg|[.], respectively.

X2, ...,> Ay . Assume that the effective number of degrees & different channel quality [19].
freedom of the signal is small, so that there exisf3(a) small In Section1l[-B and Sectiof TII-IC, we investigate how the
compared toN with § close tol. We investigate nontrivial results in random matrix theory mostly presented in compres
lower bounds (i.e. bounds close to 1) on sive sampling framework can be used to find bounds on the
MMSE associated with the described measurement scenarios.
P(E5[||a: — Elzy]|I*] < fp2(As, U, oZ)) (3) We note that there are studies that consider the MMSE in

compressive sensing framework such[ds [20]] [21]] [22]
for some functionfp,(.) which denotes a sufficiently smallwhich focus on the scenario where the receiver does not know
error level given total power of the unknown signal(K,), the location of the signal support (eigenvalue distribnjtidn
and the noise levet?. our case we assume that the receiver has full knowledge of

the signal covariance matrix, hence the signal support.

B. Literature Review and Main Contributions Contributions of the paper. In view of the above literature
In the following, we provide a brief overview of the related€view, our main contributions can be summarized as follows

literature. In this article, we consider the Gaussian emsl/Ve formulate the problem of finding the most favourable uni-
channel, where each component of the unknown vectort@y transform under average (over random sampling) MMSE
erased independently and with equal probability, and tiséiterion (Problem P1). We investigate the convexity prtips
transmitted components are observed through Gaussiae.no¥ this optimization problem, obtain necessary conditions
This type of model may be used to formulate various typ& optimality through variational equalities, and solverso

of transmission with low reliability scenarios, for exampl SPecial cases. Among these we have identified special cases
Gaussian channel with impulsive noig€ [4]] [5]. This meavhere DFT-like unitary transforms (unitary transforms twit
surement model is also related to the measurement scendifio]’= 1) are optimal coordinate transforms. We also show
typically considered in the compressive sensing frameyigrk that, in general, DFT is not the optimal unitary transform.
[IZH under which each Component is erased independenﬂy dﬁa’ the noiseless case, we have also observed that tha}dentl
with equal probability. The only difference between these t transform turns out to be universally the worst unitary $ran
models is the explicit inclusion of the noise in the formeform regardless of the eigenvalue decomposition.

In this respect, our work contributes to the understandingOn Problem 2, under the assumption of known signal sup-
of the MMSE performance of such measurement schemasrt, our results quantify the error associated with ediimyea
under noise. Although there are compressive sensing studiggnal with effectively low degree of freedom from randomly
that consider scenarios where the signal recovery is donedslected samples, in the framework of MMSE estimation
explicitly acknowledging the presence of noise, a subithntinstead of the/; framework of typical compressive sensing
amount of the work focuses on the noise-free scenario.r@sults. The performance guarantees for signals that have
particularly relevant exception i§1[8], where the authokv strictly low degree of freedom follows from recent random
on the same setting as the one in our article with Gaussiaratrix theory results in a straightforward manner. We prnese
inputs. This work considers the scenario under which tddMSE performance guarantees that illustrate the trade-off
signal support is not known whereas we assume that the signetlween the eigenvalue distribution of the covariance ismnatr
support is known at the receiver. of the signal (effective number of degrees of freedom) aed th



unitary transform (spread of the uncertainty in the channehave low complexity numerical implementations. For ins&n
Although there are a number of works in compressive sensitigg DFT which is among the most favourable transforms for
literature that consider signals with low effective degrde high probability results is also very attractive from nuioal
freedom (see for instancé |23, Sec 2.3], and the referengesnt of view, since there is a fast algorithm with complgxit
therein) our findings do not directly follow from these rasul N log(N) for taking the DFT of a signal.
As a benchmark, we investigate the case wtérie the DFT Our second, and primary motivation for our work comes
matrix and the sampling is done equidistantly. In this casgpm the desire to understand the geometry of statistical
the covariance matrix is circulant, and the resulting signdependence in random signals. We note that the dependence
x is referred as circularly wide-sense stationary, which is @ signal uncertainty in the signal basis has been congidere
natural way to model wide-sense stationary signals in finite different contexts in the information theory literatufehe
dimension. We present the explicit MMSE expression in thioncepts that are traditionally used in the informatiorotie
case. Although this result comes from simple linear algebliterature as measures of dependency or uncertainty iralsign
arguments, to the best of our knowledge they do not appgauch as the number of degrees of freedom, or the entropy)
elsewhere in the literature. are mostly defined independent of the coordinate system in
Our results show that the general form of error boundghich the signal is to be measured. As an example one
that hold with high probability are the same with the erromay consider the Gaussian case: the entropy solely depends
expression associated with the equidistant sampling ofl basn the eigenvalue spectrum of the covariance matrix, hence
pass c.w.s.s. signals, but with a lower effective SNR termrmaking the concept blind to the coordinate system in which
The loss in the effective SNR may be interpreted to contbe signal lies in. On the other hand, the approach of apglyin
through two multiplicative loss factors, one due to randowpordinate transformations to orthogonalize signal comepés
sampling, (which is present even when all the insignificarg adopted in many signal reconstruction and information
eigenvalues are zero), and the other due to the presencehebry problems. For example the rate-distortion function
nonzero insignificant eigenvalues. for a Gaussian random vector is obtained by applying an
uncorrelating transform to the source, or approaches ssich a
the Karhunen-Loéve expansion are used extensively. Aigo,
compressive sensing community heavily makes use of the
Our motivation for studying these problems, in particulanotion of coherence of bases, see for example [1], [Z], [3].
our focus on the best unitary precoders, is two-fold. The coherence of two bases, say the intrinsic signal domain
In the first front, we would like to characterize the impact) and the orthogonal measurement systénis measured
of the unitary precoder on estimation performance, sincé swith 1 = max; j|u;;|, U = ¢y providing a measure of
restrictions occur in both physical contexts and applcati how concentrated the columns 6f are. Wheng is small,
Optimization of linear precoders or input covariance ncasi one says the mutual coherence is small. As the coherence
arises naturally in many signal estimation and communicgets smaller, fewer samples are required to provide good
tion applications including transmission over multiplgpin performance guarantees.
multiple output (MIMO) channels, for instance with unitary Our study of the measurement problems in this article
precoders[[24],[[25]. Our restriction of the transformatioconfirms that signal recovery performance depends substan-
matrix to a unitary transformation rather than a more gdnetally on total uncertainty of the signal (as measured by the
matrix (say a noiselet transform) is motivated by some bssi differential entropy); but also illustrates that the bagiays
restrictions in the measurement scenarios and the pdtaentia an important role in the measurement problem. The total
merical benefits of unitary transforms. In many measuremarricertainty in the signal as quantified by information ttetiar
scenarios one may not be able to pass the signal throughna@asures such as entropy (or eigenvalues) and the spread of
arbitrary transform before random sampling, and may hatleis uncertainty (basis) reflect different aspects of thpede
to measure it just after it passes through a unitary transfordence in a signal. Our framework makes it possible to study
Using more general transforms may cause additional compléixese relationships in a systematic way, where the eigeesal
ity or may not be feasible. Possible scenarios where unitaof/ the covariance matrix provide a well-defined measure of
transformations play an important role can be given in thencertainty. Our analysis here illustrates the interplegneen
context of optics: The propagation of light is governed bthese two concepts.
a diffraction integral, a convenient approximation of whis Before leaving this section, we would like to discuss the rol
the Fresnel integral, which constitutes a unitary tramefiion  of DFT-like transforms in our setting. In Problem P2 we will
on the input field (see, for instande [26]). Moreover, a broagke that, in terms of the sufficiency conditions stated, DieT-
class of optical systems involving arbitrary concatemeio unitary matrices will provide the most favorable perforroan
of lenses, mirrors, sections of free space, quadratic gradguarantees, in the sense that fixing the bound on the prdtgabil
index media, and phase-only spatial light modulators can b&error, they will require the least number of measurements
well represented by unitary transformations|[26]. Henaai¢ We also note the following: In compressive sensing litexgtu
wants to estimate the light field by measuring the field afterthe performance results depend on some constants, and it is
propagates in free space or passes through such a system reperted in[[28, Sec. 4.2] that better constants are avaifab
has to deal with a unitary transform, but not a more genetthle DFT matrix. Moreover, for the DFT matrix, it is known
one. Furthermore, due to their structure, unitary tramsfor that the technical condition that states the nonzero entfe

C. Motivation



the signal has a random sign pattern which is typical of suciote thatU;UB = Ip|, Whereas the equalitlz]BU; = Iy
results can be removed [23, Sec. 4E]Hence the current is not true unles§B|= N. Also note thatA, p is always
state of art in compressive sensing suggests the idea thatitivertible. The singular value decomposition &f, can be
DFT is the most favorable unitary transform for such randowritten ask, = UA, Ut = UBAm,BU;. Hence the error may
sampling scenarios. Yet, we will see that for Problem P1, DHIe rewritten as

is not, in general an optimal encoder within the class ofargit  g[||z — E[z|y]||?]

encoders.

= tr(UpAy gUL) — tr(UgA, gULHT (HUA, gULHT

D. Preliminaries and Notation
+ K,) 'HUpA, gUL)

In the following, we present a few definitions and notations

that will be used throughout the article. Let(K,) = P. = tr(A,.B)
Let D(4) be the smallest number satisfyi@i’;1 \i > 0P, 7
where§ € (0,1]. Hence ford close to one,D(d) can be
considered as an effective rank of the covariance matrix and_ tr (AT + LUT HYHUE)™) (5b)
also the effective number of “degrees of freedom” (DOF) of R

the signal family. Foo close to one, we drop the dependence . .
on § and use the term effective DOF to represénty). A where T@) follows "O'T‘ the |der1t|tytr(UBJy[U;) .
closely related concept is the (effective) bandwidth. We ugr(M.UBUB). N tr.(M) with_an arbitrary matrix /- with

the term “bandwidth” for the DOF of a signal family whoseSonsistent dimensions. Here_[5b) follows from the fact that

canonical domain is the Fourier domain, i.e. whose unitafy®:? and K" are nor_13|ngular and th‘? Sherman-Morrison-
transform is given by the DFT matrix. oodbury identity, which has the following form for our case

The transpose, complex conjugate and complex conjug&?ge for example [31] and the references therein)

transpose of a matrixd is denoted byAT, A* and AT, Ky, — K AVAK AT + Ky) TAK,

respectively. The'” row k" column entry ofA is denoted by (K7 4 ATKA)
asi. The eigenvalues of a matrit are denoted in decreasing R 2 ’
order as\;(A) > X2(A),...,> An(A). where K; and K are nonsingular.

Let /—1 = j. The entries of theV x N DFT matrix are  Here is a brief summary of the rest of the article: In
given by v, = LNe-jzﬁ“““, where0 < ¢,k < N —1. We note Section[ll, we formulate the problem of finding the most
that the DFT matrix is the diagonalizing unitary transfornfavorable unitary transform under average MMSE criterion
for all circulant matrices[[29]. In general, a circulant mpat (Problem P1). In SectionlIl, we find performance guarantees
is determined by its first row and defined by the relationshipr the MMSE estimation that hold with high probability
Cix = Comody (k—t)» Where rows and columns are indexed byProblem P2). Our benchmark case for the high probability
tandk, 0 <t,k < N — 1, respectively. results, the error associated with the equidistant samgplin

We now review the expressions for the MMSE estimatiomf circularly wide-sense stationary signals, is preserited
Under a given measurement matfik by standard argumentsSection Il[-A. We conclude in Sectidn V.
the MMSE estimate is given b§[z|y] = & = K., K, 'y,
where K,, = Elzy'] = K,H', and K, = E[yy'] = Il. AVERAGE MMSE
HK,H' + K,. We note that sincek,, > 0, we have |n this section, we investigate the optimal unitary preagdi
K, 0, and hencek ;! exists. The associated MMSE carproblem with the performance criterion of average (with
be expressed a5 [30, Ch2] respect to random sampling mattik) MMSE. In Sectiori1ll,

Esllz — Elxlyl||2l = tr(K, — KmyKy_lKly) (4a) we wiII_ .focus on MMSE guarantees that hold with high

probability (w.r.t. H).
=tr(K,) — tr(K,H (HK,H' + K,) ' HK,) (4b) We assume that the receiver knows the channel information,
whereas the transmitter only knows the channel probability
= tr(UA,UT) (4c) distribution. We consider the following measurement strat
—tr(UAUTHY (HUAUTH + K,) "' HUA,UT) gies: a) Random Scalar Gaussian Channeld = e!

71
D . S . N
Let B = {i: \; > 0}, and letUp denote theN x |B| matrix Z.th L, N with probability N wherg ci € R is the
formed by taking the columns df indexed byB. Similarly, Zb) (égas\;?gaogrz\éirgegﬁ;em;zg s;arc‘ln’phr(\g )St\:\?rt]i?g 6W§Eé
let A, 5 denote the|B|x|B| matrix by taking the columns . . . 41ag\%i), W !
and rows ofA, indexed byB in the respective order We""d' Bernoulli random _vanables_ with probab|l|w of swess
* ’ p € [0, 1]. We denote this sampling strategy wifh.

1Wwe note that there are some recent results that suggesththaesults Let U" be the set ofV x N unitary matrices{U € CV :
obtained by the DFT matrix may be duplicated for Haar distéd unitary {JT{J = I}_ We consider the following minimization problem
matrices: limiting distributions of eigenvalues of Haawstdbuted unitary
matrices and the DFT matrix behave similarly under randoajeptions, see inf Eg [ES[”x — E[xly]”QH , (6)
for instance[[2F7], and the eigenvalues of certain sums (fstaince, ones like UeUN
in the MMSE expression) involving Haar distributed unitamatrices can be . . . .
obtained from the eigenvalues of individual componentsanedwvell-behaved where the expectation with respect ib is over admissible
[8l, 128]. measurement strategie§, or S,. Hence we want to

B bt trrt 1 (52)
tr(Ap, U H' (HUpA, sgUsH' + K,,) " HUpAy B)



determine the best unitary encoder for the random scaslution, then a properly chosen set of column(s) can bechdde
Gaussian channel or Gaussian erasure channel. to Up so that a unitary matri¥/ is formed. Any such/ will
have the same objective value withs, and hence will also
We note that[[4] and 5] consider the erasure channel mod an optimal solution. Therefore it is sufficient to conside
(Sp in our notation) with the aim of maximizing the ergodidhe constrain{Usp : U;UB = I}, instead of the condition
capacity. Their formulations let the transmitter also shéfe {U : UTU = Iy}, while optimizing the objective function.
eigenvalue distribution of the source, whereas ours does n@Ve also note that it/ is an optimal solutionexp(j6)Up is
We note that by solving(6) for the measurement schemaéso an optimal solution, whete< 6 < 27.
in (@), one also obtains the solution for the generalized theLet «; be thei** column of Uz. We can write the unitary
set-upy = HVz + n, whereV is any unitary matrix: Let/, matrix constraint as follows:

denote an optimal unitary matrix for the schemelih (1). Then 1 ifi—k
ViU, € U is an optimal unitary matrix for the generalized wuy = e=r (8)
set-up. ! 0, ifi#k.

_ . o with i = 1,...,|B|, k = 1,...,|B|. Sinceuluy = 0, iff

A. First order necessary conditions for optimality ULU'L — 0, it is sufficient to considek < i. Hence this
Here we discuss the convexity properties of the optimizati¢onstraint may be rewritten as

problem and give the first order necessary conditions for T

optimality. We note that we do not utilize these conditioos f e; (UpUp — Ijp)ex = 0, €)

finding the optimal unitary matrices. The reader not inte®@s | ., , _ —1,...,|B, k=1

in these results can directly continue on to Secfionl!l-B. it vector.

Let the possible sampling schemes be indexed by theWe note that constraint gradients (gradients of the con-

H N
;/arlgble_k, ;Ivh%re 1h§ k< N f((j)_r Ss» and_l =k = 2 ditions in [9)) are linearly independent for any matii%s
or 5;. Let H;, be the corresponding sampling matrix. lat satisying ULUp = Ip [32]. Hence the linear indepen-

- th .
be the probability of thé:™ sampling scheme. dence constraint qualification (LICQ) holds for any feasi-

.,i. Heree; € RIBl is theit"

We can express the objective function as follows ble Uy [33, Defn.12.4]. Therefore, the first order condition
En.sl|lz — Elz|y]|?] Vu, L(Ug, v,v) = 0 together with the conditiotV ,Up = I
is necessary for optimality [33, Thm 12.1], whetéUp, v, v)
= Enltr (A, + —UT sHTHUR) ™) is the Lagrangian for some Lagrangian multiplier vectors
andv. The Lagrangian can be expressed as follows
Tt
= Zpk tr ( nUBH HkUB) ) (7) L(Us, v, v) Zpk or ( Am L + UT HTHkUB) )

The objective function is a continuous functionlég. We also

note that the feasible set defined iy € CN*IB1 . ULUp = + Z virel (ULUs = Iip)ex

I} is a closed and bounded subset@f, hence compact. (GRey
Hence the minimum is attained since we are minimizing a + Z Vz'*,keiT(UgUE —I\g|)ex
continuous function over a compact set (but the optiniimn (i,k)ex
is not necessarily unique). |B]

We note that in general, the feasible region is not a +kaeE(U;UB—I|B‘)ek, (20)
convex set. LetU;,U, € UY and @ € [0,1]. In general k=1

OUL + (1 — 6)U> ¢ U". For instance letV = 1, Ut = 1, wherew,, € C, (i,k) € 7 andv, € R, k € {1,...,|B|} are

Up=—1,0U01+(1-0)Us =20—1 ¢ U', V6 €[0,1]. Even e | agrange multipliers. Hereis defined as thefollowmg set
if the unitary matrix constraint is relaxed we observe that ¢ pairs of indicesy = {(i,k)[i=1,...,|B|, k=1,...,i —

objective function is in general neither a convex or a coecay
function of the matrixUg. To see this, one can check the The first order necessary conditiovy, L(Ug, v,v) = 0
B » Py

second derivative to see ¥, f(UB) = 00r Vi, f(Us) 2 can be expressed more explicitly as follows:
0, where f(Up) = kaktr((/\ + LUt HTHkUB) b,
For example, letN = 1, U € R, 02 =1 A >0 Lemma 2.1: The following condition is necessary for

andp > 0 for S,. Then f(U) = kakm optimality
can be written asf(U) = (1 — g)A + qm, where
q € (0,1] is the probability that the one possible measurement
is done. That isg = 1 for S, andg = p for S,. Hence

Zpk A+ —U LH H.UR)2ULH] H),

VZf(U)=q?2 % whose sign changes depending on Z Vi, kekeTUT + Z vieien U
A, andU. Hence neitheK’?, f(U) = 0 norV# f(U) < 0 holds (i.k)ey (1.k)€Y
for all U € R. |B|
In general, the objfective function depends onlyldg, not + kaeke;fUL, (11)

U. If Up satisfyingU,Up = I|p|, with | B|< N is an optimal



with v; , and v, Lagrange multipliers as defined aboveMMSE is small with high probability whenu;;|*= 1/N.
taking possibly different values. Although all these observations may suggest the result that
the DFT matrix may be an optimum solution in the general
Proof: The proofis based on the guidelines for optimizationase, we will show that this is not the case by presenting a
problems and derivative operations involving complex varcounterexample where another unitary matrix not satigfyin
ables presented iri_[34] [B5]._[B6]. Please se€ [32] for the;;|?’= 1/N outperforms the DFT matrix [Lemma2.7].
complete proof. Before moving on, we note the following relationship be-
tween the eigenvalue distribution and the MMSE. léte
Remark 2.1: For S,, we can analytically show that R**" be a sampling matrix formed by taking< 3M < N
this condition is satisfied by the DFT matrix and the identityows from the identity matrix. Assume that, - 0. Let the
matrix. It is not surprising that both the DFT matrix and theeigenvalues of a matrid be denoted in decreasing order as
identity matrix satisfy these equations, since this oplitpha Ai(A) > X2(A),...,> An(A). The MMSE can be expressed
condition is the same for both minimizing and maximizing tr&s follows [Sb)
objective function. We show that the DFT matrix is indeed 1
one of the possibly many minimizers for the case where the Elllz — E[z[y][|*] = tr (A, " + U—QUTHTHU)_l) (12a)
values of the nonzero eigenvalues are equal in Lemnia 2.3. The "
maximizing property of the identity matrix in the noiselease

is investigated in Lemnia_2.4. - Z ((Ay + UTHTHU) (12b)

In Sectior 1D, we show that with the DFT matrix, the MMSE =1
is small with high probability for signals that have small N 1
number of degrees of freedom. Although these observations = 7 n
and the other special cases presented in Sediion II-B may i= M+1 Ai(Az” + _UTH HU) (12¢)

c
suggest the result that the DFT matrix may be an optimum
solution for the general case, we show that this is not the cas + Z -
by presenting a counterexample where another unitary matri i(Aa + U HHU)
not satisfying|u;;|?’= 1/N outperforms the DFT [Lemma N 1 M 1
. (12

2 Zi:MH Ni—ar(AZ 1) +;/\ AT+ LUTHTH U)
B. Special cases N 1

In this section, we consider some related special cases. For2 _ Z Nioar( A + Z 1 L (12€)
random scalar Gaussian channel, we will show that when =M =1 Av-n(Be) o
the nonzero eigenvalues are equal any covariance matrix N N 1
(with the given eigenvalues) having a constant diagonal is = Z AN—irm+1(Ag) + Z —— (12f)
an optimum solution [Lemm&_2.3]. This includes Toeplitz i=M+1 i=N—-M+i Xi(Az) ' oF
covariance matrices or covariance matrices with any unitar N
transform satisfying|u;;|*= 1/N. We note that the DFT - ‘ 1
matrix satisfiesu;;|?= iti N Z AilAe) + 1 L’ (129)

u;j]°= 1/N condition, and always produces AT N T S o

circulant covariance matrices. We will also show that for

both channel structures, for the noiseless case (under somt®re we have used case (b) of Leminal 2.2 [in"k12d),
conditions) regardless of the entropy or the number of degreand the fact that\;(A;! UTHTHU) < N(AGYH +

of freedom of a signal, the worst coordinate transformaigon -4\ (UTHTHU) = \;(A; ) + — in (1Z8).

the same, and given by the identity matrix [Lemnd 2.4].

For the general Gaussian erasure channel model, we will Lemma 2.2: [4.3.3, 4.3.6, [37]] LetA;, A, € CV*N
show that when only one of the eigenvalues is nonzero (il Hermitian matrices. (a) Le#l, be positive semi-definite.
rank of the covariance matrix is one), any unitary transforithen);(A; +4s) > \;(41),4=1,..., N. (b) Let the rank of
satisfying|u;;|*>= 1/N is an optimizer [Lemm&215]. We will A, be at most\/, 3M < N. Then\;yar(A; +Az) < Xi(Ay),
also show that under the relaxed conditiaik; ') = R, i=1,...,N — M.
the best covariance matrix is circulant, hence the besanit  This lower bound in[(19g) is consistent with our intuition:
transform is the DFT matrix [LemmB~2.6]. We note thalf the eigenvalues are well-spread, thatli§s) is large in
Ref. [8] proves the same result under the aim of maximizomparison toV for § close to 1, the error cannot be made
ing mutual information with a power constraint di,, i.e. small without making a large number of measurements. The
tr (K,) < P. Ref. [5] further finds the optimal eigenvaluefirst term in [I2¢) may be obtained by the following intuifiye
distribution, whereas in our case, the condition on theetigic appealing alternative argument: The energy compactiop-pro
the inverse is introduced as a relaxation, and in the originerty of Karhunen-Loéve expansion guarantees that the best
problem we are interested, the eigenvalue distributiorxeifi representation of this signal with/ variables in mean-square

In the next section, we will show that the observationsrror sense is obtained by first decorrelating the signah wit
presented in compressive sensing literature implies that /T and then using the random variables that correspond to



the highest\M eigenvalues. The mean-square error of suchtike DFT matrix satisfie$u;;|?= 1/N condition, and always
representation is given by the sum of the remaining eigenvatoduces circulant covariance matrices. O
ues, i.e.ZfV:MJrl Ai(Az). Here we make measurements before

decorrelating the signal, and each component is measured

with noise. Hence the error of our measurement scheme is ) )

lower bounded by the error of the optimum scheme, which -émma 2.4:  [Worst Coordinate Transformation] We
is exactly the first term in[(I29g). The second term is th@OW <_:0n5|derthe ra_ndom sgal_ar c_hann‘)?elwnhout NOISE, and
MMSE associated with the measurement scheme in which consider the following maximization problem which seasche
independent variables with variances given by tiesmallest O the worst coordinate system for a signal to lie in:
eigenvalues of\, are observed through i.i.d. noise. N

sup E[> _[llz: — Elwsly]l’]] (16)
Lemma 2.3: [Scalar Channel: Eigenvalue Distribution el =1

Flat] Let tr(K,) = P. Assume that the nonzero eigenvaluggherey = x; with probability%, i=1,...,Nandtr(K,) =
are equal, i.e.Ay p = ‘—j’;'IB. Then the minimum averagep.

error for 5 is given by The solution to this problem is as follows: The maximum
P 1 P value of the objective function iB — P/N. U = I achieves

P |B] 1 + 2Bl (13 this maximum value.

oz
which is achieved by covariance matrices with constant ) )
diagonal. In particular, covariance matrices whose umjtar ~ Remark 2.2 We emphasize that this result does not
transform is the DFT matrix satisfy this property. depend on the eigenvalue spectrim
Proof: (Note that if none of the eigenvalues are zero,
K, = I regardless of the unitary transform, hence the Remark 2.3: We note that when some of the eigenvalues
objective function value does not depend on it.) The objectiof the covariance matrix are identically zero, the eigeoes
function may be expressed 43 (7) corresponding to the zero eigenvalues can be chosen fretly (
En.s[l|z — Elzly]l] course as long as the resulting transfolimis unitary).

Proof: The objective function may be written as

1 B 1 N
=Y —tr (=g + S ULH HUB)™!
2yt (plat UL HUn) B[S [l — Efeely]l]
t=1
P P 1 1 e
= 3] DB+ (4 EU—QHWBU;H,Z)*) (14) = % 2 D Elllze — Elnifai]]*)] (17)
k=1 n i=1t=1
N 1 N N
P P 1 P 1 ~ S 1— p2,)52 (18)
Ly e Loy DL puhe) > (=i,
57 H;uﬂzv( M N
where in [I%) we have used Lemma 2[of[17]. We now consid®1€r€ pic = EmiEE Lz S the correlation coeffi-
the minimization of the following function cient betweenz; and z;, assumingo2 = E[[|2:]|*] > 0,
N N aii > 0. (Otherwise one may sep;; = 1 if ¢« = ¢, and
Z(l—i—iieTUBUT ex) ! :Z 1 pit = 0if i # j) Now we observe that? > 0, and
— |B|o2 k7778 —14 %%%21@ 0 < |pit/?< 1. Hence the maximum value of this function
N " is given byp,, = 0, Vt,i s.t.t # i. We observe that any
_ Z 1 (15) diagonal unitary matrix/ = diag(u;), lui|= 1 (and also
1+ U%Zk’ any U = UTI, wherell is a permutation matrix) achieves this

maximum value. In particular, the identity transfofin= Iy
where (UpU L), = BLHK, ) = Blzy with 2, = (K,)w- s an optimal solution.
o e o s it ot o o, 1018 s st hods Lty =
over a convexgregion. We note that the function[inl (15) is lﬁ%he optimal value obupycyx En,s[llz — Elz|y][?], where
Schur-convex function aof,’s. This follows from, for instance € expectation with respect fd s oyeer s(1=p)tx (Kz-)’

: ’ ' which is achieved by an¥/1I, U = diag(u;;), |ui|= 1, I is
Prop. C1 of [38, Ch. 3] and the fact thaf (1 + (1/07)2) permutation matrix. 0
is convex. Together with the power constraint, this reveals
that the optimumz,, is given by z, = P/N. We observe
that this condition is equivalent to require that the comace
matrix has constant diagonal. This condition can be always Lemma 2.5: [Rank 1 Covariance Matrix] Suppose
satisfied; for example with a Toeplitz covariance matrix ¢thw |B|=1, i.e. A\, = P > 0, and\; =0, j # k,j€1,...,N.
any unitary transform satisfyingu;;|>= 1/N. We note that The minimum error undes, is given by the following expres-



2
L

i 1
sion 1 < _— E [ HTK eyt
E| b (19) N on
1y 1Ly 5 1=0
P o2 N =11 (24)
where this optimum is achieved by any unitary matrix whose 1 N1
k" column entries satisfju,|>=1/N,i=1,...,N. =5y 2_E ( Hl)THTK tamh)- )]
Proof: Let v = [v1,...,v0]", v; = |ugl? i = 1,..., N, 1=0 e
whereT denotes transpose. We note the following v (25)
—1
1 1 _ _ i 1 1
E[tr(FJFEU;HTHUB) 1 SV E ( H K, H)~ )] (26)
1 1
= E| ] (20) :E[tr( K;'+ SH'K'H )] 27
B+ o il Oilunil? ( o2 ) (27)
= E[ 1 ). (21) We note thattr((M + K,,;1)~1) is a convex function of\/
++ = Zf;l 05 over the setM = 0, sincetr(M ') is a convex function

see for example [39, Exercise 3.18]), and composition with
n affine mapping preserves convexityl[39, Sec. 3.2.2]. Elenc
(24) follows from Jensen’s Inequality applied to the summa-
tion forming K *. (28) is due to the fact thdl's are unitary
and trace is invariant under unitary transfornis] (26) fefio

The proof uses an argument in the proof of|[18, Thm. 1
which is also used in[[17]. Lell; € RV*YN denote the
permutation matrix indexed by = 1,...,N!.. We note
that a feasible vectow satisfiestvlvl =1, v, > 0,
which forms a convex set. We observe that for any such from the fact thatHII' has the same distribution witlf .

Wflghjtfd sum of all :E)ermultanons of v = ]]\V;u YL Mo = Hence we have shown th# ;' provides a lower bound for
(% X vl 17 = [§..... x]" € RV is a constant arbitrary K ! satisfying the power constraint. Sind¢; ! is
vector and also feasible. We note that) = [W] circulant and also satisfies the power constraitifs ;) = R,
is a convex function ofv over the feasible set. Hencean optimumK ;! is also circulant. O
g(v) > g(®) = ¢g([1/N,...,1/N]) for all v, and v is the

optirgum solution. Since there exists a unitary matrix sl we note that we cannot follow the same argument for the
lu|*= 1/N for any givenk (such as any unitary matrix constraintr(,) = P, since the objective function is concave
Whosekth column is any column of the DFT matrlX) the|n K, over the setK, > 0. This can be seen as follows:
claim is proved. O The error can be expressed me — Elz[y]||?] = tr (Ke),
where K, = K, — K, K, K . We note thatkK, is the
Schur complement of{, in K = [K Ky»; Ky K], where
T T
Lemma 2.6: [Trace constraint on the inverse of thefy = HEH' + Ky, sz Ko HT'. Schur complement
covariance matrix] LetK>! = 0. Instead of fixing the is matrix concave inK > 0, for example see [39, Exercise

eigenvalue distribution, let us consider the relaxed caist 5-28]- Since trace is a linear operator k) is concave ink’.
tr(K-') = R. Let K,, = 0. Then an optimum solution for SinceK is an affine mapping oK, and composition with an
* affine mapping preserves concavity|[39, Sec. 3.2:2.) is

arg min By ||z - Elz[y]||’] (22) concave ink,.
= argmin Eg[(tr(K, ' + %HTKglﬂ)—l] Lemma 2.7: [DFT is not always optimal] The DFT
K In matrix is, in general, not an optimizer of the minimization
under S, is a circulant matrix. problem stated ir(@) for the Gaussian erasure channel.
Proof: The proof uses an argument in the proof[df [5, Thm. Proof: We provide a counterexample to prove the claim of
12], [4]. Let II be the following permutation matrix, the lemma: An example where a unitary matrix not satisfying
|u;j|*= 1/N outperforms the DFT matrix. LelV = 3. Let
8 (1) = 00 A, = diag(1/6,2/6,3/6), and K, = I. Let U be
=1 . . . . (23) 1/\/5 0 1/\/5
: N Uy = 0 1 0 (28)
1 -+ 0 0 _1/\/501/\/5

We observe thatll and II' (I"" power of I) are uni- Hencek, becomes
tary matrices. We form the following matrix<; ' =

LS Vg S Harht, which also satisfies the power con- /3 0 1/6

e (R o1 : K.=| 0 1/3 0 (29)
stralnt tr (K ) = R. We note that sincd( " > 0, so is 1

K;!'>0, henceK; ! is well-defined. /6 0 1/3

number of measurements ag(U) = 5, pM(1 —

_ We write the average error as a sum conditioned on the
Z 1T’ H'K 'H)
n p)>~Men (U), where ey denotes the total error of all



cases whereM measurements are done. LetU) = Proof: Proof is provided in SectiofnlA.
[eo(U),e1(U),ea(U),e3(U)]. The calculations reveal that A particularly important special case is the error assediat
e(Up) = [1,65/24,409/168,61/84] whereas ¢(F) = with the estimation of a band-pass signal:
[1,65/24,465/191,61/84], where F' is the DFT matrix. We

see that all the entries are the same with the DFT case, except Corollary 3.1: Lettr(K,) = P. Let the eigenvalues be
e2(Uo) < ez(F'), whereey(Up) = 409/168 ~ 2.434524 and given as\; = &, if 0 < i < |B|-1, and \; = 0, if | B|<

e2(F) = 465/191 ~ 2.434555. HenceU, outperforms the ; < N — 1. If JV|[B‘2 |B|, then the error can be expressed as
DFT matrix. follows

We note that our argument covers any unitary matrix that 1
is formed by changing the order of the columns of the DFT E[l|lz — E[z|y]|]*] = —557 P (31)
matrix, i.e. any matching of the given eigenvalues and the 1+ o2 BI' N

columns of the DFT matrixU, provides better performance \we note that this expression is of the fo
than anyK, formed by using the given eigenvalues and angNR

'ﬁ‘SlW?P’ where
1 P M
unitary matrix formed with columns from the DFT matrixd

STTEIN This expression will serve as a benchmark
in the subsequent sections.

I1I. MMSE BOUNDS THAT HOLD WITH HIGH B. Flat Support
PROBABILITY We now focus on MMSE bounds that hold with high prob-

In this section, we focus on MMSE bounds that hol@Pbility. In this section, we assume that all nonzero eigkes
with high probability. As a preliminary work, we will first are equal, i.eA, 5 = 1515, where|B|< N . We will con-
consider a sampling scenario which will serve as a benchm&ifer more general eigenvalue distributions in SediiorQll|
in the subsequent sections: estimation of a c.w.s.s. sigM¥ present bounds on the MMSE depending on the support
from its equidistant Sampies_ Circuiariy wide-sense B[Wy size and the number of measurements that hold with hlgh
Signais provide a natural anaiogue for Stationary Signais ﬁJrObablllty These results illustrate how the results intrima
the finite dimension, hence in a sense they are the md#sgory mostly presented in compressive sampling framework
basic signal type one can consider in a sampling settifg@n provide MMSE bounds. We note that the problem we
Equidistant sampling strategy is the sampling strategyclwhitaCk'e here is inherently different from tlie set-up considered
one commonly employs in a sampling scenario. Thereforl8,traditional compressive sensing problems. Here we densi
the error associated with equidistant sampling under sw.ghe problem of estimating a Gaussian signal in Gaussiarenois

model forms an immediate candidate for comparing the erréfder the assumption the support is known. It is known that
bounds associated with random Sampiing scenarios. the best estimator in this case is the linear MMSE estimator.

On the other hand, in scenarios where one refers/ito
o . ) . characterization, one typically does not know the suppbrt o
A. Equidistant Sampling of Circularly Wide-Sense Stalignay,e signal. We note that there are studies that consider the
Random Vectors unknown support scenario in a MMSE framework, such as
In this section, we consider the case wheiig a zero-mean, [8], [20], [21], [22].
proper, c.w.s.s. Gaussian random vector. Hence the coearia We consider the set-up ial(1). The random sampling opera-
matrix of z is circulant, and the unitary transforth is fixed, tion is modelled with &/ x N sampling matrixZ, whose rows
and given by the DFT matrix by definition [29]. are taken from the identity matrix as dictated by the sangplin
We assume that the sampling is done equidistantly: Evesperation. We let/,;5 = HUp be the M x |B| submatrix
1 out of AN samples are taken. We l8f = 2= € Z, and of U formed by taking|B| columns andM rows as dictated
assume that the first component of the signal is measured, ligr B and H, respectively. The MMSE can be expressed as
convenience. follows (50)
By definition, the eigenvectors of the covariance matrix is

2
given by the columns of the DFT matrix, where the elements of Eslllz — Efz[y]lI"]

k" eigenvector is given by, = LNejo”_’“, 0<t<N-1. —tr (AL + %U;HTHUB)*)
We denote the associated eigenvalue with0 < k < N —1 On
instead of indexing the eigenvalues in decreasing order. f 1
- ] EWya
Lemma 3.1: The MMSE of estimating: from the i=1 2i(F 15 + 7zUypUnb)
equidistant noisy sampleg as described above is given by |B] 1
the following expression => B : . (32)
2 =1 7 t 2 2(Ums'Uns)
Elllz — E[z[y]]|"] (30) - . . .
M—1 AN—1 AN—1 ) We see that the estimation error is determined by the eigen-
_ Z ( Z Niafan — Z AiM+k ) values of the matrixU], ;U 5. We note that many results in
= = w = f:]gfl()\m”k +02) compressive sampling framework make use of the bounds on

the eigenvalues of this matrix. We now use one of these sesult
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to bound the MMSE performance. The discussion here mawitary transform, the covariance matrix has constantatia
not be surprising for readers who are familiar with the toolsith (K,);; = P/N regardless of the eigenvalue distribution.
used in the compressive sensing community, since the asalydence with any measurement scheme with M < N
here is related to recovery problems with high probabilitpoiseless measurements, the reduction in the uncertanty i
However, this discussion highlights how these results agelaranteed to be at least proportional to the number of
mimicked with the MMSE criterion and how the eigenvaluesieasurements, i.e. the error satisies P — %P.

of the covariance matrix can be interpreted as measure of

low effective degree of freedom of a signal family. We note  Remark 3.1: We note that the coherence parameter
that different eigenvalue bounds in the literature can tmius#(U) takes the largest value possible for the DRAU) =

we pick one of these bounds from the literature to make tveNman,jluk,jlz 1. Hence due to the role gi(U/) in the

constants explicit. error bounds, in particular in the conditions of the lemma
(see(@4)), the DFT may be interpreted as one of the most
Lemma 3.2: LetU be anN x N unitary matrix with favorable unitary transforms possible in terms of the suffi-
VN maxy j|uk j|= n(U). Let the signal have fixed suppdst ciency conditions stated. We recall that for a c.w.s.s. seur
on the signal domain. Let the sampling locations be chosgfe unitary transform associated with the covariance nxatri
uniformly at random from the set of all subsets of the gives given by the DFT. Hence we can conclude that Lefma 3.2
size M, M < N. Let noisy measurements with noise powes applicable to these signals. That is, among signals with a
o2 be done at thesd/ locations. Then for sufficiently large covariance matrix with a given rectangular eigenvalue spke
M (1), the error is bounded from above with high probabilityc.w.s.s. signals are among the ones that can be estimatad wit

1 low values of error with high probability with a given number
Esl|lz — Efz|y]|’] < Trzourl (33)  of randomly located measurements.
on N 1B We finally note that using the argument employed in
More precisely, if Lemma[3.2, one can also find MMSE bounds for the adverse

M > |IBLLA(U O loel Bl. Cs 1oe(3/8 34 scenario where a signal with random support is sampled
= | Bl (U) max(C log| B, Cz log(3/9)) - (34) at fixed locations. (We will still assume that the receiver

for some positive constants; and Cs, then has access to the support set information.) In this case the
1 results that explore the bounds on the eigenvalues of random
P(Es|lla — Elz]y]||*] = Ty zosw ) =0 (35 submatrices obtained by uniform column sampling, such as
on N B Theorem 12 of[[2] or Theorem 3.1 of [40], can be used in
In particular, when the measurements are noiseless, tha erorder to bound the estimation error.
is zero with probability at least — 0. 1) Discussion: We now compare the error bound found
Proof: We first note that|Uas'Unis — I]|< ¢ implies above with the error associated with equidistant sampling
1 —c¢ < N(Unp'Ung) < 1+ c. Consider Theorem 1.2 of of a low pass circularly wide-sense stationary source. We
[1]. Suppose that\/ and |B| satisfies [(34). Now looking at consider the special case wherds a band pass signal with

Theorem 1.2, and noting the scaling of the matfi/ = NI )\, = ... = ABl-1 = P/|B|, Apj = ... = Ay—1 = 0. By
in [1], we see thatP(0.5% < \;(Ung'Unp) < 1.58) > Corollary3:1, if the number of measurementsis larger than
1 — 6. By (32) the result follows. the bandwidth, that i9/ > |B|, the error associated with the
For the noiseless measurements casegclet Eg[||z — equidistant sampling scheme can be expressed as
E[z|y]||?], and A, be the even{e < o2 —ZL__} Hence 1
' s Efllz — Elz[y]|]’] = Tramt (39)
1zim0 P(Aggl) = 121m0 E[lAU2 ] (36) E E N
o o Comparing[(3B) with this expression, we observe the follow-
= E[lim 14 ,] 37 .. . 1
250 TR ing: The expressions are of the same general fqﬁn?mP,
= P(e=0) (38) where SNR2 ITIS\G%%’ with 0 < ¢ < 1 taking different

v%ues for different cases. We also note thafid (33), théceho
¢ = 0.5, which is the constant chosen for the eigenvalue
ounds in[[1], is for convenience. It could have been chosen

where we have used Dominated Convergence Theorem
change the order of the expectation and the limit. By (3

.P(A”%) Z. 1-9, henceF_’(s_ =0)>1-0.We als? note that differently by choosing a different probability in (35). We
in the noiseless case, it is enough to ha\ﬁgn(qMBU”fB) also observe that effective SNR takes its maximum value
b_o.unded away from zero to have Z€ro error with high prObaﬁth ¢ = 1 for the deterministic equidistant sampling strategy
bility, the exact value of the bound is not important. O ., resnonding to the minimum error value among these two
expressions. In random sampling casean only take smaller

We note that when the other parameters are fixed, ealues, resulting in larger and hence worse error bounds. We
maxy ;|uk, ;| gets smaller, fewer number of samples areote that one can choosevalues closer to 1, but then the
required. Since\/1/N < maxy j|lux;|< 1 , the unitary probability these error bounds hold decreases, that i®ibett
transforms that provide the most favorable guaranteeshare érror bounds can be obtained at the expense of lower degrees
ones satisfyingluy j|= /1/N. We note that for any such of guarantees that these results will hold.
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The result of Lemmd_3]1 is based on high probabilitg, = diag(\;) with Y}~ A; = P, Ay > Xo,...,> Ay. M
results for the norm of a matrix restricted to random set @bmponents of: are observed, where in each draw each com-
coordinates. For the purposes of such results, the unifoponent of the signal has equal probability of being selected
random sampling model and the Bernoulli sampling modelence the sampling matrik is a M x N, M < N diagonal
where each component is taken independently and with equoatrix, which may have repeated rows. This sampling scheme
probability is equivalent]6]/]7],141]. For instance, theriva- is slightly different than the sampling scheme of the prasio
tion of Theorem 1.2 of[[1], the main step of Lemrhal3.2section where the sampling locations are given by a set chose
is in fact based on a Bernoulli sampling model. Hence thaiformly at random from the set of all subsets{af..., N}
high probability results presented in this lemma also hold fwith size M. The differences in these models are very slight
Gaussian erasure channel of Seckidn Il (with possibly difie in practice, and we chose the former in this section due to the

parameters). availability of partial uniform bounds ofjHU || in this case.
c G 'S Theorem 3.1: Let D(4) be the smallest number sat-
- General Support isfying Zi’;l Ai > 0P, whered € (0,1]. Let Az =
In Sectior1I[-B, we have considered the case in which sonmigax; \; = C¥ & and \; < C{ x5, i=D+1,...,N. Let

of the eigenvalues of the covariance matrix are zero, arti@ll (/) = /N maxy, ;|uy ;|. Let N/D > x > 1. Lete € (0,1),
nonzero eigenvalues have the same value. This case mayke(o, 0.5], and~ € (0,1). Let

interpreted as the scenario where the signal to be estinmted

exactly sparse. In this section, our aim is to find error beund ~ M/In(10M) >C1 6~*4*kD1n*(100xD) In(4N) ~ (40)

for estimation of not only sparse signals but also signais th M >Cy 07 %p?kD1n (e ) (41)
are close to sparse. Hence we are interested in the case where 1 <0.5p% (42)
the signal has small number of degrees of freedom effegfivel Cop

that is when a small portion of the eigenvalues carry most of p<(1—7)==— (43)

the power of the signal. In this case, the signal may notthtric Cep +1

have small number of degrees of freedom, but it can be walhere 0.5

approximated by such a signal. Cup = (1—-0)"° <%> . (44)
We note that the result in this section makes use of a novel N

matrix theory result, and provides fundamental insights inThen the error will satisfy

problem of estimation of signals with small effective numbe

of degrees of freedom. In the previous section we have usedP(E[||x — E[z[y]|]*] (45)

some results in compressive sensing literature that aeetdir

applicable only when the signals have strictly small number - (1-8P+ max(ﬂ 1 P)) <e

of degrees of freedom (“insignificant” eigenvaluesiof are Cr’ Cﬁlg + U%VQC’KDQ%

exactly equal to zero.) In this section we assume a mor * !

general eigenvalue distribution. Our result enables usvdri/nere ) 050> N — D

conclusions when some of the eigenvalues are not exactly Cr=(0.5p"k — 1) o N (46)

zero, but small. The method of proof provides us a way to A

see the effects of the effective number of degrees of freeddiire C1 < 50963 and C> < 456.

of the signal (\,) and the incoherence of measurement domain

(HU), separately. Remark 3.2: As we will see in the proof, the eigenvalue
Before stating our result, we make some observations g§tribution plays a key role in obtaining stronger bounds:

the related results in random matrix theory. Consider ttR@rticular, when the eigenvalue distribution is spread,dabe

submatrices formed by restricting a matriX to random theorem cannot provide bounds for low values of error. As

set of its rows, or columnsR, K or KR, where R, and the distribution becomes less spread out, stronger bourels a

R, denote the restrictions to rows and columns respectivefptained. We discuss these points after the proof the result

The main tool for finding bounds on the eigenvalues of Proof: The error can be expressed as follolsl (5b)

these submatrices is finding a bound BhR; K — E[R; K]|| Elllz — Elzy]||]

or E||[KR} — E[KR}]||[2], [40], [42]. In our case such an 1

approach is not very meaningful. The matrix we are inves- = tr (A + —Q(HU)THU)”) 47)
tigating A, ' + (HU)T(HU) constitutes of two matrices: a N In

deterministic diagonal matrix with possibly different gaes _ Z 1 (48)
on the diagonal and a random restriction. Hence we adopt P )\i(Agl 4 ULQ(HU)THU)

another method: the approach of decomposing the unit sphere
into compressible and incompressible vectors as propoged b _ Z 1 (49)
M. Rudelson and R. Vershynif [43]. ~ \(Az'+ L (HU)THU)
We consider the general measurement set-uplin (1) where N !
y = Hzx +n, with K,, = 021y, K, = 0. The s.v.d. ofK, + Z 1
is given ask, = UA,UT, whereU € CV*N s unitary and N Tha NS+ S (HU)THU)
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NX_:D 1 XN: 1 eigenvalues. This term may be interpreted as an upper bound
A

J(AZY + i(AZ! + % (HU)THU) on the error due to the random variables associated with the
(50) insignificant eigenvalues acting as noise for estimatin¢hef
NoD rgndom variables associated w_ith the significant eigemlu
Z AN_int i D 1 (i.e. A\; such thati € D). Hence in the case where the noise

! Amin(Az" + & (HU)THU) level is relatively low, the random variables associateithwie
(51) insignificant eigenvalues become the dominant source of err
N in estimation. By choosing and~ appropriately, this term can
Z Ai(Ay) + D 1 (52) be made small provided that is small compared téV, which
Amin (A1 + = (HU)THU) is the typical scenario we are interested in. When the noise
level is relatively high, the second argument comes out ef th
max term. Hence for relatively high levels of noise, system
noisen rather than the signal components associated with the

i=1 i=N—-D+1

IN

i=D+1
where [BD) follows from case (a) of Lemrha2.2.
Hence the error may be bounded as follows

E[||z — E[z|y]||?] (53) insignificant eigenvalues becomes the dominant sourceof er
1 in the estimation. This term can be also written as
<(1-0)P+D 1 1
Amin (Az + 5z (HU)THU) T T s = P (55)
14 1.2 P 1 A 201 )M P
CS+02'7 CND D 65—’—027(1 H)ND
The smallest eigenvalue oft = A;! + —(HU)THU is A " X i
sufficiently away from zero with hlgh probability as noted in =— 5 P, (56)
the following lemma: s T (1—-0)SNR

where SNR= L LI We note that the general form of

Tn

Lemma 3.3: Under the coPlditionls state? in Theoremy,;g expression i$ the same as the general form of the error
B.1, the eigenvalues oft = A" + Z (HU)'(HU) are  gypression in Section IR (seE{39)), where the error ibun

bounded from below as follows: is of the general form—ixzP, wherec € (0,1]. In
Section[II-B, the case where the signal have exactly small
T T '
P(welélz\f; W Ay T+ — 2 (HU) HUx (54) number of degrees of freedom wifh is considered, in which
D 1 1, 5 caseC’f = 1,0 = 1andD = |B|. We observe that here, there
< min(Cr 5, csL +37Cp7)) S are two factors that forms the effective SNR lass v2(1—6).

. A look through the proof (in particular, Lemnfa_B.2 and
Here SN~! denotes the unit sphere wherec SY~' if z €  |emmdB.3) reveals that the effective SNR loss duglte 6)

CN, and||z||= 1. factor is the term that would have been introduced if we were
The proof of this lemma is given in Sectiddl B of theo work with signals wheresD eigenvalues are equal and
Appendix. nonzero, and the others zero. This factor also introducessa |

We now conclude the argument. Let us call the right-hargf SNR due to considering signals wittD, x > 1 insteadD
side of the eigenvalue bound in"{54),..,. Then [B4) states nonzero eigenvalues. Th¢? term may be interpreted as an
that P(Ain (A) > Amin) > 1 —¢€, and hence we have theadditional loss due to working with signals for whigh such
following: P(5—=; < 5-—) > 1 — e Together with the thati ¢ D are not zero.
error bound in IIH3) we hav@(E|||z — E[z|y]||?] < (1 —

0)P + Dimm) > 1 —¢, and the result follows. O IV. CONCLUSIONS

We have considered the transmission of a Gaussian vector

We now discuss the error bound that Theofen 3.1 providesurce over a multi-dimensional Gaussian channel where a
The expression il (45) can be interpreted as an upper boundandom or a fixed subset of the channel outputs are erased.
the error that holds with probability at least- e. The bound The unitary transformation that connects the canonicaladig
consists of a1 — §)P term and amax term. This(1 — §)P domain and the measurement space played a crucial role in
term is the total power in the eigenvalues that are consideraur investigation. Under the assumption the estimator lsnow
to be insignificant (i.eA; such that ¢ D = {1,..., D}). This the channel realization, we have investigated the MMSE per-
term is a bound for the error that would have been introducémrmance, both in average, and also in terms of guarantaés th
if we had preferred not estimating the random variabld®ld with high probability as a function of system parameter
corresponding to these insignificant eigenvalues. Sinaauin ~ We have considered the sampling model of random era-
setting we are interested in signals with effectively smadlures. We have considered two channel structures: i) random
number of degrees of freedom, hengeclose to1 for D Gaussian scalar channel where only one measurement is
much smaller thanV, this term will be typically small. Let done through Gaussian noise and ii) vector channel where
us now look at the term that will come out of the maximunmeasurements are done through parallel Gaussian channels
function. When the noise level is relatively low, tiﬁ% term with a given channel erasure probability. Under these chlann
comes out of themax term. Together with thep and x structures, we have formulated the problem of finding the
whose choices will depend oR, order of magnitude of this most favorable unitary transform under average (w.r.tdoam
term substantially depends on the value of the insignificaatasures) MMSE criterion. We have investigated the comyexi
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properties of this optimization problem, and obtained seceA. Equidistant sampling without noise

sary conditions of optimality through variational equiakt \We Our set-up is the same with SectibiTlI-A except here we
were not able to solve this problem in its full setting, but Wg <t sonsider the case where there is no noise sothatd .

have solved some related special cases. Among these we Rgit&,o\ present an explicit expression and an upper bound for

identified special cases where DFT-like unitary transformge mean-square error associated with this noiselesspset-u
(unitary transforms with|u,;;|*= %) turn out to be the

best coordinate transforms, possibly along with otherauyit Lemma A.1: Let the model and the sampling strategy

transforms. Although these observations and the obsensati be as described above. Then the MMSE of estimatifigm
of Section[ll-B (which are based on compressive sensifgyqe equidistant samples can be expressed as

results) may suggest that the DFT is optimal in general, we

showed through a counterexample that this is not the case E[||z — E[z[y]||?] (57)
under the performance criterion of average MMSE. AN-1 AN—1 22
In Sectior(Tll, we have focused on performance guarantees = > (Y Ainyr— D —xvoa—),
that hold with high probability. We have presented upper k€Jo =0 i=0 =0 ANM+k
bounds on the MMSE depending on the support size an B —AN-1
the number of measurements. We have also considered m? greJ]%_ {1]? Yizo Atk #0, 0< k< M-—1}C
eneral eigenvalue distributions, (i.e. signals that may nt " — ~J -
g genvaile distribut ( '9 y In particular, choose a set of indicesC {0,1,...,N—1}

strictly have low degree of freedom, but effectively do so), . = T o o
and we have illustrated the interplay between the amount 'fth |[JI= M such thatvi, j, 0<i,j <AN—1,i#]
information in the signal, and the spread of this informatio M+keJ=iM+k¢lJ (58)

in the measurement domain for providing performance guar- .
antees. with 0 <k <M —1. Let P; =, ; A;. Then the MMSE is

To serve as a benchmark, we have considered sampling"8Pe" bounded by the total power in the remaining eigenalue
circularly wi(_je—sense statiqnary signals, which_ ig a ra_imvay _ E[||z — E[z|y]||?] < 2(P — Py). (59)
to model wide-sense stationary signals in finite dimension.
Here the covariance matrix was circulant by assumptioncéerin particular, if there is such a sef so thatP; = P, the
the unitary transform was fixed and given by the DFT matriMSE will be zero.
We have focused on the commonly employed equidistant
sampling strategy and gave the explicit expression for the Remark A.1: The set.J essentially consists of the
MMSE. indices which do not overlap when shifted .
In addition to providing insights into the problem of unitar
encoding in Gaussian erasure channels, our work in this Remark A.2: We note that the choice of the skts not
article also contributed to our understanding of the retathip unique, and each choice of the set of indices may provide a
between the MMSE and the total uncertainty in the signal g§ferent upper bound. To obtain the lowest possible upper
quantified by information theoretic measures such as eptrdpound, one should consider the set with the largest total
(eigenvalues) and the spread of this uncertainty (basig). \Rower.
believe that through this relationship our work also shégist|
on how to properly characterize the concept of “coherence of Remark A.3: If there exists such a sef that has the
a random field”. Coherence, a concept describing the overaipst of power, i.eP; = 6P, § € (0,1], with § close to 1,
correlatedness of a random field, is of central importance tinen 2(P — P;) = 2(1 — ¢)P is small and the signal can
statistical optics; see for example [44], [45] and the refiees be estimated with low values of error. In particular, if such
therein. a set has all the power, i.e? = P, the error will be zero.
A conventional aliasing free set may be the set of indices
ACKNOWLEDGEMENT of the band of a band-pass signal with a band smaller than

. . M. It is important to note that there may exist other sédts
The authors thank the Associate Editor and the anonymay) b y

. for their helpful s | feul ik th P = Pj, hence the signal may be aliasing free even if
reviewers for their nelpiut comments. In particular, weria y, signal is not bandlimited (low-pass, high-pass etc)hia t
the Associate Editor for pointing out a shorter proof fo

nimizing th . ) S Eonventional sense.
minimizing the expression given | ): Proof: Proof is given in Sectioh”/AB of the Appendix.

We observe that the bandwidth (or the effective degrees
APPENDIXA of freedom) turn out to be good predictors of estimation
NOTES ON EQUIDISTANT SAMPLING OF CW.S.S. SIGNALS  gror in equidistant sampling scenario. On the other hand,
We believe that error expressions related to the equidistdine differential entropy of an effectively bandlimited Gaian
sampling of the c.w.s.s. signals can be also of independ&ettor can be very small even if the bandwidth is closeévto
interest. Hence we further elaborate on this sampling seaenehence may not provide any useful information with regards to
in this section. We first present the result for the noisetasg estimation performance.
and then give the relevant proofs, including that of Lerin® 3. We now compare our error bound with the related results
which is for the noisy sampling case. in the literature. In the following works, similar problems
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with signals defined orR are considered: In[[46], mean-block diagonal matrix as follows
square error of approximating a possibly non-bandlimited " O .. 0
wide-sense stationary (w.s.s.) signal using samplingresipa 0

is considered and a uniform upper bound in terms of power A — 0 M\ :
outside the bandwidth of approximation is derived. Here we v

are interested in the average error over all points of dhe 0 0 \ '
No1

dimensional vector. Our method of approximation of the aign © 0 - -
is possibly different, since we use the MMSE estimator. As a Az 0 - 0
result our bound also makes use of the shape of the eigenvalue 0 Al

distribution. [47] states that a w.s.s. signal is determine =
linearly by its samples if some set of frequencies contginin B N :

all of the power of the process is disjoint from each of its 0 -+ 0 ASNA
o ) . N N . AL) with AL = diag(\; RMXM ‘where0 < i <

similar result: if there is a sef that consists of indices which 12g(A;) v fag(Ainsx) € . ==

. AN -1, 0 <k <M —1. We can writeK,, as
do not overlap when shifted by/, and has all the power, the :
error will be zero. In fact, we show a more general result for K, = HUA, U THT

our set-up and give the explicit error expression. We alswvsh Ut
that two times the power outside this skprovides an upper 1 U, .. |Un] ding(AY) M 1
bound for the error, hence putting a bound on error even if it =AMl VM T : AN
is not exactly zero. VAN U}, AN
1 AN-—-1 .
= x Uml > ADUL,
B. Proof of Lemm&-All i=0

o AN—1 44 . .
We remind that in this sectiom,, = ﬁeﬂ%“@, 0<t, k< We note thaty 2 ' AL € RM*M is formed by summing

N — 1 and the associated eigenvalues are denoted with diagonal matrices, hence also diagonal. Sitige is the M x

without reindexing them in decreasing/increasing ordee W/ DFT matrix, K, is again a circulant matrix whose'"

first assume thafl, = E[yy'] = HK,H' is non-singular. €igenvalue is given by

The generalization to the case whdkg may be singular is | AN

presented at the end of the proof. Ayk = AN Z Aivd+k, 0<k<M-—1. (63)
The MMSE for estimating: from y is given by [30, Ch.2] i=0

HenceK, = Uy A, U], is the eigenvalue-eigenvector decom-

_ A _ —1 g Yy Y~¥' M ;
Ellle — Elely]lI"] = tr(Ke — Kay K K,) position of K, where Ay = <o SS2N P AL = diag(\, 1)
- f 1 There may be aliasing in the eigenvalue spectrumiqf
= tr(Ay — ALUTH' (HUALU'H')" " HUA,).  (60) depending on the eigenvalue spectrunigfandAN. We also

note thatx’, may be aliasing free even if it is not bandlimited

We now consideHH U € CM>*¥, (low-pass, high-pass, etc.) in the conventional sense. e n
. . ; -1
(HU )t = Lej%ﬂ(ANl)k _ Leaﬁ—?}lk (61) that sincek, is assumed to be non-singulay, , > 0. K,
Lk VN VN can be expressed as
where0 <1 < £ —1, 0<k < N —1. We observe that K, ' = (UnmA UL
for a givenl, e/37'* is a periodic function ofc with period B . | -
M = . Hence,l"" row of HU can be expressed as = Uu dlag(/\y,k)UM
. AN
(HU )i, = — [¢73710--N 1) = Ut ding (g1, —— Ui,
VN i—0 iM+k
= L [ej%}'l[o...M—l] .. |ej%’,’l[0...]\4—1]]. We are now ready to consider the error expressiof ih (60). We
VN first consider the second term, that is
1 U ot Dt M OFT i U2 O
We- M \{V| SEs — a3 < < — 1. Aence : orrt
is the matrix formed by stacking N M x M DFT matrices 1 AUy -
side by side = tr(—= ' (UmA,; " Uy,)
g 1 AN AAN;IUT o
HU = —[Up]- - . |Un]. (62) ” M
1
VAN x [UarAY)... Uy ABN-1))
Now we consider the covariance matrix of the observations VAN

K, = HK,H' = HUA, U H'. We first express\, as a
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B ANZI 1A1 i the largest variance, and don't try to estimate the varialife
B AN'

the small variance. In that scheme, one first makes an error
of min(Ag, /\%M), since the variable with the small variance

—1M-1
_ Z Z 1M+k is ignored. We may lose anotharin(/\k,/\%Jrk), since this
=0 k=0 lAZg " Nar ik variable acts as additive noise for estimating the varialile
the larger variance, and the MMSE associated with such a
Hence the MMSE becomes channel may be upper bounded by the variance of the noise.
E[||z — Elz|y][|?] Now we choose the set of indiceswith |J|= N/2 such
AN 1M1 thatk € J & % + k ¢ J andJ has the most power over all
1M+k such sets, i.ek + ar max A € J, whereQ < k <
- Z At — Z Z SAN-T, & roetomn/ay Fo
=0 k=0 Za=0 Mtk N/2—1.Let Py =Y A Hence
M—-1AN-1 AN—1M-1 /\QM . oyt
_ M+
_ZZAZMM_ZZ SAN-Ty N/2-1 N/2—-1
k=0 20 k=0 210 AIM+k / /
- AN 1 AN—1 Ny E[||lz — E[z|y]||*] Z ey <2 Z min )\k,/\N+k)
_ M+
_Z(Z/\iM““’“_Z AN-T )-
k=0 =0 i=0 2u1=0 AM+k = 2(P — Py).

We note that we have now expressed the MMSE as the Sy observe that the error is upper boundedby(the power
of the errors inM frequency bands. Let us define the error gk the “ignored band”).

k" frequency band as

AN—1 AN_1 v We now return to the general case. Although it is possible to
= > Nk — Y —ae—, (64) consider any sef that satisfies the assumptions statedin (58),
—o —0 MMk for notational convenience we choose the.set {0, ..., M —

1}. Of course in general one would look for the gethat has
most of the power in order to have a stricter bound on the
error.

where(0 < k < M — 1. Hence the total error is given by

M—-1

Elllz — Elz[y]|]] = > ef. We consider [[64). We note that this is the MMSE of
k=0 estimatings® from the output of the following single output
That proves the expression for the error. We now consider tinltiple input system
upper bound. Before moving on, we study a special case: o
Example A.1: Let AN = 2. Then o1 1] '
)\2 + /\N +k sk
e =M\ +An _— AN-1
F Y T R :
Bk wheres® ~ N(0, K, ), with K, as follows
2/\]“)\%‘*"“ . 2
= m K = dlag(asf)
:diagAk,...,)\Uu ka---a/\A — .
Hence - = (57— + x-). We note that this is the MMSE ( " (aN-DaE)
Stk We define
for the followmg smgle output multiple input system AN_1
k k_
=1 1][22}, (65) P—Z/\“‘”kv O<k<M-1
i —

where s*  ~ N(0,K.), with Ky = diag(A, Ay ,p).  We note thaty ," ! P = P.
Hence the random variables associated with the frequencWVe now boundew as in theAN = 2 example

components ak, and £ + k act as interference for estimating AN_1 AN 1

the other one. We observe that for estimatingve have% ol — ) _ /\zM+k
such channels in parallel. y ; R ; AT Nk
We may bounct}’ as AN—1 22
20\ 20\ = D Qumsr — =51
gw = Rtk kA +k i=0 P
e+ /\%Jrk - max(/\k,)\%%) 9 AN-1 /\zM-ﬁ-k
= 2min()\k,/\%+k). = Ak — ﬁ) + ; (Ningtr — “pk )
This bound may be interpreted as follows: Through the scalar AN-1
channel shown in[{85), we would like to learn two random < (P* =) + Z NiM -tk

variablessf ands?. The error of this channel is upper bounded
by the error of the scheme where we only estimate the one with = (P’C - k) + PF — X\,
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=2(P* - \p), sphere into two sets, compressible vectors and incompiessi
X AP ) i . vectors. We recall the following from _[43]:

where we have used;, — P—k = Sk < PR — )\ since
0< I’}k <landAp+k — ATMM < Ninmgr Since w}f;ﬂk > 0. Definition B.1: [pg.14, [43]] Let |supdz)| denote the
This upper bound may mterpreted similar to the Exarhplé A.mumber of elements in the support of Let 7, p € (0,1).
The error is upper bounded by the error of the scheme wherec C" is sparse, if|supgz)|< nN. The set of vectors

one estimates the random variable associated withand sparse with a givem is denoted bySparse(n). z € SN~ is

ignore the others. compressible, if: is within an Euclidean distance from the
The total error is bounded by set of all sparse vectors, that sy € Sparsen), d(z,y) < p.
Mot Mot The set of compressible vectors is denotedClaynp(n, p).
E[||z — Elz|y]|[?] Z v < Z x € SN~1is incompressible if it is not compressible. The set
l k of incompressible vectors is denoted bycomp(n, p).

M 1 M—1
Z pk_ Z Ae) Lemma B.1: [Lemma 3.4,[[4B]] Letz € Incomp(n, p).
— Then there exists a set C {1,..., N} of cardinality |¢|>

_ 2(P _ PJ) 05p27’]N such that

1
<lop|l< ——,  Vk e 67
\/ﬁ_|xk|_\/ﬁ_]\7 1/] ( )

Remark A.4: We now consider the case wheig may
be singu_lar. In this ca?e, for M_':/ISE estimation, itis enoumn t o g of compressible and incompressible vectors pro-
usekK, instead ony where™ denotes the Moore- Penros qe a decomposition of the unit sphere, i.6¥-1 —
pseudo-inverse [30, Ch 2]. Hence the MMSE may be expres:?%comp (1. p) U Comp(n, p) [@3]. We will show that the
as tr(K, — K., K K}). We haveK; = (UpA,Ul,)* .

ot ; N first/second term in[(66) is sufficiently away from zero for
Unhy Uy = UM diag (A ")Uf, where vk =0 Ak = 0 ¢ Incomp(n, p)l © € Comp(n, p) respectively. The pa-

0 and /\+k = T otherwise. Going through the calculatlonsrametersp andn = kD/N, x > 1 are going to be chosen
with KJr instead of X! reveals that the error expressionappropriately to satisfy the conditions of Lemfnal 3.3.

remalns essentially the same As noted in [43], for any square matrig
Ell| — Elzly][|*] P( inf Az <C)<P(_ if afAz<C)
AN—1 AN—1 )\2 zeSN— zeComp(n,p)
= Z( Z NiM 4k — Z #), +P(meln01££ ( )ZZTTAI < (). (68)
kedo i=0 i=0 =0 AM+k pimp
AN 1 We also note that
WhereJO_{k om0 /\1M+k7é00<k<M—1}g " ;
{Ok -1} We note tha N\, , = Zl —0 Nk = welnclglﬂfw(w) At + ot n(HU) HUx
> inf et A
z€Incomp(n,p)
C. Proof of Lemm&3]1 = inf |[A; 2], (69)

z€Incomp(n,p)
The proof of Lemmal[3]1 follows from the proof of \nd

LemmalA.l as follows: We first note that in the noisy case

K., = K,H', as in the noiseless case. We also note that in inf et A e + ot (HU)THU:C
the noisy casek, is given by K, = HK,H' + K,. Now 2€Comp(n,p) Un
the result is obtained hy retracing the steps of the proof of > 1 + inf xT—Q(HU)THUx
LemmdA.l, which is given in Sectidn’AlB, with, replaced Amaz  w€Comp(n.p) O
i - T 1 1
by the above expression, thaths, = HK, H" + K. _ +=( inf | HUz|?), (70)
Amaz Un z€Comp(n,p)
APPENDIX B where\, ... = max; A; and the inequalites are due to the fact
PROOF OFLEMMA 3.3 that A; !, HTH are both positive-semidefinite.

We now recall the following result from [23], which ex-

Our aim is to show that the smallest eigenvalue/f= presses the eigenvalue bound for sparse vectors.

A+ (HU)THU is bounded from below with a sufficiently
large number with high probability. That is, we are inteeelst Lemma B.2: [23, Theorem 8.4] Let/ be an N x N
n unitary matrix with = /N maxy ;|ux ;|- Lete € (0,1),

inf xTAlz + —:C "(HU) HUz. 66) On < (0,0.5]. If

zeSN-1
M/In(10M) >C 0,2k D In*(100xD) In(4N 71
To lower bound the smallest eigenvalue, we adopt the aphroac /M ) 2C1 ”_QM;& . (_1 #D) In(4N) (71)
proposed by[[43]: We consider the decomposition of the unit M 2Cs 0,7 p"kD1ne (72)

n
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Then, Let us assume that; < Cﬁ%, fori=D-+1,...,N,
. M whereC{ € (0,1). Let 0.5p°nN = 0.5p>xD > D. Then we
P(_inf  [|HUz|P< (1-6)=lel®) <e.  (73) haye
z€Sparse(n) N
Here Oy < 50963, Cy < 456 andn = xD/N. inf [|A;Y2])?
. . z€Incomp(n,p)
We now show that this result can be generalized to an 1 2
eigenvalue bound for compressible vecters Comp(n, p), > -
wherep will be appropriately chosen. iy Ai 2N
- N — D 0.5p%
Lemma B.3: Let the conditions of LemniaB.2 hold. Let = ([$]-D) cIpP N
Cup = (1 —6,)"5 (%), Choosep such that , 0502 N—D 1
> (0.5p°kD — D) —_——
Cep ci N P
PS(l—V)ma (74) D
" > Cr=, 78
where0 <~ < 1. Then, =-I'p (78)
5 . )
P inf HUz||< ~Cup) < €. 75 where we have usediy|> 0.5p°<D, and C; is defined
(zecgr%p(w)” 2l yCep) S e (75) straightforwardly as in[{46).

We will

now complete the argument to arrive at

Proof: We will adopt an argument in the proof of [43,P(inf,cov 12TAz < C) < ¢ where C is defined as

Lemma 3.3]. That is, we will show that the eveht that min(z(vCyp)® + x——, BCr), with A, parametrized

[|[HUz||< v C.p for somex € Comp(n, p), implies the event gg

we have

By (69) and [(7B),

P
Amas ciE.

E, that [[HUv||< Cypllv]| for somev € Sparse(n) (for p P(inf e comp(n.p) #' Az < C;2) = 0. By (70) and Lemma
appropriately chosen). Note th&t(F,) < ¢ by LemmaB.2. B3, we have P(inf acCompnp) T AT < 2 (yCip)? +

If E. implies E, then we haveP(E.) < P(FEs) < ¢, which
is the desired result il (¥5).

We first note that every. € Comp(n, p) can be written as
x =1y + z, wherev = y/||y||, v € Sparse(n) and ||z||< p.
Hence we have the following

[HUy| < [[HUz|[+||HU ||
< |[HUz|[+]]=]]
S ’YCKD +p

where we have used the fact that/Uz||< ||[HU]||||z||<
l|z||, and the assumption| HUz||< ~Cy.p. Since ||y||>
[l|lz||—|zl||= 1 — p, we can also write the following
||HUL||§M_
Iyl 1—p
Let us now choose as stated in the condition of the lemma.
Then we havé| HUv||< Cyp for somev € Sparse(n), ||v||=
1. Hence we have shown that the evéntimplies the event
E,. This proves the claim if{T5). O

(1]
(2]
(3]

(4]

(5]

[6]
(76)
[7]

(8]

El

We have now established a lower bound fo[rlo]
inf e comp(n,p |[HUx||* that holds with high probability. We
now turn our attention to incompressible vectors. For this
purpose, we considef (69). We note that none of the entitid!
in this expression is random. We note the following

N [12]

>yl

i=1

inf

IAs 2l 2 =
xz€Incomp(n,p)

n
x€lIncomp(1,p) [13]

(77) [14]

where the inequality is due to LemrmaB.1. We observe that ]
order to have this expression sufficiently bounded away from
zero, the distribution ofAl—i should be spread enough.

_D_
;P

) < e. The claim of Lemm&3]3 follows ﬁonﬂB8).
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