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Achieving Delay Diversity in
Asynchronous Underwater Acoustic (UWA)
Cooperative Communication Systems

Mojtaba Rahmati and Tolga M. Duman, Fellow, IEEE

Abstract—In cooperative UWA systems, due to the low speed
of sound, a node can experience significant time delays among
the signals received from geographically separated nodes. One
way to combat the asynchronism issues is to employ orthogonal
frequency division multiplexing (OFDM)-based transmissions at
the source node by preceding every OFDM block with an
extremely long cyclic prefix (CP) which reduces the transmission
rates dramatically. One may increase the OFDM block length
accordingly to compensate for the rate loss which also degrades
the performance due to the significantly time-varying nature of
UWA channels. In this paper, we develop a new OFDM-based
scheme to combat the asynchronism problem in cooperative
UWA systems without adding a long CP (in the order of the
long relative delays) at the transmitter. By adding a much
more manageable (short) CP at the source, we obtain a delay
diversity structure at the destination for effective processing and
exploitation of spatial diversity by utilizing a low complexity
Viterbi decoder at the destination, e.g., for a binary phase shift
keying (BPSK) modulated system, we need a two-state Viterbi
decoder. We provide pairwise error probability (PEP) analysis
of the system for both time-invariant and block fading channels
showing that the system achieves full spatial diversity. We find
through extensive simulations that the proposed scheme offers a
significantly improved error rate performance for time-varying
channels (typical in UWA communications) compared to the
existing approaches.

Index Terms—Asynchronous communication, cooperative sys-
tems, underwater acoustics, OFDM.

I. INTRODUCTION

OOPERATIVE UWA communications which refers to a

group of nodes, known as relays, helping the source to
deliver its data to a destination is a promising physical layer
solution to improve the performance of UWA systems [1], [2],
[3]. In a UWA cooperative communication system, the time
differences among signals received from geographically sepa-
rated nodes can be excessive due to the low speed of sound in
water. For example, if the relative distance between two nodes
with respect to another one is 500 m, then their transmissions
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experience a relative delay of 333 ms. Considering, for in-
stance, that in an OFDM-UWA cooperative communication
scheme with 512 sub-carriers over a total bandwidth of 8 kHz,
the OFDM block duration is only 64 ms, the excessive delay
of 333 ms becomes problematic. Furthermore, UWA channels
are highly time varying due to the large Doppler spreads
and Doppler shift effects (or Doppler scaling) [4]. Therefore,
a practical non-centralized UWA cooperative communication
system is asynchronous with large relative delays among
the nodes and sees highly time-varying frequency selective
channel conditions.

Our focus in this paper is on asynchronous cooperative
UWA communications where only the destination node is
aware of the relative delays among the nodes. Existing sig-
naling solutions for asynchronous radio terrestrial cooperative
communications rely on quasi-static fading channels with
limited delays among signals received from different relays
at the destination, e.g., see [5] and references therein, in
which every transmitted block is preceded by a time guard
not less than the maximum possible delay among the relays.
Therefore, we cannot directly apply them for cooperative
UWA communications. Our main objective is to develop new
OFDM based signaling solutions to combat the asynchronism
issues arising from excessively large relative delays without
preceding each OFDM block by a large CP (in the order of
the maximum possible relative delay).

In systems employing OFDM, e.g., [6], [7], the existing
solutions are effective when the maximum length of the
relative delays among signals received from various nodes are
less than the length of an OFDM block which is not a practical
assumption for the case of UWA communications. In [6], a
space-frequency coding approach is proposed which is proved
to achieve both full spatial and full multipath diversities. In [7],
OFDM transmission is implemented at the source node and
relays only perform time reversal and complex conjugation.
A trivial generalization of existing OFDM-based results to
compensate for large relative delays may be to increase the
OFDM block lengths. The main drawback in this case is that
inter carrier interference (ICI) is increased due to the time
variations of the UWA channels. Another trivial solution is to
increase the length of the CP. This is not an efficient solution
either, since it dramatically decreases the spectral efficiency
of the system.

There are several single carrier transmission based solutions
reported in the literature as well, e.g., [1], [8], [9], [10],
[11], [12]. In [1] a time reversal distributed space time block
code (DSTBC) is proposed for UWA cooperative commu-
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nication systems under quasi-static multipath fading channel
conditions. In [8], a DSTBC transmission scheme by decode
and forward (DF) relaying is proposed which achieves both
full spatial and multipath diversities. A distributed space time
trellis code with DF relaying is proposed in [9], [10] which
under certain conditions can achieve full spatial and multipath
diversities. In [11], [12], space time delay tolerant codes are
proposed for decode and forward relaying strategies where
in [11] a family of fully delay tolerant codes and in [12]
a family of bounded delay tolerant codes are developed for
asynchronous cooperative systems.

In this paper, we focus on OFDM based cooperative UWA
communication systems with full-duplex AF relays where all
the nodes employ the same frequency band to communicate
with the destination. We assume an asynchronous opera-
tion and potentially very large delays among different nodes
(known only at the destination). We present a new scheme
which can compensate for the effects of the long delays among
the signals received from different nodes without adding an
excessively long CP. We demonstrate that we can extract
delay diversity out of the asynchronism among the cooperating
nodes. The main idea is to add an appropriate CP (much
shorter than the long relative delays among the relays) to
each OFDM block at the transmitter side to combat multipath
effects of the channels and obtain a delay diversity structure
at the destination.

The paper is organized as follows. In Section II, the system
model and the structure of the OFDM signals at the source,
relays and destination are presented. The proposed signaling
scheme which includes appropriate CP addition at the source
and CP removal at the destination is explained in Section III.
Furthermore, it is shown that the proposed scheme gives a
delay diversity structure at the destination for large relative
delays among the relays. In Section IV, we present another
transmission scheme which is also useful for delay values less
than one OFDM block and provides the same delay diversity
structure for longer delay values. In Section V, the PEP
analysis of the system under both quasi-static and block fading
channel models is provided. In Section VI, the performance
of the proposed scheme is evaluated through some numerical
examples. Finally, conclusions are given in Section VII.

II. SYSTEM AND SIGNAL MODELS

We consider a full-duplex AF relay system with two relays,
shown in Fig. 1, in which there is no direct link between source
(S) and destination (D), and the relays help the source deliver
its data to the destination by using the AF method. No power
allocation strategy is employed at the relay nodes and they use
fixed power amplification factors. Note that the model can be
generalized to a system with an arbitrary number of relays and
a direct link between source and the destination, and optimal
power allocation can be used in a straightforward manner. We
assume that the channels from the source to the relays and the
relays to the destination are time-varying multipath channels
where h;(t,7) and g;(t,7) represent the source to the i-th
relay and the ¢-th relay to the destination channel responses
at time ¢ to an impulse applied at time ¢ — 7, respectively.

Before presenting the system model of the new relaying
scheme, we would like to give an example to demonstrate how
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Fig. 2. The structure of the received OFDM blocks from two different relays
of the proposed delay diversity scheme for a relative delay of D seconds.

a delay diversity structure is obtained. For illustration, Fig. 2
shows the received OFDM block structure of the proposed
delay diversity scheme from two different relays with a relative
delay of D seconds. In Fig. 2, D is in a range that each
block relayed through the relay R; is overlapped with its
preceding block relayed through the relay Rs. E.g., under
quasi-static fading scenario, each subcarrier of a received
block is a summation of the corresponding subcarriers from
two successively transmitted blocks which results in a delay
diversity structure [13].

A. Signaling Scheme

At the transmitter, we employ a conventional OFDM trans-
mission technique with /N subcarriers over a total bandwidth
of B Hz. We consider successive transmission of M data
blocks of length N symbols. In discrete baseband signaling
form, the m-th (m € {1,...,M}) data vector (in time)
is denoted by X = [X{,..., X% ;|7 and the samples
of the m-th transmitted OFDM block are represented by
™ = IFFT(X™) = [z, ...,2% |17, where ()T de-
notes the transpose operation. Therefore, we have z]' =
\/—% kN:_Ol Xmel Rn. After adding a CP of length Ncp
to ™, the CP-assisted transmission block ™ results. By
digital to analog (D/A) conversion of ™ with sampling period
T, = & seconds, we obtain the continuous time signal Z™(t)
with time duration of T'= (N + N¢p)Ts seconds which can
be written as

N-1
1 o
=N > X MR, (1)
k=0

where z)' = 2™ (nTs), R(t) = u(t + NopTs) — u(t — NTy)
and u(t) denotes the unit step function. Furthermore, for the
continuous time transmitted signal z(t), we can write Z(t) =
Yo & (t = (m = 1)T).

At the i-th relay (i € {1,2}), the signal g;(t) is received,
hence the part of g;(t) corresponding to the m-th transmitted
block, i.e., §"(t) = g;(t + (m — 1)T)R(t), can be written as

gm(t) = / ™ (t — ) (t, T)dT + 27 (t)

+> /OO ™ (t — (m' —m)T — 7R (t, 7)dr,  (2)

m/#m”

ISI
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where 27" (t) = z1,(t + (m —

’ DT)R(t), h"(t, ) = hi(t +

(m —1)T,7)R(t) and 27" (t) are independent complex Gaus-
sian random processes with zero mean and power spectral
density (PSD) of a%’i. By taking only the resolvable paths
into account, we can write h;(t,7) = Zlehl hi (6)0(T—Th, 1),
where L, denotes the number of resolvable paths from the
source to the i-th relay, hu(t) are independent zero-mean
(for different ¢ and /) complex Gaussian wide-sense stationary
(WSS) processes with a total envelope power of ‘7}2”71 (.e.,
independent time-varying Rayleigh fading channel tap gains)
assuming that 37, op., = 1,and 7,,; > 0 denotes the
delay of the I-th resolvable path from the source to the i-th
relay. Assuming 7,1, < NcpTs, i.e., the length of the CP
overhead is greater than the delay spread of the channel (the
main job of the CP to guarantee robustness against multipath),
and defining I7%(t) = Zl PR TN+ T — Ty ), we
can rewrite (2) as
Z e

"t = Th ) + 17 z( )—1—21”1(75) 3)

We assume that the signal passing through the second relay
is received D seconds later than the signal passing through the
first relay and we also assume 75,, 1 = 74,1 = 0 for i = {1, 2},
i.e., the delay spread of the channel h; (g;) is 74, Ln, (Tg:, Lgi)'
Therefore, by denoting the amplification factor of the i-th relay
by +/P;, for the received signal at the destination (), we have

= [ VR -
+ /jo VPoija(t — D — 7)ga(t, 7)dT + 25(t), (4)

where 22(t) is a Gaussian random processes w1th Zero mean

and PSD of 3. By employing g;(t,7) = Zl 1 9i(t)(T —
Tg:,1) in (4), we obtain
Lgl
g(t) = > VPrgiit)gi(t —74,1)
=1
L92
+ > VPagoi(t)7a(t — Tgp — D) + 22(t).
=1

Defining 2(t) = 2(t) + S VP ()21 (E — Ty) +
Zz 1V Pag2,(t)z12(t — 74,,1) Which represents a Guassian

random process conditioned on known g; ;(¢) for all ¢ and [,
we can write

Lgy Lny

= VPig1i(t)D hag(t =T )t =Ty 01— Thy q) +2(2)
=1 q=1

Lp,

)Z ha,q(t—D—T7gy,1)Z(t—D—Tgy,1 = Thy,q)-

Lgqy

+ Z\/ Pago,(t
=1

Note that without conditioning on g;;(t), z(t) represents
a complex random process with zero mean and PSD of
0? = P07 | + P20} 5+ 03. Therefore, we define the received

signal to noise ratio (SNR) as %_ We also define I, —
max;(Th;,L, . +Tg; Ly, ) _
{ h L{i 9i.Lg, -‘ where 7p,,1,,. + 7g;,1,, 1s the delay
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Fig. 3.

The structure of the received signal.
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Fig. 4. The structure of the receiver.

spread of the overall channel experienced at the destination
through R;.

III. DELAY DIVERSITY STRUCTURE

To achieve a delay diversity structure and overcome ISI at
the destination, we need to add an appropriate CP at the source
and perform CP removal at the destination.

A. Appropriate CP Length

In a conventional OFDM system, if we have a window of
length (N 4 L)T seconds corresponding to one OFDM block,
then by removing the first L samples of the considered window
and feeding the remaining N samples to the FFT block, the ISI
is completely removed. Therefore, in our scheme, to guarantee
robustness of the system against ISI, we need to have an
overlap of length (N+L)Ts seconds between two blocks
received from two different relays at the destination. Fig. 3
shows the structure of the received signal at the destination for
the case that the blocks relayed by R, are received D seconds
later than the blocks relayed by R;, where T' < D < 2T
and d = mod(D,T) with d = mod(D,T) denoting the
remainder of division of D by 7. To obtain the appropriate
overlap structure, we need to have T'— d > (N + L)T; or
d > (N + L)T; or both which results in 7' > 2(N + L)Tj,
ie., Ncp > N +2L.

B. Received Signal at the Destination

The baseband signaling structure of the receiver is shown
in Fig. 4, where g™ = [43", ..., U\ 4 N 1] denotes the sam-
pled vector of the received signal in the m-th signaling interval
and b is the starting point of the m-th FFT window which is
decided by the destination based on the delay value D. Since

Nep > N + 2L, by defining ™ (t) = g(t + (m — 1)T)R(¢),
we can write
yr(t) = 1" () + 13" (1) + 2™(¢)
Lg, L,
+Z \/Plgll Zhlq Tgh m(t_Tghl_Thl;q)
=1
Lg, Lhz
Y V0 S P i)
=1 q=1
x T BD(t —d, — Tga,l — Th2’q) ,
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Fig. 5. Example of different situations for BD and d.
where
I1"(t) =

Lgy Ly,

D VP() Y bt = mg00) X TN+ T = g0 = Thya)
=1 q=1
and

Lgy Lhy
50 = VB, Zg;'fl+BD(t)Zh£qu(t—d7-—Tg2,l)><
=1 g=1

[jm_l(H'T_dT_ng,l_Thzyq)‘Ffm-‘—l(t_T_dT_ngyl _Thzyqn

represent the ISI, and BD and d,, as shown in Fig. 5, denote
the effective OFDM block delay and effective residual delay
observed at the destination, respectively. For BD and d,., we
have

[ [B] ., d<(N+L)T
BD—{ b1 L asweLT ®)
and d d<(N+L)T
_ ) = S
d’”—{d—T . d>(N+ LT, ©

respectively (note that when m—BD < 0, 2™~ BP(t) = 0 for
all values of t). More precisely, BD represents the number of
block delays between two received OFDM blocks which have
at least an overlap of length (N + L)T seconds (necessary to
combat the ISI). As discussed in Section III-A, by choosing
Ncp > N + 2L, achieving the appropriate overlap between
the received OFDM blocks is guaranteed. By appropriate CP
removal (whose details are explained in Section III-C), y™ is
obtained as y™ = [§"(bT%), ..., 5" ((b+ N —1)Ts)]. By tak-
ing FFT of y™, we have Y™ = [Y{",..., Y} ;] = FFT(y™)
where Y, are given in (7) at the top of the next page, which
can be written as

Y," = GHT (k) X™ + GHY PP (k) xX™ B 4 7z

where GH"(k) = [GH]"[k,0],--- ,GH[k, N — 1]] with
GH]"[k, k'] given in (8) at the top of the next page and Z;* =
ﬁ Eiif‘l Zm(nTs)e_ﬂka conditioned on channel state
information are complex Gaussian random variables with zero
mean. Hence, by defining X™ = Oy for m < 1 and m > M
and X™ = [ X, X7 - X )T for 1 < m < M, we can
write

Y™ =GHX™+GHy BPXxm=BD y zm  (9)

T
where GH" = |[GHY(0)",....GH(N=1)"] . In
fact, GH" represents the effective S — R; — D channel seen
by the destination in frequency domain which depends on both
S — R; — D channel and the position of the FFT window.
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Fig. 6. Ditferent possible FFT windowings for different ranges of d (a) d >
(N +2L)Ts, 0) (N + L)Ts < d < (N +2L)Ts, (¢) NTs < d <
(N + L)Ts, and (d) d < NTs

C. Appropriate CP Removal at the Destination

To take FFT at the destination, we need to choose the
FFT window by appropriate CP removal. Since the received
OFDM blocks are not synchronized, we align the receiver
FFT window with one of the relays. By precise alignment,
an overlap of length (N+L)T, seconds between the OFDM
blocks received through R; and Ry can be achieved which
is determined with the value of d. Note that an overlap of
at least N+L samples is necessary to guarantee robustness
of the transmission against ISI. As shown in Fig. 6, for
d > (N + L)T, the receiver FFT window is aligned with
Ry and for d < (N + L)T it is aligned with R;. The only
effect of unaligned FFT windowing in time at the destination,
as long as appropriate CP removal is done, is phase shift at
the frequency domain included in the definition of GH".

D. Detection by Viterbi Algorithm

For the time-invariant channel scenario the noise samples
Z" are independent complex Gaussian random variables for
all m and k and i.i.d. for any specific k. Therefore, for time-
invariant channel conditions, IV parallel Viterbi detectors with
MBP states (assuming M-PSK modulation) can be employed
for ML detection of the transmitted symbols, where the k-
th Viterbi detector gets Y, as input to detect the transmitted
symbols over the k-th subcarrier. On the other hand, for the
time-varying channel scenarios, the received noise samples at
each OFDM block are dependent complex Gaussian random
variables conditioned on known channel state information.
Note also that the noise samples corresponding to different
FFT windows at the destination are independent but not nec-
essarily identically distributed. However, by approximating the
received noise samples Z;"* as independent complex Gaussian
random variables, Viterbi algorithm can be employed as a
detector at the destination and extract delay diversity out of
the asynchronous system.

The complexity of the Viterbi algorithm for the time varying
case is prohibitive due to the ICI effects. Therefore, we
implement a suboptimal detector in which we ignore the ICI
effects and assume that Z;"* are i.i.d. for any given subcarrier
k, and employ the same structure as in the time-invariant case.
Hence, Y, = [Y/1,...,Y/M] is given to the k-th Viterbi
decoder where [Yy™,...,Y\™,] = diag(Y,,) and diag(A),
with A being a square matrix, denotes a vector of diagonal
elements of A.
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1 b+N-—1 .
W fnzoym v VR
1 b+N—1 - Lgy nth
X S | S VR S 0T, )87 0T, = o =) 20T
n=>b =
Ly
+Z¢ng nTy Zhé”q BP(nTy = dy — 74, )E™ PP (T — dy = Thy g — Tgp0) [ N, (7)

\/?bJrN*l L th 2 . -
G =S S ) S 07 )
n=b [=1
b+N-—1 ng th
P ; s / ’
GHy PPk K] = Y g5 (nT2) S B BP (0T, — dy — 7, ) € N [ ZRT R iy )] (g)

q=1

IV. A MODIFIED AMPLIFY AND FORWARD RELAYING
SCHEME

In Section III, we presented a new scheme which achieves
the delay diversity structure for BD > 0; however, for
BD = 0, the scheme does not provide spatial diversity. To
address this limitation, we present a slightly modified version
of the proposed scheme in this section which achieves the
delay diversity structure for large values of the relative delay
D, ie., BD > 1, and also provides diversity for small values
of D, ie., BD =0.

We still employ full duplex amplify and forward relay
nodes. Similar to the scheme described in Section III, the
second relay simply amplifies and forwards its received signal.
The only modification is at the first relay in which instead
of forwarding the received signal unchanged, a complex
conjugated version of the received signal is amplified and
forwarded to the destination. At the receiver, if the signal
from the second relay is received D seconds later than the
signal from the first relay, by following the same steps as in
Section III-B, we can write

Y = GHP PP ()X B 4z + 1/P1 L

Lgy Ly

ParEa) At
=1 q=1

s _7-91,1)*‘77m(nT5 ~Thi,q _7-9171)*]

=GH, (k)X" + GHy 8P (k) x™ B8P 4z (10)

where GH, (k) = [GH, [k,0],--- ,GH, [k, N — 1]] with
b+N 1Lgy
GHY [k, K] = Z Zg“nT

th
27rn ’
E: m ok K —k) —j2EE (rg i+
X 1,q (TL S—’Tgl’l)@] ( ) N 3( 915l s q) 5

q=1

gy 003

GHy PP(k) is as given in (7), X =
(X5, XX_1,---,X{], and Z]* has the same statistical
properties as in (7). Obviously, since h’," (nTs — 74, 1) and
ht, (nTs — 74, 1) have the same probability density function,

then GH, [k, k'] and GH™[k,k'] have the same density
function as well.

For the block fading scenario, where GHT(k, k') =0 and
GHY'(k, k') = 0 for k # k' and all m, we arrive at

Ykm _ CTV_I_ITkX}?_k* + GHm_BDXm_BD + Z]T (ll)

for k # 0, and Y" GH1 o Xy +GHy BD xm=BD 4 7m
for k = 0.
For BD = 0, if we focus on ;™ and Y7, | (k#0, §)

then we have

ym [ oxm Zm
R PR R P
with e
m GHgfk GH,
g GHyn_ ), GHI'v_.* ] '

Therefore, based on the optimal maximum likelihood (ML)
detection criteria (assuming [Z]", Z3_,*] as white Gaussian
noise), for the optimal detector, we obtain

. . xm
X' XN ] =argmax  [Re<[Y™ Y L|CV | ok« ]}
(X% N—k] X%"ﬂXﬁ_k[ {[ N k} k [XNk

I}

which offers spatial diversity. Note that for &k = 0 and
k = %, no diversity is provided; however, in detection of
the remaining sub carriers spatial diversity is extracted out of
the proposed system. The worst case is to not occupy the sub-
carriers k = 0 and k = % for data transmission which results
in a very small loss in rates, e.g., in an OFDM transmission
with N = 1024 subcarriers, the system experiences a rate loss
of less than 0.2%.

On the other hand, for BD > 0, the received signal
preserves the delay diversity structure presented in Section II.
Obviously, for k € {0,4}, YJ" depends only on X" and
X"~ BP and the delay diversity structure is similar to the
previous scheme. For k # 0 and %, by focusing on X}”* and

X7}_; and considering the block-fading case, we have

X

1 * m m m
- 5 [X;en 7XN7k] Ck Hck |: Xﬁ,k*
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Y, @i K XNk
T || T, NP Gnb XA
k Hip  X\PPPT 4+ GHy PP XTEP
Zl
Zl+BD*

N—
+ Z1+23D

Therefore, we expect to achieve the same performance as
the scheme introduced in Section II. Moreover, by this new
scheme we are also able to extract diversity out of the system
for BD = 0.

V. PAIRWISE ERROR PROBABILITY ANALYSIS

Design of the space-time codes is out of the scope of
this work; however, we present the PEP performance analysis
of the system under quasi-static and block fading frequency
selective channel conditions which can be useful in a diversity
order analysis of the proposed scheme and possible space-time
code designs. In the following, we present the PEP analysis for
the quasi-static and block fading frequency selective channels,
respectively.

A. Quasi-Static Frequency-Selective Channels

In this section, we consider the PEP performance analysis
for ML detection presented in Section III-D. We provide
the result under the condition that the channels from the
source to the relays have significantly higher SNRs than the
channels from the relays to the destination, i.e., = >>
We assume that the channels are quasi-static Raylelgh fadlng,
i.e., the channel gains in time domain are random variables
but fixed for the transmission of M consecutive OFDM
blocks. We denote hj"y (nTs) = hi, and g}y (nTs) = g;, for
n=4{0,...,N—1} and m={1,..., M}, where hiy and g;
are zero mean circularly symmetnc complex Gaussian random
variables with variances of ah 4 and ag ;> respectively, with

S oy, ;= 1and Sy o2, ;= 1. For the PEP of the under
consideration scenario, we obtain (see Appendix A),

P (X}, — X)) <

803 P 4_ 4 P 4__ 4
P1P2(Sﬁ—f;f)l (1—1—4 51/ Sp—[r |log 1+4U%\/sk fe s

(13)

where fk — }Em BD+1(Xm X/m)(Xm BD X/m BD)

and s; = Zm X — Xj™|2. We observe from (13)
that the system achieves the diversity order of 2. For
instance, for P, = P, we have SNR = 2P 2L and

P(X) — X}) < 25N jog (14 SAR \/T) .

B. Block Fading Frequency-Selective Channels

In this section, we analyze the PEP performance of the
proposed scheme under block fading frequency selective
channels. Similar to the analysis for the quasi-static fading
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scenario, we assume that the channels from the source to the
relays have significantly higher SNRs than the channels from
the relays to the destination. We first give the considered block
fading channel model. We then provide a discussion on the
discrete noise samples at the destination under the block fading
channels and at the end provide the PEP analysis for which
similar to the quasi-static channel conditions, we assume that
no coding is employed over the subcarriers and focus on the
spatial diversity analysis of the system.

1) Block Fading Frequency-Selective Channel Model:
Here, we follow the same channel model and procedure used
in [14] in which the PEP performance analysis of space-
time coded OFDM multi-input multi-output (MIMO) system
over correlated block fading channels has been considered.
The main difference between the system model in [14] and
the one in this paper is in the effective channel model and
the noise experienced at the destination. In fact, we need to
make some simplifying approximations to be able to derive
a closed form upper bound on the PEP of the system. By
approximating the received noise samples Z;* as complex
Gaussian random variables (see Section V-B2), we provide a
PEP analysis under the block fading channel scenario in which
channel coefficients are fixed during each block transmission
and change block by block based on the following Fourier
expansion relation [15] (for ease of presentation we assume
that Ly, = Ly, = L, 7,,) = 74,4 = 7; and all the channels
experiencing the same Dopleerlfrequency shift fy)
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in which «;;[n] and B;;[n] are independent circularly
symmetric complex Gaussian random variables with
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zero mean and variance of Uz; L and U]'.:f't'l, respectively,
with Ly = [2fqMT + 1]. ]} and g;j can also be
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Since all the channels are block fading, for GH{" [k, k'] and
GHI'[k, k'], we have
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2mkT
and wy(k) = [e™? e e i ]T. On the other hand,

by defining W;(m) = dzag{'wt( )y, wie(m) oo, <L
vi = [af(1),....,af (D), ¢ = [51( ), B1 (L))"
and g, = [,6'2( ),...,ﬁg( )] e~2M N A e obtain

HY} = v Wi(m)wy (k) and GT}, = qf Wi(m)w; (k).

2) Discussion on the Statistics of the Noise Samples: For
the block fading scenario, we have 1"} (t) = b} and g}'}(t) =
g;7> hence we can write
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Since the noise samples from the OFDM block durations
m and m' (m # m') are independent then obviously
E{ZZ™ } = 0. Furthermore, for E{|Z™|*}, we can write
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By using the facts that z;;(t) are zero mean independent
Gaussian random processes (as a result E{z1, 1( )z12(t)} =0
for all ¢ and ¢') and E{z;;(t)z;:(t")} = o3 ,6(t —t'), we

obtain
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where f; and f> only take positive integer values. Since Z;"
are independent for a specific £ but not identically distributed,
the optimal ML detection can be obtained by employing
Viterbi detector over the normalized received signals according
to E{|Z"|?}. However, in the following, we provide the PEP
analysis by approximating the received noise samples Z;"
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as i.i.d. complex Gaussian random variables with zero mean
and variance of o2 to match with the sub-optimal detector
we considered for the general time-varying channel case in
Section III-D.

3) PEP Analysis: Conditioned on known channel state in-
formation at the receiver, for the considered Viterbi detector!,
we have

M+BD 2

X, = argmin Z v —GHW X" — - GHy X7 BP
X m=1 /

where X;* = 0 for m < 1 or m > M, andGH{”,~C =

G H", and GH3Yy = Gm HyY e 2InTs TS Therefore

under the assumption that —— are sufﬁaently larger than

we obtain (see Appendix B)
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VI. SIMULATION RESULTS

A7)

To provide numerical examples we assume that the to-
tal occupied bandwidth is 8 kHz (over the frequency band
from 12 kHz to 20 kHz). We define f; as the Doppler
frequency shift observed at the destination in Hz, and oj, =
[Oh;.05--- ,ahi,Lhi]. We assume P; =1, 73,1 = 74,1 = T =
1250 ps, and 02| = 203 (i € {1,2}).

In Figs. 7 and 8, we compare the performance of the pro-
posed scheme with the performance of the scheme proposed
in [7] for different values of f;Ts under two different scenar-
ios where quadrature phase-shift keying (QPSK) modulated
symbols are transmitted over N subcarriers. The parameters
of the two scenarios are reported in Table I in which to
make a fair comparison, both schemes are set to the same
data transmission rate. We generate time varying Rayleigh
fading channel tap gains following the Jakes’ model [16]. We
chose [7] for comparison since it also considers an OFDM

'For the considered block fading channels, the optimal ML detection
is obtained by normalizing the received signals over each subcarrier with
variance of its corresponding noise; however, we present the result for the
case that there is no normalization to match with the Viterbi detection of the
general time-varying case.
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TABLE I

PARAMETERS OF TWO DIFFERENT SCENARIOS USED TO COMPARE THE PROPOSED SCHEME WITH THE SCHEME IN [7].
Scenario Scheme N M D on, = 0g, (4,1 €{1,2}) | Nep | T (ms) | Data Rate (kb/s)

g Proposed Scheme | 512 | 100 | 10397 1, 0.8, 0.6 /\/5 522 | 129.25 7.9226

! Scheme from [7] | 1024 | 2 10397 1, 0.8, 0.6 /\/5 1044 | 258.5 7.9226

s Proposed Scheme | 256 | 100 | 5277 0.8, 0, 0.6 266 65.25 7.8467

2 Scheme from [7] 512 2 527T 0.8, 0, 0.6 532 130.5 7.8467

Scenario Sp Scenario S
10° 100
t———-i—————i—————-i—————4—————4—————-{—————4}- —_———t e e — 4
B e P L S e S

1071
102
=2 [+7
m m
M aa)
103
— — — Results from [7] — — — Results from [7]
4 Proposed Scheme 4 Proposed Scheme
10 +  fuTs=107" 10 +  fuTy =103
o faly=10"* o fals=10"*
e Jd=0 N o fli=0 =3
»
107° ; ; ; 1075 ; ; ;
20 22 24 26 28 30 32 34 20 22 24 26 28 30 32 34

SNR (dB) SNR (dB)

Fig. 7. Comparison between the performance of the proposed scheme with ~ Fig. 8. Comparison between the performance of the proposed scheme with
the scheme proposed in [7] under the scenario S7. the scheme proposed in [7] under the scenario Sa.

100

based cooperative transmission with full-duplex AF relays.
However, in [7], the relays perform time reversal and symbol
complex conjugation as well. In Figs. 7 and 8, we observe
that for the time-invariant channel case (f;7s = 0), the
performance of both schemes are identical. However, for 102
time varying scenarios, the proposed scheme outperforms the
scheme proposed in [7]. The reason is that, for the range of the o
relative delays considered, to attain the same data rate for both
schemes, the scheme proposed in [7] transmits longer OFDM
blocks (larger N) and as a result more ICI is experienced 10-*
over the received subcarriers. Obviously, by increasing fg4, i.e.,
faster fading conditions, more ICI are experienced over the
subcarriers and the performance becomes worse. We observe
that in the SNR range considered, the bit error rate (BER)
of the fast fading scenario (fy7Ts = 1073) reaches an error 1070 5 5 m e %0 o 0
floor. We expect that for higher SNR values, the slow fading SNR (dB)

scenario (f4Ts = 10~*) converges to an error floor as well.

In both cases, we employ a suboptimal Viterbi decoder to ~Fig. 9. Comparison between the upper bound (13) and actual PEP for
detect the transmitted signal, which assumes that the noise ;);’;C;e 1&122112{ k = [=1,1j_5,—1]" under quasi-static frequency
samples over the same subcarrier of different blocks are i.i.d.

and ignores the ICI effects to reduce complexity.

Upper Bound (13)

—o— Simulation Results

101

1075

In Fig. 9_’ we compare the PEP performance of the pr(.)pose.d X = 1wy, where 1), represents an all one vector, and
scheme with the derived upper bounds for the quasi-static X, = [17% 71’_171@]@ Note that the considered case is

frequency selective channel. We consider transmission of
M = 10 OFDM blocks with N = 64 binary phase-shift

keying (BPSK) modl[llated s%bcarriers over multipath channels
_ [1,0.8,0.6

the worst case scenario, i.e., gives the maximum PEP among
all the possible pairwise error events (s — fi is minimized).
We observe in Fig. 9 that by increasing SNR we achieve a

with o, = 04, = 2 where. there is a.relative delay  (ighter upper bound on PEP. Furthermore, as we expect for
of 145 T second§ between the signals received from the pjoh SNR values, the diversity order of the system is 2 which
two relay nodes, i.e., BD = 1. Furthermore, we assume i que to the delay diversity structure of the system.

0_2
that P = P, = 1, 0, = 0o %,2 = ﬁg Therefore,.the In Fig. 10, we compare the derived upper bound on
SNR of the system at the receiver is 307" We consider P(X) — X)), for X}, = 110 and several different X, as
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Case 1 Case 11 Case 111 Case IV
;c [_17131T [_17157_1]T [_1g71g] [_1717_1717_1717_1717_171]T
D( Xy, X ;C) 2 4 6 10
TABLE II

DIFFERENT CASES CONSIDERED IN FIG. 10 WITH X, = 119.

100

10—°
o
o
[y

10—1(]

—15
10 0 5 10 15 20 25
SNR (dB)

Fig. 10. Comparison between the upper bound (34) for X, = 119 and

X}, as given in Table IL

given in Table II under the block fading channel conditions
considered in Section V-B1 with f;T; = 0.01. We consider the
same transmission specs as considered in the study given in
Fig. 9. As we expected, larger D( X, X ) (as defined in (28))
results in a higher diversity order and a better performance
which shows the importance of designing appropriate codes
to extract the maximum possible diversity out of the system.

VII. CONCLUSIONS

We developed a new OFDM transmission scheme for UWA
cooperative communication systems suffering from asynchro-
nism among the relays by considering possibly large relative
delays among the relays (typical in UWA systems) and time-
varying frequency selective channels among the cooperating
nodes. The main advantage of the proposed scheme is in
managing the asynchronism issues arising from excessively
large delays among the relays without adding time guards (or
CP in OFDM-based transmissions) in the order of the max-
imum possible delay, which increases the spectral efficiency
of the system and improves the performance in time-varying
channel conditions compared with the existing solutions in
the literature. In fact, we showed that independent of the
maximum possible delay between the relays, by adding an
appropriate CP at the transmitter and appropriate CP removal
at the receiver, a delay diversity structure can be obtained at
the receiver, where a full-duplex AF scheme is utilized at the
relays. Through numerical examples, we evaluated the per-
formance of the proposed scheme for time-varying multipath
channels with Rayleigh fading channel taps, modeling UWA
channels. We compared our results with those of the existing
schemes and found that while for time invariant channels,

the performance is similar, for time varying cases (typical in
UWA communications) the proposed scheme is significantly
superior.

APPENDIX A
PEP ANALYSIS FOR QUASI-STATIC
FREQUENCY-SELECTIVE CHANNELS

Under the quasi-static channel conditions, for the channel
gains in frequency domain, we have

GH{"[k, k ]:\/-’:_)l {Z Zgl,lhl,qe NTs o0(k—Ek"),
=1 g=1
and
Lg, "
GHg[k,kl] =P Zgg7le 27— %
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NEL | e 2MINT (g — ),

X E h27q6_2ﬂ-]
q=1
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L,. _ 2 77gq,l
where for a fixed k, Gix = >, gi.€ M N1 and H;;=

kT
Ly, _ogihisa . .
>yt hige Ti~N7. are independent complex Gaussian ran-
dom variables with zero mean and unit variance. Hence, for
the received signal on the k-th subcarrier, we have

V" = GH [k, k| X" + GHy [k, K] X"~ BP 4 Zzm 0 (18)

where conditioned on g;; for all [ € {1,...,L,,} and i €
{1,2}, Z}" are i.i.d. complex Gaussian random variables with
zero mean and variance of 03+ P |Gy x[207 1+ P |G k|2 07 5.
The above relation for BD > 0 is a deléy diversity struc-
ture which can be used to extract spatial diversity out of
the relay system shown by the PEP analysis. If we de-

ﬁne Yk = [Ykla'--aYkMJrBD]’ Zk = [Zlia-..,Zli\/[JrBD]’
GH (k) = [GH: [k, k], GH>[k, k]] and
_[X3 X tBP XM 0
Xi= 0 X,i X]i\/[—BD X,i” ,

we can write Y, = GH (k)X + Z. Note that our focus
is on extracting spatial diversity out of the asynchronous
cooperative system which is attained in the form of the delay
diversity. In fact, we assume no explicit channel coding is em-
ployed across different subcarriers and as a result no multipath
diversity is attained; however, it does not mean that the system
does not achieve multipath diversity. Now, let us focus on a
given subcarrier, e.g., k-th subcarrier, where conditioned on
given g;; forl € {1,..., Ly, } and i € {1,2}, Z} is a complex
white Gaussian vector with zero mean and autocorrelation ma-
trix of (0’% + P1|G1’k|20'%_’1 + P2|G27k|20'%72) Iy +pp with
Iy denoting the M by M identity matrix. Therefore, the
Viterbi algorithm proposed in Section III-D can be used as
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an ML detection scheme on symbols transmitted over the k-
th subcarrier. Furthermore, by employing ML detection at the
destination for the conditional PEP over the k-th subcarrier,
P (X} — X} |GH(k)) which shows the probability of de-
ciding in favor of X, at the receiver while X, is the actual
transmitted symbol conditioned on the channel realizations,
we have
a2

(“%+P1‘Gl,k‘2“%Y1+P2‘G2,k‘2‘7%2)7

19)

where in deriving the last inequality the Chernoff bound is
employed [17, p. 58], dx = ||GH (k)(X i — X},)|| and |e||
denotes the Euclidean length of vector e. Therefore, we have

P(Xy—X,|GH (k) < %

1 a2
P(X)— X}) < 5Edk{e—ﬁ}, (20)

where Eg, {.} denotes the expected value with respect to the
random variable di. Under the assumption that U% > %,
1,4

Furthermore, due to the definition of the
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2 Z'Xk lm2, nd

M
. VP P.
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di GH(k)(X, — X)Xk — X)"GH" (k)
405 40%
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We also have |GH;lk, k]| = P;|H; ||Gi x|, where |H; | ~
Rayleigh(g) and |G| ~ Rayleigh(%), ie, |H;xl
and |G; | are Rayleigh distributed random variables, and
¢ are uniformly distributed random variables over [0, 27].
If we define a; = |H;x| and b, = |G;g|, then
% = aZa?by + Ba3b3 + 2a1a2b1bai cos(¢p), where ¢ =
Le I 91k=¢2k+028) s uniformly distributed over [0, 27].
Therefore, we have
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where the equality a holds due to the definition of the modified
Bessel function of the first kind I(.). Following the result
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from [18, p. 294. Eq. 2. 15. 1. 2.] we can write
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where F1(a) denotes the exponential integral function which
is given as Ey(a) = [~

follows sine e“Ej(a) < loggzl + 1). Invoking the result

of (22) in (20), and defining s? = M |X7 — X2
M m m m— m— *

and 2 = |0 (XJ" = XGm) (X7 PP = X[ BP)

yields

P (X — X})

805 P P>
<——22 __log(1 Vsi—fi log (14— /st — fi
PP (si— 1Y) g<+4 2V % fk) Og<+4ag 5k fk)’
(23)
under the assumption that the channels from the source to

the relays have higher SNR ratios than the channels from the
relays to the destination.

APPENDIX B
PEP ANALYSIS FOR BLOCK FADING
FREQUENCY-SELECTIVE CHANNEL
For the Viterbi detector, we have
M+BD
X = arg min
%2
where X;" = 0 for m < 1 or m > M, and GH{"}, =
GT.H, and GHY, = GUy.HIe %Jm
similar to (19) under the assumption that

2
Y — GHW X — GHYY X PP

. Therefore,
are sufficiently

1,1‘

larger than , We can write

. 2(X X))
P(Xy — X |Hi, Gy, i€ {1,2}) < 3¢ i
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where  d?( X, X)) = SIMEBD Gm GHT AT+
Gy Hy d" PP and by defining Wy g(m,k) =
diag{W(m)w (k), W, (m)w(k)}, di* = X;* — X,/ and
di(m) = [d*,d~PP]T, we can write
M+BD
(X, Xi)= wa m)[v1q7 s v2q; |W e, (m, k)di(m)

x di (m)W (m, k)[viq] , vaqs |7 W, (m)wi (k).

On the other hand, we have
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Furthermore, by defining g(k) = [q?Al(k),quAz(k)}H,

and W 4 ¢(m) = diag{W 4+(m), W +(m)}, we can write
wi (W] (m)[via],v2qs] = q(k) W (m).
Therefore, defining

Wai(m)]. (24

(25)

Da(Xy, X))
M+BD
= Z W a,i(m)W s (m, k)dy.(m)dy (m)W iy (m, k)W, (m),
yields to
P (X, X)) = qk) DX, X)q(k).  (26)

Since D (X, X}) is a positive semi-definite matrix, we can
write

DA(X, X)) = UkAkUk, 27)
where Uy is a unitary matrix and A =
diag{\e,1,-- s Ak, 0,...,0} with Ag,; being the positive

eigenvalues of D4(Xy, X}). We define D(Xj, X)) as
the number of values of m where either X" # X, or
Xm BD#X/m BD ie

D(X},X}) =M+ BD
M+BD

D IRIC
m=1

—X;™Ms(XBP - xR (28)
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Since dy(m)d;! (m) is a rank one matrix whenever X" #
BD .

X;™ and/or X;"BP £ X;™ 7" and a zero matrix other-

wise, we can wrlte

re = rank(Da(Xg, X})) < min(D(X, X}),2LLY),
min 7 < min(Deys(k), 2LLY)

k>

i
min D(X}, X,). Conditioned on known

and as a result r =

with Deff (k) =
k> :

channel coefficients, it follows from (27) that

1 Tk
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P(Xx — X4 HL K, Gilk) < S ],

where U}, . denotes the c-th column of U . Furthermore, if we
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since a;,;[n] are i.i.d. complex Guassian random variables with

zero mean, [i;, are also ii.d. complex Gaussian random

2
. . . L Oh.
variables with zero mean and variance of o7, ; = >°,"; =
Furthermore, by denoting q; as q; = [q1, .. .,q5r,]" and g,
as s = [qLL,+1;---,Q2LL,)" , We can write
q(k) = [quite 1,15 s QU Ly -+ o QLL L5 - - s
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LL; Ly
Uk cq(k E § Uk c,(p—1)Ly+t9pHk, 1t
p=1t=1
LL, Ly
*
+ E : E :Uk,c,LL§+(p—1)Lt+t‘1LLt+pUk72,t
p=1t=1
2 LL,
= E E Q(i—1)LLy+pXk,(i—1)LLi+p> (30)
i=1 p=1
Ly
*
where X (i-1)LLi+p E :Uk,c,(ifl)LLer(pfl)LHrthﬂ"t
t=1
are  complex  Gaussian random  variables  with
. 2 o
zero mean and variance of o . ;_1)rL,4p =
Ly
2 2
E \Uk,e,(i—=1)LL2+(p—1)Lo+¢| Opi- To calculate the PEP

t=1
of the system, we make two simplifying assumptions:

. Uﬁiq(k) and Ugjq(k) are independent for different
values of ¢ and j (i # j). (Note that for g, being
a complex Gaussian random vector with zero mean,
Uﬁch and UkH7 9y, are independent complex Gaussian
random variables.)

e Xk,p are ii.d. complex Gaussian random variables with

zero mean and variance of O’X kp

2L Ly cos
For a fixed ¢, by defining 6, = arccos <Zl_”“ LD wl))

RP
2LL,
and R, = Z qiXk,1| in which ¢; is the angle between the
l=p+1

complex valued random vectors ¢; and xj,; and uniformly
distributed over [0, 27], we can write
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2LL:
|Uk cq Z dpXk,p
2LLy 2LLy 2LLy
=> lapxkpl> +2Re > > auxepdi Xi
p=1 p=1 l=p+1
2LLy 2LL¢
= Z |QPXk,p|2 +2 Z |apXk,p| Rp cos(dp — 6p).
p=1 p=1

Due to the fact that ¢, are uniformly distributed over [0, 27],
|xp| are Rayleigh distributed and by following the same
procedure as in (21), we can write

2
_ Ak,oR3
2
e 403

Ey,,

[Xk,1]

2L Ly 2 2L Ly )
7’\k,c szl lap Xk, pl 7’\k,c szg lapxp,p|Rp cos(ép—0p)
402 20
= 2 2
Elxenl e

Akelqi Xk, 1| R1
X I() (720g

Ak,cR%
2, T 402
_ 203€ 2 1030, c02 ;119117 +203)
- 2 2 2
)\k’cax)k,l|q1| + 202

2 2 252
e, cox k119117 RT

2
2 e, 1
20 - 2 2 2
_ 2 22Xk, e k119119 +405

= e
MOy @i |? + 203

€29

Therefore, by taking the expected value with respect to
o1, Xkl - -5 P2nL,, [Xk,20L, ], We arrive at

7’\k,cR8
403 }
203 + Ak,c0s i1 la1]?
203 + M 0‘7;2( k, 1ar|? 203 + )‘k,C(Ui,k,lmlP + Ui,k,2|q2|2)
202 + Ake Z%Lt Tl
2LL
203 + Ak Z ’ X,k,plqpl2

E¢17‘Xk,1‘7<~7¢2LLt»‘Xk,2LLt | {6

2
20'2

_ 20'2 (32)

2LL
205 + Are Zp 1 UX, ,p|QP|

T(L)Lobtain the above expected value, we first define V =
2

>t Oxkplapl® in which |gy| ~ Rayliegh(%%) and |qp|
are independent for all p, then obtain the expected value
over the new defined random variable. Let us define Sy =

p‘ai kpOap 7 Tok laglw #p ¢, ie., there are |Sy| differ-
ent values of ch kp o7, such that ch kp ol # ch k qul and
V1 # p. Furthermore, assume that there are J distinct values
2 for j € {1,...,J} for which there are p and [ (p # 1 and

p,l e{l,... 2LLt}) such that o2
We also define S; = {p|o2 , 00 = forje{1,...,J}

and N; = |S;]. It follows from [17, p. 876] and the definition
of the Gamma distribution that

2 2 2 _ .2
xkp ap = Ix k1%, = %5

_ v

Pv(v) = Y e i

pESO Tx.k.p%a.p
pNi—1 I
Tk “G.p
+§:§: UZ)N-e ompE,
j=1peS,; X’w
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2 2
Ox.k.p%.p
[ie s T e Therefore, we can

where 7, =
write

2
Eig,...l \ 202
q1l,--slaarr, > 2LL,;
205 + Ak,e Zp 1 UX, ,p|QP|

203
=Fy{—="2
v {zag T AneV }

[e'e) 2 v
T 2 P 3
= Y g [
pGSo QUx,k,pUQ»P 0 202 + )\k,cv
1 © 202pNiTl -
-|-E E 2 5 N e Xk, p" 4P,
Sires, NG =Dy k080) o 203 + Aev

By using the integral calculated in [19, p. 325. Eq. 2. 3. 6. 14.]
and due to the deﬁnition of the exponential integral function

— Ooe
Ei(a) = [ ¢~dz, we obtain
202
PEP,.=FEy{——2
© 20% + AV
203 2
- E #202 kk~,c0>2<,k,p“<21,1)El 205 =
pesg 0% kpTap e /\’fcoxkp a.p
n 202 (—I)Nﬂ'_l
E E X
2 \N;
j=1p€S; Moy k07 p) ™
202 2
% | e e Xk pTdn E; L
)\kCCT k o2
x-k.p%a,p

_ 2 2
)‘k’cax,k,paqm

o (33)

2
k=1
Finally, for the PEP of the system under block fading channel
conditions, we obtain

r H 2
~i S U g

1
P(Xi = X}) < 5E e

IN

11
5 I PEP.... (34)

c=1
where PEPy, . are given in (33).
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