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Abstract—We analyze an online learning algorithm that adap-
tively combines outputs of two constituent algorithms (or the
experts) running in parallel to model an unknown desired signal.
This online learning algorithm is shown to achieve (and in some
cases outperform) the mean-square error (MSE) performance of
the best constituent algorithm in the mixture in the steady-state.
However, the MSE analysis of this algorithm in the literature
uses approximations and relies on statistical models on the
underlying signals and systems. Hence, such an analysis may not
be useful or valid for signals generated by various real life systems
that show high degrees of nonstationarity, limit cycles and, in
many cases, that are even chaotic. In this paper, we produce
results in an individual sequence manner. In particular, we relate
the time-accumulated squared estimation error of this online
algorithm at any time over any interval to the time-accumulated
squared estimation error of the optimal convex mixture of the
constituent algorithms directly tuned to the underlying signal
in a deterministic sense without any statistical assumptions. In
this sense, our analysis provides the transient, steady-state and
tracking behavior of this algorithm in a strong sense without any
approximations in the derivations or statistical assumptions on
the underlying signals such that our results are guaranteed to
hold. We illustrate the introduced results through examples.

Index Terms—Learning algorithms, mixture of experts, deter-
ministic, convexly constrained, steady-state, transient, tracking.

I. INTRODUCTION

The problem of estimating or learning an unknown desired
signal is heavily investigated in online learning [[1]-[7] and
adaptive signal processing literature [8]—[11]. However, in
various applications, certain difficulties arise in the estimation
process due to the lack of structural and statistical information
about the data model. To resolve this lack of information, mix-
ture approaches are proposed that adaptively combine outputs
of multiple constituent algorithms performing the same task
in the online learning literature under the mixture of experts
framework [5]-[7] and adaptive signal processing under the
adaptive mixture methods framework [8[|-[|10]]. These parallel
running algorithms can be seen as alternative hypotheses
for modeling, which can be exploited for both performance
improvement and robustness. Along these lines, an online
convexly constrained mixture method that combines outputs of
two learning algorithms is introduced in [9]]. In this approach,
the outputs of the constituent algorithms that run in parallel
on the same task are adaptively combined under a convex
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constraint to minimize the final MSE. This adaptive mixture
is shown to be universal with respect to the input algorithms
in a certain stochastic sense such that this mixture achieves
(and in some cases outperforms) the MSE performance of
the best constituent algorithm in the mixture in the steady-
state [9]]. However, the MSE analysis of this adaptive mixture
for the steady-state and during the transient regions uses
approximations, e.g., separation assumptions, and relies on
statistical models on the signals and systems, e.g., stationary
data models [9], [10]. In this paper, we study this algorithm
from the perspective of online learning and produce results
in an individual sequence manner such that our results are
guaranteed to hold for any bounded arbitrary signal.

Nevertheless, signals produced by various real life systems,
such as in underwater acoustic communication applications,
show high degrees of nonstationarity, limit cycles and, in many
cases, are even chaotic so that they hardly fit to assumed
statistical models [12]]. Hence an analysis based on certain
statistical assumptions or approximations may not be useful
or adequate under these conditions. To this end, we refrain
from making any statistical assumptions on the underlying
signals and present an analysis that is guaranteed to hold for
any bounded arbitrary signal without any approximations. In
particular, we relate the performance of this learning algorithm
that adaptively combines outputs of two constituent algorithms
to the performance of the optimal convex combination that
is directly tuned to the underlying signal and outputs of the
constituent algorithms in a deterministic sense. Naturally, this
optimal convex combination can only be chosen in hindsight
after observing the whole signal and outputs a priori (before
we even start processing the data). Since we compare the
performance of this algorithm with respect to the best convex
combination of the constituent filters in a deterministic sense
over any time interval, our analysis provides, without any
assumptions, the transient, the tracking and the steady-state
behaviors together [5]—[7]. In particular, if the analysis window
starts from ¢ = 1, then we obtain the transient behavior; if the
window length goes to infinity, then we obtain the steadys-
tate behavior; and finally if the analyze window is selected
arbitrary, then we get the tracking behavior as explained in
detail in Section III. The corresponding bounds may also hold
for unbounded signals such as with Gaussian and Laplacian
distributions, if one can define reasonable bounds such that
the effect of samples of the desired signal that are outside of
an interval on the cumulative loss diminishes as the data size
increases as demonstrated in Section III.

After we provide a brief system description in Section
we present a deterministic analysis of the convexly constrained



The Convexly Constrained Algorithm:
Parameters:
p > 0: learning rate.
Inputs:
y¢: desired signal.
U1,¢, Y2,¢: constituent learning algorithms.
Outputs:
y¢: estimate of the desired signal.
Initialization: Set the initial weights Ay = 1/2 and p1 = 0.
fort=1:...:n,
% receive the constituent algorithm outputs 91,¢+ and g2 ¢ and
% estimate the desired signal
gt = XeG1,e + (1 — M)
% Upon receiving y, update the weight according to the rule:
pi+1 = pt + peehe(1 — Ae)[U1,¢ — §2,¢)
Atyr1 = 1

[

endfor

TABLE I: The learning algorithm that adaptively combines
outputs of two algorithms.

mixture algorithm in Section where the performance
bounds are given as a theorem and a lemma. We illustrate
the introduced results through examples in Section The
paper concludes with certain remarks.

II. PROBLEM DESCRIPTION

In this framework, we have a desired signal {yt}pl, where
ly:] <Y < oo, and two constituent algorithms running in
parallel producing {f1,:}:>1 and {@2,}¢>1, respectively, as
the estimations (or predictions) of the desired signal {y;},- .
We assume that Y is known. Here, we have no restric-
tions on 71 or @24, €.g., these outputs are not required to
be causal, however, without loss of generality, we assume
|16 <Y and |§24| <Y, i.e., these outputs can be clipped
to the range [—Y,Y] without sacrificing performance under
the squared error. As an example, the desired signal and
outputs of the constituent learning algorithms can be single
realizations generated under the framework of [9]. At each
time ¢, the convexly constrained algorithm receives an input

A
vector x; = [J1.+ J2.¢]7 and outputs
Ge = MG1e + (1= M), = wi ¢,

where w, 2 Ar (1=X)]F, 0 < A\ <1, as the final estimate.
The final estimation error is given by e; = y; — ;.

The combination weight \; is trained through an auxiliary
variable using a stochastic gradient update to minimize the
squared final estimation error as

1
A= ——— 1
t 1+ e_Pf«7 ( )
Pt+1 = Pt — vaeﬂp:pt
= pt + peAe(1 — A)[U1,4 — Yot 2

where p > 0 is the learning rate. The combination parameter
A¢ in (T)) is constrained to lie in [A*, (1—-AT)], 0 < AT < 1/2
in [9], since the update in may slow down when \; is too
close to the boundaries. We follow the same restriction and
analyze (2) under this constraint. The algorithm is presented
in Table [l

Under the deterministic analysis framework, the perfor-
mance of the algorithm is determined by the time-accumulated
squared error [5[, (7, [13]-[15]. When applied to any se-
quence {y;},~,, the algorithm of (I} yields the total accu-
mulated loss

n
A

Ln(,y) = Lo(wi @i, y) = (ye — §2)° 3)

t=1

for any n. We emphasize that for unbounded signals such as
Gaussian and Laplacian distributions, we can define a suitable
Y such that the samples of y; are inside of the interval [—Y, Y]
with high probability and the effect of the samples that are
outside of this interval on the cumulative loss diminishes
as n gets larger.

We next provide deterministic bounds on L,,(¢,y) with re-
spect to the best convex combination m[%)n1 | L, (9s,y), where

n

Ln(i5,y) = Ln(u @0, y) =Y (4 — p.0)°

t=1

and
N . .
981 =B+ (1 —B)Jo =u" xy,

A . . s
u = [ 1—p]7, that holds uniformly in an individual sequence
manner without any stochastic assumptions on ¥y, 91+, §2,¢ Or
n. Note that the best fixed convex combination parameter

=arg min L,(y
ﬁo gBE[O,l] n(yﬁvy)
and the corresponding estimator

gﬁo,t = Bogl,t + (1 - 50)@2,15,

which we compare the performance against, can only be deter-
mined after observing the entire sequences, i.e., {y.}, {1}
and {g2,}, in advance for all n.

III. A DETERMINISTIC ANALYSIS

In this section, we first relate the accumulated loss of
the mixture to the accumulated loss of the best convex
combination that minimizes the accumulated loss in the
following theorem. Then, we demonstrate that one cannot
improve the convergence rate of this upper bound using
our methodology directly and the Kullback-Leibler (KL)
divergence (6] as the distance measure by providing counter
examples as a lemma. The use of the KL divergence as a
distance measure for obtaining worst-case loss bounds was
pioneered by Littlestone [16]], and later adopted extensively in
the online learning literature [6], [7], [[17]. We emphasize that
although the steady-state and transient MSE performances
of the convexly constrained mixture algorithm are analyzed
with respect to the constituent learning algorithms [9]], [10],
we perform the steady-state, transient and tracking analysis
without any stochastic assumptions or use any approximations
in the following theorem.



Theorem: The algorithm given in (2), when applied to any
sequence {y},~, With |y| <Y < oo, yields, for any n and
e>0 -

2 1 1
L)~ (325) i (Laiaat <0 (1) @

1— 22 [

where O (.) is the order notation, ¢z ¢ = 91+ + (1 — 8) 92,1,

2 1A= : _ de 2422 -
= moraoan < 1 and step size = 57 5%, provided

that A\; € [AT,1 — \*] for all ¢ during the adaptation.

This theorem provides a regret bound for the algorithm (2]
showing that the cumulative loss of the convexly constrained
algorithm is close to a factor times the cumulative loss of
the algorithm with the best weight chosen in hindsight. If we
define the regret

i LTLA7 b 5
ﬁgggg]{ (s,9)}, ()

then equation (@) implies that time-normalized regret

R o Lu(3y) <2€+1> in {Ln(yﬁ,y)}
Be0,1]

n n 1—22 n

converges to zero at a rate O (é) uniformly over the desired
signal and the outputs of constituent algorithms. Moreover, (@)
provides the exact trade-off between the transient and steady-
state performances of the convex mixture in a deterministic
sense without any assumptions or approximations. Note that
is guaranteed to hold independent of the initial condition
of the combination weight A\; for any time interval in an
individual sequence manner. Hence, (@) also provides the
tracking performance of the convexly constrained algorithm
in a deterministic sense. From , we observe that the
convergence rate of the right hand side, i.e., the bound,
is O(i) and, as in the stochastic case [10], to get a
tighter asymptotic bound with respect to the optimal convex
combination of the learning algorithms, we require a smaller
€, i.e., smaller learning rate p, which increases the right
hand side of (@). Although this result is well-known in the
adaptive filtering literature and appears widely in stochastic
contexts, however, this trade-off is guaranteed to hold in here
without any statistical assumptions or approximations. Note
that the optimal convex combination in (@), i.e., minimizing
5, depends on the entire signal and outputs of the constituent
algorithms for all n and hence it can only be determined in
hindsight.

Proof: To prove the theorem, we use the approach introduced
in [7]] (and later used in [6]]) based on measuring progress of
a mixture algorithm using certain distance measures.

We first convert (2) to a direct update on A; and use this
direct update in the proof. Using

IRy
===

e Pt

from (IJ), the update in (2) can be written as

1
Akt = T e
_ 1
T 1 4 e—pi—mecAe(1=A) 10— Fz.1]
1

1+ 1%5“e*ltet)\t(lf/\t)[gl,t*%,t]

)\teuet)\t,(l—)\t)@l,t

(6)

- Apererde(1=A)dne 4 (1 — )y )ererre(1=A)g2,e "

Unlike [[6] (Lemma 5.8), our update in @ has, in a certain
sense, an adaptive learning rate uA;(1 — \;) which requires
different formulation, however, follows similar lines of [[6] in
certain parts.

Here, for a fixed § € [0, 1], we define an estimator

N JANRPSN N
Ut =B+ (1 —B)jo = ulxy,

where (8 € [0,1] and u 2 [3 1— B]T. Defining

G = eterrt(1=Ae)
we have from @
At41 1— Aept
! 1— @) [ —— 0L
Bn()\t)—i—( B)n(lAt
= gpanG—In (MG +(1=MG) . )
Using the inequality

o <l—-z(1l-a)
for « > 0 and z € [0, 1] from [7]], we have
7= ()

i Y
<o (1Bt ),

91,¢tY
; —y
G

2Y
which implies in (7))
h(&ﬁ“+u—&)?j

S R )

2Y

:—YlnCt+ln<1—gt+Y(l— EY)), (®)

2Y

where §; = MG1e + (1 — Ap)Y2,e. As in [6]], one can further
bound (8)) using
2

In(1—q(1—e")) Spq+p§
for 0 < g < 1 (originally from [7])
m(&§“+w1ng§“)
Y2(1 2
S—YlnCt+(Qt+Y)lnCt+¥. (9)
Using @) in (7)) yields
At41 1— g
In{ —— 1-8)ln|{ ———— | > 1
o (M) r - (522 = a0
N . Y2(In¢)?
(i3 + Y) G — (31 + )G, — L1



At each adaptation, the progress made by the algorithm

towards u at time ¢ is measured as D(ul||w;) — D(u||wit1),
where w; = [)\t (1—x))T

D(u|lw) = Zulln (ug /w;)
is the KL divergence [7], [18], w € [0,1]*, w € [0,1]>. We
require that this progress is at least a(y; — ) —b(y: —Gp.1)>

for certain a, b, u [6], [7], i.e.,

(Z/t ) —b(l/t ?)B,t)z
< D(ulw;) — D(ullw1)

o (52) camom(1252). v

which yields the desired deterministic bound in after
telescoping.

In information theory and probability theory, the KL di-
vergence, which is also known as the relative entropy, is
empirically shown to be an efficient measure of the distance
between two probability vectors [6]], [[7]], [18]]. Here, the vectors
u and w; are probability vectors, i.e., u,w; € [0,1]? and
u”l = wl1 = 1, where 1 = [1 1)7. This use of KL
divergence as a distance measure between weight vectors is
widespread in the online learning literature [6], [13]], [|17].

We observe from and that to prove the theorem,
it is sufficient to show that G (v, ¢, Us,t, ) < 0, where

(Wt +Y)InG + (5: +Y) Ing,

) —b(y: —

G(yt, U1, Yst,C) is maximized when

o A
Gyt U, Up e, Ct) =
L YnG)®
2
For fixed yt,ytth,

+aly — 96.0)%. 12)

R tht .
Ygt — Yt + o 0
62

since - 7 = —2b <0, yielding 95 , = y+ — 1“4‘

. Note that

while takmg the partial derivative of G(-) with respect to Y.
and finding yﬁ’t, we assume that all y;, ¢, (; are fixed, i.e.,
their partial derivatives with respect to §jg ¢ is zero. This yields
an upper bound on G(-) in terms of gz ;. Hence, it is sufficient
to show that G(yt, §t, U5 4> ¢) < O such that [6]

G(yt’Q,Z)E,taCt)
1 .
= - <y I;gt>lnct+(yt+Y)1nCt

YQ(IH Ct)2 (In Ct)2
2 4b
(In¢)?
4b

+ +aly: — §:)* — (13)

=a(ye — 9¢)° — (ye — 9e) InGe +
| Pag)

2
= (Yt — Qt)2 X la — (1= N)

2021 =XN)2 Y2221 — \)2
+N t(4b t) + 1% t2( t) . (14)

For to be negative, defining k 2 At(1— ;) and

Ao 9, Y2 1
H(k) & A + ) -
it is sufficient to show that H (k) < 0 for k € [A*(1—AT), 1],
ie, k€ [AT(1-A1), ] when \; € [AT, (1—-AT)], since H (k)
is a convex quadratic function of k, i.e., %Zlg > 0. Hence,
we require the interval where the function H(-) is negative
should include [A*(1—AT), 1], i.e., the roots k1 and ks (where

ko < k1) of H(-) should satisfy

uk + a,

1
kl Z 17 k2 S )\+(1 - )\+)a
where
2
pt - dta (F+E) 14 T
k1 = YA ER = , (15
202 (5 + 35) 2us
2
pe i = 42a (O 4 %) - T
ko = VR = (16)
2 (T + E) 218

To satisfy k1 > 1/4, we straightforwardly require from (13

24241 —4as N
. =

To get the tightest upper bound for (I3)), we set
2421 —4as
s )

i.e., the largest allowable learning rate.
To have ky < AT (1 —AT) with u = 2+2v1—das Vsl_4as, from (T6)
we require

1-+v1—-4
95 <A1 - 2). (17)
4(1+ 1 —4as) —
Equation (T7) yields
Y2 1 1—22
as-a<2 +4b> 1 (18)

where
Al— 4)\“‘(1 — A1)

T I A1)
and z < 1 after some algebra.
To satisfy , we set b = %
€ > 0 that results
(1—2%)e

To get the tightest bound in (TI), we select

_ (1—22)e
Y2(2 + 1)

in (T9). Such selection of a, b and p results in (T1)
(1—22)e R € ~
<Y2(26+1) (ye — 5e)* — (ﬁ) (yr — yﬁ,t)Z
At41 1— g
<pl 1—-B8)ln|{ ————|.
<t () (1= pym (2

for any (or arbitrarily small)

(20)



After telescoping, i.e., summation over ¢, > ;" |, yields
aLy(§,y) —b min {L,(ys,
(@, y) ﬂe[m]{ (s, y)}

)\n 1 _)\n
< fBln ( /\Jlr1> + (1 — ﬂ) In (1/\J1r1> < O(l), (21)

so that
(1- 22)6 R (€ . )
<Y2(2€+ 0 Ln(9,y) (YQ) Smin {Ln(¥s,9)}
<0(1). (22)
Hence, it follows that
2¢+1
L,(9,y) — i L,(y 2
n(9:9) (122) ﬁrerl[g){ll]{ n(98,9)} (23)
(2¢ +1)Y?2 1
< 7 < -
~ ne(l—22) o) =0 e)’ @4

which is the desired bound.
Note that using

be € 4- (1—22)e . Y2+i
Y2 Y22 +1) T\ 2 4b)’
we get

C2+42y1T—4das  de 242z
r= s T2 t1 y2 o
after some algebra, as in the statement of the theorem. This
concludes the proof of the theorem. O

In the following lemma, we show that the order of the upper
bound using the KL divergence as the distance measure under
the same methodology cannot be improved by presenting an
example in which the bound on b is of the same order as that
given in the theorem.

Lemma: For positive real constants a, b and p which satisfies
(M) for all |y,] <Y, |g1s| <Y and |goy| <Y and A, €
(AT, (1 — AT)], we require
a
b>4a+ ———.
= R =

Proof: Since the inequality in (TT)) should be satisfied for all
possible ¢, 91+, Y2,¢, 3 and A, the proper values of a, b and
w should satisfy for any particular selection of y;, 91 ¢,
Y2,¢. B and X;. First we consider

yt::gl,t:K g2,t:075:1a )‘t:)\—‘ra

(orsimilarly, y; = 914 =Y, J2 = —Y and A\, = A"). In this
case, we have

a(Y —AtY)?

< ,ln()\Jr + (1 _ )\+)€M(Y7)\+Y))\+(1f,\+)(7y))
< ATl —p(1 =AY (1 - AN (-Y) (25
= u(1 = AT)PATY2, (26)

where (23)) follows from the Jensen’s Inequality for concave
function In(-). By (26), we have

a
w> m (27)

For another particular case where
Yye=-Y/2, 114 =0, o =Y, B=1, \s = 1/2,

we have

Y
a(-Y) - h(- 2
1 1 1
< —ln(§ + ieu(*y)z(*%))
1 vy?
< 28
< —gkg (28)

where (28) also follows from the Jensen’s Inequality. By (28],
we have

1 a
b>dat+ b >da+ — 2
SRt 2T DRy

where follows from (27), which finalizes the proof. O

(29)

IV. SIMULATIONS

In this section, we illustrate the performance of the learning
algorithm (2)) and the introduced results through examples. We
demonstrate that the upper bound given in (@) is asymptotically
tight by providing specific sequences for the desired signal y;
and the outputs of constituent algorithms ¢ ; and 7> ;. We also
demonstrate that to get a tighter asymptotic bound, we require
a smaller learning rate u, as suggested by our theoretical
analysis.

In the first case, we present the regret of the learning
algorithm (2)) defined in () and the corresponding upper bound
given in ([@). We first set Y = 0.5, At = 0.08 and p = 0.08.
Here, the desired signal is given by

Y=Y

for t = 1,...,10000. For this specific example, the parallel
running constituent algorithms produce the sequences

Gt =Y, Gor = (-1)Y

for £ = 1,...,10000. Note that, in this case, the best convex
combination weight is 5, = 1 and the cumulative loss of the
best convex combination is O since y; and g; ; are identical.
In Fig. [Ta] we plot the time-normalized regret of the learning
algorithm (@) “Time-normalized regret, p; = 0.08” and the
upper bound given in @) “O(1/(ne;))”. From Fig. we
observe that the bound introduced in is asymptotically
tight, i.e., as n gets larger, the gap between the upper bound
and the time-normalized regret gets smaller.

In the second case, we set Y = 0.54, At = 0.08 and p =
0.04. Here, the desired signal is given by

Yt = 0.5

for ¢t = 1,...,10000. For this example, the constituent
algorithms produce the sequences

G1e=Y, for = (~1)'05

fort =1,...,10000. In this case, the best convex combination
weight is 8, = 0.96, however, unlike the first case, the
cumulative loss of the best convex combination is nonzero.
In Fig. [Tb] we plot the time-normalized regret of the learning
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Fig. 1: Tightness of the regret bound. (a) 1 = 0.08. (b) ps =
0.04.

algorithm (2) “Time-normalized regret, po = 0.04” and the
corresponding upper bound given in @) “O(1/(nez2))” for this
example. We observe from Fig. [Tb| that the bound introduced
in (@) is asymptotically tight. We also observe that, in this case,
the upper bound is tighter compared to the first case since the
learning rate, and consequently the parameter ¢ is smaller, as
suggested by our theoretical results.

In this section, we illustrated our theoretical results and the
performance of the learning algorithm (2) through examples.
We observed that the upper bound given in (@) is asymptot-
ically tight by presenting two different examples, i.e., two
different cases for the desired signal y; and the outputs of
constituent algorithms 7, ; and {2 ;. We also observed that to
get a tighter asymptotic bound, we require a smaller learning
rate u, as suggested by the results introduced in Section

V. CONCLUSION

In this paper, we analyze a learning algorithm [9]] that
adaptively combines outputs of two constituent algorithms
running in parallel to model an unknown desired signal from
the perspective of online learning theory and produce results in
an individual sequence manner such that our results are guar-
anteed to hold for any bounded arbitrary signal. We relate the
time-accumulated squared estimation error of this algorithm at
any time to the time-accumulated squared estimation error of
the optimal convex combination of the constituent algorithms
that can only be chosen in hindsight. We refrain from making
statistical assumptions on the underlying signals and our re-
sults are guaranteed to hold in an individual sequence manner.
We also demonstrate that the proof methodology cannot be
changed directly to obtain a better bound, in the convergence
rate, on the performance by providing counter examples. To
this end, we provide the transient, steady state and tracking
analysis of this mixture in a deterministic sense without
any assumptions on the underlying signals or without any
approximations in the derivations. We illustrate the introduced
results through examples.
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